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Abstract

Rapid and Robust Non-Cartesian Magnetic Resonance Imaging Methods

by

Wenwen Jiang

Doctor of Philosophy in Bioengineering

University of California, San Francisco

Professor Michael Lustig, Co-chair

Professor Peder E.Z. Larson, Co-chair

Magnetic resonance imaging (MRI) is a powerful non-invasive medical imaging modality.

Unlike computed tomography (CT), MRI does not use ionizing radiation and provides a

broad range of soft-tissue contrasts. However, imaging speed remains a fundamental limita-

tion to many potential applications.

Using non-Cartesian trajectories to e�ciently traverse k-space has been a promising re-

search direction for rapid MRI. The ability to traverse k-space rapidly is also beneficial for

applications where the signal is short-lived. In addition, many non-Cartesian trajectories

result in incoherent image artifacts that can spread across dimensions. This allows for high

acceleration factors when incorporated with parallel imaging and compressed sensing.

On the other hand, non-Cartesian trajectories are not widely adopted clinically because

they are often sensitive to many error sources, such as gradient delays and eddy currents.

Hence, it is crucial to develop non-Cartesian imaging methods that provide both rapid k-

space traversal and robustness to potential system errors at the same time. This dissertation

considers two particular applications that require rapid and robust imaging methods: hyper-
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polarized 13C MR spectroscopic imaging (MRSI) where the polarized signal is short-lived,

and pulmonary imaging where the transverse magnetization decays rapidly.

For hyperpolarized 13C MRSI, this dissertation proposes using a concentric rings trajec-

tory (CRT) as the image acquisition method. CRT provides the essential scan time e�ciency

and robustness to system imperfections: (1) the image acquisition time is halved compared

with Cartesian counterparts; (2) CRT is inherently robust to first-order eddy currents and

gradient system delays; (3) this sampling scheme results in low noise amplification for par-

allel imaging. Preclinical studies demonstrate the feasibility and e�cacy of using CRT in

hyperpolarized 13C MRSI.

For pulmonary imaging, this dissertation proposes using a 3D radial based ultrashort

echo time (UTE) imaging sequence, combined with a novel reconstruction framework to pro-

vide motion robust high resolution 3D images in a 5-minute acquisition time. In particular,

this dissertation develops: (1) a lower-resolution, high frame rate dynamic 3D self-navigator,

which provides robust and accurate motion estimation; (2) high-resolution image reconstruc-

tion techniques to compensate for respiratory motion with soft-gating and motion-resolved

strategies. For further acceleration, this work incorporates the above techniques into an

iterative reconstruction framework with parallel imaging and compressed sensing.

Despite its motion robustness and fast acquisition time, the proposed pulmonary imaging

method is susceptible to gradient delays. Motivated by this problem, a general solution for

correcting gradient system delays is proposed by exploiting data redundancy in multi-channel

coil array data. The proposed method requires no additional calibration scans, and estimates

both gradient system delays and auto-calibration data simultaneously. This work is general

to many other non-Cartesian imaging trajectories as validated by both simulation and in

vivo scans.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) is a powerful non-invasive medical imaging modality.

Unlike x-ray, computed tomography (CT) or positron emission tomography (PET), MRI

provides a non-ionizing radiation solution to obtain superior soft-tissue contrast at high

spatial resolution. The sensitivity to parameters and flexibility of MRI provide various types

of soft tissue contrast, for example, oxygenation contrast for imaging brain activity, spectral

contrast for mapping metabolites, blood flow information and more.

Imaging speed remains a major challenge for many MRI applications. Non-Cartesian

imaging is a promising research direction for rapid MRI. Non-Cartesian trajectories can be

designed to traverse k-space e�ciently within hardware limits. Moreover, undersampling

acceleration schemes of parallel imaging and compressed sensing often benefit from non-

Cartesian trajectories. On one hand, non-Cartesian trajectories can better utilize spatial

variation of coil sensitivities to reduce noise amplification of parallel imaging reconstruction.

Commonly used non-Cartesian trajectories are oversampled in the center of k-space, thus

enabling the use of auto-calibration parallel imaging methods. On the other hand, non-

Cartesian trajectories can be designed to have fewer coherent artifacts from undersampling,

thus fit better for compressed sensing theory compared with Cartesian trajectories.

In addition to increased imaging speed, non-Cartesian trajectories provide additional
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benefits, which Cartesian trajectories cannot provide. For example, center-out radial trajec-

tory is used for ultra-short echo time (UTE) acquisitions to capture signals from very short

T2* tissues [1]. Motion induced artifacts are less pronounced in radial and projection recon-

struction (PR) trajectories [2, 3]. Also, radial and PR trajectories can be used to provide

self-navigation for motion correction [4, 5, 6].

Despite these benefits shown in research developments, non-Cartesian imaging methods

are not commonly used in clinical practice mainly because they are sensitive to errors from

MR hardware imperfections, such as gradient delays or eddy currents. Image artifacts often

arise from these corruptions, thus deteriorating diagnostic value for clinical evaluations.

Hence, ensuring the robustness of non-Cartesian imaging to these hardware imperfections is

essential for clinical applications.

This dissertation considers two particular applications that require rapid and robust

imaging methods: hyperpolarized 13C MR spectroscopic imaging (MRSI) and pulmonary

imaging. For hyperpolarized 13C MRSI, this dissertation proposes using concentric rings

trajectory (CRT) as the image acquisition method. For pulmonary imaging, this dissertation

proposes using 3D radial based ultrashort echo time (UTE) imaging sequence, combined with

a novel reconstruction framework to provide motion robust high resolution 3D images in 5-

minute free-breathing scans.

Despite developments of these non-Cartesian MRI methods, hardware imperfections are

sometimes unavoidable, and result in apparent image artifacts for non-Cartesian trajecto-

ries. In the end, this dissertation describes a general approach to correct non-Cartesian

k-space deviation, specifically caused by gradient timing delays, by exploiting data redun-

dancy in multichannel datasets. This method is motivated by practical gradient delay prob-

lems occurred in the implementation of spiral, center-out radial trajectories in the previously

mentioned methods.
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1.1 Outline

The structure of this dissertation is as follows:

Chapter 2: Principles of Magnetic Resonance Imaging

This chapter describes the principles of nuclear magnetic resonance and the concepts

behind MR imaging. Non-Cartesian imaging and accelerated imaging methods (paral-

lel imaging and compressed sensing) are also introduced to pertain to the rest of this

dissertation.

Chapter 3: Concentric Rings for Hyperpolarized 13C MRSI

In vivo detection of 13C labeled substrates by MR spectroscopic imaging (MRSI) allows

for observation of several key metabolic pathways, with promising applications in can-

cer and heart disease. In vivo 13C imaging is made possible by hyperpolarization. The

short-lived hyperpolarized MR signal necessitates the need for rapid imaging acquisi-

tions. This chapter introduces a rapid and robust MRI technique – concentric rings

trajectory (CRT) for hyperpolarized 13C MRSI. Quantitative comparison analyses of

CRT with Cartesian and spiral counterparts are performed. The motivation for paral-

lel imaging extension is described and the first parallel imaging in vivo experiment for

hyperpolarized 13C is demonstrated.

Chapter 4: Motion Robust High Resolution Free-breathing Pulmonary Imaging

Pulmonary imaging has been a great challenge to MRI, because of combined factors

of low proton density, respiratory motion as well as rapid T2* signal decay. This

chapter describes a 3D radial based UTE method for free-breathing pulmonary imag-

ing. Methods including robust dynamic self-navigator to estimate respiratory motion

and motion-compensated reconstructions are developed. Improved results in clinical

patients are presented.

Chapter 5: Estimation of Gradient Delays in non-Cartesian Parallel MRI

Gradient delays in non-Cartesian MRI not only induce spurious image artifacts but also
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contaminate the auto-calibration region for parallel imaging. This chapter presents a

novel and general method to correct for gradient timing delays in retrospect. It is based

on the low-rank property of auto-calibration data in parallel imaging. The method is

described and demonstrated with center-out radial, projection reconstruction and spiral

trajectories.

Chapter 6: Summary and Future Work

This chapter summarizes the improvements to non-Cartesian MRI presented in this

dissertation and also outlines directions of future research based on these methods.
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Chapter 2

Principles of Magnetic Resonance

Imaging

Magnetic resonance imaging is based on the quantum mechanical phenomenon known as

nuclear magnetic resonance (NMR). NMR is based on the fact that protons and neutrons

have an intrinsic spin angular momentum, which was first observed by research groups led

by Felix Bloch [7] and Edward Purcell [8] in 1945, and later applied to medical imaging by

Paul Lauterbur in 1973 [9]. Magnetic resonance phenomenon often necessitates a quantum

mechanical explanation whereas classical description is su�cient for understanding magnetic

resonance [10]. This chapter only considers a classical description of magnetic resonance

physics, and then briefly describes how the images are formed. Moreover, sophisticated

encoding methods such as non-Cartesian imaging, parallel imaging and compressed sensing

are also reviewed. A more complete description can be found in many popular textbooks

[11, 12] and review papers [13, 14, 15].
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B0

M0a b

Figure 2.1: E↵ect of the external magnetic field on spins. (a) With no external field, the
spins are randomly oriented. (b) Applying the external B

0

field causes the spins to have a
slight tendency to point along the direction of the field, resulting a net magnetization, M

0

.

2.1 Nuclear Magnetic Resonance Physics

Atoms with an odd number of protons/neutrons possess a property known as nuclear angular

momentum (also known as spin). The hydrogen atom (1H) is most commonly used in

NMR/MRI because it is the most abundant in the body. Several other atoms such as 13C,

31P and 23Na also have nuclear angular momentum and therefore exhibit NMR phenomenon.

In the classical description, a strong static field B
0

polarizes the spins, causing them to

have a slight tendency to point along the direction of the field [10], thus generating a net

magnetic moment M
0

(simply referred as equilibrium magnetization) proportional to B
0

.

Meanwhile, the spins resonate at a well-defined frequency, known as the Larmor fre-

quency, which is proportional to the applied field: !
0

= �B
0

, where � is gyromagnetic ratio.

The spins absorb and also emit radio frequency (RF) signals at this particular resonance

frequency.

The interaction of the magnetization M = (M
x

,M
y

,M
z

) with an external magnetic field

B (B comprises the longitudinal and transverse components to the static magnetic fields) is

governed by the Bloch equation:

dM

dt
= M⇥ �B+

M
0

�M
z

T
1

+
M

xy

T
2

, (2.1)
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M
xy

= (M
x

~i + M
y

~j) and M
z

are defined as transverse and longitudinal magnetization,

respectively. At thermal equilibrium, M = (0, 0,M
0

) aligns with B. Applying a radio fre-

quency excitation field B
1

to the net magnetization tips M and deviates it from the direction

of B, then precessional behaviors of the magnetization will occur. M precesses about B at

the Larmor frequency and the transverse component M
xy

leads to an electromotive force in

a coil that is picked up as a signal.

Meanwhile, two types of relaxation mechanisms are occurring: longitudinal relaxation

(T
1

relaxation) and transverse relaxation (T
2

relaxation). The relaxation mechanism will

drive the magnetization to the equilibrium state M = (0, 0,M
0

). T
1

and T
2

are constants

specific to di↵erent materials and types of tissues.

2.2 Magnetic Resonance Imaging

The key components of magnetic resonance imaging are the interactions of three types of

magnetic fields: (1) main homogenous, static magnetic field B
0

, (2) transverse RF field B
1

at

Larmor frequency, and (3) spatially varying gradient field G. In the presence of B
0

field, the

spins resonate and can be excited by RF magnetic fields B
1

. Following this excitation, the

precessing spins will produce RF signals, which can be detected. Spatially varying magnetic

fields G are used to spatially encode the transmitted and received RF signals, which allows

for localization of magnetization signals.

2.2.1 Spatial Encoding

After the excitation, M precesses about B at the Larmor frequency, producing free induction

decay signals, which are picked up by receiver coil. The received signal is a complex harmonic

with a single frequency peak centered at the Larmor frequency.

Localization of the NMR signal m(x, y, z) is achieved with known spatially varying mag-

netic fields. This is most commonly introduced by applying superimposed linear magnetic
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field gradients G = (G
x

, G
y

, G
z

) in the x, y, and z directions. The received signal is the con-

tribution of all the precessing transverse magnetization of the whole volume (when ignoring

relaxation):

S(t) /
ZZZ

m(x, y, z)exp

✓
�i�

Z
t

0

G(⌧) · rd⌧

◆
dx dy dz

/
ZZZ

m(x, y, z)exp [�i2⇡(k
x

(t)x+ k
y

(t)y + k
z

(t)z)] dx dy dz.

(2.2)

where

k
x

(t) =
�

2⇡

Z
t

0

G
x

(⌧) d⌧

k
y

(t) =
�

2⇡

Z
t

0

G
y

(⌧) d⌧

k
z

(t) =
�

2⇡

Z
t

0

G
z

(⌧) d⌧

(2.3)

As Equation 2.2 shows, the acquired signal simply becomes the Fourier transform of

m(x, y, z). The spatial frequencies k
x

, k
y

, k
z

are the time integrals of the gradient waveforms.

The spatial frequency domain is usually called “k-space”. The image can be reconstructed

with an inverse Fourier transform as the Fig 2.2 shows. Equation 2.2 is called the signal

equation.

2.2.2 Spectral Encoding

So far, the signal equation ignores frequency shifts other than those induced by gradient

encoding. In particular, chemical shifts describe subtle frequency shifts in the signal that

are dependent on the chemical environment of particular compounds. They also provide the

basis of NMR spectroscopy, which has been used to elucidate molecular structure.

In addition to spatial encoding, spectral encoding enables spectroscopic imaging methods

that map the spatial distribution of components with di↵erent chemical shifts.

We add an additional variable to parameterize the dependence of NMR signal on the

chemical shift species: m(x, y, z) ! m(x, y, z, f). Then the signal equation becomes:
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Imagek-space

Inverse Fourier 

Transform

Figure 2.2: (left) acquired data (k-space) with logarithmic amplitude to enhance contrast;
(right) reconstructed image via inverse Fourier transform.

S(t) /
ZZZZ

m(x, y, z, f)e�i2⇡k

x

(t)xe�i2⇡k

y

(t)ye�i2⇡k

z

(t)ze�i2⇡ft dx dy dz df

/
ZZZZ

m(x, y, z, f)e�i2⇡(k

x

(t)x+k

y

(t)y+k

z

(t)z+ft) dx dy dz df

/
ZZZZ

m(x, y, z, f)e�i2⇡(k

x

(t)x+k

y

(t)y+k

z

(t)z+k

f

f) dx dy dz df.

(2.4)

where

k
x

(t) =
�

2⇡

Z
t

0

G
x

(⌧) d⌧

k
y

(t) =
�

2⇡

Z
t

0

G
y

(⌧) d⌧

k
z

(t) =
�

2⇡

Z
t

0

G
z

(⌧) d⌧

k
f

= t

(2.5)

The k-space perspective of the signal equation now extends to a trajectory through the

4D Fourier transform of m(x, y, z, f) by denoting time as k
f

. Equation 2.4 is called spectro-

scopic imaging signal equation. Magnetic resonance spectroscopic imaging can noninvasively
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detect multiple small, endogenous molecular-weight metabolites, which is a promising tool

for metabolic imaging.

2.3 Non-Cartesian Imaging

The most commonly used imaging method to acquire k-space data is sampling along rec-

tilinear lines falling onto a Cartesian grid (top right of Fig 2.3). Reconstruction from such

acquisitions is very simple: applying the inverse fast Fourier transform (FFT). In addition,

reconstructions from Cartesian sampling are robust to many sources of system imperfections.

For example, gradient delay translates to a benign linear phase in the image domain.

There are many other trajectories (non-equispaced encoding schemes) which do not fall

into the Cartesian category, including sampling along spiral trajectories (Fig 2.3(a)), sam-

pling along radial lines (Fig 2.3(b)), sampling along a set of concentric rings (Fig 2.3(c)), as

well as a set of blades (known as PROPELLER [16] Fig 2.3(d)).

Special properties of these trajectories make them advantageous for specific applications.

Spirals make e�cient use of the gradient system hardware, and are used in rapid imaging

applications, such as cardiac imaging [17] and fMRI [18]. PROPELLER trajectory [16]

intrinsically was designed to correct motion. Radial and projection reconstruction (PR)

acquisitions are less susceptible to motion artifacts than Cartesian trajectories [2], and can

be significantly undersampled [19], especially for high contrast or sparse objects [17, 20, 21].

Radial/PR trajectories can also be used as self-navigation methods [4, 5, 6]. In addition, it

is possible to capture fast relaxing compounds (tendons, bone, lung parenchyma) with radial

or other center out (spiral, cones) trajectories [1, 22, 23].

For non-Cartesian encoding, the image reconstruction is more complicated. Since the

data are acquired on a non-uniform grid, an inverse non-uniform discrete Fourier transform

(NUDFT) is desired to reconstruct the underlying image. However, an exact inverse oper-

ation is not computationally e�cient in practice, as it requires inversion of a large dense

matrix. The most common method is to approximate the inverse NUDFT with the adjoint
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Image Cartesian k-space

Spiral Radial/PR Concentric Rings PROPELLER

(a) (b) (c) (d)

Figure 2.3: (top) Cartesian sampling of k-space and its reconstructed image; (bottom) some
common 2D non-Cartesian k-space trajectories: spiral, radial/PR, concentric rings and PRO-
PELLER.

non-uniform FFT (NUFFT) applied on density compensated data, also referred to as the

gridding algorithm throughout this dissertation. The adjoint NUFFT operation is performed

by convolving data with a finite kernel, sampling onto an oversampled uniform grid, per-

forming an inverse FFT, and multiplying by a deapodization function. Adjoint NUFFT

operations typically require density compensation, which compensate for the nonuniform

sampling density, in order to approximate the inverse NUDFT. Alternatively, iterative re-

construction methods that use NUFFT, such as [24] can be performed without any density

compensation. These methods use the forward and adjoint NUFFT operations iteratively

to approximate the inverse NUDFT. More details about NUFFT can be found in [25, 26].

Throughout this dissertation, most of the reconstruction methods rely on NUFFT, combined

with reconstruction of accelerated encoding, which is introduced in the following section.
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2.4 Accelerated Encoding

Parallel imaging and compressed sensing are the two modern accelerated acquisition methods

in MRI, providing scan time savings. Both methods provide acceleration through undersam-

pling below the Nyquist rate: parallel imaging utilizes additional spatial encodings provided

by multichannel coil arrays and compressed sensing exploits image sparsity. In this disser-

tation, I will exploit both sparsity and coil sensitivity information by solving an appropriate

optimization problem.

2.4.1 Parallel Imaging

Parallel imaging based on local coil arrays with multiple receiver coils has been used to

acquire MR imaging data with reduced scan time. These spatially localized coil arrays,

reduce the recorded noise and increase the signal-to-noise ratio (SNR) [27]. Each coil element

is sensitive to particular region of the entire object, so the image m(x, y, z) in the signal

equation Equation 2.2 becomes S
j

(x, y, z)m(x, y, z) where S
j

(x, y, z) is the spatial sensitivity

of the receiver element j. I call S
j

(x, y, z) sensitivity maps in this dissertation.
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Images from Different Coils

K-space Data from Different Coils

coil 1

2

3

4

5

6

7

8

Figure 2.4: (top)Images from di↵erent receiver coils; (bottom) k-space data from di↵erent
coils displayed with logarithmic scale for enhancement.

Parallel imaging achieves acquisition acceleration by acquiring a reduced amount of k-

space data [13]. While undersampling below Nyquist rate in k-space induces image aliasing,

multiple receiver coils provide additional encoding (as Fig 2.4 shows): in the image domain,

the underlying images are superimposed with coil sensitivities, thus the acquired k-space

data is correlated with coil sensitivities. In parallel imaging, the discretized signal equation

can be simplified as the following:

y = PFSm (2.6)

where y is the acquired k-space data, P is the undersampling operator, F is the Fourier

transform operator, S represents the coil sensitivities, and m is the target image. Image m

can be determined by solving the following optimization problem:
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argmin
m

ky � PFSmk2
2

(2.7)

Many algorithms [28, 29, 30, 31] have been developed to resolve the image from the

acquired undersampled data. Among them, SENSE [28] is a general and explicit method

that is compatible with arbitrary k-space trajectories (known as CG SENSE [32] for non-

Cartesian) with the knowledge of sensitivity maps. For Cartesian sampled parallel imaging,

there exists closed-form solutions to resolve the images. However, for non-Cartesian parallel

imaging, all voxels are coupled in the reconstruction. Hence an explicit inversion is not

feasible computationally. Instead, iterative algorithms provide an e�cient alternative.

Although undersampling in parallel imaging accelerates data acquisition, it sacrifices

SNR. This is because SNR is proportional to the square root of the acquisition time. As the

scan time is reduced, the SNR is lower compared to the fully sampled case. In addition, if we

regard image reconstruction as an inverse problem, undersampling pattern could make the

problem ill conditioned. That results in higher condition number, which is called geometric

factor (g-factor) in MRI [28]. G-factor depends on the coil geometry, undersampling pattern,

as well as the k-space trajectories. Chapter 3 elaborates on the g-factor analysis with di↵erent

trajectories.

2.4.2 Compressed Sensing

Natural images, including medical images, are compressible by many-fold. One such example

is the popular JPEG compression. Compressed sensing implicitly compresses data within

the signal acquisition process by obtaining fewer so-called incoherent measurements and then

reconstructing the underlying images with iterative methods.

There are three key components for the application of compressed sensing in MRI: (1)

medical images are naturally compressible by sparse coding in an appropriate transform

domain (e.g., by wavelet transform); (2) MRI scanners naturally acquire encoded samples,
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rather than direct pixel samples (e.g., spatial encoding), which allows for incoherent sam-

pling; (3) sparsity enforcing reconstruction.

In order to generate incoherent measurements, compressed sensing requires pseudo ran-

dom underdsampling pattern, as shown in Fig 2.5. Incoherent measurements create inco-

herent artifacts in the image domain, which can be resolved using sparsity enforcing recon-

struction methods. To enforce sparsity in reconstruction, compressed sensing needs to add

sparsity promoting regularization, such as `1 regularization, to the reconstruction equation

(Equation 2.7):

argmin
m

1

2
ky � PFmk2

2

+ �k�mk
1

(2.8)

Here, y is the acquired k-space data, P is the undersampling operator, F is the Fourier

transform operator, and m is the target image, � is a sparsifying transform. The first term

of the Equation 2.8 enforces the data consistency of the measurement, and the second term

constrains the transform sparsity of the underlying image.

Since the optimization problem is not linear, iterative methods such as proximal gradient

descent methods are required to solve the optimization problem [33]. More details about

compressed sensing in MRI application are elaborated in the work [15, 34].

2.4.3 Non-Cartesian Imaging with Parallel Imaging and

Compressed Sensing

Compressed sensing and parallel imaging can be combined with non-Cartesian imaging for

highly undersampled data acquisitions. Non-Cartesian parallel imaging o↵ers several po-

tential advantages over Cartesian approaches. Many non-Cartesian trajectories are fully

sampled/oversampled in the center of k-space, which allows for the use of auto-calibration

parallel imaging methods. Also, the g-factor can be reduced by using non-Cartesian trajec-

tories. The better conditioning of the reconstruction is because acceleration is divided in

multiple directions in non-Cartesian imaging, whereas acceleration is performed in one di-
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K-space Image

Fully Sampled

Uniform 
Undersampling

Incoherent
Undersampling

Figure 2.5: Conceptual illustration of images and k-space sampling pattern for fully sampled,
uniform undersampled and incoherent undersampled scenarios.

rection (the phase encoding direction) in Cartesian imaging [14]. Non-Cartesian acquisitions

can better utilize the multi-dimensional spatial variation of the coils sensitivities to improve

the conditioning of reconstruction.

In some applications, especially dynamic imaging, additional acceleration beyond the

number of coil arrays is necessary. Hence, the incorporation of compressed sensing to exploit

image sparsity provides crucial acquisition acceleration. To incorporate compressed sensing
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with non-Cartesian imaging, trajectories should be designed to induce incoherent aliasing.

One such example is the golden-angle radial trajectory [35]. Similar to parallel imaging, non-

Cartesian trajectories can often be designed such that undersampling induces less coherent

image aliasing than Cartesian trajectories, because they can spread artifacts across multiple

dimensions. Thus, non-Cartesian compressed sensing has great potential and may be even

more advantageous than Cartesian for specific applications.

In this dissertation, I incorporate parallel imaging and compressed sensing into two par-

ticular applications that require rapid imaging methods: hyperpolarized 13C MR spectro-

scopic imaging (MRSI) and pulmonary imaging. In particular, Chapter 3 demonstrates

parallel imaging applications in hyperpolarized 13C spectroscopic imaging using concentric

rings trajectory and demonstrates the improved conditioning of parallel imaging with con-

centric rings trajectory compared to its Cartesian counterpart. Chapter 4 of this dissertation

demonstrates promising parallel imaging and compressed sensing applications using 3D ra-

dial trajectory for motion resolved pulmonary imaging.
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Chapter 3

Concentric Rings for Hyperpolarized

13C MR Spectroscopic Imaging

3.1 Introduction

In contrast to anatomic MRI, which detects changes in the relaxivity or density of bulk tissue

water, magnetic resonance spectroscopic imaging (MRSI) can noninvasively detect multiple

small, endogenous molecular-weight metabolites within cells or extracellular spaces.

In vivo detection of 13C labeled substrates by MRSI allows for observation of specific

enzyme-catalyzed reactions that reflect altered metabolism in cancer [36]. This was recently

made possible by creating hyperpolarized nuclear spins in the liquid state suitable for injec-

tion through a process called dissolution dynamic nuclear polarization (DNP). This process

greatly improves the signal sensitivity by a factor of 10,000+ [37], thereby allowing the di-

rect monitoring of 13C metabolites in vivo as long as the data acquisition is fast enough to

capture the short-lived signal ( 1min). The first phase I clinical trial using this technology

was recently performed in the Surbeck Laboratory of Advanced Imaging at UCSF, where 31

prostate cancer patients were studied using hyperpolarized 13C MRI. The study showed no

adverse e↵ect and demonstrated promising initial imaging results for detecting and staging
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tumors [38].

Despite these advances, the short-lived e↵ect of hyperpolarization still poses severe chal-

lenges for imaging. It is therefore necessary to develop rapid and robust imaging techniques.

Furthermore, these techniques must also resolve metabolite signals at multiple resonance

frequencies. Techniques have been developed that rely on fast spectroscopic sequences that

exploit the most out of the system hardware [39, 40, 41, 42, 43, 44, 45, 46], imaging-based

sequences with spectral separation techniques [47, 48, 49], parallel imaging using coil arrays

[50, 51, 52], and exploiting structure and redundancy in the data[53, 54, 55].

Fast spectroscopic sequences are advantageous because they provide comprehensive spec-

tral information about all metabolites. This is especially important when using multiple

hyperpolarized agents [56] or agents with more complex spectra such as [1,2-13C] pyruvate

[57], which presents major design challenges for imaging-based sequences [47, 48, 49]. In

comparison to these sequences, fast spectroscopic sequences are also more robust to B
0

in-

homogeneities.

Currently, both Cartesian (Echo-Planar Spectroscopic Imaging or EPSI [39, 40, 58]) and

non-Cartesian (spiral [42, 43, 59] and radial [41] spectroscopic imaging) techniques have been

investigated for accelerated hyperpolarized 13C MRSI. EPSI uses bipolar trapezoid magnetic

field gradients during signal detection and o↵ers larger k-space coverage. However it su↵ers

from relatively long scan times due to the number of phase encodings. In addition, minor

system imperfections can induce undesirable ghosting artifacts. To prevent ghosting, flyback

EPSI can be used but at the expense of a more limited spectral bandwidth (SBW). This

limits the number of metabolites that can be observed without aliasing. Spiral spectro-

scopic imaging is an alternative that provides a scan-time-e�cient imaging scheme, but it is

susceptible to system imperfections (such as gradient timing delay and eddy currents) [60].

To provide scan-time-e�ciency and robustness to system imperfections, I propose using

concentric rings trajectory (CRT) as the data acquisition method for 13C MRSI. It has the

following advantages: I. the acquisition time is halved compared with EPSI, given the same

imaging prescriptions; II. the slew rate (a hardware limitation for magnetic field gradients)



20

requirement is less demanding than the time-optimal spiral trajectory; III. CRT is robust

to first order eddy currents and system delays; IV. this sampling trajectory results in lower

g-factor noise amplification in parallel imaging than EPSI. CRT for MRI was first proposed

by Wu et al. [61, 62]. They implemented CRT on magnetization-prepared imaging and

corrected for the o↵-resonance blurring by retracing the central k-space. They also analyzed

the unique contrast and robustness properties of CRT. Later, Kwon et al. [63] implemented

the concentric cylinders trajectory on 3D magnetization-prepared imaging. In their study,

Kwon et. al, demonstrated the feasibility of the 3D concentric cylinder for magnetization-

prepared imaging.

In another recent work, Furuyama et al. [64] implemented CRT in a standard PRESS

based spectroscopy sequence for proton MRSI. They demonstrated feasibility in the healthy

human brain in vivo, taking advantage of the trajectory robustness and two-fold acceleration

over EPSI. Quantitative comparisons between CRT and other MRSI trajectories to evaluate

resolution, spectral bandwidth and SNR e�ciency, have not been reported yet. Moreover, for

the hyperpolarized 13C MRSI application, some practical challenges and unique properties

which are well-suited to CRT have not been exploited yet.

In this chapter, I demonstrated the e�cacy of CRT through a quantitative comparison

between CRT, EPSI and spiral MRSI, and used a 13C MRSI CRT sequence for 13C phantom

and hyperpolarized 13C in vivo animal applications. I also extended the application of CRT

to parallel imaging for additional acceleration and analyzed noise amplification compared

with Cartesian counterpart.

3.2 Methods

3.2.1 Concentric Rings Trajectory Design for MRSI

CRT for MRSI is derived similarly as in [61, 62]. Gradients are designed for the outermost

ring with respect to the spatial resolution and spectral bandwidth (SBW) and then scaled
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down for the inner rings with the readout window T
readout

kept constant. I use CRT with

constant angular velocity since they are robust to timing and eddy currents delays. The

radius of the outermost ring is set according to the desired spatial resolution. Maximum

gradient amplitude and slew rates set an upper limit on the achievable spectral bandwidth,

which is determined by the retracing period �T. The number of rings N
ring

determines the

in-plane field of view (FOV), whereas the number of revolutions N
rev

determines the spectral

resolution – which is ultimately limited by T2⇤ decay.

The prewinders and rewinders are designed using the time-optimal gradient design by

Hargreaves et al. [65] and implemented in Matlab (The Mathworks, Natick, MA, USA.) and

the CVX [66] convex optimization toolbox. The trajectory for an axial plane is shown in Fig

3.1.
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Figure 3.1: Concentric rings trajectory and sequence design: top-left shows the spatial
concentric rings k-space trajectory; top-right shows the spatial-spectral k-space trajectory;
bottom shows the concentric rings GRE sequence for axial images.

The constant angular velocity of rings is insensitive to some system imperfections. Timing

and first-order eddy currents induced delays result in benign rotations of images [62, 63]
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rather than spatial blurring.

3.2.2 Comparison of the Concentric Rings Trajectory with EPSI

and Spiral

For MRSI sequences, especially in hyperpolarized studies, optimizing the total scan time,

spectral bandwidth, and SNR is crucial for capturing the intrinsic contrast and biochemical

information. A quantitative study of CRT using these key parameters was performed in order

to compare against three other commonly used MRSI schemes: EPSI (both symmetric and

flyback EPSI) and spiral spectroscopic trajectories. Fig 3.2 illustrates the k-space trajectories

for the di↵erent methods. In symmetric EPSI, k-space is scanned in a zigzag trajectory and is

collected in both directions (blue and yellow arrows in the symmetric EPSI in Fig 3.2). In the

analysis I compare against a design in which the spectral bandwidth is determined by the time

between scans in the same direction, such as the duration between adjacent blue arrows. This

guarantees Nyquist sampling of the spectrum and is the preferred method in our institute.

I refer to this approach as Nyquist-constrained symmetric EPSI [40]. However, it is possible

to exploit Papoulis’s generalized sampling theory [67] and double the spectral bandwidth of

the current symmetric design, as it was initially implemented in proton MRSI [68]. In this

situation the spectral bandwidth is defined by the time between alternate scanning directions,

such as the duration between adjacent blue and yellow arrows. This dissertation refers to

this approach as “critical symmetric EPSI”. I elaborate on the reconstruction method of

this approach in the Appendix section.
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Figure 3.2: K-space trajectories of EPSI, spiral and concentric rings spectroscopic imaging:
the arrows illustrates the readout directions for both symmetric EPSI and flyback EPSI;
for symmetric EPSI, I use di↵erent-colored arrows to di↵erentiate the odd/even echoes for
reconstruction.

For a fair comparison, I fixed some specific prescriptions when evaluating acquisition

time, SBW and SNR e�ciency with respect to the spatial resolution. The parameter

ranges were chosen according to typical routine hyperpolarized preclinical prescriptions for

[1-13C]pyruvate that were performed in our institute: FOV = 16 ⇥ 16 cm2 Here, I need to
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mention that CRT and spiral have circular FOV while EPSI has a square FOV, so they are

not exactly identical. I defined the extent of imaging support along the x and y axes to be

the FOV) , spectral resolution = 10 Hz (i.e., the readout window T
readout

= 100 ms), spatial

resolution was in the range from 0.36 cm to 1 cm. All designs assumed a gradient amplitude

limit of 40 mT/m and maximum slew rate of 150 mT/m/ms.

Acquisition Time Comparison

The acquisition time should be as short as possible to “freeze” the 13C signal while hyperpo-

larized compounds undergo metabolic conversion and before they decay back to equilibrium.

In order to compare acquisition time, I fixed the SBW = 500 Hz, TR = 200 ms, spectral

resolution = 10 Hz and FOV = 16 ⇥ 16 cm2. The total acquisition time T
acquisition time

is

simply the product of TR, the number of phase encodings N
pe

and the number of interleaves

in time N
interleaves

.

T
acquisition time

= TR⇥N
pe

⇥N
interleaves

(3.1)

SNR E�ciency Comparison

In the SNR e�ciency comparisons, the following parameters are fixed: SBW = 500 Hz,

spectral resolution = 10 Hz and FOV = 16 ⇥ 16 cm2. I considered the duty cycle and the

k-space sampling uniformity e↵ects on SNR e�ciency. (I did not consider T1 e↵ects and the

number of excitations. Unlike conventional imaging, hyperpolarized 13C imaging often uses a

progressive flip angle [69], which equalizes the magnetization for each excitation. This results

in an SNR that is independent of the number of excitations and this is elaborated in the

Parallel Imaging with Concentric Rings section. Since relatively small number of excitations

was considered here, T1 e↵ects could be neglected. When the acquisition is long, T1 decay

during the scan will reduce the available magnetization. It is worth mentioning that spirals

and rings will have the advantage over EPSI since they require fewer acquisitions.)
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SNR e�ciency depends on the duty cycle:

SNR
e↵,duty

=

r
T
active time

T
readout

, (3.2)

where T
active time

is the total duration of the active readout gradients while T
readout

is the

duration of readout window.

It is also dependent on the uniformity of the sampling trajectory. Non-uniform sampling

acquisitions are less SNR e�cient than uniform ones. This was nicely demonstrated in [70],

where the e↵ective SNR e�ciency is given by:

SNR
e↵,uniformity

=
A

kR
~

k

D(~k) d~k
R
~

k

1

D(

~

k)

d~k
, (3.3)

where D(~k) is the density of the corresponding sampling position, and A
k

is the k-space

coverage.

I defined the overall SNR e�ciency to be the product of the above two formulas and

computed the SNR e�ciency for di↵erent trajectories.

For flyback and symmetric EPSI, it was required to use ramp sampling (as otherwise the

SBW requirement was not achievable). For the spiral trajectory, I designed time-optimal

spiral trajectories for di↵erent imaging resolution in order to minimize the total acquisition

time, which was essential for hyperpolarized 13C imaging.

Spectral Bandwidth

Spectral bandwidth (SBW) relates to the number of metabolites I can observe without

spectral aliasing. For example, in hyperpolarized [1-13C]pyruvate studies at 3T, 500 Hz

SBW is a reasonable range to observe the pyruvate and its products, [1-13C]lactate and

[1-13C]alanine. Here I fixed spectral resolution = 10 Hz and FOV = 16 ⇥ 16 cm2. SBW

is determined by �T, which is the retracing period (in Equation 3.4) to the same k-space

position.

SBW =
1

�T
(3.4)
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3.2.3 Experiment

All the phantom and in vivo studies were conducted on a 3.0 T GE clinical scanner (GE

Healthcare, Waukesha, WI, USA.) with maximum gradient amplitude of 40 mT/m and

maximum slew rate of 150 mT/m/ms. All the animal studies conducted were approved by

the Institutional Animal Care and Use Committee (IACUC).

Sequence Design Parameters for Concentric Rings Trajectory

CRT was implemented into the readout window of a 2D gradient echo (GRE) slice-selective

pulse sequence. The spectroscopic imaging module consisted of readout window duration

T
readout

= 100 ms, corresponding to a nominal spectral resolution of �f = 10 Hz, and a

SBW = 500 Hz, which set the duration of each revolution to �T = 2 ms. The achievable

in-plane isotropic spatial resolution was 3.67 mm, which was limited by the slew rate and

by the SBW. For the 13C phantom study, the flip angle (FA) was set to be constant for each

excitation. In the hyperpolarized studies, a progressive flip angle technique [69] was applied

in order to equalize the signal across excitations. Temporal interleaves were implemented by

appropriate delay of the readout trajectory in order to increase spectral bandwidth.

13C Phantom Spectroscopic Imaging Comparison

In order to evaluate the feasibility of CRT, I carried out comparison studies between CRT,

spiral, and EPSI trajectories based on the similar prescriptions. A 4-compartment phantom

for Carbon-13 was used, which included 1.0 M 13C bicarbonate, 2.0 M 13C formate, 1.0 M

[1-13C]lactate, and 1.0 M [1-13C]alanine. For localization, T2-weighted 1H anatomic MR

images were acquired in sagittal, axial, and coronal views. CRT sequence was used with the

basic prescriptions: FOV= 8⇥8 cm2, resolution = 3.67⇥3.67 mm2, TE/TR = 3.4 ms/ 5 s,

SBW = 500 Hz, FA = 90 �, readout window T
readout

= 100 ms, and 11 rings were encoded.

TR = 5 s was used for the full T1 relaxation of the 13C components in the phantom. Since
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metabolites resonance range was about 700 Hz at 3.0 T, I did temporal interleaving to double

the SBW from 500 Hz into 1000 Hz. The total scan time was 1min 50 s = 5 s (TR) ⇥ 11

(number of phase encoding rings) ⇥ 2 (interleaves).

I designed a symmetric EPSI trajectory (Nyquist-constrained) counterpart and a time-

optimal spiral spectroscopic trajectory counterpart, which were implemented in the same

pulse sequence scheme with CRT. Owing to the same prescriptions of 3.67 mm resolution

and SBW = 500Hz, the symmetric EPSI trajectory was designed to have 50 odd echoes and

50 even echoes, including ramp sampling. It needs twice the number of excitations as the

CRT to cover the same FOV. As for spiral spectroscopic trajectory with respect of the design

of of 8⇥8 cm2 FOV and 3.67 mm isotropic resolution prescription, it only had 7 echoes in

each TR, given the readout window duration, thus this single-shot spiral had the SBW =

68.6 Hz. In order to have comparable SBW with CRT and EPSI, spiral trajectory required

multiple temporal interleaves.

The same 4-compartment phantom for Carbon-13 was used in the comparison studies.

TE/TR = 3 ms/ 5 s was used for all the trajectories. The symmetric EPSI trajectory

required 22 excitations and one temporal interleave to have comparable 1000 Hz SBW.

For each readout, the data was separated into 50 odd echoes and 50 even echoes, and

then reconstructed by 3D gridding to be two 22⇥22⇥50 matrices. The spiral trajectory

required additional 14 interleaves to have 1000 Hz SBW. The raw data was 3D gridded into

a 22⇥22⇥50 matrix. The total scan time was 1 min 50 s = 5 s (TR) ⇥ 11 (number of phase

encoding rings) ⇥ 2 (interleaves) for CRT, 3 min 40 s = 5 s (TR) ⇥ 22 (number of phase

encoding rings) ⇥ 2 (interleaves) for EPSI and 1 min 15 s = 5 s (TR) ⇥ 15 (interleaves) for

spiral.

Hyperpolarized 13C in vivo Spectroscopic Imaging

In vivo experiments were performed on normal Sprague-Dawley strain rats, with weight

about 500 g. For all the rats, a tail vein catheter was placed immediately before the hy-
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perpolarized MR study. Next, the isoflurane anesthetized rats were placed on a water-filled,

temperature-controlled pad that was heated to approximately 37 C� and positioned inside of

the coil. The respiration and heart rate of the rats were monitored during the experiments.

Initially, T2-weighted 1H anatomic MR images were acquired in sagittal, axial, and coronal

views. The subsequent hyperpolarized 13C scans were prescribed on the chosen slices. A mix-

ture of [1-13C] pyruvic acid and the trityl radical (tris methyl sodium salt; GE Healthcare)

was polarized using the HyperSense polarizer (Oxford Instruments, Oxford, UK.). After the

mixture was polarized, it was rapidly dissolved into a pH-balanced Tris bu↵er solution, tar-

geting a hyperpolarized 100 mmol/L pyruvate solution with a neutral pH. Next, the solution

was quickly transported to the MR scanner and 2.2 mL was injected into the rat over 12

s. The imaging data acquisition was initiated 30 s after the start of the pyruvate injection

to coincide with the peak lactate signal. A slice-selective pulse sequence with a progressive

flip angle excitation pulse using CRT was performed using a TE/TR = 3.4/200 ms, readout

window T
readout

= 100 ms, and 11 rings. Additional sequence prescriptions for rat studies

included: FOV= 8⇥8 cm2, slice thickness of 10 mm, resolution = 3.67⇥3.67 mm2, and 500

Hz SBW. The total scan time was 2.2 s. For this study, the total scan time could be reduced

by 35% by decreasing TR. I carried out in vivo comparison studies between CRT and EPSIs:

both the comparison of CRT with Nyquist-constrained symmetric EPSI and the comparison

between CRT and critical EPSI. TE/TR = 3.4/250 ms was used for CRT while for the EPSI

counterparts, TE/TR = 3.4/200 ms was used.

Parallel Imaging with Concentric Rings

Parallel imaging is favorable for hyperpolarized 13C imaging because the shorter scan time

reduces SNR losses due to T1 decay and metabolism during the acquisition, especially in

larger, human-sized FOV 2D MRSI or 3D MRSI applications that require large numbers of

encoding steps. In non-hyperpolarized imaging, undersampling of k-space in parallel imaging
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reduces the acquisition time but at the trade-o↵ of losing SNR, as Equation 3.5 shows: [28]

SNR
und

=
SNR

full

g
p
R

. (3.5)

SNR
und

and SNR
full

are the undersampled and fully sampled SNR respectively, and R is the

acceleration factor. The g-factor, g, is spatially variant noise enhancement that depends on

the receiver coil array and sampling pattern.

However, the inherent signal of hyperpolarized 13C imaging is limited. With undersampling,

the given amount of total magnetization can be distributed into fewer excitations where each

excitation has more signal. In fact, reduced acquisition time may translate into higher image

SNR due to the reduced T1 relaxation [50]. As a result, parallel imaging does not result in

losing inherent signal if a progressive flip angle [69] is applied (shown in Equation 3.6). This

results in an undersampled SNR as

SNR
und

=
SNR

full

g
. (3.6)

Simulation of G-factor

Given the same phase-array coil sensitivity, the g-factor is determined by the sampling

pattern. A Monte-Carlo technique, which is also known as pseudo replica method [71],

was used to calculate g-factor maps of a simulated 8-channel phased-array coil and 4-fold

undersampling with CRT and rectilinear Cartesian (i.e., EPSI) trajectories. Fully encoded

series of images with identical parameters were simulated. Out of this image series, an

SNR
full

map of the fully encoded image can be derived by taking the mean and the standard

deviation on a pixel-by-pixel basis throughout the image series. Undersampling was achieved

by uniformly skipping phase encodings for both CRT and Cartesian counterparts. Similarly,

after reconstruction an SNR
und

map of undersampled encoded image was generated and a

g-factor map was computed by the Equation 3.5.

The simulated g-factor maps were 256⇥ 256 and cropped to display circular FOV. CRT’s

g-factor maps were generated by using fully sampled 128 rings and undersampled 32 rings

respectively, while the Cartesian (EPSI) g-factor map was generated by fully sampled 256
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phase encodings and undersampled 64 phase encodings. I used conjugate gradient SENSE

(CG-SENSE) [32] without regularization for the reconstruction. The number of pseudo repli-

cas was 50 for both sampling patterns.

Parallel Imaging for Hyperpolarized 13C in vivo Spectroscopic Imaging

To evaluate the feasibility of parallel imaging using CRT, a hyperpolarized in vivo experiment

was performed on normal Sprague-Dawley strain rats. An 8-channel 13C phased-array rat

coil was constructed especially for the study with the coils distributed isotropically around

the animal in the axial plane. I redesigned the CRT sequence to have a 420 Hz SBW as a

tradeo↵ for finer spatial resolution, and 10 Hz nominal spectral resolution. A slice-selective

pulse sequence with a progressive flip angle excitation pulse using CRT was performed using

a TE/TR = 3.4/320 ms. Additional sequence prescriptions for this rat study included:

FOV= 8⇥8 cm2, slice thickness of 20 mm, resolution = 2.5⇥2.5 mm2 (using a maximum

gradient amplitude of 50 mT/m and maximum slew rate of 200 mT/m/ms). CRT was

prospectively undersample by 1.45 spatially, using 11 rings instead of the 16 rings required

for full sampling. The inner 6 rings were fully sampled for calibration and outer 5 rings were

evenly undersampled by 2. The reconstructed results were 32⇥32⇥42 (spatial + spatial +

spectral) matrices.

Reconstruction and Data Processing

Image reconstruction and postprocessing were carried out in Matlab. I applied density

compensation to the non-Cartesian raw data, 3D gridded it into Cartesian data, and then

performed an FFT. Gridding and FFT were done by using Fessler’s non-uniform fast Fourier

transform (NUFFT) toolbox [25] with min-max Kaiser-Bessel kernel interpolation and twice

oversampling. The matrix size of the reconstructed CRT image was 2N
ring

⇥ 2N
ring

⇥ N
rev

after 3D gridding (2D spatial + 1D spectral). The same NUFFT reconstruction method was

also applicable for symmetric EPSI (Nyquist-constrained), flyabck EPSI and spiral spec-
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troscopic imaging. In the symmetric EPSI reconstruction, for each readout, the data was

separated into 50 odd echoes and 50 even echoes, and then reconstructed by 3D gridding

respectively, and finally average the two results.

For spectroscopic imaging data, peak heights were assessed to quantify SNR. The noise was

calculated, using an area outside of the object but within the FOV, as standard deviation of

the whole spectra. The same area (relatively uniform) were chosen to analyze SNR of CRT,

spiral and EPSI. Median signal values among all the voxels in the selected area, along with

standard deviation were used to quantify the SNR of each metabolites. Metabolites SNR

were also normalized to the acquisition time to analyze SNR e�ciency.

For parallel imaging simulations, non-regularized CG-SENSE [32] reconstruction and Monte-

Carlo method were performed to compute the g-factor maps. For parallel imaging in vivo

experiments, sensitivity maps were obtained by the auto-calibration method EPSIRiT [31]

and L1-regularized SENSE was used for reconstruction.

3.3 Results

3.3.1 Theoretical Comparison of the Concentric Rings

Trajectory with EPSI and Spiral

In the following, I compared CRT with EPSI and spiral MRSI trajectories in terms of

resolution, acquisition time, SNR e�ciency, and spectral bandwidth.

Acquisition Time

As shown in Fig 3.3 (top-left), since both symmetric EPSI and flyback EPSI have the same

number of phase encodings and interleaves are not required, they result in the same total

acquisition time for each individual resolution. Compared with EPSI, CRT requires fewer

phase encodings and no interleaves, so it results in saving half of the total acquisition time

given the same TR. For the spiral trajectory design, I used a time-optimal spiral in order

to optimize the gradient duration and required interleaving of the spiral trajectory to fulfill
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the spectral bandwidth requirement (500 Hz). Spirals are the most time e�cient of all the

trajectories, while CRTs are twice as fast as EPSI trajectories.
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Figure 3.3: top-left shows the acquisition time; top-right shows the SNR e�ciency; bottom-
left and bottom-right show the SBW and SBW with spectral interleaves. CRT requires
half of the total acquisition time compared with EPSI trajectories, o↵ers about 87% SNR
e�ciency, and provides much wider spectral bandwidth than flyback EPSI and symmetric
EPSI. Although nominally spirals are the most e�cient trajectories, o↵ering the best acqui-
sition time and spectral bandwidth benefit while sacrificing the least SNR, they are limited
by susceptibility to gradient infidelities.

SNR E�ciency

Fig 3.3 (top-right) shows the SNR e�ciency of di↵erent trajectories with various resolution
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prescriptions. The SNR loss for flyback EPSI is mostly due to its low duty cycle. The

finer the resolution is, the lower the duty cycle will be and SNR e�ciency decreases as the

flyback portion requires more time. Although the duty cycle for symmetric EPSI is 100%

(including ramp sampling), the non-uniform k-space sampling resulting from the ramp part

of the trapezoid waveform reduces the SNR e�ciency to some extent. The SNR e�ciency is

very high for symmetric EPSI but not 100%. As the resolution gets coarser, the ramp portion

is smaller, so the SNR e�ciency is higher. For the constant slew rate spiral trajectories, the

SNR e�ciency decreases as the resolution becomes coarser with a fixed FOV since there

is proportionally less outer k-space sampling where spirals are more uniform than inner

k-space. Non-uniformity results in the most of the SNR loss of spirals while duty cycle

results in a smaller fraction of the loss. Benefiting from the design of constant slew rate,

the spiral trajectories provide even better SNR e�ciency than flyback EPSI and CRT. CRT

o↵ers a constant SNR e�ciency of
p
3

2

, which is better than flyback EPSI with the chosen

prescriptions. The loss of SNR e�ciency for CRT is caused by the non-uniformity.

Spectral Bandwidth

EPSI traverses a rectilinear line in k-space for each retracing period, CRT traverses a circle,

while spiral traverses the whole spatial k-space in each period. Given the same traversing

velocity (determined by the gradient waveforms), accordingly, the achieved SBW for EPSI,

CRT, and spirals are decreasing in order, as shown in Fig 3.3 (bottom-left) without inter-

leaves. To exploit the maximum spectral bandwidth, both symmetric EPSI and flyback

EPSI result in the same waveform design thus achieving the same spectral bandwidth. They

are only slightly better than CRT since flyback EPSI requires flyback time and symmetric

EPSI (Nyquist-constrained) does not critically exploit the whole spectral bandwidth.

However, CRT and spiral trajectories are more scan-time-e�cient compared with EPSI.

If I take advantage of scan-time-e�ciency by applying interleaves in temporal domain, I

can increase SBW. In Fig 3.3 (bottom-right), the SBW of all trajectories was computed

by accounting for the interleaves in time domain constrained for the same total acquisition

time. Considering this tradeo↵, spiral trajectories o↵er the best SBW, while CRT’s spectral
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bandwidth is doubled compared to EPSI.

The non-monotonicity of the spiral trajectories SBW with respect to resolution in this

analysis is due to using an integer number of interleaves.

13C Phantom Spectroscopic Imaging Using CRT

As I could tell from the 4-compartment phantom for Carbon-13 (Fig 3.4), the singlet peaks of

13C bicarbonate (on the top left), [1-13C]lactate (on the top right) and [1-13C]alanine (on the

bottom left) and doublet of 13C formate (on the bottom right) were well resolved when using

interleaved CRT with SBW = 1000 Hz. The 13C 2D image was obtained by spatially zero

padding and projecting along the spectral domain, in order to display all the compartments.

At this resolution, I observed that the edges of the di↵erent compartments were well resolved

in 13C 2D image and it matched well with the proton reference image.
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Figure 3.4: (top-left) 1H image localizer; (top-right) 13C 2D image via projection on spectral
domain; (bottom) spatial-spectral display for spectroscopic imaging. The displayed 13C 2D
image has the nominal spatial resolution of 1.83⇥1.83 mm2 after zero padding. The recon-
structed spatial-spectral (2D spatial+1D spectral) data matrix (22⇥22⇥100) was cropped
to 12⇥12⇥100, and the SBW for each voxel was 1000 Hz. This was a non-hyperpolarized
study, with the TR = 5 s and total acquisition time of 1min 50 s.
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3.3.2 Comparison of CRT, Spiral and EPSI on 13C Phantom

Fig 3.5 shows the phantom comparison results from CRT, spiral and EPSI (from left to

right). The first row in Fig 3.5 shows 2D images obtained by twice spatially zero padding

and projecting along the spectral domain. While all MRSI trajectories showed very com-

parable image quality, I did observe a slight blurring with the spiral and EPSI trajectories

(yellow arrows) compared to the CRT. For the spiral trajectory, I observed an isotropic ap-

proximately half-voxel blurring, while for EPSI I observed approximately half-voxel blurring

in the readout direction (left/right). These might be the result of induced eddy currents,

which could measured and corrected for by performing trajectory measurements.

Concentric Rings Spiral EPSI

Figure 3.5: the top row (from left to right) images were obtained from CRT, Spiral and
EPSI respectively. They were created from spectroscopic images via projection along the
spectral domain. The displayed 13C 2D image has a nominal spatial resolution of 1.83⇥1.83
mm2 after zero padding and was cropped into a 5⇥5 cm2 ROI. The arrows show the slight
blurring of spiral and EPSI. The bottom row (from left to right) plots are of 13C bicarbonate
spectra obtained from CRT, Spiral and EPSI, respectively, from the same 9 voxels.

For SNR comparison, I selected 9 voxels (in red boxes) in the 13C bicarbonate chamber.

For comparison, these raw SNR values were normalized by the acquisition time, as shown in
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Table 3.1. Spiral MRSI had a superior normalized SNR over CRT and EPSI, which coincides

with the comparison plot shown in Fig 3.3. Overall, CRT provided some improvement in

image quality (without using any trajectory measurements) but a reduced SNR e�ciency.

Table 3.1: SNR comparison of CRT, Spiral and EPSI trajectories in a 13C Phantom

CRT Spiral EPSI

Raw SNR 44.1297±7.3599 42.0563±6.7352 69.9937±14.1840
Scan Time 1 min 50 s 1 min 15 s 3 min 40 s

Normalized SNR 36.4389 42.0563 40.8675

3.3.3 Hyperpolarized 13C In Vivo Spectroscopic Imaging with

Concentric Rings

The imaging plane was chosen at the abdomen of a rat in axial view ( in Fig 3.6). The

kidneys of rats showed the high uptake of pyruvate and its conversion to alanine and lactate.

Spatially, the [1-13C] pyruvate image (Fig.3.6b) and [1-13C] lactate image (Fig.3.6c) captured

the structure of the kidneys and vasculature, and metabolic conversion. Resolution of dif-

ferent metabolites was captured in the 13C spectrum with 500 Hz SBW (a selected voxel is

shown in Fig.3.6d). Pyruvate and lactate images were twice zero padded to have a displayed

resolution of 1.83⇥1.83 mm2. The total scan time was 2.2 s.
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Figure 3.6: In vivo results using concentric rings in a normal rat (axial): a.1H T2-weighted
localizer; b. [1-13C] pyruvate image; c. [1-13C] lactate image; d. the 13C spectrum of a
selected voxel with 500 Hz SBW. MRSI was acquired with a spatial resolution of 3.67⇥3.67
mm2. Pyruvate image and lactate images were twice zero padded to have a resolution of
1.83⇥1.83 mm2. For display purposes, the intensity of lactate image was scaled up by 7.
The total scan time was 2.2 s.
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3.3.4 Comparison between Concentric Rings and EPSI with

Hyperpolarized 13C In Vivo

CRT and a Nyquist-constrained EPSI counterpart with the same prescriptions were com-

pared, where the total scan time for CRT was 2.75 s while it was 4.4 s for EPSI. In Fig

3.7, 2D images were obtained from the projection along the spectral domain. Both methods

captured the anatomical structure and metabolic conversion with comparable quality. As

the red arrows show, the through-plane flow in the major vessels resulted in ghosting replicas

in the phase encoding direction for EPSI. However, pulsatile flow in CRT will manifest as

low-amplitude background halos [61], which may have lead to increased background signal

in CRT.
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Figure 3.7: In vivo results in an axial kidney slice using concentric rings and symmetric EPSI:
(top-left)1H T2-weighted localizer; (top-right) spectrum from concentric ring trajectory and
spectrum from EPSI trajectory respectively, both sequences captured the conversion of pyru-
vate with comparable SNR; Bottom figures show pulsatile flow e↵ects on concentric rings
and EPSI: (bottom-left) 2D image from the concentric rings and (bottom-right) 2D image
from EPSI, via projection along spectral domain.

I also compared CRT and a critical EPSI counterpart with the same prescriptions, where
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the total scan time for CRT was 2.2 s while it was 4.4 s for EPSI. In Fig 3.8, I extracted 2D

images at TE = 43.4 ms, to show the pulsatile flow e↵ects on both CRT and EPSI. As the

red arrows show, the through-plane flow in the major vessels resulted in ghosting replicas in

phase encoding direction for EPSI. However, I did not observe any pulsatile flow artifacts on

CRT at any echo time. Additionally, as the red arrow points out in Fig 3.8, EPSI su↵ered

from spectral aliasing caused by gradient delays and/or eddy currents. Due to the back and

forth readout directions across k-space, gradient delays or eddy currents translate into phase

accrual in opposite directions, resulting in such aliasing in the spectral domain.
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Figure 3.8: In vivo results using concentric rings and critical EPSI: Top figures show the
system imperfections e↵ects on concentric rings and critical EPSI: (top-left)1H T2-weighted
localizer; (top-right) spectrum from concentric ring trajectory and spectrum from EPSI tra-
jectory respectively, where the red arrow points out the spectral aliasing caused by gradient
delays and/or eddy currents; bottom figures show pulsatile flow e↵ects on concentric rings
and EPSI: (bottom-left) 2D image from the concentric rings and (bottom-right) 2D image
from EPSI with twice zero-padding, both at TE = 43.4 ms.
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3.3.5 Parallel Imaging with the Concentric Rings

Simulated G-factor

As the simulated g-factor maps (in Fig 3.9) confirm, the non-rectilinear circular sampling

pattern of CRT results in more incoherent noise amplification than Cartesian counterparts

such as EPSI. Noise is amplified by 3-4 times at discrete locations for the Cartesian under-

sampling pattern due to the worse conditioning of the reconstruction problem. For CRT,

the noise was more uniformly distributed spatially, resulting in a noise amplification of no

more than 2.5 for this simulated 8-channel array with 4⇥ undersampling. (In conjunction

with appropriate regularization, the g-factor can be further improved.) The non-Cartesian

sampling pattern of concentric rings is advantageous because it makes the noise amplification

incoherent thus lowering the g-factor of the whole space.
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Figure 3.9: Simulated g-factor map of 4⇥ undersampled concentric rings trajectory (on the
left) and Cartesian trajectory counterpart, such as EPSI, (on the right) for a simulated 8-
channel array. The isotropic non-Cartesian undersampling pattern of the concentric rings
trajectory results in less coherent noise amplification than the Cartesian counterpart.

Parallel Imaging for Hyperpolarized 13C in vivo Spectroscopic Imaging

An 8-channel 13C phased-array rat coil was constructed especially for this study with the coils
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distributed isotropically around the animal in the axial plane as shown in the left of Fig 3.10.

The hyperpolarized 13C-pyruvate in vivo spectroscopic imaging in Fig 3.10 demonstrates for

the first time parallel imaging with CRT. The direct reconstruction of the prospectively

undersampled data resulted in the circular aliasing artifacts (yellow arrows) in the spatial

domain for each coil image (top row of Fig 3.10). These coil images were generated from the

projection along the spectral domain for display. The total scan time was 3.52 s, achieved by

prospective 1.45⇥ acceleration. With a parallel imaging reconstruction, the undersampling

aliasing was eliminated and good image quality was achieved, as is shown on the bottom left

of Fig 3.10. The bottom right plot shows the spectrum of a selected kidney voxel, clearly

showing pyruvate and its conversion to lactate.
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Figure 3.10: Parallel imaging in vivo results in an axial kidney slice using CRT with an
8-channel phased-array rat coil: the spectroscopic imaging CRT was spatially undersampled
by 1.45, with a spatial resolution of 2.5⇥2.5 mm2, 8⇥8 cm2 FOV and 420 Hz SBW. The left
of the figure shows the 8-channel phased-array rat coil. The top right part shows individual
coil images of the undersampled CRT using a direct NUFFT reconstruction, where the coil
images were generated by projection along the spectral domain. The 8 coils were distributed
isotropically around the animal in the axial plane. The bottom right part shows the parallel
imaging reconstruction result. The 2D image was obtained from projection along the spectral
domain and the spectrum from a selected kidney voxel was displayed to show the resolution
of various metabolites, including lactate resulting from metabolic conversion. The total scan
time was 3.52 s.
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3.4 Discussion

CRT provides a competitive alternative to existing 13C spectroscopic imaging acquisition

methods.

The CRT sequence requires half the number of excitations compared to EPSI. This has

an advantage in two-fold acquisition time savings. In addition, the T1 decay is reduced,

which leads to overall higher SNR [50].

The acquisition time saving can be traded o↵ for an increased spectral bandwidth through

interleaving. I also showed that even though CRT samples k-space non-uniformly, its SNR

e�ciency is still
p
3

2

⇡ 0.87 of uniform sampling.

I expect that the concentric rings trajectory will be more robust to system imperfections

than spirals or critical symmetric EPSI. For all trajectories, any gradient timing delay or

eddy currents will results in some artifacts. In spirals, these cause spatial blurring. In critical

symmetric EPSI, one e↵ect of these is odd-even echo inconsistency which results in spectral

aliasing. This is analogous to ghosting artifacts in EPI [72]. For CRT, delays and first-order

eddy currents result in benign image rotations [61]. More importantly, no spectral aliasing

or spatial aliasing artifacts will be observed.

One of the advantages of using CRT is robustness to flow, that was also reported in [61].

Pulsatile flow is distributed in two dimensions by CRT and spiral [73]. In contrast, EPSI

trajectories can su↵er from significant pulsatile flow artifacts where flow results in replicas

in phase encoding direction.

Combining CRT with parallel imaging for hyperpolaizated 13C imaging is also very

promising. Undersampling is achieved by acquiring fewer rings than what are necessary

for in plane full-FOV. I showed in Monte Carlo simulations that with CRT the resulting

g-factor due to undersampling is lower than for Cartesian undersampling. The reason is

that CRT undersamples isotropically in-plane, whereas Cartesian imaging can accelerate

only in the phase-encoding directions. As a result, CRT acquisitions can better utilize the

multi-dimensional spatial variation of the coils sensitivities to improve the conditioning of
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the reconstruction. Furthermore, hyperpolaizated 13C imaging do not su↵er from the usual
p
R loss of SNR due to subsampling. The reason is that the total magnetization can be

redistributed optimally to fewer number of excitations. Hyperpolarized 13C parallel imaging

with CRT is essential for the large FOV applications, e.g., metastatic cancer imaging.

There are some possible extensions of CRT for 13C MRSI: (1) the shorter scan time could

be amortized for dynamic MRSI to track perfusion and metabolism kinetics; (2) 3D MRSI

to cover a larger volume in vivo; (3) variable-density undersampling designs for parallel

imaging, maintaining the inner k-space fully sampled to capture the intrinsic contrast and

outer k-space undersampled for resolution and acceleration; (4) compressed sensing, taking

advantages of intrinsically sparse 13 C spectra [53, 54]. These improvements could further

reduce the total scan time.

I initially performed high resolution 1H MRSI studies to evaluate the CRT sequence.

Through these studies, I observed some spatial and spectral blurring, which I were able to

model as gradient induced phase errors. I measured this to be approximately quadratically

varying with total gradient magnitude and linearly time-accumulating. Based on these mea-

surements, I applied a quadratic phase compensation for 1H MRSI data that resulted in

e↵ective removal of the blurring e↵ects. I eliminated the possibilities of concomitant gra-

dients [74] and first order eddy currents, but did not determine the source of these phase

errors. The blurring was only prominent in high resolution 1H MRSI data. For 13C data, the

amount of phase observed would not result in noticeable blurring, and I observed no visible

artifacts. I also observed the phase error varied between di↵erent GE 3.0 T scanners, so I

suspect it is related to some gradient system compensations.

3.5 Conclusion

The preclinical studies have demonstrated the potential and feasibility of using concentric

rings in hyperpolarized 13C MRSI for a two-fold acceleration over EPSI, with inherent ro-

bustness to flow artifacts, gradient system delay, and first-order eddy currents. Parallel
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imaging will also benefit from this trajectory for hyperpolarized 13C imaging. Compared

with existing methods, the CRT provides flexible and robust trade-o↵ between acquisition

time and SBW, thereby acting as an e↵ective alternative for hyperpolarized 13C MRSI.
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Chapter 4

Motion Robust High Resolution

Free-breathing Pulmonary Imaging

4.1 Introduction

Pulmonary imaging with MRI has potential to characterize soft tissue using a wide range

of available image contrasts (e.g. T1, T2, di↵usion, perfusion, ventilation). Further, the use

of MRI in place of CT avoids radiation dose which carries substantial risks with repeated

radiation exposure [75, 76, 77, 78]. These benefits of pulmonary MRI are most relevant

in pediatric diseases requiring longitudinal follow-up, such as cystic fibrosis and assessing

pulmonary nodules, and could also enable imaging studies in much more widespread lung

diseases such as asthma. However, achieving morphological lung MRI with comparable

diagnostic value to CT is challenging due to the combined factors of short T2*, low proton

density, and respiratory motion.

A variety of pulse sequence techniques and acquisition procedures have been developed

to address these challenges[79, 80, 81, 82, 83, 84, 85, 86]. Among these techniques, radial ul-

trashort echo time (UTE) imaging has shown significant promise for high-quality pulmonary

imaging due to its ability to capture the rapidly decaying signal and its robustness to motion
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[79, 85, 86]. Recently, 3D radial UTE sequences with readout optimized for SNR e�ciency

have been proposed [86] for free-breathing pulmonary imaging. While these modifications

enhance the ability to assess lung parenchyma, appropriate motion compensation models are

still necessary to resolve respiration.

For a respiratory motion compensation model to be e↵ective, accurate motion estimation

must first be obtained. External respiratory bellows can be used to estimate respiratory

motion but are prone to errors. Most dominantly, the motion of the abdominal wall is

often poorly coupled to actual subject motion which leads to inaccurate respiratory motion

estimation [5, 86]. Motion information can be alternatively extracted directly from the

acquired k-space data as a self-navigator. A common approach is to use the k-space center

(DC), representing the average signal of the excitation volume, as a self-navigation signal [4,

5, 87, 88, 89, 90, 91, 92, 93, 94]. While the DC signal is sensitive to motion throughout the

imaging volume, there is not a direct relationship between the amount of signal deviation

and respiratory motion. Moreover, other factors like coil-related signal intensity drifts, bulk

motion, and imaging gradient eddy currents can cause erroneous motion estimation. Image-

based self-navigation can provide a direct measurement of motion, and recent studies have

shown that this approach had significantly better image sharpness than any of the DC-based

self-navigation methods [95, 96].

To account for respiratory motion when reconstructing images, a variety of methods have

been proposed. One class of methods aims to explicitly solve for motion displacement and

compensate it during the reconstruction. In particular, Batchelor and others [97, 98, 99]

proposed generalized matrix models to incorporate arbitrary motion displacement operators

into the forward reconstruction model. Methods using image registration [6, 100, 101, 102,

103, 104, 105, 106, 107] were also proposed to correct for motion by iteratively alternating

between image registration and reconstruction. Additionally, Cheng and others proposed

local auto-focusing methods [91, 108, 109, 110, 111] to choose the sharpest image in a local

region according to a gradient entropy metric. While these methods were shown to be

e↵ective to reduce motion artifacts in many applications, errors in their underlying motion
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models may introduce artifacts.

For this work, I focus on another class of reconstruction methods that implicitly exploits

image correlations from di↵erent respiratory motion states. While compromising the ability

to correct for motion, this class of methods is very robust to motion model errors. In

particular, I focuse on soft-gating [112, 113, 114, 115] and motion-resolved methods [116].

Soft-gating is a computationally e�cient iterative method in which the data consistency term

in the optimization is preferentially weighted based on distances from the chosen respiratory

motion state. The motion-resolved method, on the other hand, divides the data into several

respiratory motion states and enforces correlations between motion states in an iterative

reconstruction.

The purpose of this work is to provide motion robust high resolution 3D pulmonary imag-

ing using the following approach: I. data acquisition with an optimized 3D UTE sequence,

II. motion estimation with a lower-resolution, high frame rate dynamic 3D self-navigator

from the subset of acquired data with reconstruction that combines parallel imaging [32]

and compressed sensing[34] with locally low-rank constraints[117, 118], III. motion compen-

sation using a retrospective soft-gating technique to reconstruct high-resolution images at

a chosen motion state, IV. a respiratory motion-resolved technique to provide images of all

respiratory motion states, and V. the incorporation of L1-ESPIRiT [31], an auto-calibrating

parallel imaging and compressed sensing method. I applied the proposed methods to healthy

volunteers as well as subjects with cystic fibrosis and pulmonary nodules to demonstrate fea-

sibility for clinical applications.

4.2 Methods

4.2.1 Data Acquisition

An optimized free-breathing 3D radial UTE sequence with slab excitation and a bit-reversed

view ordering from Johnson et al. [86] was implemented. It incorporates variable density
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readout gradients to improve SNR e�ciency and slab excitation to reduce the number of

encodings and artifacts from the fringe of the gradient and B
0

fields. The pseudorandom

view ordering determined by a bit-reversed algorithm mitigates structured artifacts enabling

free-breathing pulmonary imaging. A diagram of the pulse sequence is shown in Fig 4.1.

More details about the sequence design are described in [86]. Specific acquisition parameters

are described in the following Experiment section.

RF

Gz

Gx/y

DAQ

TE = 74us

crusher

Figure 4.1: Illustration of the pulse sequence: slab excitation gradient with minimum-phase
RF are adopted to reduce artifacts and provide short TE; readout gradients are designed to
be variable density in order to improve SNR e�ciency.

Based on this sequence, the acquired data is fed into two processing branches illustrated

in Fig 4.2: the first branch is for reconstructing high frame rate, lower-resolution dynamic

3D images for self-navigation, followed by respiratory motion estimation; the second branch

is for reconstructing high resolution images, compensated for motion by data from the first

branch, and includes soft-gating L1-ESPIRiT and respiratory motion-resolved L1-ESPIRiT

reconstructions described below.
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Figure 4.2: Illustration of the proposed methods: (top branch) Respiratory motion estima-
tion from a dynamic 3D self-navigator, reconstructed using a central k-space region. This
estimation is used to derive motion compensation information for the soft-gating and motion-
resolved methods. The red line in the top respiration signal plot illustrates the soft-gating
threshold. (bottom branch) Respiratory motion compensated reconstruction of high reso-
lution images based on soft-gating and respiratory motion-resolved methods using the 1D
motion surrogate signal derived from top branch.

4.2.2 Locally Low Rank Constraints for Respiration Motion

Estimation

In radial acquisitions, the center of k-space is sampled repeatedly in every spoke, which can

be exploited for motion estimation. Changes in the k-space center (DC) signal reflect changes

in average image intensity and phase that can be used for motion estimation, and multiple

coils can further provide localized information [119, 120, 88, 121, 122]. However, DC signals

are susceptible to coil-related signal intensity drifts that could arise from gradient heating,
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and also remain sensitive to bulk motion or the rotating of readout direction. Thus, they

often lack direct correspondence with respiratory motion. Motivated by these limitations,

I propose a novel image-based self-navigated method using lower-resolution dynamic 3D

images to quantitatively estimate respiration motion.

Dynamic 3D Self-Navigator using Locally Low-rank Constraints

Here I describe a new method to reconstruct high frame rate, lower-resolution dynamic 3D

images from the radial UTE central k-space data for motion estimation by exploiting spa-

tiotemporal correlations with locally low-rank constraints. The 3D UTE acquisition uses a

pseudo-random view ordering such that every subset of contiguously acquired radial profiles

covers k-space with a relatively uniform angular distribution, which enables resolving lower-

resolution dynamic images. However, to achieve su�cient temporal resolution (� 2 Hz) and

acceptable spatial resolution ( 1 cm) to visualize respiratory motion, it requires more than

200-fold undersampling for every frame with respect to the Nyquist criterion. This is far

beyond the maximum undersampling factor of typical parallel imaging and compressed sens-

ing methods. Therefore, I propose to iteratively solve for lower-resolution navigation images

from consecutive subsets of data by exploiting spatiotemporal correlations with locally low-

rank (LLR) [117, 118] constraints. These constraints provide additional data consistency to

resolve aliased lower-resolution images. I formulate the problem in a parallel imaging and

compressed sensing manner shown in Equation 4.1:

argmin
Mlr

1

2
kDSM

lr

� y
lr

k2
2

+ �
X

i2⌦

kL
i

M
lr

k⇤ (4.1)

Here, the first term enforces data consistency where M
lr

represents dynamic lower-

resolution images (3D spatial+1D temporal size: n
x

⇥ n
y

⇥ n
z

⇥ n
t

), y
lr

are acquired data

corresponding central region of radial k-space measurements, S represents the sensitivity

maps (which can be estimated by ESPIRiT), and D is the multi-channel non-uniform Fourier

Transform (3D radial) operator. The second term enforces LLR constraint, where the dy-

namic imagesM
lr

can be partitioned into a set ⌦ of small image blocks (size: b
x

⇥b
y

⇥b
z

⇥n
t

),
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L
i

is the operator that takes the block i of the image to form its Casorati matrix with an

appropriate block size, and � is a weighting factor to balance the constraints. This optimiza-

tion problem in Equation 4.1 was solved by a fast iterative shrinkage-thresholding algorithm

(FISTA)[123] with singular value thresholding (SVT) and randomized block shifting [124].

4.2.3 Motion Compensated Reconstruction

At their core, the motion compensated reconstructions use parallel imaging and compressed

sensing to exploit the coil sensitivities and image transform sparsity for recovering both unac-

quired and corrupted k-space samples. This enables a clinically-feasible 5 minute scan, which

typically has more than 8-fold undersampling with respect to the Nyquist criterion when mo-

tion is ignored. I propose two motion compensation strategies, soft-gating and respiratory

motion-resolved, and incorporate them into a L1-ESPIRiT reconstruction framework.

General Reconstruction Framework - L1-ESPIRiT

I use L1-ESPIRiT, a combined parallel imaging and compressed sensing approach, as the

basic reconstruction framework:

argmin
m

1

2
kDSm� yk2

2

+ �k�mk
1

(4.2)

Here, m is the desired image (3D spatial size: N
x

⇥ N
y

⇥ N
z

), y is the acquired non-

Cartesian data, S are the ESPIRiT sensitivity maps calculated from the oversampled central

part of k-space, D is the non-Cartesian Fourier Transform (3D Radial) operator and � is

the 3D Daubechies wavelet transform. The first term in Equation 4.2 is a data consistency

term that minimizes the di↵erence between the acquired data y and the reconstructed image

m through the acquisition model. The second term enforces sparsity by minimizing the

L1-norm of the wavelet coe�cients of m, � is the regularization parameter.



56

Soft-gating L1-ESPIRiT Reconstruction

A common approach to correct for respiratory motion is gating, which selects a single motion

state by rejecting data from the other states. This type of gating, which I refer to here as

hard-gating, results in a relatively low scan e�ciency. Alternatively, Johnson et al. [112],

Cheng et al. [113] and also Forman et al. [114] proposed a simple and retrospective approach

called soft-gating, where all data is used but with weighting based on the estimated amount

of respiratory motion. The concept of soft-gating is illustrated in the top branch of Fig

4.2. The weights e↵ectively take account for motion induced data inconsistency. I use the

soft-gating approach by modifying the basic image reconstruction model (Equation 4.2) to

incorporate appropriate weights W :

argmin
m

1

2
kW (DSm� y)k2

2

+ �k�mk
1

(4.3)

Here, W is a diagonal matrix containing the soft-gating weights, which are applied to

the data consistency term. Let w[n] be the vector representing the diagonal entries of W. A

di↵erent weight w[n] is estimated for each radial spoke n, ranging between 0 to 1:

w[n] =

8
><

>:

e↵(d[n]�threshold), if d[n] > threshold

1, otherwise
(4.4)

where d[n] represents the estimated respiratory motion with respect to the end of expi-

ration for each spoke, threshold is a threshold of the respiratory motion, and ↵ is a scaling

factor. For data experiencing more respiratory motion corruption, their weights are smaller

and thus they contribute less to the data consistency term in Equation 4.3.

Soft-gating parameters were experimentally tuned and then fixed for the rest of the

study: the threshold was set as 25% of the maximum respiratory position and ↵ was set to

3/max(d[n]). We solved the optimization in Equation 4.3 using FISTA[123].
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Respiratory Motion-resolved L1-ESPIRiT Reconstruction

Another approach we propose to use for pulmonary imaging is a respiratory motion-resolved

reconstruction. We take a similar approach as XD-GRASP proposed by Feng et al. [116]:

sorting the free-breathing data into an extra respiratory motion-states dimension and con-

straining sparsity along the motion-states dimension by compressed sensing. The respiratory

motion-resolved approach modifies the basic image reconstruction model (Equation 4.2) by

extending the desired image to be 4D (3D spatial + 1D motion-states), and enforces sparsity

along the motion-states dimension:

argmin
M

1

2
kDSM � yk2

2

+ �
1

k�Mk
1

+ �
2

kMk
TV

(4.5)

Here, M is the desired respiratory motion-resolved images (3D spatial + 1D motion-

states), y is the acquired non-Cartesian data reformatted into di↵erent motion states ac-

cording to estimated respiration signal, S is the ESPIRiT sensitivity maps, and D is the

non-Cartesian Fourier (3D Radial) operator in the first term that enforces data consistency.

The second term enforces spatial sparsity by minimizing the L1-norm of the wavelet coe�-

cients of M . The wavelet transform operator is represented by �. The third term enforces

motion-state sparsity by minimizing the total variation (TV) norm along the extra respira-

tory motion dimension. �
1

and �
2

are the regularization weights for wavelet-domain sparsity

and motion-state sparsity respectively. We solved the optimization in Equation 4.5 using

the alternating direction method of multipliers (ADMM)

Evaluation of Dynamic 3D Self-Navigator

For the dynamic 3D self-navigator, the beginning 16 % of the data along the readout was

used to reconstruct lower-resolution images and estimate sensitivity maps. This results

in 7.5 mm apparent isotropic spatial resolution. Lower-resolution 3D self-navigators were

reconstructed on an 80⇥ 80⇥ 80 matrix of each frame with a temporal window width of 100

spokes, which yields an apparent temporal resolution of ⇡ 300 ms (depends on TR value).
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E↵ectively, every frame has the acceleration factor of 200 with respect to Nyquist criterion.

We partitioned the images with the block size of 8 ⇥ 8 ⇥ 8, and applied locally low-rank

constraints on the temporal domain, using regularization of � = 0.0005. For comparison, we

performed a direct 3D gridding reconstruction on the same data of every temporal frame.

We compared dynamic 3D self-navigation with DC-based self-navigating and respiratory

bellows navigation on a group of eight clinical patients with mixed patterns of breathing.

Motion estimates from the dynamic 3D self-navigator were obtained by measuring the su-

perior/inferior (SI) translation motion of the diaphragm by calculating cross correlations

on a region-of-interest (ROI) in image domain. For DC-based self-navigation, we applied a

low-pass (0.5 Hz cut-o↵ frequency ) filter on the k-space center to extract the 1D respira-

tion motion surrogate. An additional median filter was applied to the raw data. Finally,

the asymmetric least-squares smoothing method [125] was performed to get rid of signal

intensity drifts.

Pearson correlation coe�cient analysis between di↵erent respiratory motion estimation

methods for each subject was performed, in order to determine the agreement between

various respiratory motion signals. The motion estimation accuracy was further investigated

by reconstructing images with the proposed soft-gating L1-ESPIRiT method. The soft-

gating compensation used the same parameters across di↵erent motion estimations, including

similar e↵ective undersampling factors (which is defined by summing up the weighting values

with respect to data size). The image quality was assessed by image sharpness along lung-

liver interfaces with the maximum of the first derivative (MD) [96], normalized by the MD

value of dynamic 3D self-navigator reconstructed images. Median filter was applied before

taking the derivative to mitigate the noise sensitivity. 10 slices were chosen to compute mean

and standard deviation for each case.
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Evaluation of Motion Compensated Reconstruction

Soft-gating L1-ESPIRiT was evaluated by first extracting the respiratory motion signals

from the acquired data by the proposed 3D dynamic self-navigator (80 ⇥ 80 ⇥ 80 ⇥ 1000

matrix). Then, we used 3D Daubechies wavelet basis with regularization values of � = 0.01

in the soft-gating L1-ESPIRiT reconstruction. The results were compared with gridding

reconstruction with and without respiratory motion hard-gating.

For respiratory motion-resolved reconstruction algorithms, the same respiratory naviga-

tion signals were used. We divided the data equivalently into 5 motion states (each state

has the same number of radial spokes). Regularization values of �
1

= 0.01 and �
2

= 0.02

were empirically tuned and used for reconstruction. [126].

4.2.4 Experiments

The proposed methods were applied on two healthy volunteers, nine clinical patients (in-

cluding 8 cystic fibrosis (CF) patients. All the in vivo studies conducted were approved

by my Institutional Review Board (IRB). Image reconstruction and post-processing were

carried out by the Berkeley Advanced Reconstruction Toolbox (BART) [127], including

gridding and ESPIRiT calibration. In the spirit of reproducible research, I provide both

MATLAB (MathWorks, Natick, MA) and Python (PSF, Wilmington, DE) demonstration

code (https://github.com/jiangwenwen1231/FB_UTE_Recon) and a software package to

reproduce some of the results described in this article. The software can be downloaded

from: https://github.com/mrirecon/bart.

All of the in vivo 3D UTE scans shared the following relevant parameters: prescribed

field of view (FOV) = 32 ⇥ 32 ⇥ 32 cm3, flip angle = 4�, 1.25 mm isotropic resolution,

sampling bandwidth = ±250 kHz, readout duration = 1 ms. Gradients were designed to

create a maximum shift of ±125 kHz across the prescribed FOV. The total scan time was

between 5 min 7 s to 5 min 14 s, which results in undersampling ratio ⇡ 8 with respect to

Nyquist criterion when motion is ignored. TE was in the range of 70⇠80 µs and TR was in
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the range of 2.932⇠4.1 ms.

Free-breathing scans were performed on all the subjects with slight di↵erent scan details:

healthy volunteers were performed on 3T clinical scanners (GE Healthcare, Waukesha, WI)

with an 8-channel cardiac coil and 20-channel torso coil arrays; CF patients studies were

performed on 1.5T and 3T (GE Healthcare, Waukesha, WI) clinical scanners, an 8-channel

cardiac coil and 18-channel torso coil were used as receiver arrays, respectively; the patient

with pulmonary nodules was scanned on a 3T PET/MR scanner (GE Healthcare, Waukesha,

WI) with a 18-channel torso coil. Respiration bellows belts were in place during all the scans.

4.3 Results

4.3.1 Evaluation of Dynamic 3D Self-Navigator

Dynamic lower-resolution images have strong streaking artifacts when only the gridding

operation was applied, as seen in Fig 4.3, due to a high level of undersampling (⇠ 200-fold) of

every frame. It is extremely challenging to estimate motion information from these corrupted

images. When parallel imaging and compressed sensing with LLR constraints were applied,

the incoherent aliasing artifacts were significantly reduced by the local sparsity constraint.

The Supporting Video 1 shows the comparison of gridding and LLR images over time.

To demonstrate the dynamics captured by the dynamic 3D self-navigator, I selected cross

lines perpendicular to the diaphragm, front chest wall, at the apex of the lung, as well as

within the heart for two subjects with cystic fibrosis, in which complex breathing patterns

were observed. In both case 1 and case 2 in Fig 4.3, the dynamic 3D navigators were capable

of displaying the full chest motion pattern well, including lung-liver interface displacement,

chest wall expanding, as well as movement of pulmonary vessels within the lung. Both

subjects had a mixture of deep and shallow breathing patterns with variable rates. I also

observed cardiac motion in case 2 on top of respiratory motion as the green line and box

show in Fig 4.3. (The full dynamics of cardiac motion is beyond the scope of this work.)
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The Supporting Video 2 and Supporting Video 3 clearly illustrate the full respiratory motion

captured by the LLR reconstruction on two CF patients with complex breathing patterns.
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Figure 4.3: Dynamic 3D self-navigator: (top) Comparison of gridding and locally low-rank
constrained lower-resolution images as navigators (Please see Supporting Video 1 ); (bottom)
Motion measured by the LLR dynamic 3D self-navigator for two subjects with CF in which
complex breathing patterns were observed. The cross lines of particular positions over time
show multiple directions of chest motion. (Please see Supporting Videos 2 and 3 of these
two cases.)



63

For all the clinical patients, I compared the respiration estimation from the dynamic

3D self-navigator, a DC-based self-navigator, and respiratory bellows belt-based navigation

with Pearson correlation coe�cient analysis. For the subjects (Case 4,7,8) with regular

breathing pattern, respiratory bellow and DC-based self-navigation usually showed good

agreement with dynamic 3D navigator based motion estimation. However, there was sub-

stantial disagreement for subjects with irregular breathing patterns (Case 1,2,5,6) as shown

in the correlation coe�cient table of Fig 4.4. I also quantitatively compared the image sharp-

ness of soft-gating L1-ESPIRiT reconstructed images with the metric of maximum derivative.

Overall, dynamic 3D self-navigator based reconstructed images provide the best image sharp-

ness. For subjects with regular breathing pattern, di↵erent respiration navigation resulted

in similar image sharpness (Case 4,7,8). For subjects with irregular breathing pattern (Case

1,2,5,6), dynamic 3D self-navigator based image provide significant better image sharpness

than both DC-based self-navigation and respiratory bellow based images.

I show two exemplifications to illustrate di↵erent motion estimation signals and corre-

sponding reconstructed images. Fig 4.5 examines the two challenging cases of cystic fibrosis

patients who had mildly irregular breathing and strongly irregular breathing, respectively.

The Supporting Video 4 shows the breathing pattern of all the clinical patients evaluated in

the Fig 4.4.
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Figure 4.4: (Top) Pearson correlation coe�cients between the dynamic 3D self-navigator
signal and respiratory bellow signal (blue), and between dynamic 3D self-navigator signal
and DC-based self-navigation signal (yellow) among 8 cystic fibrosis patients; (Bottom)
Comparison of di↵erent respiration estimation methods in 8 cystic fibrosis patients in terms
of diaphragm sharpness marked by maximum derivative (MD) method. The values are
normalized by the sharpness value of dynamic 3D self-navigator reconstruction.

Case 1, shown in the top of Fig 4.5, had mildly irregular breathing, with periods of regular

motion but also some deep/shallow inhalation. Both DC-based self-navigation and dynamic

3D navigator were able to delineate the deep and shallow inhalation (⇡ 50 s and 150 s, like

shown in shading areas of interest) while the respiratory belt failed to capture this variation.

The motion estimation accuracy was evaluated qualitatively by applying a soft-gating L1-

ESPIRiT reconstruction in the right column of Fig 4.5. As the yellow arrows show, the

sharpness of the small vessels was slightly deteriorated with respiratory belt navigation and

DC-based self-navigation, while the dynamic 3D self-navigator most clearly depicts these
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fine structures and improves the conspicuity of the small vessels. Although the DC-based

self-navigation appeared to correctly capture deep and shallow inhalation has correlated

well with dynamic 3D navigator (also indicated in Fig 4.4 with correlation coe�cient), the

blurred vessels in the reconstructed images indicate some inaccuracies. Also, quantitatively

the sharpness of the lung-liver interfaces were analyzed in Fig 4.4. Both belt navigation and

DC-based self-navigation resulted in lower sharpness values compared with 3D self-navigator.

The 3D self-navigator video are included in the Supporting Video 2.

Case 2, shown in the bottom of Fig 4.5, had a strongly irregular breathing pattern. Dif-

ferences in the motion estimation results are largely due to the fact that respiratory belt

and DC-based self-navigation cannot capture the bulk displacement of the lung and the

diaphragm that occurred during this study. During several abrupt movements (⇡ 20 s, 70

s and 160 s, like shown in shading areas of interest), the respiration belt failed to match

the actual displacement of diaphragm. I suspect this patient was coughing during the first

minute of the scan. As the reconstructed images show in Fig 4.5, images reconstructed utiliz-

ing DC-based self-navigation and respiratory belt had low vessel conspicuity and substantial

blurring observed at the dome of the liver. This suggests both the DC and bellows signals

did not accurately represent chest wall and diaphragm motion. The dynamic 3D navigator

gating greatly improves the image quality in this case, sharply recovering fine vascular struc-

tures within the lung. The significant lower MD values from belt navigation and DC-based

navigation of Case 2 in Fig 4.4 also reinforces the analysis. I provide the Supporting Video

3 showing the dynamic 3D navigator for this patient during the 5-minute scan.
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Figure 4.5: Comparison of di↵erent respiration estimation methods in CF patient case 1
with a mildly irregular breathing pattern and CF patient case 2 with a strongly
irregular breathing pattern: (top) respiration motion estimated by the respiratory bel-
lows belt; (middle) respiration motion derived from the center of k-space (DC); (bottom)
respiration SI motion derived from the dynamic 3D navigator. A comparison of soft-gating
L1-ESPIRiT reconstructions based on corresponding respiration estimation is shown on the
right. These reconstructions are based on a soft weighting window centered at the end of ex-
piration. The arrows indicate vessels with varying conspicuity based on di↵erent respiration
estimations. Note that the only dynamic 3D self-navigation signal is quantitative whereas
the DC based and bellows are not.
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4.3.2 Evaluation of Motion Compensated Image Reconstruction

Fig 4.6 shows a comparison of non-gated gridding (left) and gated gridding (middle) recon-

structions with the soft-gating L1-ESPIRiT reconstruction (right) in a healthy volunteer and

a cystic fibrosis patient. The zoomed-in red boxes show that the fine pulmonary structures

are delineated well with soft-gating L1-ESPIRiT. Red arrows point out where vessels and

fine structures were blurred out by the respiratory motion when the non-gated reconstruction

was used, while gating motion compensation was able to visualize the fine structures and

diaphragm. For the gated gridding reconstruction, although the structures are sharper, the

undersampling results in streaking artifacts (yellow arrows) and also di↵use aliasing artifacts

that are noise-like in appearance. These were removed when soft-gating L1-ESPIRiT was

applied. Overall, soft-gating L1-ESPIRiT reconstruction also provides better apparent SNR,

since it removes the both streaking and noise-like artifacts while enforcing sparsity in the

image wavelet domain.
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Gated Gridding ReconstructionNon-gated Gridding Reconstruction Soft-gating L1-ESPIRiT Reconstruction

Volunteer

CF Patient

Figure 4.6: Comparison of soft-gating L1-ESPIRiT reconstruction with non-gated and gated
gridding reconstructions showing a single coronal slice from a healthy volunteer (top row)
and a cystic fibrosis patient (bottom row). Red boxes are zoomed-in views of fine structures,
and the yellow boxes show how well the diaphragm and streaking artifacts were resolved.

Fig 4.7 shows the respiratory motion-resolved images of all the respiratory motion-states

(from left to right) from the same volunteer as Fig 4.6. They clearly depict respiratory

motion without su↵ering from undersampling-induced aliasing. See the Supporting Video 5

for an animated version of the respiratory motion-resolved images.
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Base Line

Motion - Resolved Reconstruction
Inspiration Expiration

Figure 4.7: Respiratory motion-resolved L1-ESPIRiT reconstruction (images of di↵erent mo-
tion states are displayed from left to right). Please see the Supporting Video 5 for animated
version of this result. The red line denotes the location of the diaphragm at end expiration.

Fig 4.8 shows a side-by-side comparison of the soft-gating and respiratory motion-resolved

reconstructions on the same volunteer. Both soft-gating and respiratory motion-resolved

techniques were able to significantly reduce motion blurring and artifacts due to under-

sampling. The two reconstructions have similar apparent image quality. While respiratory

motion-resolved imaging provides all the motion states that could be valuable for dynamic

evaluations (e.g. ventilation, air trapping), the soft-gating reconstruction is computation-

ally more e�cient. In this comparison carried out on a machine equipped with a four-
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socket Intel Xeon E7-8870 with a total of 144 cores at 2.10GHz, my implementation of the

motion-resolved L1-ESPIRiT reconstruction takes 156GB memory and 5 hours with the par-

allelized implementation, while soft-gating reconstruction takes 43GB and 2 hours on the

same dataset.
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Figure 4.8: Comparison of soft-gating and respiratory motion-resolved L1-ESPIRiT recon-
structions at end-expiration in a healthy volunteer.
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To illustrate the performance of the motion compensated reconstructions in a subject

with irregular breathing, Fig 4.9 shows a side-by-side comparison of the soft-gating and

respiratory motion-resolved reconstructions for the CF patient Case 2 (same with Fig 4.5).

This subject had a strongly irregular breathing pattern and respiration drifts. Although the

soft-gating technique was able to significantly reduce motion blurring and recover most of

the vascular structures conspicuity within the lung, it resulted in blurring of some features

(e.g. diaphragm and vessels, shown with yellow arrows). Due to the large variation of the

respiratory motion and drifts, especially during inspiration state, I kept 60% of the data

as shown in Fig 4.9 and then segmented the remaining data equally into 5 motion states

to perform respiratory motion-resolved reconstruction. This respiratory motion-resolved

reconstruction was able to delineate the small pulmonary vessels and sharp diaphragm,

without deteriorating image quality. This is because each respiratory motion state represents

smaller motion range compared with the soft-gating technique’s single motion state.
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Figure 4.9: Comparison of soft-gating L1-ESPIRiT at end-expiration and respiratory motion-
resolved L1-ESPIRiT reconstruction in a CF patient with strongly irregular breathing and
respiration drifts (also shown in Fig 4.5 and Supporting Video 3). Due to the large variation
of the respiratory motion and drifts, I kept 60% of the data as shown above and then
performed respiratory motion-resolved L1-ESPIRiT reconstruction on the remaining data.
Yellow arrows point out the features that still su↵ered from blurring artifacts with soft-gating,
while the respiratory motion-resolved method was able to delineate the small pulmonary
vessels and provide a sharp diaphragm.
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4.4 Discussion

In this work, I present a motion robust method for high-resolution 3D pulmonary MRI. It

is based on an optimized 3D UTE sequence and a free-breathing 5-minute acquisition. The

proposed methods include dynamic 3D images for self-navigation and motion estimation

along with soft-gating L1-ESPIRiT and respiratory motion-resolved L1-ESPIRiT for robust

motion compensated image reconstruction. With the proposed techniques, I have demon-

strated many pulmonary structures are well delineated with good SNR, and overall improved

image quality compared with traditional reconstructions.

4.4.1 Dynamic 3D Self-navigator

The proposed lower-resolution dynamic 3D self-navigator utilizes locally low-rank constraints

to reconstruct dynamic images from highly undersampled data. The resulting images can be

used to robustly extract volumetric motion information of the entire chest. For patients with

regular breathing patterns, I found that self-navigation based on DC signals provided similar

gating quality compared with dynamic 3D navigator self-navigation. However, for patients

with any irregular breathing or bulk motion, the dynamic 3D navigator was necessary to

estimate the true motion. Being able to compensate for irregular breathing with the proposed

method is critical for clinical pulmonary imaging applications, as these patients are more

likely to have di�culty breathing regularly.

With the proposed lower-resolution dynamic 3D navigator, I only use it to estimate su-

perior/inferior translation of the diaphragm. However, there is unexplored abundant motion

information that could be estimated. With more comprehensive motion information, I could

integrate the proposed 3D navigator with a more explicit motion compensation model. In

this sense, the dynamic 3D navigator is not limited to respiratory motion estimation and

can also be applied to cardiac motion estimation as suggested in Fig 4.3.

The lower-resolution 3D images may also provide additional diagnostic information about

respiratory mechanics, including ventilation and air trapping [128].



75

In addition, the proposed 3D navigator is not limited to 3D radial trajectory with bit-

reversed pseudo-random ordering that was used in this study. It is easily translatable to other

pseudo-random ordering schemes, like multi-dimensional golden angle ordering or other 3D

trajectories, like 3D cones or radial-cones[110, 129, 130, 131].

4.4.2 Soft-gating versus Respiratory Motion-resolved Method

The respiratory motion-resolved approach provides 4D results (3D spatial + motion-states),

allowing comprehensive evaluations of pulmonary function such as ventilation and air trap-

ping. Its primary limitation is that it is computationally expensive. In terms of the selection

of the two regularization parameters: �
1

and �
2

, Fig 4.10 shows motion-resolved reconstruc-

tion results for six representative regularization combinations. Both �
1

of the Wavelet spar-

sity and �
2

of the motion states sparsity help to suppress undersampling aliasing artifacts.

�
1

promotes 3D spatial sparsity, e↵ectively removing aliasing artifacts (shown in the top row

of Fig 4.10). Usage of additional sparsity constraint along the additional respiratory-state

dimension improved the removal of undersampling artifacts (shown in the second row of Fig

4.10 ). Nonregularized case ( �
2

= 0) resulted in residual aliasing artifacts (the first figure

in the second row), while very high values of �
2

introduced blurring over respiratory motion

states (the last figure in the second row). In practice, the way I tune for the appropriate

parameters is to set �
2

to be zero and choose appropriate spatial sparsity �
1

first. Then

adding �
2

to improve the undersampling aliasing removal but keep motion states fidelity.

In the comparison of Fig 4.8, the respiratory motion-resolved method resulted in a slightly

lower apparent SNR by subjective visual inspection than soft-gating method for the volunteer

study. That might be because the e↵ective data sampling e�ciency (about 40%, which

is given by summing up the weighting values with respect to data size) of soft-gating is

higher than a single state (20%) in the respiratory motion-resolved method. It could also be

related to regularization parameter, which is di↵erent in the two reconstructions. Since the

respiratory-motion resolved reconstruction has additional temporal constraints, it is hard to
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make a fair comparison.
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Figure 4.10: Respiratory motion-resolved reconstruction results for representative regular-
ization parameters combinations on a healthy volunteer. �

1

(Wavelet sparsity) promotes 3D
spatial sparsity, e↵ectively removing aliasing artifacts (shown in the top row). Usage of ad-
ditional sparsity constraint along the additional respiratory-state dimension (�

2

) improved
the removal of undersampling artifacts (shown in the second row). Very high values of �

2

introduces blurring over respiratory motion states (shown in the last figure of the second
row).
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When relatively more time is spent in a single respiration motion state, as often occurs

at end expiration, the soft-gating reconstruction is a practical choice to provide a high-

quality image of that motion state, with reduced computational requirements. In some

cases with irregular breathing patterns or drifts, motion blurring may still remain for soft-

gating respiratory when the data below the threshold has experienced a large motion range.

The motion-resolved reconstruction could provide improved results when each motion state

data experiences less motion if they are carefully chosen. Both methods benefit from the

quantitative and accurate estimation of the respiratory motion from the dynamic 3D self-

navigator.

4.4.3 Feasibility in in Cystic Fibrosis and Pulmonary Nodules

I also evaluated feasibility of the pathologies of cystic fibrosis and pulmonary nodules. Top

row of Fig 4.11 shows exemplary pathologies in cystic fibrosis that were well visualized when

using the soft-gating L1-ESPIRiT reconstruction. The left case shows atelectasis along the

major fissure as the red arrow shows, and the middle and right cases show bronchiectasis.

The middle case also shows mucus plugging, shown in the red circle. The air trapping is

seen in the left lower lobe in the right case as the red arrow shows. These demonstrate

the potential of the proposed approach to depict clinically relevant imaging features in the

lung. Bottom row of Fig 4.11 shows clinical examples of a 3 mm, 5 mm and l cm pulmonary

nodules (green circles) when using the soft-gating L1-ESPIRiT reconstruction. The 3 mm

nodule was an incidental finding from a volunteer study. This approach is able to depict a

range of nodule sizes, shapes, and contrast as shown in these examples.

The above results were preliminary results. Future clinical studies will be needed to

evaluate the e�cacy of the proposed method to these pathologies throughly.
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Cystic
 Fibrosis
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Figure 4.11: Top: soft-gating L1-ESPIRiT reconstruction in cystic fibrosis patients at end
expiration: atelectasis (in the left case) along the major fissure, bronchiectasis and mucus
plugging (in the middle case), bronchiectasis and air trapping (in the right case). Bottom:
soft-gating L1-ESPIRiT reconstruction showing 3 mm, 5 mm and 1 cm pulmonary nodules
in di↵erent subjects.
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4.5 Conclusion

In this work, I have achieved motion robust high resolution 3D pulmonary imaging with

MRI. I developed a method based on five-minute free-breathing scan using an optimized 3D

radial UTE sequence and a dynamic 3D self-navigator for motion estimation, combined with

state-of-the-art motion compensated reconstructions. This method was able to e↵ectively

eliminate motion artifacts even in the presence of strongly irregular breathing patterns, and

reconstruct aliasing artifact-free images from highly undersampled data.
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Chapter 5

Estimation of Gradient Delays in

non-Cartesian Parallel MRI

5.1 Introduction

Non-Cartesian imaging is susceptible to gradient fidelity errors, such as those due to gradient

delays and eddy currents. The gradient timing errors usually result in spurious geometric

image distortions. Moreover, misaligned k-space data corrupts corrupts the k-space data

which is used for parallel imaging auto-calibration.

These gradient errors can be corrected by separate calibration measurements of physical

gradient timing delays [132, 133] or more sophisticated measurements of actual gradient

waveforms [134, 135, 136]. This requires an additional acquisition that depends on the

experimental SNR. In addition, these methods assume that the errors are consistent between

calibration and acquisition, which may not be an accurate assumption due to phenomena

such as gradient coupling or patient motion [137]. Magnetic field monitoring is another kind

of measurement approach that uses NMR probes placed around the imaging volume in the

scanner [138, 139]. The main disadvantage of this method is that it requires specialized

hardware.
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There have been e↵orts to correct for gradient errors retrospectively without additional

calibration measurements or hardware [137, 140, 141, 142, 143]. Recently, a number of

promising works [137, 142, 143] have shown that promoting self-consistency inherent in

neighboring multichannel k-space measurements can correct for trajectory errors, without

separate trajectory calibration scans. There are two GRAPPA operator [144] based methods

[137, 142] for correcting radial trajectory errors. Deshmane et al. proposed a GROG method

[137] maximizing DC signals and Wech et al. proposed the SCITA method [142] maximizing

mutual accordance of data. However, both of these methods cannot be readily extended

beyond radial trajectories, as they have to specify the shift directions. Ianni et al. further

proposed a more general approach, TrACR [143], to jointly estimate trajectory errors and

images. This method is based on SENSE and SPIRiT parallel imaging reconstructions,

and requires additional delay-free calibration Cartesian images to obtain either accurate

sensitivity maps or accurate SPIRiT kernels.

In this work, I propose a gradient delay estimation method that is general to non-

Cartesian trajectories with multichannel datasets. Unlike previous methods, it does not

require prior GRAPPA/SPIRiT calibration or any prior direction specifications. I make

use of the observation that uncorrupted multichannel data inherently lives in low dimen-

sional subspace [29, 30, 31, 145] and data corruption induces inconsistencies that violate this

property. Hence, I solve directly for the gradient delay corrections that result in consistent

low-dimensional calibration data.

The proposed method is based on a calibrationless parallel imaging method – SAKE [145]

– which is exploiting the low dimensional subspace property of the calibration data. This

property has also been used to correct EPI ghosting [146]. I formulate the joint estimation

problem as a low-rank constrained problem, using a Gauss-Newton method to solve for the

gradient delay values and auto-calibration data.
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5.2 Theory

5.2.1 Low Rank Property in Parallel Imaging

Parallel imaging reconstruction is enabled by the correlations between multichannel k-space

data due to sensitivity maps. The correlations within multichannel k-space data can be

exploited by constructing a block-Hankel matrix from a calibration region [145]. Typically,

a fully sampled region in the center of k-space, the auto-calibration (AC) region, is used to

perform the calibration. By sliding a window throughout the AC data, I can construct a

calibration matrix, denoted A = HFx, where H is the block-Hankel structured operator, x is

the multichannel low resolution image of auto-calibration region, and F is the multichannel

Fourier transform operator of the auto-calibration region. The columns of A are shifted

blocks of the AC area shown in Fig 5.1, leading to a matrix structure known as block-

Hankel. Under the reasonable assumption that coil sensitivities are smooth in space with

compact k-space support, it has been shown that a calibration matrix A has low rank as

well analyzed in SAKE [145].

SAKE seeks to reconstruct a full k-space from undersampled, multichannel dataset using

a structured low-rank matrix completion method, formulated in Equation 5.1.

minimize kDx� yk2
2

subject to A = HFx

rank(A) = k

(5.1)

where D is the undersampled multichannel Fourier transform operator.

Instead, I try to exploit this low-rank property of the auto-calibration matrix to estimate

gradient delays of non-Cartesian data. The basic idea behind the proposed method is to

find the gradient delay that maximizes the self-consistency of neighboring k-space points in

multichannel datasets.
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5.2.2 Solve for Gradient Timing Delays with Low Rank

Constraints

For non-Cartesian imaging, gradient delays usually cause inconsistent deviations in k-space

between encodings. My hypothesis is that this inconsistent trajectory deviation results in a

calibration matrix with a higher rank. Motivated by this hypothesis, I formulate solving for

gradient delays into an optimization problem with low-rank constraints. Upper bound on

the rank of the structured matrix is well analyzed by [145], thus can be regarded as a known

parameter beforehand.

For simplicity, I assume the central k-space data is fully sampled, so I can ignore under-

sampling e↵ect. This assumption holds for most non-Cartesian trajectories, such as radial,

spiral, even with overall undersampling for parallel imaging. Further discussion of under-

sampling e↵ect on the proposed method is described in the Discussion section. In addition, I

assume timing delays for the gradient axes are independent but the same across all encodings

in a single scan.

Notation

�(~t) : estimated delays on di↵erent axes

x
i

: low resolution image of auto-calibration region from ith coil

y
ij

: cropped k-space data for calibration from coil i, non-Cartesian encoding j

D
j

: multichannel non-uniform fast Fourier transform (NUFFT) operator at encoding j,

parameterized by �(~t)

F : multichannel fast Fourier transform operator (FFT)

H : linear operator that constructs a block-Hankel structured calibration matrix from cor-

responding k-space data

N
c

: the total number of coils

N
p

: the total number of encodings (e.g. projections for radial, interleaves for spirals)

k : the rank of the data matrix, known a priori [145], which is bounded by block size and
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coil bandwidth

Problem description

The proposed method can be described by reformulating the Equation 5.1 into the following

format:

minimize
�(

~

t), x

N

pX

j=1

N

cX

i=1

kD
j

(~t+�(~t))x
i

� y
ij

k2
2

subject to A = HFx

rank(A)  k

(5.2)

Algorithms

In every iteration, I performed alternating minimizations between data consistency and low-

rank projection (illustrated in Fig 5.1).
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Figure 5.1: Illustration of the proposed method: the gradient delay is estimated iteratively
using the AC region. In each iteration, the non-Cartesian data is gridded and then formed
into a block-Hankel structured calibration matrix (H). Low-rank constraints are applied on
the calibration matrix. It is then reformatted to Cartesian data followed by the operation
that transforms Cartesian data into non-Carteisan data. In the last step, the Gauss-Newton
algorithm is applied to calculate the delay values for each axis.
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Firstly, I fix the gradient delay �(~t) and solve for the coil images x
i

,

minimize
x

N

pX

j=1

N

cX

i=1

kD
j

(~t+�(~t))x
i

� y
ij

k2
2

subject to A = HFx

rank(A)  k

(5.3)

A low-rank projection method is used to approximate the solution of x, which is performed

by hard-thresholding singular values of the data matrix:

A = HFD†(~t+�(~t))y

U⌃V T = SVD(A) % perform SVD

A = Uk⌃k

V T

k % hard threshold singular values

x = F †H†(A)

where † denotes the pseudo inverse operator.

After solving for x, �(~t) is approximately solved by using Gauss-Newton’s method with

a first-order approximation:

minimize
�(

~

t)

N

pX

j=1

N

cX

i=1

kD
j

(~t+�(~t))x
i

� y
ij

k2
2

(5.4)

Concretely, the following first order approximation expansion of the NUFFT operator D

is used in Gauss-Newton’s method :

D
j

(~t+�(~t)) ⇡ D
j

(~t) +�(~t) · O ~D
j

= D
j

(~t) +
h
�(t

x

) �(t
y

)
i
2

4
@D

@t

x

@D

@t

y

3

5
(5.5)

The gradient of the NUFFT operator O ~D in Equation 5.5 can be calculated by using the

derivative property of Fourier transform [147], that is, applying a linear ramp filter in image

domain and then performing the forward NUFFT operation. Equation 5.5 describes the 2D
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scenario to solve gradient timing delays on the x and y axes, and it can easily extended into

a 3D scenario.

This approximation results in the following closed form to solve for �(~t):

minimize
�(

~

t)

N

pX

j=1

N

cX

i=1

���
⇣
D

j

(~t) +�(~t) · O ~D
j

⌘
x
i

� y
ij

���
2

2

(5.6)

�(~t) =

2

4 �(t
x

)

�(t
y

)

3

5 = Re

"
(O ~D

j

x
i

)T · (y
ij

�D
j

x
i

)

(O ~D
j

x
i

)T (O ~D
j

x
i

)

#
(5.7)

The gradient time delays �(~t) can then be used to update k-space coordinates k
x

and

k
y

for the next iteration. If the k-space analytic expression is not known, then interpolation

can be used to update the k-space coordinates in practice. The pseudo code is as follows in

Table 5.1:

Table 5.1: Pseudo-code for Auto-calibration for Delays

Inputs : y : cropped k-space data for calibration region from all coils
D/D†: forward and pseudo inverse NUFFT operators
F/F † : forward and inverse FFT operators
H/H† : linear operator that constructs a block-Hankel structured calibration matrix,
from corresponding k-space data, and its pseudo inverse operator

Outputs: �(~t) : estimated delays at di↵erent axes
x : multichannel image from auto-calibration region

Initiation: �(~t) = [0, 0]T

while (increment � tolerance)�

A = HFD†(~t+�(~t))y
U⌃V T = SV D(A)
A = Uk⌃k

V T

k
x = F †H†A

�(~t) = Re
h
(O ~

Dx)

T ·(y
ij

�Dx)

(O ~

Dx)

T

(O ~

Dx)

i

With �(~t), update k-space trajectory and hence the D operator. 
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5.3 Methods

Reconstruction and Data Processing Image reconstruction and post-processing were

carried out by Berkeley Advanced Reconstruction Toolbox (BART), including non-uniform

fast Fourier Transform (NUFFT), and ESPIRiT calibration. All reconstructions and simula-

tions were performed on a laptop equipped with an Intel Core i7 CPU (2 GHz, Santa Clara,

CA) with 8GB RAM. Studies were conducted on a 7.0 T GE clinical scanner (GE Health-

care, Waukesha, WI, USA.) with 32-channel head coil and 3.0 T clinical scanner (Philips

Healthcare, Best, Netherlands) with 16-channel torso coil. Spiral dataset was acquired from

RTHawk real-time environment (HeartVista, Inc., Menlo Park, CA) with 8-channel head

coil on a 1.5 T GE clinical scanner (GE Healthcare, Waukesha, WI, USA). All the volunteer

studies conducted were approved by the IRB.

In the spirit of reproducible research, I provide a MATLAB demonstration code to repro-

duce some of the results described in this article https://github.com/jiangwenwen1231/

DelayRecon.

5.3.1 Simulation Validation

To validate the algorithm, simulations on a 256⇥256 brain image with 8-channel simulated

sensitivity profiles were performed, both of which can be downloaded from ISMRM 2015 Sun-

rise Course on The Image Reconstruction Pipeline: http://gadgetron.sf.net/sunrise.

The simulation was performed using 2D center-out radial (trapezoid waveforms with ramp

up sampling), projection reconstruction (PR) trajectory (full-spoke) and multi-shot time-

optimal spiral [148] trajectory. The center-out radial trajectory comprised 804 radial spokes,

each containing 256 readout points. PR trajectory included 402 projections and each pro-

jection has 380 readout points. Spiral trajectory comprised 60 interleaves, each with 1182

readout points. Gaussian white noise was added. To validate the proposed method, I artifi-

cially created delays in x and y gradient axes individually, each ranging from ranging from -2
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to 2 samples, to generate corrupted k-space data. Here I denote the positive gradient delay

as the time delay from the start of ADC window to the start of readout part of played-out

gradient waveform.

Images were reconstructed with the nominal trajectory as well as the corrected coordi-

nates estimated by the proposed method. In addition, the estimated delays were compared

to the ground truth. The sensitivity maps were computed by ESPIRiT [31].

For di↵erent trajectories, the study was repeated for white matter SNR values of 50,

25, and 5 in order to validate the robustness of the proposed method against noise. Each

experiment was repeated 10 times to compute the mean and standard deviation of the

estimated delay values.

The auto-calibration region was 36⇥36 and block size was 6⇥6. The rank threshold was

chosen to be 64. From non-Cartesian data to the gridded data step, I used iterative gridding

based operations to avoid density compensation inaccuracy. The algorithm was stopped

after reaching a increment shift size of 0.001 sample.

5.3.2 Phantom and In Vivo Experiments for Center-out Radial

Trajectory

In order to evaluate the performance of the proposed method, I performed a 2D RF-spoiled

radial FLASH sequence scan on a sphere phantom first and then in vivo using the same

acquisition. A slice-selective pulse was used for excitation and trapezoid waveforms was

played out on the readout gradients, which were x and y axes in the experiments. Then, I

introduced di↵erent delay combinations on x and y gradient axes, ranging from -8 µs to 8

µs. The following prescribed parameters were used: flip angle = 4 �, FOV = 20 ⇥20 cm2 ,

in-plane resolution = 1⇥1 mm2, TE/TR = 3.4 ms/ 2 s, readout bandwidth = ±125 kHz (4

µs/sample), and 628 spokes were acquired. The total scan time was 2 min 56 s. There were

15 samples on the ramp for trapezoid waveforms for this resolution. Since there were samples

along the ramp part of trapezoid waveforms, the gradient timing delay induced trajectory



90

deviations were not simply trajectory shifts.

The auto-calibration region was 36⇥36 and block size was 6⇥6. The rank threshold was

chosen to be 64. Only 200 spokes were used for delays estimation since the center of k-space

is oversampled and it was computationally more e�cient to use fewer spokes. The algorithm

was stopped after reaching a increment shift size of 0.001 sample.

5.3.3 In Vivo Experiments for Projection Reconstruction

Trajectory and Spiral Trajectory

I also performed a free-breathing abdominal scan using 3D “stack of stars” trajectory (PR in

two dimensions with 1 dimension of phase encoding) on a healthy volunteer. The following

prescribed parameters were used: flip angle = 10 �, FOV = 32 ⇥ 32 cm2, in-plane resolution

= 1 ⇥1 mm2, slice thickness = 3 mm, TE/TR = 1.2 ms/ 5.12 ms, readout bandwidth = ±250

kHz (2 µs/sample), and 600 projections were acquired per phase encode step. The proposed

method was applied on each axial slice after Fourier transform in the phase encode using

similar parameter setting with the above examples. 200 projections were used to estimate

gradient delays as they fully covered the auto-calibration k-space.

Spiral dataset was acquired from RTHawk 2D real-time environment. Variable density

spiral with three interleaves was used. Each spiral has 3396 readout points and readout

bandwidth = ±125 kHz (4 µs/sample). The delay estimation was performed on fully sampled

auto-calibration data. After that, I used ESPIRiT [31] to compute sensitivity maps from

correct auto-calibration data and applied CG SENSE [32] to reconstruct the images.
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5.4 Results

5.4.1 Simulation Validation

Fig 5.2 shows numerical simulation results for a center-out radial trajectory with the true

delay of 1 sample in x-axis and 2 samples in y-axis: top row of shows the sum of squares

of the individual coil images and the estimated sensitivity maps from the calibration region;

The middle row depicts the reconstructed sum of squares of coil images using the uncor-

rected coordinates and the corresponding sensitivity maps, where the image was distorted

and the sensitivity maps were corrupted; the bottom row demonstrates the reconstructed

image and resulting sensitivity maps corrected by the proposed method. The gradient delay

artifacts visible near the scalp and artificial enhancement in the middle of the brain images

(yellow arrows) were e↵ectively eliminated by the proposed method (bottom row). The sen-

sitivity maps in the presence of gradients delays also show incorrect contours (red arrows)

corresponding to the skull that will corrupt parallel imaging reconstructions. These were

corrected by the proposed method. Quantitatively, the estimated delay values of [0.9989

2.0014] in [x,y] are almost perfectly aligned with the ground truth �(~t) = [1 2].
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Original Image without 
delay

Radial Trajectory with 
[1  2] delay 

Corrected image  with 
estimated delay 
[0.9989 2.0014] 

ESPIRiT Estimated Sensitivity Maps

Figure 5.2: Simulation results with the proposed method: with gradient delays the image is
distorted as the yellow arrows show; the sensitivity maps are corrupted as the brain edges are
voided as the red arrows show (in the middle row). The proposed method is able to remove
the artifacts, restore image quality and sensitivity maps; the delay estimation is accurate
compared with ground truth.

Fig 5.3 shows the di↵erent artifact appearance for various trajectories and delays. As

the yellow arrows indicate, artifacts can appear as erroneously enhanced contrast or void

contrast, edge signal leakage for a center-out radial trajectory, rotation or edge signal leakage

for a spiral trajectory, and streaking artifacts for a PR trajectory. All of these artifacts and

distortions indicated in Fig 5.3 were e↵ectively eliminated and contrast was restored by the

proposed method, considerably improving the image quality. The table in Fig 5.3 presents the

estimated delay values in di↵erent delay scenarios for di↵erent trajectories. The estimated

delay values for di↵erent trajectories have a very good agreement with the ground truth.

SNR was computed from signal to noise ratio of a white matter region in the red box in

Fig 5.3. From the table, I can see that the proposed method can estimate the gradient delay

values with very high accuracy compared with ground truth for white matter SNRs of 50,

25, and 5. As SNR decreases, the estimation errors (mean and standard deviation) increase.

Even for very low SNR value of 5, the proposed method still e↵ectively estimated delay
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values. The estimation errors are all less than 0.01 samples for radial and spiral trajectories

and less than 0.05 samples for projection reconstruction trajectory.

In terms of convergence rate, the algorithms stopped around 50 iterations at the tolerance

of 0.001 sample among all the simulation cases.

Spiral TrajectoryCenter-out Radial Trajectory

Delay
[1 2]

Delay
[-2 -1]

PR Trajectory

Ground Truth

white 
matter

No correction No correction No correctionCorrected Corrected Corrected

Center-out Radial Spiral PR 

Case1 [ 1   2]

Case2 [-2 -1]

Case3 [ 1  -1]

Delay [ 1   2] Center-out Radial Spiral PR 

SNR = 50

SNR = 25

SNR = 5

Note: SNR is calculated on the white matter denoted in the upper right corner part of the figure

[ 0.9982 2.0007] [ 0.9987   1.9997] [  0.9700 1.9978]

[-2.0000 -0.9892]

[0.9987 -0.9962]

[-1.9945 -1.0018]

[ 0.9976  -1.0016]

[-2.0997 -0.9972]

[ 0.9773 -1.0009]

[0.9994±0.0009 2.0002±0.0012]

[1.0021±0.0030 2.0018±0.0033]

[1.0035±0.0089 2.0045±0.0056]

[0.9993±0.0007 2.0002±0.0009]

[1.0017±0.0037 1.9996±0.0035]

[1.0025±0.0076 1.9995±0.0094]

[0.9710±0.0027 1.9987±0.0009]

[0.9695±0.0025 1.9981±0.0006]

[0.9701±0.0025 1.9983±0.0005]

Delay
[1 -1]

Figure 5.3: Simulation results with gradient delays for radial, spiral and PR trajectories: All
artifacts indicated by arrows were e↵ectively eliminated and contrast was restored by the
proposed method, considerably improving the image quality. Quantitative analysis of the
gradient delay estimation accuracy is listed in the top of the table. Noise sensitivity of the
proposed method was evaluated with SNR = 5, 25, 50, as measured in the indicated white
matter ROI. Even for SNR = 5, the proposed method still provides high estimation accuracy
compared with the ground truth.
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5.4.2 Phantom and In Vivo Experiments for Center-out Radial

Trajectory

In center-out 2D radial trajectory experiments, I introduced a range of gradient delays

ranging from -8 µs to 8 µs on each axis compared to the scanner’s calibrated gradient

timings. Fig 5.4 shows a representative result with an introduced delay of -4 µs delay in

the x-gradient and 8 µs delay in the y-gradient for the phantom study, and 4 µs delay

in x-gradient and 8 µs delay in y-gradient for the in vivo study. The sum of squares of

the individual coil images reconstructed with nominal trajectory (on the left), corrected

trajectory with system calibrated delays (in the middle) and estimated delays (in the right)

in Fig 5.4. The results are displayed in the same window level for comparison. The contrast

was restored and artifacts were removed by both the the proposed method and system

calibration. The visible di↵erence between the two corrected images is marginal. The delays

estimated by the proposed method deviated by 0.7-0.8 µs from the the system calibrations,

which was consistent across the range of introduced gradient delays both in phantoms and

in vivo.
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Manual Correction 
with [-4 8] µs

Estimated Delay [-4.8 7.7] µs  
Correction

Original Image 
 No Correction

Manual Correction
with[4 8] µs

Estimated delay  [4.8 8.8] µs  
Correction

Original Image
No Correction 

Figure 5.4: Phantom and in vivo results using center-out radial trajectory with the proposed
method: Gradient delays induced artifacts are highlighted with yellow arrows in the left row.
The contrast was restored and artifacts were removed by both the the proposed method and
system calibration. The visible di↵erence between the two corrected images is marginal.

5.4.3 In Vivo Experiments for Projection Reconstruction

Trajectory

The proposed method was applied to di↵erent slices of a 3D stack of stars PR dataset acquired

using the scanner’s calibrated gradient timings. The streaking artifacts of each slice, which

are clearly visible (on the left column) in Fig 5.5 and also appear in the simulation results

in Fig 5.3, are greatly reduced after the correction with the proposed method (on the right),
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resulting in a clearly improved image quality. The estimated delays were quite consistent

from slice to slice, with minor di↵erences (0.4 µs) observed between abdominal and chest

slices. This di↵erence maybe related varying amplitudes of respiratory motion.
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Estimated Delay [-0.90 -2.4] µs  

Estimated Delay [-1.2 -2.2] µs 

 Estimated Delay [-0.87 -2.4] µs 

Figure 5.5: In vivo result using projection reconstruction trajectory: three di↵erent slices
are displayed to show di↵erent anatomy from the same scan. The streaking artifacts are
largely reduced for all the slices with the proposed method, resulting a clearly improved
image quality.
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5.4.4 In Vivo Experiments for Spiral Trajectory

The proposed method was evaluated on various spiral datasets. Here, the representative

results is shown in Fig 5.6. Edge leaking was suppressed (red arrows) and the small vessel

(red circle) was made visible by the proposed method. Overall, the image quality was

improved after applying the proposed method.

Estimated Delay [2.7   -3.2] µs  

Figure 5.6: Real-time in vivo result using spiral trajectory: the proposed method results in
improved image quality. The blurring edges are better delineated as red arrows show and
small vessel structure is now visible as red circle shows.

5.5 Discussion

This work demonstrates a method to correct for gradient timing errors in center-out radial,

projection reconstruction and spiral k-space trajectories, with results showing clearly im-

proved image quality. It also provides accurate auto-calibration data for parallel imaging.

This method iteratively enforces a low-rank property in the calibration region and estimates

timing delays on individual gradient axes.

One advantage of the proposed method is that when sub-sample delays cannot be readily

corrected for in the pulse sequence, the proposed method can provide more precise estimate
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of the gradient delays.

The proposed method attempts to correct for gradient delays. The delays can originate

from physical delays in the gradient and data acquisition components. Short-term linear eddy

currents can also be approximated as a gradient delay. The proposed method can correct for

delays from either source. A more detailed model could formulate the correction problem

as eddy current estimation and solve for the corresponding eddy current parameters (e.g.

time-constants and amplitude). But for some k-space trajectories (e.g. center-out radial),

long term linear eddy currents might result in higher data correlation, in which case the

low-rank model is not suitable for long-term eddy current correction. The proposed method

is e↵ective when the trajectory errors create more inconsistency (equivalently, higher rank)

of the auto-calibration region. My conjecture is that the proposed method can better resolve

gradient delays if k-space center is crossed in many di↵erent directions.

In this dissertation, I applied the proposed method when the center of k-space was fully-

sampled or oversampled. However, if there is enough redundancy from multichannel coils,

then undersampling in the calibration region to some extent is also tolerable. For example,

in the center-out radial trajectory simulation, with 8 channel coils and calibration size of

36 ⇥ 36, I could still estimate delay values with less than 0.01 sample errors even with 40

spokes, which is equivalent to undersampling ratio of 2.8 with respect to Nyquist criterion.

The maximum delays that can be corrected by the proposed method depend on k-space

trajectories, and how much redundancy the data can provide by the multichannel coils. As

long as the delays do not result in a substantial chunk of missing data in the calibration

region (which is beyond the limits of what parallel imaging can reconstruct), the proposed

method can still correct for the delays.

From the simulation studies, even for very low SNR of 5, the proposed method was still

able to correct for gradient timing delays with decent accuracy for di↵erent trajectories.

Thus, high noise levels do not prohibit the application of the proposed method.

I note that for the proposed method, it is essential to use iterative method to approximate

the pseudo inverse NUFFT operation, rather than the conventional gridding with density
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compensation. This is because if I use density compensation from the nominal trajectory,

then the resulting gradient timing delay estimation is not accurate. Alternatively, I would

need to update density compensation for each iteration, which is computationally intensive.

Instead, I used an iterative method with gridding [24] for each iteration to approximate the

pseudo inverse NUFFT. Since I only perform the operations in the auto-calibration region,

the computation burden is not heavy. All the examples presented in this dissertation were

computed within one minute for a MATLAB implementation. This could be further sped

up by using a high performance programming language.

The proposed method is essentially a low-rank matrix completion with alternating min-

imization, and does not assume convexity of the minimization problem. It is possible that

the algorithm converges to a local minimum instead of a global minimum. Furthermore,

the impacts of motion and chemical shifts on the performance of the proposed need to be

investigated.

5.6 Conclusion

This chapter proposes a simple and robust method based on low-rank model and does not

need any additional measurement scans. It determines the gradient timing delays and si-

multaneously yields corrected k-space auto calibration region signals for parallel imaging.
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Chapter 6

Summary of Contribution and Future

Work

This dissertation presented non-Cartesian MRI methods focused on advanced applications

of metabolic imaging with hyperpolarized 13C MRSI and pulmonary imaging. In addition,

a general solution to gradient delay errors for non-Cartesian imaging with multichannel

datasets was developed and evaluated on commonly used non-Cartesian imaging strategies.

Potential directions for future works are described at the end of this chapter.

6.1 Summary of Contribution

Design and Development of Concentric Rings for Hyperpolarized 13C MR

Spectroscopic Imaging

I presented theoretical and experimental results describing the quantitative tradeo↵ (in terms

of robustness, acquisition time, SNR e�ciency, and spectral bandwidth) between concentric

rings, EPSI and spiral trajectories described in Chapter 3. Using concentric rings trajectory

allows for robust and flexible implementations for 13C spectroscopic imaging and results in

excellent speed, bandwidth, and resolution performance for hyperpolarized 13C MRSI.
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Motion Robust High Resolution Free-breathing Pulmonary Imaging

I developed a novel and robust dynamic self-navigator method using locally low rank con-

straint. Using the dynamic self-navigator enables accurate estimation of the respiratory

motion. I demonstrated two motion compensation methods and compared their e�cacy.

Overall, I described a complete and robust framework that integrates essential requirements

for pulmonary MR imaging. Quantitative evaluation on more than 10 clinical patients shows

that the proposed method yields improved image quality.

Estimation of Gradient Delays in non-Cartesian Parallel MRI

I developed an algorithm to estimate gradient delays for non-Cartesian imaging with multi-

channel datasets. I verified the proposed method in simulation on di↵erent trajectories and

various SNR levels. I also applied the proposed method on experimental non-Cartesian appli-

cations for the center-out radial, projection reconstruction and spiral trajectories. Overall, I

proposed a simple and e↵ective method to correct for gradient timing errors in non-Cartesian

MR imaging without any calibration scans, based on multichannel datasets.

6.2 Future Work

This dissertation primarily presented methodological developments and preliminary results.

The potential future work involves extension of current technical methods and exploring

more clinical applications.

Dynamic 3D Self-Navigator

I proposed a lower-resolution dynamic 3D navigator and used it to estimate superior/inferior

translation of the diaphragm in this dissertation. However, this 3D dynamic navigator o↵ers

abundant motion information which remains unexplored. With extracting more compre-

hensive motion information, the proposed navigator can be integrated with a more explicit
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motion compensation model, such as warping and motion vector field. The temporal reso-

lution is not limited to the 300 ms (100 spokes) used in Chapter 4. Preliminary results have

shown that the temporal resolution of the dynamic 3D navigator can be increased to 150 ms

by using 50 spokes. Thus it should be possible to apply this dynamic 3D self-navigator to

cardiac imaging applications or bulk motion estimation. More clinical works are necessary

to validate these suggested applications.

Multi-scale Low Rank Model

The locally low-rank model is parameterized by block sizes and regularization parameters.

It is hard to find a single set of parameters to describe di↵erent types of motion. In this

sense, the current locally low-rank model is extendable to multi-scale low-rank model [149] to

capture motion at di↵erent scales, e.g. respiratory motion, cardiac motion, contrast motion

and bulk motion from the same reconstruction. More technical work is necessary to evaluate

this model.

High Spatial Resolution Dynamic Imaging with Locally Low Rank Constraints

Locally low-rank constraints were used to reconstruct dynamic 3D navigators at the spatial

resolution of 7.5 mm in Chapter 4. However, it is possible to use all the data along each

spoke to achieve full resolution (e.g. 1.25 mm) dynamic images. In this sense, the dynamic

images will provide both anatomical and dynamic information for evaluation. I have been

able to improve the spatial resolution to 3 mm (still with 300 ms temporal resolution) on

clinical patients and have been able to see small structures dynamically. It is possible that

3 mm spatial resolution dynamic images are su�cient to assess functional information for

pulmonary applications. This is a promising direction to explore. However, the computation

is very expensive. The full resolution dynamic imaging memory cost could be as high as

terra bytes. This computation problem is not addressed in this dissertation. More works

are needed to optimize the computation, such as parallel computing power through graphic-
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processing-units (GPU) and distributed systems.

Estimate Eddy Current

As mentioned in the Discussion section of Chapter 5, it is possible to correct for eddy currents

with low-rank constraints on the calibration region. The basic assumption is that the eddy

currents induced trajectory deviation will result in data inconsistency of the calibration

region, thus inducing higher rank. However, in some scenarios like center-out radial or spiral

trajectories, eddy currents might not introduce higher rank thus the basic assumption does

not hold. Then, the proposed method is not able to estimate the eddy current errors. But

it is still possible to use low-rank model to correct for eddy currents errors in projection

reconstruction trajectory or other non-Cartesian trajectories where this basic assumption

holds.
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Appendices

Critical Symmetric EPSI Reconstruction

Currently, the Nyquist-constrained symmetric EPSI reconstruction is to separate the odd

and even numbered retracing lines, perform the inverse Fourier transform separately and

average the separate signals for better SNR [40]. But this kind of design and reconstruction

over-prescribes the SBW, while not critically using up the sampling limits. Papoulis’s gen-

eralized sampling theory [67] asserts that in some cases aliasing artifact-free signals can be

reconstructed even if the Nyquist criterion is violated in some regions of the Fourier domain.

As is explicitly demonstrated in [68, 150], critical symmetric EPSI reconstruction can be

regarded as a matrix inversion problem that even if the Nyquist criterion is violated in some

regions of the spectral domain, but at the cost of noise amplification.

In Fig Appendix 1, we demonstrate the symmetric EPSI reconstruction algorithm. Here

we only plot the Kx-t joint domain since Ky (phase encoding direction) is uniform. Basically,

the critical design of symmetric EPSI trajectory is to make sure the temporary sampling rate

at Kx = 0 fulfills Nyquist rate of the required spectral bandwidth (as the black star in Fig

Appendix 1). Regarding to the non-uniform samples, each Kx
i

’s non-uniformity is di↵erent,

with di↵erent delay �t
i

. We separate the odd/even retracing lines based on the labels.

For odd or even lines respectively, they are uniformly sampled but at the rate of 2/SBW.

We apply 1D inverse Fourier Transform in temporary domain to odd and even numbered

retracing lines separately. The di↵erence between odd and even lines reconstruction is the
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linear phase combination (due to the delay in the sampling domain). Then, we apply the

matrix inversion to recover the full spectra as shown in the following equation.
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Figure Appendix 1: The area between the light blue dashed lines is the k-space used for the
reconstruction; red and green samples are non-uniform Kx

i

samples in temporal domain.
With the above method described, the SBW could be doubled but at the cost of noise
amplification. The colorbar indicated the noise amplification at di↵erent Kx

i

.

The noise amplification is resulting from inverting the matrix

0

@1 1

1 ei�t

i

⇤SBW⇡

1

A, and it

is shown in Fig Appendix 1 by color bar (as neatly explained in [150]).

For example, I consider a single k-space point at the Kx
1

as Fig Appendix 2.
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Figure Appendix 2: At Kx
1

, I separate odd and even numbered samples out of their retracing
lines and perform 1DFT respectively. Then I will see the spectral replica resulting from both
odd and even echoes reconstruction. But there is a phase shift between the odd and even
samples, which determines the inversion matrix.

The time interval between the odd and even data points (�t
1

) is not equal to the interval

between the even and the odd points (T��t
1

) and is dependent on Kx
1

; However, the time

between odd(or even) points, T (i.e., the prescribed 2/SBW), is a constant and independent

on Kx
1

. The interval 0  f  SBW/2 spectrum S
1

(f) can be recovered by the matrix

inversion of the following equation:
0
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The interval �SBW/2  f  0 spectrum S
1

(f) can be recovered by the matrix inversion of

the similar equation:
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Due to the di↵erent delay �t
i

, the linear phase compensation is di↵erent for Kx
i

. After

I apply the appropriate phase compensation to all the Kx
i

, 2D inverse Fourier Transform is

applied on Kx-Ky domain to reconstruct the whole spatial-spectral signal.
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With this reconstruction method, I could exploit the intrinsic SBW by a factor of two with

current Nyquist-constrained symmetric EPSI waveforms. So the SBW analyses from Fig 3.3

could be doubled for symmetric EPSI. However, I have to notice that the noise amplification

of the matrix inversion could be large depending on the non-uniformity of delay �t
i

at

di↵erent Kx
i

. At larger Kx, that is for higher resolution, the condition worsens and the

penalty is the higher sensitivity to noise. The overall noise amplification is the summation of

the noise amplification at all the Kx coordinates as the plot shows. The finer the resolution,

the larger noise amplification is. In addition, the precise coordinates of sampled data are

important for image reconstruction using the this technique.
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