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ABSTRACT OF THE THESIS

Deploying Transformer Models to Detect and Analyze Sponsored Content in Spotify

Podcasts

by

Nishath Fatima

Master of Applied Statistics

University of California, Los Angeles, 2023

Professor Yingnian Wu, Chair

This research paper explores the application of Transformer models in the field of Natural

Language Processing (NLP) to detect sponsored content in Spotify audio data. The paper

discusses the evolution of Transformers in NLP, highlighting their efficiency and accessibility

in creating meaningful narratives from large datasets. The study focuses on a dataset of

100,000 Spotify Podcasts and their descriptions, aiming to achieve three objectives: Classi-

fication, Named Entity Recognition, and Topic Modeling. The research utilizes Transformer

models, specifically through the Hugging Face library, to fine-tune and implement state-

of-the-art models for efficient analysis. The application of Transformer models, including

BERT, promises to save time and resources compared to traditional methodologies.
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CHAPTER 1

Introduction

The field of Natural Language Processing(NLP) and Information Retrieval(IR) has evolved

beyond its machine learning counterparts in the last decade, paving the way for the boost

in demand among Artificial Intelligence sectors. This progression has naturally allowed

engineers to create and deploy models that are much more efficient and accessible than has

ever been seen before. With the demand for more robust analyses in the data scientist role,

and the need to make the most of the ever growing data ecosystem, the most valuable skill

set poses to be one which can effectively use the tools that continue to evolve in an effort to

create a narrative that allows company objectives to flourish.

This paper aims to explore and discuss the evolution of Transformers in the Natural Lan-

guage Processing space, with an application of some of the most prominent techniques in the

field used to gauge data and create a meaningful narrative of otherwise ineligible information.

The application of these models will be on data acquired by 100,000 Spotify Podcasts and

their descriptions. With three objectives: Classification, Named Entity Recognition, and

Topic Modeling, the knowledge acquired from the data set will be especially useful for the

marketing field as the primary objective aims to classify the podcasts into sponsored and not

sponsored categories. Named Entity Recognition and Topic Modeling can then be applied

as point of comparison and discovery between the two categories, for any distinctions that

could be useful for marketers and podcast creators alike.

Moreover, the data has been acquired by Spotify in an effort to expose more modes for

textual analysis beyond image and text. All data has been derived from the pure audio

1



recordings of the podcast, while providing a vast range of genres and topics of discussion

within the ample data resource.

The pipeline of objectives will be executed using Transformer Models through the Hug-

ging Face library- an open-source platform designed to assist machine learning engineers in

fine-tuning and implementing state of the art models for limitless tasks. With the emergence

of transformer models such as BERT, it is a promising endeavor that will likely save many

engineers run time and resources compared to methodology that has been implemented in

the past.
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CHAPTER 2

Methodology: The Evolution of NLP and Transformers

2.1 Recurrent Neural Networks(RNN)

Recurrent Neural Networks (RNNs) have been the primary architecture for sequential data

processing tasks for decades. They excel at capturing temporal dependencies and have

been widely used in various domains, including natural language processing (NLP), speech

recognition, and time series analysis. Its unique ability to use previous outputs as inputs

with hidden states allows for advantages such as processing large inputs and accounting for

historical information, but requires excessive resources and executes commands one by one.

2.1.1 Architecture of a Traditional RNN

A traditional Recurrent Neural Network (RNN) consists of a single recurrent hidden layer,

where the output at each time step is fed back as an input to the network at the next time

step. The architecture of a traditional RNN is illustrated in Figure 2.1.

At each time step, a traditional RNN calculates the activation and output based on the

input and the previous hidden state. The equations for the activation (ht) and output (yt)

at time step t are as follows:

ht = σ(Wihxt +Whhht−1 + bh)

yt = softmax(Whyht + by)

3



Input (xt) Hidden (ht) Output (yt)

Wih Whh

Why

Feedback

Activation (at) Input (xt) Output (yt)

Figure 2.1: Diagram for a Traditional RNN

where xt is the input at time step t, Wih is the weight matrix for the input-to-hidden

connections, Whh is the weight matrix for the hidden-to-hidden connections, bh is the bias

for the hidden layer, Why is the weight matrix for the hidden-to-output connections, by is the

bias for the output layer, σ is the activation function (e.g., sigmoid or hyperbolic tangent),

and softmax is the softmax function used for multi-class classification tasks.

2.1.2 Applications for Different RNN Architectures

RNN can adjust its input and output ranges to accomplish several different machine learning

tasks. In NLP, the one-to-one architecture can complete a sentiment analysis, one-to-many

can caption images or generate music, and many-to-many can execute Named Entity Recog-

nition. The appeal behind its architecture has thus been the versatile tasks that can be

completed by building neural networks that accommodate for the structure of the objective.

Input RNN Output

Figure 2.2: One-to-One RNN Architecture

Discussing RNN and its architecture is an excellent primer as it and a majority of models

in NLP operate on what is possibly the most important aspect of the Natural Language
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Input RNN

Output 1

Output 2

Output 3

Figure 2.3: One-to-Many RNN Architecture

Input 1

Input 2

Input 3

RNN

Output 1

Output 2

Output 3

Figure 2.4: Many-to-Many RNN Architecture

Processing field: Word Embeddings and Word Vectors.

2.2 Word Representations in NLP

2.2.1 One-Hot Vectors

One-hot vectors are a simple and intuitive representation for words in NLP tasks. Each

word in the vocabulary is represented as a binary vector of length equal to the vocabulary

size. The vector has all zeros except for the position corresponding to the index of the word,

which is set to 1. This representation indicates the presence or absence of a specific word in

a given text.

Figure 2.5 illustrates how the words ”cat,” ”dog,” and ”bird” can be represented as

one-hot vectors in a vocabulary of size 3.
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cat

dog

bird

1 0 0

0 1 0

0 0 1

Figure 2.5: One-Hot Vectors

2.2.2 Word Embeddings

Word embeddings are dense vector representations that capture semantic and syntactic re-

lationships between words. Unlike one-hot vectors, word embeddings are continuous-valued

and have fixed dimensions.

cat

dog

bird

0.2 0.8

0.5 0.2

0.1 0.7

Figure 2.6: Word Embeddings

Figure 2.6 demonstrates the word embeddings for the words ”cat,” ”dog,” and ”bird.”

These word embeddings have fixed dimensions, such as 2 in this example.

2.2.3 Word Vectors

Word vectors are continuous representations of words in a vector space, typically learned

using techniques like Word2Vec. Word vectors capture semantic relationships between words

and are often used in various NLP tasks. This will be especially relevant in the applications

of the tasks for this paper such as Topic Modeling and Named Entity Recognition.

Figure 2.7 showcases word vectors represented as circles for the words ”cat,” ”dog,”

and ”bird.” These word vectors are often high-dimensional and capture richer semantic

relationships.
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cat

dog

bird

v1

v2

v3

Figure 2.7: Word Vectors

2.3 Word2Vec Framework

Word2Vec is a popular framework for learning word embeddings, which are dense vector

representations of words. The framework consists of two main models: Continuous Bag-of-

Words (CBOW) and Skip-gram. These models aim to capture the semantic relationships

between words based on their context.

2.3.1 CBOW Model

The CBOW model predicts a target word given its context words. It takes a fixed-size

context window of surrounding words and tries to maximize the probability of the target

word given these context words. The architecture of the CBOW model is illustrated in

Figure 2.8.

2.3.2 Skip-gram Model

In contrast to CBOW, the Skip-gram model predicts the context words given a target word.

It aims to maximize the probability of the context words given the target word. The archi-

tecture of the Skip-gram model is illustrated in Figure 2.9.
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Hidden

Context

Context

Context

Output

Figure 2.8: Architecture of the CBOW model

Hidden

Target Context

Figure 2.9: Architecture of the Skip-gram model

2.3.3 Training

Both CBOW and Skip-gram models are trained using a neural network with a single hidden

layer. The hidden layer represents the word embeddings. During training, the model adjusts

the weights of the neural network to minimize the difference between predicted and actual

words in the given context.

TheWord2Vec framework utilizes the backpropagation algorithm with stochastic gradient

descent (SGD) to update the weights. The training process involves iteratively feeding the

model with word-context pairs and adjusting the weights based on the prediction errors.

The trained word embeddings capture semantic relationships between words. Words with
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similar meanings or appearing in similar contexts tend to have similar vector representations.

2.4 LSTM (Long Short Term Memory)

LSTM became the most recent development to the Natural Language Processing field as

a solution to the major set-backs of previous RNN models. Its impact resides mainly in

the adjustment of word representations and their iterative processing to capture long term

dependencies that have been previously disposed of with other algorithms. The importance

of the LSTM model cannot be expressed enough as it became increasingly more advanced

over its improvement and usage.

LSTMs are designed to selectively retain or forget information over long sequences, mak-

ing them well-suited for tasks involving text, such as machine translation, sentiment analysis,

and language generation.

The structure of an LSTM consists of a memory cell that preserves information over

time, as well as several gates that control the flow of information. The memory cell serves

as a memory unit, allowing the LSTM to selectively retain or forget information. The three

main gates in an LSTM are the forget gate, input gate, and output gate.

2.4.1 LSTM Cell

c h

Input Gate

Forget Gate Output Gate

Memory Block

Figure 2.10: LSTM Cell Architecture
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2.5 LSTM Architecture

The forget gate determines which information from the previous time step to discard. It

takes the previous hidden state ht−1 and the current input xt as inputs, and applies a

sigmoid activation function to the weighted sum of these inputs. The output of the forget

gate, denoted as ft, determines how much of the previous cell state ct−1 should be retained.

The input gate controls the information to be updated in the memory cell. It takes

the previous hidden state ht−1 and the current input xt as inputs, and applies a sigmoid

activation function. Additionally, it uses a tanh activation function to determine the values

to be added to the memory cell. The output of the input gate, denoted as it, determines the

amount of new information to be stored in the memory cell.

The output gate regulates the information to be output from the memory cell. It takes

the previous hidden state ht−1 and the current input xt as inputs, and applies a sigmoid

activation function. The memory cell is passed through a tanh activation function, and the

output of the output gate, denoted as ot, determines the final output of the LSTM.

xt ht−1

LSTM

ht

ct−1 ft

it

ct

ot

Figure 2.11: LSTM Architecture

Thus, the equations of the LSTM are as follows:
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ft = σ(Wf · [ht−1, xt] + bf ) (2.1)

it = σ(Wi · [ht−1, xt] + bi) (2.2)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc · [ht−1, xt] + bc) (2.3)

ot = σ(Wo · [ht−1, xt] + bo) (2.4)

ht = ot ⊙ tanh(ct) (2.5)

where Wf ,Wi,Wc,Wo are weight matrices, bf , bi, bc, bo are bias vectors, and σ represents

the sigmoid activation function.

In summary, the LSTM model in NLP employs a memory cell and gating mechanisms to

selectively retain or forget information over time. The forget gate decides which information

from the previous time step to discard, the input gate determines the new information to

be stored in the memory cell, and the output gate controls the output of the LSTM. These

mechanisms enable LSTMs to capture long-term dependencies in text data, making them

powerful models for various NLP tasks. This will be especially important to note over the

discussion of transformers.

2.6 Training and Backpropagation

The training process of an LSTM involves optimizing its parameters to make accurate pre-

dictions on the given task. This is typically done through a process called backpropagation

through time (BPTT), which is a variant of the backpropagation algorithm for RNN. Note

11



that backpropgation is a very common practice in most machine learning methods, but its

implementation in LSTM was particularly ground breaking for an NLP model.

BPTT works by unfolding the LSTM over time, creating a sequence of interconnected

copies of the LSTM cells. Each LSTM cell in the unfolded network corresponds to a specific

time step in the input sequence. The goal is to compute the gradients of the loss function

with respect to the parameters of the LSTM, allowing us to update the parameters through

gradient descent.

To calculate the gradients, LSTM forward propagates the input sequence through its

unfolded network to obtain the predicted outputs. The predicted outputs are then compared

to the true targets using a suitable loss function, such as mean squared error or cross-entropy

loss.

After calculating the loss, it initiates the backward pass by computing the gradient of the

loss with respect to the output of each LSTM cell. These gradients are then used to update

the parameters of the LSTM cells.

During the backward pass, the gradient at each time step is not only propagated to the

previous time step but also to the future time steps. This is because the LSTM cells are

recurrently connected, and the future states depend on the current states. The backward

pass continues until reaching the first time step of the input sequence.

As the backward pass progresses, the gradients at each time step are accumulated and

used to update the parameters of the LSTM cells. This process is often performed using

an optimization algorithm such as stochastic gradient descent (SGD) or its variants (e.g.,

Adam or RMSprop). The parameters are updated in the opposite direction of the gradients,

aiming to minimize the loss function.

The gradient calculation in BPTT involves computing the gradients of the LSTM’s in-

ternal gates (forget gate, input gate, and output gate) and the memory cell states. These

gradients are then used to update the weight matrices and bias vectors of the LSTM cells.

12



The specific equations and formulas for gradient calculation in LSTMs can be derived using

the chain rule of calculus and the specific architecture of the LSTM. This is standard practice

for a back propagation process.

It is worth noting that training an LSTM can be computationally expensive, especially

for long sequences, due to the unfolding process and the potentially large number of time

steps. Techniques such as truncated BPTT, which involves back propagating gradients only

over a limited number of time steps, are often employed to mitigate this computational

burden while still capturing long-term dependencies in the sequence. This limitation is what

prompted the research leading to the renowned transformer model.

13



CHAPTER 3

Models

3.1 The Transformer Model

After the development of several previous NLP methodologies, the concept of ”Attention”

revolutionized what has created some of the most advanced AI Language Processors in the

world: The Transformer Model. With its ability to learn deeply at a much faster rate than

its previous counter-parts, and added capabilities such as parallelization, The transformer

model is the new standard for a vast majority of NLP tasks. Its platform to efficiency due

to the concept of Attention was discovered by a group of engineers at Google responsible

for the publication ”Attention is All You Need”, which represents a significant departure

from previous sequence-to-sequence models, such as recurrent neural networks (RNNs) and

convolutional neural networks (CNNs), by relying solely on the attention mechanism for

capturing dependencies between input and output sequences. Note that even at the heart of

some of the most advanced techniques for NLP is the importance of word embeddings and

model training to their accuracy.

The Transformer architecture consists of an encoder and a decoder, both composed of

multiple layers of self-attention and feed-forward neural networks. The encoder processes the

input sequence and produces a set of encoded representations, while the decoder generates

the output sequence based on these representations. The attention mechanism facilitates

the flow of information between the encoder and decoder layers.

14



3.1.1 Self-Attention

The self-attention mechanism allows the model to capture relationships between different

words or tokens within the same sequence. It computes weighted representations of each

word based on the relevance of other words in the sequence. Self-attention can be understood

as a process of attending to different parts of the input sequence to gather information for

better representation.

In the self-attention mechanism, each word/token in the sequence is represented by three

vectors: the Query vector (Q), the Key vector (K), and the Value vector (V). These vectors

are derived from the input sequence using linear transformations.

The attention score between two words i and j is computed as the dot product between

the Query vector of word i and the Key vector of word j, divided by a scaling factor (
√
dk ).

The scaling factor is applied to prevent the dot product from getting too large or small.

The attention weights, representing the importance of each word in the sequence with

respect to the current word, are obtained by applying a soft max function to the attention

scores. The weighted sum of the Value vectors, using the attention weights as weights,

produces the attended representation for the current word.

In addition to the self-attention mechanism, the Transformer model also incorporates

position-wise feed-forward neural networks. These networks consist of two linear transfor-

mations with a non-linear activation function (usually a ReLU) applied in between. This

feed-forward network operates independently on each position in the sequence, allowing for

the integration of local context information.

3.1.1.1 Encoder and Decoder

The encoder processes the input sequence and produces a set of encoded representations. It

consists of multiple layers, with each layer composed of a self-attention mechanism followed

by a position-wise feed-forward network. The output of the final encoder layer is the encoded

15



Figure 3.1: Self Attention Matrix Calculation

representation of the input sequence, which captures both local and global dependencies.

The decoder takes the encoded representations from the encoder and generates the output

sequence. Like the encoder, the decoder also consists of multiple layers with self-attention

and feed-forward sub-layers. However, it includes an additional attention mechanism called

encoder-decoder attention.

The encoder-decoder attention allows the decoder to attend to the relevant parts of the en-

coded input sequence. During each decoding step, the decoder self-attends to the previously

generated positions in the output sequence and also attends to the encoded representations

of the input sequence. This dual attention mechanism helps the decoder generate accurate

and contextually-aware translations.

16



Figure 3.2: Self Attention Matrix Calculation

3.1.2 Matrix Calculation

Matrix calculation is an integral part of the Transformer model. It involves transforming the

input sequence into matrices, performing matrix multiplications, and applying non-linear

activation functions.

To perform the self-attention mechanism, the input sequence is transformed into Query

(Q), Key (K), and Value (V) matrices using learned weight matrices. These matrices are

then used to compute attention scores, which are further used to calculate attention weights.

The attention weights are applied to the Value matrix to obtain the attended representation.

Similarly, the position-wise feed-forward networks involve matrix multiplications and

activations. The input sequence is transformed into a matrix and passed through a linear

transformation followed by a non-linear activation function. The resulting matrix is again

transformed using another linear transformation to produce the output representation.

17



3.1.3 Training and Testing

The Transformer model is trained using a variant of the Adam optimizer and the cross-

entropy loss function. During training, the model learns to minimize the discrepancy between

its predicted output sequence and the ground truth output sequence.

In the training process, teacher forcing is often used, where the model is provided with

the correct previous output tokens as inputs during decoding. This helps the model learn to

generate accurate translations.

During testing, the model uses its own predicted output tokens as inputs during decoding,

creating an auto-regressive process. The decoding is performed iteratively, with each step

generating the next token based on the previous tokens until an end-of-sequence token is

generated or a maximum sequence length is reached. Thus, the birth of the transformer

model and its pipeline to the most efficient NLP models has opened doors to a world of data

analysis techniques and information. With access to open-source libraries that have already

been trained on relevent data, automated ML techniques have blossomed into an accessible

and deployable resource for otherwise difficult tasks.

3.2 Fine-Tuning Pre-Trained Hugging Face Models and BERT

BERT (Bidirectional Encoder Representations from Transformers) stands out as a powerful

language model that has achieved remarkable results across a wide range of NLP tasks. As

discussed generally with transformer models, it uses the power of self-attention mechanisms

to capture contextual information from both left and right contexts of a word. However,

unlike previous models that processed text in a sequential manner, BERT is a bidirectional

model that considers the entire input sequence at once. This enables it to learn deeply

contextualized representations, leading to better performance on various NLP tasks.

BERT is initially pre-trained on large-scale unlabeled corpora, such as Wikipedia or
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books, using two unsupervised tasks: masked language modeling (MLM) and next sentence

prediction (NSP). During pre-training, BERT learns to predict masked words within a sen-

tence and understand the relationship between two consecutive sentences.

After pre-training, the pre-trained BERT model can be fine-tuned for specific NLP tasks.

Fine-tuning involves training the model on a smaller labeled dataset that is task-specific.

This allows the model to adapt its learned representations to the specific nuances and re-

quirements of the target task.

3.2.1 Sponsored Content Classification

For classification tasks, the transformer model focuses on the encoder part of its archi-

tecture. As represented above, the encoder consists of multiple layers, each comprising a

multi-head self-attention mechanism and position-wise feed-forward neural networks. These

layers enable the model to capture both local and global dependencies, creating a holistic

understanding of the input sequence

Unlike sequential models like RNNs, the Transformer model captures global context effi-

ciently. With self-attention, each position attends to all other positions, generating attention

weights that reflect the significance of each position in relation to the current position. This

global context representation empowers the Transformer to make informed predictions based

on a comprehensive understanding of the entire sequence.

Given an input sequence X = [x1,x2, . . . ,xn], the self-attention mechanism computes the

query, key, and value matrices:

Q = XWQ, K = XWK , V = XWV

where WQ, WK , and WV are learnable weight matrices.

The context matrix, representing the contextualized representation of the input sequence,

is computed using the self-attention mechanism as discussed earlier:
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Context(Q,K,V) = Attention(Q,K,V)

On top of the Transformer encoder, a classification head is added for the classification

task. It typically consists of a fully connected layer followed by a softmax activation function.

The final hidden state H from the Transformer encoder is used as input to the classifi-

cation head, producing class probabilities:

Class Probabilities = softmax(HWC)

where WC is the weight matrix of the classification head.

In this application, the methodology will be applied to the word corpus of episode de-

scriptions in Spotify Podcasts, to determine whether the description and resulting episode

contains sponsored content.

3.2.2 Topic Modeling

Recently, Transformer models have demonstrated remarkable success in various NLP tasks,

including topic modeling. BERTopic is a topic modeling approach based on the powerful

BERT (Bidirectional Encoder Representations from Transformers) model, which combines

the power of the BERT model with clustering algorithms to perform topic modeling. Similar

to its ancestors in topic modeling, BERTopic still uses the TD-IDF approach.

In traditional TD-IDF, TF measures the frequency of a term within a document. It

quantifies how often a term appears in a document relative to the total number of terms in

that document. It can be calculated using the following equation:

TF(t, d) =
Count(t, d)

Total terms in d

where t is a term and d is a document.
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IDF measures the informativeness of a term across the entire document corpus. It pe-

nalizes terms that appear frequently across multiple documents, as they are considered less

informative. IDF can be calculated using the following equation:

IDF(t) = log

(
Total documents

Number of documents containing t

)
where t is a term.

TF-IDF is the product of the TF and IDF values. It provides a weight that reflects both

the frequency of a term within a document and its significance in the entire corpus. The

TF-IDF value for a term t in a document d can be calculated as follows:

TF-IDF(t, d) = TF(t, d)× IDF(t)

The TF-IDF value is higher for terms that appear frequently in a particular document

(high TF) and infrequently across the entire corpus (high IDF).

As opposed to this traditional, but static, technique; BERTopic is a dynamic topic mod-

eling technique that leverages the concept of c-TF-IDF (class-based TF-IDF) to model topics

in a document corpus.

c-TF-IDF is an extension of the traditional TF-IDF approach that considers the context

of a term within a specific class or topic. It calculates the importance of a term within a topic

by considering its frequency in documents belonging to that topic relative to its frequency

in the entire corpus. c-TF-IDF can be calculated using the following equation:

c-TF-IDF(t, topic) = TF(t, topic)× IDF(t)

where t is a term and topic is a specific topic.

This approach recognizes that the same topic can appear across different times, but with
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potentially different word representations. It aims to generate global and local representa-

tions of topics that capture the underlying themes across different time periods.

To create a global representation of topics, regardless of their temporal nature, BERTopic

is first fitted on the entire corpus without considering the temporal aspects. This process

generates a global view of topics, where certain words like ”car” and ”vehicle” may be

associated with a general topic about cars.

To account for the temporal variations within topics, BERTopic develops a local represen-

tation for each topic. This is achieved by multiplying the term frequency (tft) of documents

at timestep i with the pre-calculated global IDF (Inverse Document Frequency) values. The

formula for the local representation is as follows:

Wt,c,i = tftt,c,i · log(1 + Atft)

where Wt,c,i represents the local representation of term t in topic c at timestep i. tftt,c,i

is the term frequency of term t in topic c at timestep i, and Atft is a scaling factor.

A major advantage of using c-TF-IDF representations in BERTopic (compared to its

LDA, Top2Vec, and NMF alternatives) is the ability to create local representations without

the need for embedding and clustering documents, which results in faster computation.

Additionally, this technique can be extended to model topic representations based on other

metadata, such as author or journal, allowing for more nuanced analysis and interpretation.

3.2.3 Named Entity Recognition

Named Entity Recognition (NER) plays a crucial role in extracting and categorizing named

entities from text. In recent years, transformer-based architectures, such as BERT, have

shown promising results in NER tasks.

Fine-tuning approaches, unlike traditional LSTM-based approaches, incorporate a single

linear layer into the transformer architecture and fine-tune the entire model on the NER
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task. By leveraging the power of the transformer, these approaches model both subtoken

representations and token-level predictions in a single architecture. This holistic approach

offers the advantage of capturing complex contextual relationships and improving overall

performance.

To bridge the gap between subtoken modeling and token-level predictions, fine-tuning

approaches employ subword pooling techniques. This process aggregates subtoken represen-

tations to create token-level representations, which are then fed into the final linear layer. By

combining subtoken information, these approaches effectively handle variable-length named

entities and improve the accuracy of entity recognition.

Furthermore, fine-tuning approaches benefit from the ability to leverage document-level

features. In BERT-based models, document-level features are obtained by including the

surrounding context of a sentence during training. By considering a context window of left

and right subtokens, the model captures the broader context within which each sentence

resides. This approach ensures that the model can understand the influence of neighboring

sentences, providing a richer representation of the named entities.

In contrast to fine-tuning, traditional LSTM-based approaches use the transformer solely

to generate word embeddings, which are then fed into a standard sequence labeling architec-

ture such as LSTM-CRF. This feature-based approach allows for a well-understood training

procedure but lacks the holistic modeling capability of fine-tuning. Additionally, in feature-

based approaches, the transformer weights are frozen, limiting the model’s ability to adapt

to specific NER tasks. Thus, a combination of document-level features and fine-tuning on

the podcast corpus will likely product measurable results at a much faster rate.
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CHAPTER 4

Results

4.1 Spotify Podcast Sponsored Content Narrative

The Spotify podcast dataset provides valuable information about various podcasts available

on the platform. With 464.7 million global podcast listeners in 2023, reaching a predicted

504.9 million by 2024, the podcast industry is experiencing rapid growth. Additionally, the

market size of the podcast industry stands at 23.56 billion, indicating its significant impact

and potential for various stakeholders, including content creators, publishers, and advertisers.

Sponsored content involves collaborations between podcast creators and brands to pro-

mote products, services, or events. By utilizing named entity recognition (NER) and topic

modeling techniques, we can delve into the dataset to identify instances of sponsored content

and explore the associated brands. First, the sponsored content needs to be classified.

Using a fine-tuned BERT classification model for sponsored content, we can filter episode

descriptions in the metadata by looking for any promotions/sponsored information and cre-

ating a new corpus for other applied techniques.

Using NER, we can extract relevant entities such as brand names, publishers, and podcast

names from the dataset. The ”publisher” field provides insights into the podcast creators

and the companies behind them. This information helps us identify the podcast publishers

involved in producing the content and potentially attracting sponsorships.

The ”episodename” field contains the names of individual podcast episodes, and the

”episodedescription” field provides descriptions of those episodes, as fore mentioned. Ana-
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lyzing this information enables us to identify specific episodes that may feature sponsored

content or discussions related to brands. By considering the duration of the episodes, we can

also explore the duration of sponsored segments, potentially indicating the level of integration

and promotion within the episodes.

To gain insights into the brands associated with sponsored content, we can leverage topic

modeling techniques. By applying topic modeling algorithms to the dataset, we can identify

recurring topics or themes across podcasts and episodes. These topics can include brand-

related discussions, product reviews, or specific industry-related content. By examining

the keywords and context associated with these topics, we can pinpoint the brands being

mentioned, promoted, or discussed in the podcast episodes.

As the dataset includes information such as show URIs, RSS links, and episode URIs, we

can leverage these identifiers to establish connections and track the presence of sponsored

content across different episodes and shows, though these identifiers will be used less in the

analysis.

By combining NER, topic modeling, and the provided dataset, we can create a com-

prehensive narrative showcasing sponsored content and the brands associated with it. This

analysis will shed light on the podcast landscape, reveal potential opportunities for advertis-

ers, and provide insights into the evolving relationship between content creators and brands

in the podcasting industry.

With the growing podcast market and the increasing adoption of branded content, un-

derstanding the dynamics of sponsored content in podcasts is crucial for advertisers, podcast

creators, and listeners alike. This analysis will contribute to a deeper understanding of the

role of sponsored content, highlight successful brand integrations, and inform future strate-

gies for content monetization and advertising within the podcasting space.
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4.2 Exploratory Data Analysis

The data set will consist of several points of comparison even in its raw form, but as men-

tioned before- the objective of this project is to classify the data set into sponsored/not

sponsored content and to look individually at the newly filtered data set with only spon-

sored episodes for differences between its original counterpart. Additionally, NER will aid

in detecting brands within the sponsored content that are most frequently mentioned.

Assessing the impact of each podcast on the data set as a whole will help visualize how

different podcasts will push or pull against the information that will be retrieved from the

classification model. The corpus will be built off of the ”episode description” column of the

data set, to assess whether a particular episode is being sponsored. This means there will be

several episodes for a particular podcast’s show- not all of which could be sponsored. The

overall frequency of the podcast episodes per show will help understand which shows are

prevalent and whether these will be the same shows that show up in the data set that will

only consist of sponsored data.

4.2.1 Average Podcast Duration

The duration of a podcast has historically been linked to its popularity, as shorter podcasts

are generally more digestible and accessible to its consumers. Though this dataset consists

of 90% small creator shows and only 10% large creators, a 20 minute podcast seems to be

the standard for most media of this kind.

4.2.2 Most Frequented Podcasts

The highest podcasts by frequency provide information on which shows will likely show up

most often in both sponsored and non-sponsored data sets (Figure 4.2).
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4.2.3 Word Clouds

A majority of this project is assessing the semantic relationship between words and their

impact on the corpus for sponsored content. Thus, the preliminary step to visualizing the

language content of a corpus is to visualize it through word clouds.

Individual Episodes have a heavy emphasis on the mention of ”Anchor FM”, note that

this particular platform sponsors small podcast creators to discuss brand opportunities with

Spotify. Anchor FM itself is interestingly mentioned most often in the episode corpus as

opposed to show, indicating many creators being sponsored by the platform on an episode

basis.

The show word cloud depicts a consistent mention of ”support”. Note that this will

mostly include support requests and links to episodes and shows on other platforms to

competitors, which is still impactful to the analysis and classification model.

Identifying the most frequent words will help in building and preparing the corpus for the

classification input. Stop words and any insignificant words should be removed, but BERT

has the capacity to tokenize and adjust regardless of whether the corpus is cleaned. Still, it

will help with processing and context to be aware of these words.

4.3 Corpus Analysis: Topic Modeling

Topics were widely ranging but depict what is expected of most podcast content. The

highest topic scores were for fitness and nutrition, and this was the case for sponsored

content as well. Fitness and nutrition brands may find it worthwhile to invest in segments

with podcast content that aligns with their product. While not depicted in this paper, a

cluster analysis found that podcast content has a wide range and variety of topics within

discussion, but it appears that most topics can fall within the range of the four plotted bar

graphs from BERTopic modeling. The words were highly associated with each other and

27



appear frequently in their respective ”documents” from the corpus. The confusion matrix

in Figure 4.7 shows the similarities between different key words and topics.

4.4 Modeling Results and Analysis: Sponsored Content Classifi-

cation

Fine-Tuning the Model successfully provided a weighted accuracy of 92% on the test set.

The model can continue to improve with proper training and additional adjustments to

the model structure. The resulting dataset was filtered with a remainder of 66% being

classified as sponsored content. This can include self-branding where podcasters encourage

their audience to visit competitor websites through their links as well as social media sites.

This can also be further adjusted to exclude links and self promotion by either cleaning the

corpus or by creating a more sophisticated model and inputting audio data from podcast

recordings. That being said, this still falls under the category of sponsorships and will not

appear often enough to overthrow any big brands that are mentioned for actual sponsorship

deals. The F-1 score is satisfactory against false negatives but not quite there for false

positives, though for detecting sponsorships having a higher rate of false negatives is worse

as a trade-off.

Classification models using BERT save significant run-time and computational resources.

This model was deployed and completed on the test set (80/20 split) within 5 hours via high

RAM and advanced GPU. At maximum, the model would take 10 hours to tokenize and

process, compared to previous classification methods- which could take up to 25 hours (the

experiment was attempted against an alternate model but resources were limited).
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4.5 Modeling Results and Analysis: Named Entity Recognition

Comparatively, the Named Entity Recognition model used its input of sponsored content

after the classification was complete. Its accuracy F-1 score was 96%, which was sufficient

for the problem. Table 4.2 portrays each fluctuating and final classification F-1 score by

label: LOC (location), MISC (miscellaneous), ORG (organization), and PER (person). The

resulting dataset was filtered for ORG (organization) labels only, and the frequency by brand

was calculated to observe which brands were mentioned most frequently in sponsored content.

Surprisingly, despite its frequent appearance and impact in the word clouds, Anchor FM was

third on the list after Amazon and Spotify, though these could each have their respective

context (Amazon storefronts, products, Spotify being the platform on which the podcast is

being hosted), which is could be investigated further with a multimodal analysis of the audio

content and written descriptions of each podcast.
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Figure 4.1: Average Duration for Podcast was Roughly 20 Minutes

Figure 4.2: Top Five Shows with Highest Episode Frequency
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Figure 4.3: Word Cloud Visualization for Episode Corpus

Figure 4.4: Word Cloud Visualization for Show Corpus

Figure 4.5: Most Mentioned Words in Corpus
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Figure 4.6: BERTopic Word Scores

Figure 4.7: BERTopic Similarity Matrix

Precision Recall F1-Score

0 0.95 0.93 0.94

1 0.88 0.91 0.89

Table 4.1: Classification Results on Test Set
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Entity F-1 Score Change Accuracy

LOC +0.42 0.94

MISC +0.21 0.91

ORG +1.20 0.95

PER +1.18 0.93

Table 4.2: Named Entity Accuracy Results

Figure 4.8: Distribution of Organization Labels

Figure 4.9: Top Organizations Mentioned in Sponsored Content
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CHAPTER 5

Conclusion

By exploring the evolution of Transformers in the field of Natural Language Processing

(NLP), this endeavor demonstrates their significant impact on data analysis and narrative

creation. By applying various techniques, such as Classification, Named Entity Recognition

(NER), and Topic Modeling, to a dataset of 100,000 Spotify podcasts and their descriptions,

valuable insights were gained for the marketing field in the context of podcasts and depicts

potential for far beyond.

The application of fine-tuned Transformer models, particularly BERT, proved to be

highly effective in classifying podcasts into sponsored and non-sponsored categories. This

classification provided a foundation for further analysis and comparison between the two

categories. NER techniques allowed for the extraction of important entities, such as brand

names, publishers, and podcast names, enabling a deeper understanding of the relation-

ships between content creators and brands in the podcasting industry. Additionally, Topic

Modeling revealed recurring themes and discussions related to brands, product reviews, and

industry-specific content, facilitating the identification of brands associated with sponsored

content.

The findings from the dataset and the models employed highlight the usefulness and

convenience of fine-tuning models in NLP tasks. The ability to process and understand

large amounts of textual data, such as podcast descriptions, will open up new avenues for

analysis, allowing for more comprehensive narratives and informed decision-making.

The dataset analysis also provided valuable insights into the podcast landscape and the
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growing influence of branded content. As the podcast industry continues to experience rapid

growth, understanding the dynamics of sponsored content is crucial for advertisers, podcast

creators, and listeners alike. By uncovering successful brand integrations and informing

future strategies for content monetization and advertising, this research contributes to a

deeper understanding of the evolving relationship between content creators and brands in

the podcasting space.

In conclusion, the combination of fine-tuned Transformer models for NLP techniques

offers a powerful toolkit for extracting valuable information from textual data and creating

meaningful narratives. The advancements in NLP, driven by the capabilities of Transformers,

have paved the way for more robust analyses and deeper insights into various domains. As

the field continues to evolve, the ability to effectively utilize these tools will remain a valuable

skill set for data scientists and practitioners seeking to harness the full potential of the ever-

growing data ecosystem.
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