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1.  Introduction
Atmospheric rivers (ARs) are long and narrow filaments of poleward water vapor transport from the tropics 
(Newell et al., 1992; Ralph et al., 2018; Zhu & Newell, 1998), that carry over 90% of the meridional mois-
ture transport from the tropics to higher latitudes but may occupy only about 10% of the total longitudi-
nal length (Zhu & Newell, 1998). Midlatitude continental regions around the world have large amounts 
of precipitation associated with ARs (Lavers & Villarini, 2013b; Neiman et al., 2008; Ramos et al., 2015; 
Viale et al., 2018; Waliser & Guan, 2017). ARs are associated with up to half of the extreme events in the 
top 2% of the precipitation and wind distribution across most midlatitude regions (Waliser & Guan, 2017). 
Moreover, landfalling ARs are associated with about 40%–75% of extreme wind and precipitation events 
over 40% of the world's coastlines (Waliser & Guan, 2017). ARs can have both positive and negative effects 
in continental regions. Their absence can lead to droughts (Dettinger, 2013), whereas numerous ARs can 
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(100°−180°E) are bigger and more parallel to the equator than those from the Northeast Pacific (EP) 
(180°−240°E). Our methods provide a narrower range of size estimation than the current methods and 
could be used to constrain current and future AR detection methods, and it could be used in future studies 
to understand how AR size could vary under climate change scenarios.
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lead to flooding and other hydrological hazards (Dettinger, 2011; Lavers & Villarini, 2013a; Ralph & Det-
tinger, 2011; Ralph et al., 2006). Ultimately, ARs have important consequences in the hydrological cycle 
of regions like California. They contribute to the accumulation of the snowpack and the reservoir level 
and water availability (Dirmeyer & Brubaker,  2007; Eldardiry et al.,  2019; Goldenson et al.,  2018; Guan 
et al., 2010; Kim et al., 2013).

Along with horizontal vapor transport, AR size (length and width) is an important characteristic that needs 
to be better understood. Nevertheless, a robust connection between AR size and their impacts over land and 
intensity scale still has to be studied and determined. Ralph et al. (2019) introduced a scale to categorize 
AR strength based on vapor transport intensity and landfall duration and show that there are beneficial and 
hazardous impacts associated with AR events. If ergodicity relates AR size and duration, AR size could be 
directly related to the benefits and hazards associated with them. Therefore, in addition to integrated vapor 
transport (IVT) and AR duration, the question “how large are atmospheric rivers?” represents a key aspect 
of research in the AR research community.

The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) has made an international ef-
fort to understand whether and how our scientific understanding of ARs may depend on the detection algo-
rithm. The different ARTMIP detection and tracking algorithms are designed to answer different questions, 
and they produce differences in AR climatology (Lora et al., 2020; Rutz et al., 2019; Shields et al., 2018); 
therefore, there are differences in their detected shape and size. It has become clear that AR detection and 
tracking are heavily influenced by how researchers have quantitatively defined this phenomenon, for ex-
ample, the use of 250 kg m−1 s−1 minimum threshold for IVT, which does not account for size but only for 
the concentration of flow and moisture levels. These different rules and algorithm thresholds have resulted 
in large uncertainty in estimating the AR size, with areas varying over several orders of magnitude among 
different detection methods (see Figure 1).
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Figure 1.  White background: AR area calculated from different methods in ARTMIP, ordered by median area (01–28). Colored background: AR area calculated 
in this study using the ClimateNet ARTMIP campaign (CN), Lagrangian Tracers method (LT), Principal Component Analysis of IVT (PC), KS-test between the 
IVT of AR and the background IVT field (BG), and the statistical overlapping of the conditional probability distribution of IVT given distance to the center of 
AR and the background IVT probability density function (SO): see Sections 3.1–3.4 for details. For BG and SO methods, triangles represent the composite of AR 
with Northeast Pacific origin (EP) and circles represent the composite of AR with Northwest Pacific origin (WP). Blue, orange, and green markers account for 
25%, 50%, and 75% of the AR life cycle, respectively. For the BG method, we show the results from the two-tailed and one-tailed KS-test. For the SO method, we 
show the results using 1IVTBG  and 2IVTBG , that correspond to a p ≥ σ+ at 179.5 and 193.9 kg m−1 s−1, respectively. (Algorithm names are included in Table S1 for 
reference).
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The definition of the boundaries and size quantification of ARs are ongoing research questions, and there-
fore a great uncertainty among methods is expected. Some recommendations made after the formal AR 
definition in the Glossary of Meteorology in 2018 were “to keep the definition as short as possible and to 
leave specifications of how the boundaries of an AR are to be quantified open for future and specialized 
developments” (Ralph et al., 2018).

The research described in this manuscript works toward the development and implementation of five in-
dependent AR size estimation methods. Since we do not develop a new AR detection algorithm, and the 
methods described here are not directly related to any existing AR detection or tracking algorithm, we argue 
that they collectively provide a robust and objective way to estimate AR size with a lower range of AR sizes 
than ARTMIP. The methods presented in this study do not preclude the possibility that the parameter choic-
es are made by the same group of people. Nevertheless, we used statistical quantities to estimate ARs size 
and objectively tested these methods' sensitivity to the chosen parameters. For this study, we analyze the 
winter (November–April) North American coast landfalling ARs and create a composite for the 1980–2018 
period, to objectively estimate the size of ARs using the IVT from ERA5 reanalysis data (European Centre 
for Medium-Range Weather Forecasts, 2019).

2.  Data
In this study, we use the AR detection results from three different ARTMIP methods (Rutz et al., 2019; 
Shields et al., 2018): CASCADE_BARD_v1 (O'Brien et al., 2020), Lora_global (Lora et al., 2017), and Mund-
henk_v3 (Mundhenk et al., 2016). Employing these three different detection algorithms allows us to broadly 
sample ARs in the North Pacific Ocean. Each of these methods generates a binary flag: 1 for “AR conditions 
exist” and 0 for “AR conditions do not exist”; for each latitude-longitude grid point. AR binary flags were 
calculated using thermodynamic and dynamical fields from the Modern-Era Retrospective Analysis for 
Research and Applications Version 2 (MERRA-2) reanalysis (Gelaro et al., 2017) as a part of the ARTMIP 
Tier 1 experiment (Shields et al., 2018). In the methods section, we describe how we use these binary flags 
to create the AR composite.

The column-integrated water vapor (IWV) and IVT, are the two main variables used to define and charac-
terize ARs (Ralph et al., 2018). For this study, we focus on IVT and calculate it using the vertically integrat-
ed eastward and northward water vapor flux  [ , ]x yq q  (kg m−1 s−1) provided by the ERA5 reanalysis. IVT is 
defined as

  2 2IVT ,x yq q� (1)

where

   1 ,
pt

x
pb

q qudp
g

� (2)

   1 ,
pt

y
pb

q qvdp
g

� (3)

q is the specific humidity [kg kg−1], u and v are the zonal and meridional wind velocity [m s−1] over the 
pressure surface p, Pb is 1,000 hPa, Pt is 200 hPa, and g is the gravitational acceleration. We also use u and v 
for the Lagrangian in Section 3.3. ERA5 data have a temporal resolution of 1 h and a horizontal resolution 
of 0.25°. We focus our study on the 1980–2017 period.

Following O'Brien et al. (2020), to avoid the large contiguous regions of high IVT near the tropics associated 
with the intertropical convergence zone (ITCZ), we spatially filter the IVT field as
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where IVT′(x, y) is the filtered IVT field, x and y are the longitude and latitude, respectively, and Δy is half-
width at half-maximum of the filter. We use Δy = 15°, which effectively damps the IVT to zero within the 
ITCZ. Hereon, we refer to the filtered field as IVT for simplicity.

This analysis focuses on 37 wet seasons (November–April) in the 1980–2017 period over the North Ameri-
can coast. We focus on landfalling ARs and effectively restrain the study domain to the North Pacific Basin 
(0°–90°N, 100°−240°E).

Furthermore, since this study's primary focus is to study the size of ARs, we only utilize output from the 
three ARTMIP algorithms to obtain a broad and robust sample of AR occurrences (time and approximate 
location). With the exception of the areas shown in Figure 1, we explicitly avoid using the exact shape or 
size determined by any detection and tracking algorithm.

3.  Methods
We apply the AR life cycle tracking algorithm from Zhou et al. (2018) to the AR binary flag data (from the 
three detection methods used in this study) and record each detected AR position and timestamp. To ensure 
we sample over the highest possible number of ARs and avoid double-sampling events, we start by taking 
all the ARs detected from one tracking method. We add the AR events from the second tracking method 
that are not detected by the first, and finally, we add the ones from the third method that are not in the first 
or the second. It is essential to note that we only record the AR time stamp and center coordinates of each 
object through its life cycle (calculated using Equations 7 and 8), and we do not infer the shape or size of 
ARs from these detection algorithms. Our size-estimating methods later use the recorded AR center as a 
first guess on the time and location of an AR.

In this fashion, we create a 1980–2017 wet season (November–April) data set of North American coast 
landfalling AR objects. Each object corresponds to one instantaneous snapshot of an AR and contains its 
center's timestamp and location through its life cycle. The data set is divided into two parts, based on AR 
origin location (Northwest Pacific “WP” 100°−180°E vs. Northeast Pacific “EP” 180°−240°E); and classified 
by its life cycle stage, at 25%, 50%, and 75% of the AR total life cycle. All subsequent analyses and methods 
in this study are applied separately for each of these six sub-data sets.

3.1.  Principal Component Analysis of IVT (PC Method)

Recognizing that ARs are associated with ridge-like structures in the IVT field, the principal components 
(PCs) method is designed to estimate AR size by modeling AR shapes as Gaussian. For each object, we apply 
principal component analysis (PCA) to the high IVT cluster closest to the AR object's center (or first guess) 
and compute the weighted covariance matrix Cw (Price, 1972) of latitude and longitude

 

 

   


 

nx ny
1 1

nx ny
1 1

IVT ( ) ( )
,

IVT

T
i j ij ij ij

w
i j ij

x x y y
C� (5)

where xij and yij are the longitude and latitude of the ERA5 grid, ,x y  are the spatial zonal and meridional 
mean, and the weight is given by the IVTij at each grid point. Cw is a 2 × 2 matrix, such that




   
      

   

 
 0 0 0

1 1 1
,w

s s
C

s s� (6)

where the eigenvectors  
0 1,s s  are the principal components of the IVT field, and λ0, λ1 are the eigenvalues. 

The principal components represent the directions of maximum variance of the IVT field near the AR. The 
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largest eigenvalue represents the direction that explains the largest IVT 
variance, hence the longest AR axis (along the AR, 


0s ), while the smallest 

would represent the shortest AR axis (across the AR, 1s ).

To filter the IVT field, that is, far from one AR object, we use a two-step 
iterative method. First, we find the IVT cluster closest to the first guess 
location and define the AR “core” as the point where IVT is greater than 
0.5 times the local maximum IVT. We apply PCA to the AR core and use 
the eigenvalues and eigenvectors to create a 2D Gaussian function using 
Equation 11. Then, we filter all the points from the original ERA5 IVT 
field where the core Gaussian function is less than 10−3 (we found this 
value worked well for the ARs objects analyzed in this study). We then 
apply PCA to the filtered IVT field and use the results to estimate the size 
of the AR object.

We define the length (width) of the AR as two times the magnitude of 0s  
(1s ), and its area as the ellipse whose axes are the principal components 


0s  

and 1s  (white solid lines and ellipse in Figure 2). The AR orientation θ is 
defined as the angle between 1s  and the equator. Estimating the area of an AR as an ellipse is an idealization 
that allows us to simplify the problem and avoid the introduction of more rules and thresholds that would 
essentially result in a new detection algorithm. We realize that this will affect the calculation of areas with 
more highly irregular AR shapes. However, in a case-by-case inspection, we find that this is a good approxi-
mation for the average AR in this study. Moreover, an overlap plot of all the AR events (Figure 8) shows that, 
on average, this is an adequate idealized model representation of ARs, which becomes particularly relevant 
for the statistical methods described in Section 3.2. We utilize fastKDE (O'Brien et al., 2014, 2016) to calcu-
late probability density functions (PDFs) of length, width, area, and orientation, using all the AR objects in 
our six sub-data sets (https://github.com/LBL-EESA/fastkde/releases/tag/v1.0.18). The method described 
in this section—applying PCA to the IVT field and define length and width—is labeled PC throughout this 
study.

3.2.  Estimating AR Size From Composites and Background IVT Field (BG and SO Methods)

To estimate the AR length and width, we use two different statistical methods for determining the distance 
at which the AR composite becomes indistinguishable from the background IVT field (from now on re-
ferred only as background for simplicity). We create an AR composite from a total of 1,150 (980) AR objects 
for the WP (EP) in the 1980–2017 wet seasons. We randomly sub-sample 300 AR objects (from each region) 
to ensure independence between each AR object used to create the composite and increase the statistical 
robustness of these methods.

The statistical overlapping method (SO) looks at the overlapping between the background PDF and the 
composite as a function of the distance to the AR center. On the other hand, the background method (BG) 
uses a Kolmogorov-Smirnov test (KS-test) to look at the difference between the background cumulative 
distribution function (CDF) and the conditional probability distribution (CPD) of the composite IVT given 
the distance to the AR center. We describe both methods in Sections 3.2.2 and 3.2.3. For the SO and BG 
methods, we calculate the AR composite area by modeling the shape of ARs as ellipses, whose axes are the 
length and width calculated by each method.

We define the AR center coordinates ( , )x y  for every AR object within the composite as the IVT-weighted 
center of mass:

 

 

 


 
1 1

1 1

IVT
,

IVT

nx ny
i j ij ij
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i j ij

x
x� (7)
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Figure 2.  Principal component analysis method. White lines represent 
the PC of the atmospheric river (AR), and the white contour is the area 
estimated from the ellipse whose axes are the PC. The red lines represent 
directions along and across AR used to sample integrated vapor transport 
for SO and BG methods (dashed/solid represent the first/second PC).
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We then sample IVT along the direction of the principal components (see Section 3.1) through all the do-
main (represented by the red lines in Figure 2), and calculate the distance d of each point along this line to 
the AR center

d x y x y= -¢ ¢|| ( , ) ( , ) ||,� (9)

where (x′, y′) represent the coordinates of the points along each of the principal components' direction. In 
this fashion, we create a joint distribution of IVT and d for the AR composite, and utilize fastKDE to calcu-
late the CPD of IVT given d: P(IVT |d).

3.2.1.  Estimation of the Background

We estimate the PDF and CDF of the background by randomly sampling IVT from ERA5 reanalysis data 
through the North Pacific Ocean in the period of study. Since the definition of “background” is somewhat 
ambiguous, we calculate two separate backgrounds: 1IVTbk , where the grid cells inside an AR are masked at 
the time of sampling (AR grid cells not used to calculate the background); and 2IVTbk , where ARs are not 
masked at the time of IVT sampling. Despite the fact that 2IVTbk  includes high-IVT points inside some ARs, 
we remark that both backgrounds are statistically indistinguishable with a confidence level of 95% accord-
ing to a two-sample KS-test. The CDF of the background is higher than 0.84 (p ≥ σ+, where σ+ is the value 
of CDF at +1 standard deviation) at 179.5  and 193.9 kg m−1 s−1 for 1IVTbk  and 2IVTbk  respectively, which are 
later used for the SO and BG methods (Sections 3.2.2 and 3.2.3) and referred to in the text label in Figure 1.

3.2.2.  Statistical Overlapping of IVT With the Background Field PDF (SO)

One way to estimate the AR composite's length and width is by looking at the overlap of the background 
PDF and the composite IVT conditional probability distribution given the distance to the center of AR 
(CPD(d)). We define the statistical boundary of the AR composite as the distance where the CPD(d) = 0.16 
contour is greater or equal to the background IVT value at CDF = 0.16. In other words, where CPD(d) at −1 
standard deviation (σ1) intersects with the background PDF at +1 standard deviation (σ+) (where the lower 
boundary of the shading contour intersects the dotted line in Figure 3). With this method, we determine the 
AR extent by determining the distance d where the overlap between the composite PDF and the background 
PDF is less than two standard deviations. This method is referred to as SO throughout this study.
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Figure 3.  Conditional probability distribution of integrated vapor transport (IVT) given the distance to the center of the atmospheric river (AR). Red colors 
represent the transverse direction (across AR), black colors represent the longitudinal direction (along AR). The 0.5 conditional probability C is represented in 
solid thick lines. The shading corresponds to probabilities between 0.16 and 0.84. According to the statistical overlapping method, the AR is delimited by those 
distances where the dashed line (background IVT p ≥ 0.84) intersects the 0.16 CPD contour (marked in red and black dots). For example, for the Northwest 
Pacific composite (WP) in panel (a), these intersections occur at approximately from −1,500 to 1,200 km along the AR, and −600 and 400 km across the AR. The 
triangles mark these distances of overlapping with the background.
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3.2.3.  K-S Statistics Between AR Composite and the Background 
CDF (BG)

The KS-test is used to determine at which distance the CDF of the 
composite IVT is indistinguishable from the background CDF. This 
method assumes that the IVT distribution within ARs differs from the 
background.

From the CPD(d), we calculate the CDF of the composite IVT at different 
distances along and across the AR composite (CDF(d)). We compare the 
CDF(d) against the background CDF (4) and apply two-tailed and one-
tailed KS-tests (KS1 and KS2, respectively). For the KS1, we define the 
AR boundaries at the distance where the background CDF is significantly 
lower than the background at the 95% confidence level. For the KS2, the 
AR boundaries are delimited by those distances at which the KS-statistic 
reaches a minimum value, that is, where the CDF(d) and the background 
CDF are most similar. Figure 4 shows how the CDF(d) (colored dashed 
lines) converges to the background CDF (solid black line) far from the 
center of the AR composite (d = 0 km, represented by the most transpar-
ent dashed lines).

Both BG and SO methods provide a robust statistical estimation of the 
AR composite size. In the supporting information, we show a test of the 
sensitivity of the SO method to changes in the background PDF and to 
changes in the CPD(d) overlapping values; we also test the sensitivity of 
the BG method to changes in the statistical level of significance for the 
one-tailed BG method (Text S1 and Figures S1a and S1b).

3.3.  Lagrangian Tracers for Area Estimation (LT)

Previous study by Garaboa-Paz et al. (2015) suggests that ARs relate to 
attracting Lagrangian Coherent Structures (LCS) in the 2D and 3D flow 

fields. With this in mind, we hypothesize that Lagrangian tracers can be used to estimate AR area from a 
fluid dynamics point of view. The association of ARs with LCS implies that tracers inside the AR are more 
likely to preserve spatial coherence through backward and forward trajectory integration. Furthermore, 
tracers near the boundaries and outside of the AR, compared with those inside the AR, would be more likely 
to disperse and end up at a final location farther from its initial location.

To do so, we use a 2D passive Lagrangian tracer advection model. Tracers are advected over pressure surfac-
es using 2D velocity fields from ERA5 reanalysis following a stochastic advection equation

( 2 ) ,i i i idx u u w dt � (10)

where i represents the zonal or meridional directions, u the 2D velocity over pressure surfaces, iu  is the 
root mean square of the local velocity near the tracer (Griffa et al.,  1995; LaCasce, 2008; Rodean, 1996; 
Sawford, 1991), and wi is a random perturbation with zero mean and unit variance (i.e., a Wiener process). 
This random nudging in the tracer position at each step helps represent diffusion, turbulence, and other 
processes not resolved by the model. In Text S2 and Figure S2, we show a test of the sensitivity of AR area 
to changes of the scaling velocity 2 iu . We solve Equation 10 using the Euler method with a time-step of 
1 h (same as the ERA5 resolution, thus avoiding the need for time interpolation). The model uses bilinear 
interpolation in space to estimate the velocity at the tracer location.

We select the tracers' initial positions in the vicinity of a given AR by randomly selecting 2,000 points from 
the entire study domain (−80°S to 80°N, 180°W to 180°E), with a probability given by a 2D Gaussian func-
tion centered in the AR

       2 2( , ) exp( ( ( ) 2 ( )( ) ( ) )),g x y a x x b x x y y c y y� (11)
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Figure 4.  Colored lines show the CDF of IVT for the AR composite, at 
different distances from the AR center (CDF(d)); less transparent dashed 
lines represent a farther distance to the AR center. The black solid line 
shows the CDF of the background. The KS-test evaluates where the 
composite IVT and the background are statistically indistinguishable (for 
the two-tailed test) or where the composite IVT CDF is statistically lower 
than the background CDF (for the one-tailed test).
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where

 
 

 
2 2

2 2
0 1

cos ( ) sin ( ) ,
2 2

a� (12)

 
 

 2 2
0 1

sin(2 ) sin(2 ) ,
4 4

b� (13)

 
 

 
2 2

2 2
0 1

sin ( ) cos ( ) ,
2 2

c� (14)

λ0 and λ1 are the eigenvalues of the covariance matrix in Equation 5, x  and y  are the longitude and latitude 
of the AR center, and θ is the angle between the along the AR axis (1s  from Equation 5) and the equator. 
We observe that for fewer than 500 tracers, the AR area might not be correctly resolved since, for larger 
ARs, there might be regions inside the AR without initial tracers. We find that, in general, 2,000 is a suffi-
cient number of initial tracers and allows a spatial distribution that concentrates in the vicinity of the IVT 
blob and extends further from it. Our results do not vary for larger number of tracers. In this fashion, we 
ensure that the initial position of tracers is distributed inside and outside of the AR, but no tracers (or a 
negligible number) are far from the AR (the tracers initial position distribution is represented by the black 
dots in Figure 5a). Additionally, we simulate 50 tracers for each initial position, resulting in 50 different 
trajectories due to the random term in Equation 10. This is equivalent to repeating the Experiment 50 times, 
thus increasing the statistical robustness of the results. We find similar results using a higher number of 
repetitions.

The area estimation is done as follows. Starting from the initial position (black dots), we compute trace 
trajectories five days backward in time (resulting in the orange dots in Figure 5a). We then use these new 
locations to calculate the forward in time 5-day trajectory (resulting in the blue dots in Figure  5a). We 
compute this process for all pressure levels between the surface and 500 hPa and record the tracers' final 
position at each level. We choose 5 days because we need a timescale longer than the boundary layer and 
convective timescales, and we want a timescale as long as possible without exceeding the Rossby timescale 
by too much. Moreover, other works have found that few ARs have a longer duration than 5 days (Payne & 
Magnusdottir, 2016; Zhou et al., 2018).

We gather the final tracers from all levels and calculate the bivariate PDF of the final tracer latitudes and 
longitudes. We estimate the AR area as the size of the largest contiguous contour of PDF = 0.68 (the PDF of 
the final position within two standard deviations), corresponding to the thicker green contour of Figure 5b. 
Text S2 and Figure S3 show a sensitivity test of AR area relative to PDF value changes.
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Figure 5.  (a) Initial position (black), after 5 days backward advection (orange), and 5 days forward advection from the orange tracer locations (blue). The 
cyan contour shows the region with most (68%) of the tracers after the 5-day forward advection. (b) Integrated vapor transport (filled contours) and probability 
density function of the tracers' final position (contours). Thicker cyan contour at p = 0.68 area is used to estimate the atmospheric river size in the Lagrangian 
tracers method (LT).
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3.4.  ClimateNet Method (CN)

We use ClimateNet Climate Contours (https://www.nersc.gov/research-and-development/data-analytics/big-
data-center/climatenet/, http://labelmegold.services.nersc.gov/climatecontours\_gold/tool.html), which is a 
guided user interface for annotating climate events, facilitating the collection of hand-labeled weather data 
sets (Kashinath et al., 2021).

We use the data generated using the ClimateNet labeling tool during the third ARTMIP workshop (http://
www.cgd.ucar.edu/projects/artmip/meetings.html) in October 2019. Half a day out of a 2.5-day workshop 
was devoted to this task, including over 15 workshop participants who labeled 660 time slices of data dur-
ing the session (O'Brien et al., 2020). A total of 1,822 AR detections were made over the whole globe, and 
378 were made in the North Pacific Ocean region (which will be referred to as global and NP, respectively) 
using an Atmospheric Model Intercomparison Project (AMIP) simulation performed with the Community 
Atmosphere Model (version 5) running at 25-km resolution (Wehner et al., 2014). We calculate the area 
and orientation of each of these hand-labeled ARs. Unlike the methods described in Sections 3.1–3.3, this 
method does not distinguish between the AR-genesis location or life cycle.

3.5.  AR Size Calculation Methods Summary

To help the reader keep track of the various methods used in this study, Table 1 summarizes a description 
for each method and the short names used throughout this study.

4.  Results
We focus on the size of North American landfalling ARs. Our results are consistent among methods: with 
AR areas within the 1011–1012 m2 range in four of the five methods: PC, LT, BG, and SO; and between 1011 
and 1013 m2 for CN. Our results have a narrower range of AR area than the ARTMIP ensemble (Figure 1), 
with order-of-magnitude consistency with the majority of the algorithms used in ARTMIP. The novel sta-
tistical methods in this study (PC, SO, BG, and LT) are in good agreement with the manually labeled AR 
sizes from the ClimateNet method. Table 2 contains a summary of the length, width, and area for all four 
methods, depending on the AR genesis location and life cycle. Figure 8 shows a visual representation of the 
size results for PC, LT, BG, and SO methods for WP and WP at 50% life cycle.

4.1.  AR Length and Width

Figures 6a–6c show the PDF of length and width calculated by PC. The PDF exhibits the typical “long and 
narrow” AR shape, from 2.3 to 4.5 times longer than the width (Table 3). According to PC, ARs have a 
median width of 844 km (90% of the cases were between 520 and 1,386 km), and length of 3,842 km (90% 
between 2,495 and 5,816 km) for the AR with WP origin; and median width of 814 km (90% of the cases 
were between 6,477 and 1,476 km), and length of 3,413 km (90% between 2,321 and 5,400 km) for the ARs 
with EP Origin.

According to PC, WP has larger and wider ARs than EP. The differences in length are statistically significant 
at a 99% confidence level, however, differences in width are not. Concerning the life cycle, the WP compos-
ite has the smallest AR size at 25% and the largest at 50% of its life cycle, nevertheless, only the differences 
in length are statistically significant. The EP composite length does not change much through the life cycle. 
However, the width decreases monotonically through its life cycle, with differences statistically significant 
at a 99% confidence level.

Consistently with PC, BG, and SO methods show larger ARs originated in the WP. According to BG, the 
ARs composite length (width) at 50% life cycle is 4,019 (1,121) km for the WP and 3,275 (501) km for the EP. 
The SO's composite length (width) at 50% life cycle is 2,751 (916) km for the WP and 2,107 (646) km for the 
EP. It is possible that the EP and WP ARs' size differences might come from the landfall condition and that 
focusing on landfall means that we are preferentially looking at that type of AR, since this study is focused 
specifically on landfalling ARs. The difference in size between WP and EP ARs and of non-land-falling ARs 
could be explored in future study.
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The lengths determined by the BG and SO methods exhibit little variation throughout the life cycle. In 
contrast, AR width decreased by a factor of 0.67 (WP) and 0.60 (WP) for BG, and 0.85 (WP) 0.69 (EP) for SO. 
These results suggest that the AR area difference through the life cycle is mainly due to changes in width.

4.2.  AR Area

Figures 6d and 6e show the PDFs of the AR area, calculated by PC method (solid lines) and LT (dashed 
lines). For the WP ARs, the area has a median of 2.47 × 1012 and 2.75 × 1012 m2 for PC and LT, respectively. 
For the EP ARs, the area has a median of 2.23 × 1012 and 2.33 × 1012 m2 for PC and LT, respectively. The 
WP composite has larger areas than the EP at a 99% confidence level. EP ARs do not show a significant 
difference in the area through the life cycle, while WP ARs attain maximum area at their mid-life cycle for 
both the PC and LT methods.

The one-tailed KS-test (one-tailed BG) estimates the AR composite area as 3.67 × 1012 and 1.40 × 1012 m2 for 
WP and EP, respectively (at 50% life cycle). SO estimates a composite area of 1.75 × 1012 and 8.74 × 1011 m2 
for WP and EP, respectively (at 50% life cycle), with more extensive (both width and length) AR from WP 
when compared with the EP AR.

BG results show a decrease in AR composite area through the life cycle by a factor of 0.68 and 0.54 for the 
WP and EP, respectively (decrease of ∼0.83 and ∼0.62 according to SO). These changes come mainly from 
differences in width.
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Figure 6.  (a–c) Probability density function (PDF) of atmospheric river (AR) length (dashed lines) and width (solid 
lines) using the principal components method (PC), at 25%, 50%, and 75% of the AR life cycle. WP composite in blue 
lines, EP composite in orange lines. (d–f) PDF of AR area for the PC method in solid lines, and the LT method in 
dashed lines. Lines colors are the same as in (a–c).
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CN results show a median area of 3.34 × 1012 m2 (90% of data between 6.15 × 1011 and 7.70 × 1012 m2) in 
the North Pacific region. Figure 7a shows larger AR areas for the global analysis 4.29 × 1012 m2 (90% of data 
between 9.43 × 1011 and 1.09 × 1013 m2). All the other methods (PC, LT, BG, and SO) are consistent with 
the CN area result, which are in fact hand-labeled AR by experts, demonstrating that these methods give 
reasonable estimates for AR size. If so, our results using ClimateNet might be on the larger side in terms 
of AR area, which could be related to the specific shapes the user can determine, or where the user exactly 
locates the AR “boundary” polygon at the time of labeling, however, these details are outside of the scope 
of this study.

The sensitivity tests (Text  S1 and  S2 and Figures  S1–S3) show that for the SO method, variations in 
the overlapping background PDF and composite CPD values from (PDF, CPD)=(0.05,0.95) (minimum 
overlapping) to (PDF, CPD)=(0.5,0.5) (large overlapping) result in area changes from 2.84  ×  1011 to 
9.9712 m2. The one-tailed BG sensitivity test to the significance level (p = 0.8 to p = 0.99) shows a change 
in AR area from 2.2612 to 1.4812 m2. For BG and SO, AR length shows more sensitivity to variations in the 
parameters than width.

The LT sensitivity test shows that using 0.68 as the PDF contour to define AR size, variations in the scaling 
velocity (from 0.125 times to 4 times u ) result in an area changes from 1.5312 to 4.1612 m2. Variations in the 
PDF value used (ranging from 0.4 to 0.93) result in area changes between one and two orders of magnitude 
(Text S2 and Figure S2). All the sensitivity analysis described here are computed for the WP at 50% life cycle. 
We find similar results for different stages of the life cycle and for EP.

4.3.  AR Orientation

Figure 7b shows the PDF of the AR orientation with respect to the equator θ, calculated using PC and CN 
methods. PC method results show that ARs originating in the WP are more zonally orientated than those 
originating in the EP. WP ARs have a median θ of 13.7° (with 90% of the data between 7.7° and 99.8°). EP 
ARs have a median θ of 49.1° (with 90% of the data between 10.4° and 142.6°). CN results show a median θ 
of 26.5° (with 90% of the data between 6.9° and 157.2°) for the North Pacific AR.

With respect to the AR life cycle, both WP and EP show an increase in the median θ: 28°–37° for the WP, 
and 46°–53° for the EP. Table 2 summarizes the results of length, width, and area of the AR composite from 
all the methods in this work. AR geometrical characteristics (aspect ratio and orientation) are summarized 
in Table 3.
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Figure 7.  (a) Probability density functions (PDFs) of atmospheric river (AR) area (PDFs are not normalized for 
visualization). PDFs from the PC and LT methods are calculated using data from WP and EP at 50% life cycle. The 
lowest to highest obtained values from the BG (SO) methods are represented in the shaded gray area (between solid 
gray lines) for comparison. (b) PDF of AR orientation with respect to the equator from the PC method at 50% of the AR 
life cycle for the WP (blue line), EP (orange line), and the North Pacific ClimateNet (green line) composites.
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5.  Discussion and Conclusions
Figure 8 color contours show the superimposition of IVT from all the AR objects in this study for WP and 
EP at 50% AR life cycle. We present Figure 8 as a summary of the PC, SO, BG, and LT methods. We aim to 
illustrate the methods together and make them more clear to the reader. To generate this plot, we rotated all 
the AR objects to the same frame of reference. The angle of orientation θ of each AR represents the median 
angle with respect to the equator, and the dotted angle is the −1 and +1 standard deviations of θ. EP ARs are 
not only more zonally oriented, but they also have greater variance in θ than WP ARs. The break gray lines 
represent the 5th, 50th, and 95th percentile of the PC method. The golden and red bars represent the SO and 
BG length and width. The solid cyan line represented the LT method and was created by rotating the final 
position of tracers to the same system of reference of the plot and then calculating the bivariate PDF (cyan 
contour corresponds to p = 0.68). We can see that BG, SO, PC, and LT are very consistent in estimating the 
AR width. On the other hand, AR length seems to have more variability among methods (in the supporting 
information, we show that AR length shows to be more sensitive than width to parameter variations). The 
results from LT show an asymmetric contour with an elongated tail to the southwest end of the AR. They 
suggest that an AR detection algorithm based on “fluid dynamics” could be helpful to determine the AR 
boundaries independently of thresholds or parameter choices and other variables such as IVT. This is wor-
thy of exploring in future works.
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Figure 8.  Summary of results and graphical comparison for the different size estimation methods. In color contours, 
we superimpose (with transparency of 0.1%) the integrated vapor transport field of all the atmospheric river (AR) 
objects available at 50% life cycle for (a) Western Pacific and (b) Eastern Pacific. Each AR object is rotated to the median 
angle of orientation, and the distance to the center is calculated to make this plot. The dotted “fan” represents two 
standard deviations for the AR orientation with respect to the equator. The red and gold lines represent the length 
and width estimated using the SO and BG methods, respectively. Gray dashed lines represent the results of the PC 
method for the 5th, 50th, and 95th percentile. The cyan solid line represents the results of the LT method. It is the 0.68 
probability contour of the final position for all the AR cases gathered and rotated to the same frame of reference.

Acronym Description Section

PC Principal components analysis of atmospheric river integrated vapor transport field §3.1

SO Statistical overlapping of AR composite conditional probability distribution of IVT given the 
distance to the AR center and the PDF of the background IVT field

§3.2.2

BG Comparison of the IVT CDF of AR composite with the CDF of the background IVT field §3.2.3

LT PDF of Lagrangian tracers final position near an AR after backward and forward 5 days 
advection

§3.3

CN Hand-labeled ARs using CLIMANET contours labeling tool by a group of experts at the 2019 
ARTMIP workshop

§3.4

Table 1 
Methods for AR Size Estimation Used in This Work
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In previous studies, two main areas of AR-genesis have been identified: over the subtropical Northwest Pa-
cific and the Northeast Pacific (Sellars et al., 2017; Zhou et al., 2018). Here, we find robust evidence of a sta-
tistically significant difference in size of landfalling ARs, depending on their region of genesis, with longer 
and broader ARs from the Northwest Pacific relative to those originating over the Northeast Pacific. This 
result may be related to the dynamical process driving the AR formation. It has previously been suggested 
that WP ARs have a stronger association with a thermally driven jet over the North Pacific Ocean; while 
EP ARs are thought to be more associated with extratropical cyclone activity and to the commonly known 
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Northwest Pacific Northeast Pacific

0.25 0.5 0.75 0.25 0.5 0.75

Method Length [km]

PC 3,553 3,842 3,757 3,366 3,413 3,425

5%–95% 2,168–5,984 2,495–5,816 2,608–5,562 2,239–5,596 2,321–5,454 2,315–5,400

BG 2,783 2,932 2,813 2,431 1,640 1,764

SO 2,422 2,650 2,532 1,986 1,944 1,580

Method Width [km]

PC 823 844 838 845 814 809

5%–95% 520–1,386 530–1,405 510–1,366 513–1,550 477–1,476 454–1,516

BG 664 912 769 465 882 355

SO 850 812 771 625 582 394

Method Area [1012 m2]

PC 2.32 2.60 2.49 2.26 2.24 2.19

5%–95% 1.02–5.29 1.23–5.22 1.26–4.98 1.03–5.30 1.03–5.09 0.97–5.22

LT 2.55 2.91 2.74 2.35 2.34 2.32

5%–95% 1.52–4.54 1.49–4.47 1.59–3.88 1.26–4.32 1.25–3.97 1.09–4.01

BG 1.45 2.10 1.70 0.88 1.13 0.49

SO 1.61 1.69 1.53 0.97 0.89 0.48

CN 3.34

5%–95% 0.61–7.70

Table 2 
Summary of AR Size Statistics by Method

Northwest Pacific Northeast Pacific

0.25 0.5 0.75 0.25 0.5 0.75

Method Aspect ratio [width/length]

PC 4.2 4.5 4.4 3.9 4.2 4.3

5%–95% 2.3–7.6 2.3–7.7 2.6–7.3 2.3–7.1 2.3–7.4 2.4–7.5

BG 4.1 3.2 3.6 5.2 1.8 4.9

SO 2.8 3.2 3.2 3.1 3.3 4.0

Method Orientation [deg.]

PC 28.9 29.5 35.7 49.9 53.1 53.6

5%–95% 8.1–80.2 7.3–89.2 8.5–111.8 9.5–136.5 12.3–130.1 12.1–149.6

CN 26.5

5%–95% 6.9–157.2

Table 3 
Summary of AR Geometry Statistics by Method
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phenomenon “Pineapple Express” (Cordeira et al., 2013; Li & Wettstein, 2012; Zhang & Ralph, 2021; Zhang 
et al., 2019; Zhou & Kim, 2019). We also found evidence WP ARs tend to have more zonal orientation than 
those originating in the EP, which we believe could also relate to the dynamical feature driving the AR. This 
difference in AR size and orientation between the EP and WP may have implications for where moisture 
transport occurs.

PC, BG, and SO methods agree on the typical “long and narrow” shape from the AR literature, with a me-
dian aspect ratio of approximately 4 (length/width). Other detection algorithms could use these findings 
as geometrical constraints in the future. The AR orientation difference between WP and EP could also di-
rectly affect the precipitation associated with landfalling AR, depending on the relative angle to the coastal 
mountain range, and hence the orographic lifting (Hu et al., 2017). More meridionally oriented AR toward 
the end of the life cycle might modify the effects of orographic lifting and AR impacts over the coast. Fur-
thermore, the steepening of the AR orientation with life cycle supports the hypothesis that most—if not 
all—ARs are intrinsically related to midlatitude cyclones. During the growth phase of the AR, the AR would 
form along the southern portion of a midlatitude cyclone, in the location of the dominant moisture source; 
the predominantly westerly flow would cause developing ARs to have a more zonal orientation. As the AR 
matures and its moisture is entrained into the cyclone, more of the vapor transport would occur along the 
eastern flank of the cyclone, giving the AR a steeper, more meridional orientation. If there is a relationship 
between size, duration, propagation speeds, and orientation, this could influence the AR landfalling condi-
tions and its impacts, which is a question worthy of further investigation.

It is worth noting that the AR width at the end of life cycle (75%) obtained from SO and BG (355 and 394 km, 
respectively) is in good agreement with airborne and satellite observations from the 1997/1998 winter ARs, 
where they find an average width scale based in IWV of 417.3 km (Ralph et al., 2004). Moreover, our result 
on orientation of EP ARs at the end of the life cycle (53.6°) agrees with the 17-case composite observation 
from dropsondes, where Ralph et al. (2004) find an average wind direction of the low-level jet of 216.7° 
(corresponding to 53.3° from our methodology's frame of reference).

We also observe a monotonic decrease in AR width through the life cycle, which could be associated with a 
systematic loss of moisture, or it could be associated with frontogenesis and sharpening of the frontal zone. 
These results could be explored in future studies, especially ones using a tracer technique.

The sensitivity tests suggest that for the statistical size estimation methods (SO and BG), length is more 
sensitive to the choice of parameters than width. We hypothesize that this is related to the difficulty of sta-
tistically distinguishing the AR “tail” (or southwest end or AR) from the high water vapor and IVT in the 
vicinity of the ITCZ. We observe (in a case-by-case exploration) that sometimes the IVT field does not have 
a clear boundary with respect to the ITCZ, resulting in a noisier CPD in the left side of the AR composite for 
large probability contours (C > 0.9). It is possible that this would also have an impact in the detection and 
tracking algorithms and their ability to objectively determine the AR boundary.

Furthermore, this raises the question about a possible link between AR size and duration, and how the size 
of AR might be directly related to hydrological impacts over landfalling regions. Do we need to explicitly 
include size in addition to IVT intensity and duration in the categorization scale for AR (Ralph et al., 2019) 
and their impacts? We often assume ergodicity, but if larger ARs have systematically slower/faster prop-
agation speeds, then the AR size-life cycle (and possibly landfalling duration) relationship would not be 
ergodic. Our future research will study toward answering these questions.

In Figure 1, we can observe a high spread in the size of AR among AR detection methods (white background 
part). Our results show values with much less spread (colored background part) relative to the current 
methods. It is important to notice that some of these conclusions could be reached by analysis of existing 
ARTMIP data, with the caveat that such conclusions would depend on the heuristic AR detection algo-
rithms employed in ARTMIP. The novel analytical contributions introduced in this manuscript–use of PCA 
of the IVT field, statistical estimation of AR composite size (BG and SO methods), and the use of Lagrangian 
tracers to determine AR size–allow us to reach these conclusions and can provide a statistical constraint on 
AR size for other detection methods. This could also allow us to incorporate size into the ARs categorization 
in coastal regions and their impacts.
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We speculate that different algorithms within ARTMIP detect different parts of the AR since each algo-
rithm defines different rules and relatively unconstrained thresholds, as it has been shown before by Lora 
et al. (2020). For example, since algorithms 1–4 are outside the range of areas estimated in this study, we 
can confidently argue that these algorithms are not detecting the same part of ARs as our methods or as 
algorithms 11–28. The AR research community may need to define more than one term, with different defi-
nitions depending on what particular meteorological feature of AR is being studied. We acknowledge that 
different algorithms are created with different objectives and study goals in mind. However, future studies 
could benefit from the definition of three potential new terms: “AR core” (algorithms 1–4), “dynamical 
envelope” (LT method and maybe 9–17 methods), and “thermodynamic envelope” (PC, BG, SO, CN and al-
gorithms 18–28). Although the dynamical and thermodynamical envelopes are indistinguishable here, they 
may not be in studies of future AR size. This could help to understand what is the extent of the consistency 
in AR detection among different algorithms, particularly with respect to size. The importance of changes in 
AR statistics in the future has been demonstrated before. Previous studies have shown that AR frequency 
will increase by ∼50% globally, AR intensity will increase by ∼25%, and that the ARs will be ∼25% longer 
and ∼25% wider (Espinoza et al., 2018; Massoud et al., 2019). In future simulations using CMIP5/CMIP6 
models, AR detection algorithms project a global increase in AR frequency and sizes, especially along the 
western coastlines of the Pacific and Atlantic oceans, and it has been demonstrated that the choice of the 
detection algorithm can have a major impact on the results of the climate change AR studies (O'Brien 
et al., 2021).

We will continue to examine the relation between AR size and duration. Moreover, the direct relationship 
we found between AR origin location and size, the life cycle and size, motivates us to apply our method-
ology to understand how the AR size would change under global warming scenarios. Current detection 
methods may require adjusting the parameters and thresholds when studying different climate scenarios, 
making the objective study of change in AR size a challenging problem for future projections. Our approach 
could provide an objective insight for future works into the possible changes and hydrological impacts due 
to AR size and climate change.

Data Availability Statement
ERA5 data set at https://rda.ucar.edu/datasets/ds633.0/.
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