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Rapid fluorescence lifetime estimation with modified phasor 
approach and Laguerre deconvolution: a comparative study

Farzad Fereidouni1, Dimitris Gorpas2, Dinglong Ma2, Hussain Fatakdawala2, and Laura 
Marcu2

1Department of Pathology and laboratory medicine, 4400 V Street, CA 95817

2Department of Biomedical Engineering, University of California, Davis, 451 Health Science Dr, 
Davis, CA 95616 USA

Abstract

Fluorescence lifetime imaging has been shown to serve as a valuable tool for interrogating and 

diagnosis of biological tissue at a mesoscopic level. The ability to analyze fluorescence decay 

curves to extract lifetime values in real-time is crucial for clinical translation and applications such 

as tumor margin delineation or intracoronary imaging of atherosclerotic plaques. In this work, we 

compare the performance of two popular non-parametric (fit-free) methods for determining 

lifetime values from fluorescence decays in real-time –the Phasor approach and Laguerre 

deconvolution. We demonstrate results from simulated and experimental data to compare the 

accuracy and speed of both methods and their dependence on noise and model parameters.
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1.Introduction

The excited state Lifetime of fluorescence molecules offers valuable information for 

diagnosis and characterization of biological tissues and it provides a sensitive contrast 

mechanism for imaging. Similar to fluorescence spectrum, the excited state decay curve 

offers important information on the state of a fluorescence molecule and its interaction with 

its immediate environment including PH [1], oxygen saturation [2], calcium concentration 

[3, 4] and it has been used for studying molecular interactions through Forster resonance 

energy transfer [5], and more recently is extensively evaluated as a means of tissue 

diagnostics [6, 7].

1.1 Fluorescence Lifetime as a contrast mechanism

Endogenous fluorophores are commonly studied for purposes of tissue diagnostics. This 

includes amino acids, structural units of proteins, collagen and elastin that impart 
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mechanical and elastic strength to tissues, NADH and FAD that regulate cell metabolism 

and porphyrins that are a by-product of metabolism. These fluorophores have been studied 

to characterize and distinguish healthy and diseased tissue in vivo and ex vivo [8]. As a 

result, fluorescence based imaging techniques have the potential to quantitate biochemical 

and structural changes in tissue in relation to clinical diagnosis [8]. The intensity and 

spectral distribution of fluorescence emission are commonly used in optical measurements 

but are often plagued with broad spectrally overlapping emission spectra,, tissue 

heterogeneity and dependence on excitation-collection geometry. Time-resolved 

fluorescence methods, on the other hand, consider the decay characteristics of the 

fluorescence emission providing better differentiation between fluorophores with 

overlapping spectra. Since the decay characteristics are an intrinsic property of a 

fluorophore, lifetime values are independent of instrumentation and the excitation-collection 

geometry. This makes lifetime measurements robust and reproducible from multiple 

measurements (with varying experimental setups), making it a promising tool for clinical 

translation. Our previous work has explored the application of fluorescence lifetime imaging 

(FLIm) for oral carcinoma detection [9], atherosclerotic plaque assessment [10] and 

characterization of engineered tissues [11]. More recently we have also reported the ability 

to measure lifetime from tissue and to augment white-light video frames in real-time [12, 

13]. Quantification of emission spectrum and lifetime is performed through different 

analysis tools. While the spectrum can take different inconsistent shapes and normally is 

identified with its peak position and width, the decay curve of fluorescence which exhibits a 

single exponential behavior can be identified with a single number which is the 

characteristic of exponential decay time or its lifetime.

1.2 FLIM Data analysis

Compared to intensity-based measurements, lifetime measurements require not only more 

complex hardware and electronics but also more advanced data analysis. The latter arises 

from the fact that the recorded fluorescence intensity decay curve is convolved with the 

instrument response function (IRF) which can present with a temporal width comparable to 

the lifetime of the decay curve. Extracting the pure decay curve from the convolved curve 

has been the subject of many studies. One straight forward approach is to truncate the decay 

curve with an offset after the IRF peak intensity and employ a multi-exponential model to 

extract lifetime values [2]. This assumes that the width of the IRF is significantly smaller 

than the measured lifetime. This has been shown to be a simple and straightforward method 

in many studies employing excitation source with significantly shorter pulse duration (i.e. 

femtosecond or few ps range) when compared to the expected fluorescence lifetime[14]. 

Nevertheless, ignoring the beginning of the decay curve to circumvent this problem costs the 

loss of the information of shorter lifetimes components and losing the large part of the signal 

which occurs at the earlier part of the decay curve. Different algorithms including non-linear 

least squares [15], Laplace transformation [16], method of moments [17], maximum 

likelihood [18], Laguerre series expansion [19] and phasor approach [20] have been 

developed to overcome this problem. Some of these methods are computationally intensive 

and are limited by their low speed which makes them less favorable for real-time 

utilizations.
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In contrast with controllable environments (i.e. cell imaging or dye solutions), in more 

complex systems, like the case of biological tissues, the type and/or the number of the 

intrinsic fluorophores is rarely known a priori. Moreover, in such a system the decay 

mechanism cannot be fully described by a multi-exponential model. Thus, instead of 

assuming a system with discrete fluorophores, a model described by a range of exponential 

decays with a range of lifetime values is needed [2, 21]. In this regard, implementation of 

non-parametric mathematical models that do not require a priori knowledge of the 

underlying decay characteristics or any information regarding the number of the 

fluorophores is beneficial.

The phasor approach and Laguerre deconvolution method have become popular recently for 

analysis of fluorescence lifetime data [15, 19, 20, 22]. In this paper, we demonstrate the 

implementation and comparison of these two non-parametric (fit-free) methods for rapid 

lifetime estimation of fluorescence decay curves. The phasor approach is a graphical method 

that has been developed for analysis of lifetime and spectral images and it offers a graphical 

representation of the recorded decay curve on a 2D plot. Accounting for the instrument 

response effect is simply performed by a separate reference measurement considering the 

fact that deconvolution can be performed with a simple division in the Fourier domain. 

Usually, only the first harmonics is used for estimation of the lifetime as the higher 

harmonics have lower signal to noise ratios[23, 24]. There are other multifrequency 

approaches which use higher harmonics to extract multiple lifetime components and their 

fractional intensities but they are either slower or less accurate for average lifetime 

estimation[25–27]. One of the interesting features of the phasor approach is the reciprocal 

property [28]. The phasors of decay curves with various lifetimes fall on a unique positions 

inside the reference semicircle and this provides a mechanism for basic segmentation.

The Laguerre method involves expanding the fluorescence decay onto an ordered set of 

discrete-time Laguerre basis functions. These functions form an orthonormal set and the 

measured fluorescence (a convolution of the instrument response and the fluorescence 

decay) can be parameterized using the Laguerre expansion coefficients. Hence the 

estimation of these coefficients allows the deconvolution of the decay from the instrument 

response. A fast constrained least-squares Laguerre deconvolution technique has been 

previously reported [15], where mathematical constraints are applied to ensure that the 

recovered decay is positive, monotonically decreasing, convex and asymptotically 

approaching zero.

In this study, we evaluate these two methods with both simulated and experimental data 

obtained using a pulse-sampling time-domain time-resolved fluorescence technique [29, 30] 

and for distinct conditions (i.e. sampling rate, total duration of signal recording and signal to 

noise ratio). In addition, we evaluate the background effect when fiber-optics are used to 

excite and collect fluorescence from tissue and the sensitivity of the two methods to different 

levels of additive noise and background. Background signal is an inevitable part of tissue 

measurements, which is generated by experimental conditions including the fiber 

autofluorescence. The goal of this current study is to closely inspect the performance of 

these two methods for their accuracy, speed and in particular for in-situ tissue evaluation.
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2.Methods and Materials

2.1. The phasor approach

The phasor method is a fit-free method that has been shown to be a powerful tool for the 

analysis of fluorescence lifetime [20, 22, 31] or spectral images [28, 32, 33]. This method 

provides a graphical representation of the fluorescence decay that is comparatively simpler 

than other existing methods but needs prior calibration on well characterized samples in 

order to correct for the IRF effect and to obtain quantitative results [4]. Briefly, the real and 

imaginary parts of the Fourier transformation of the fluorescence decay curve or 

fluorescence emission spectrum are used as coordinates in the phasor plot.

The generated plot and the image are correlated; every point in the phasor plot can be traced 

back to pixels with the same property in the image. Moreover, every decay curve is mapped 

onto a unique position in the phasor plot and the position of the phasor determines the 

lifetime. A region of interest in the phasor diagram can be back projected to the pixels 

correlated with the selected phasor points. This results in fast and convenient image 

segmentation.

The application of this approach to time-domain data with different time resolution settings 

and acquisition periods has been shown before [22, 34]. This theoretical frame work can be 

applied to different settings including sampling rate or total detection window. The general 

phasor semi-circle is expressed by:

R(τ, n) = 1
cos π

N − sin π
N coth T

2Nτ j
, (1)

where N is the number of time-sampling points of the decay curve, T is the total acquisition 

period, and τ is the lifetime. R is a complex number and the reference semicircle is 

generated by drawing the imaginary part of R versus its real part. Figure 1, shows the 

modified reference semicircle adopted for different numbers of sampling points and the 

same acquisition period for a lifetime range from τ/T = 0.01 to τ/T = 5. As the lifetime 

increases the phasor moves on the semicircle from right to left. When N → ∞, R converges 

to the standard phasor curve [22]:

R(τ, n) = 1
1 − jn2π

T τ
. (2)

The average lifetime can be estimated by the following equation [14]:

τ = T
2Ncoth−1 S

Gcot π
N

, (3)
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where S is the imaginary and G the real part of the phasor. However, when the sampling 

number is large, N → ∞, this equation is reduced to its standard format[23]. The effect of 

the IRF on the fluorescence decay can be simply considered by either a rotation of the 

phasors over a fixed angle obtained from a reference measurement on a dye with a known 

lifetime or by direct measurement of the IRF.

2.2. Laguerre Deconvolution

Estimation of lifetime based on Laguerre deconvolution is another model-free method 

currently commonly used to analyze the fluorescence decay data [30, 35, 36]. This method is 

based on the expansion of the fluorescence decay curve on a set of Laguerre basis of 

functions (LBF) [19]. This approach was found to provide significant advantages over the 

more traditional methods when applied to tissue characterization.

In general, the measured fluorescence decay intensity F(t) is a convolution of the true signal 

h(t) and the instrument impulse response function x(t). Through application of a constrained 

least-square deconvolution process, the fluorescence transient signal, ĥ(k), can be 

approximated. In discrete time, for N equal sampling time points, ti = iδt i = 0…‥,N − 1 and 

sampling interval δt gives,

F(k) = ∑
i = 0

k
x(k − i) · h(i), (4)

where k = 0,…,N − 1. h(k) is expanded on to a set of discrete ordered LBF, bl such that,

h(k) = ∑
l = 0

L − 1
clbl(k; α), (5)

where L and α are the basis parameters and cl is the lth expansion coefficient. The lth 

discrete time LBF is defined as

bl(k; α) = α(k − l)/2(1 − α)1/2 ∑
l = 0

i
( − 1)i k

i
l
i

αl − i(1 − α)i (6)

For l = 0,…, L − 1 and 0 < α < 1. Since LBF forms an orthonormal set,

bl
Tbl′ = δll′, (7)

where bl = [bl(0;α),…,bl (N − 1;α)]T and δll′ is the Kronecker delta function. For a set of L 
basis functions we have B = [b0, b1,…, bL−1] such that BT B = I. Here, I is the identity 

matrix. Consequently, ĥ(k) is defined by the Laguerre expansion coefficients c = [c0, c1,…, 

cL−1]T. These coefficients can be estimated using a fast constrained least-square 
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deconvolution technique [37]. The constraints described by Liu et al. [15] ensure that ĥ(k) is 

positive, monotonically decreasing, strictly convex and asymptotically approaches zero, 

representing physical characteristics of fluorescence decay signals. The average lifetime can 

then be calculated from ĥ(k) as follows,

τavg =
δt∑k k · h(k)

∑k h(k) . (8)

The Laguerre deconvolution method, unlike multi-exponential models, involves a linear 

optimization scheme with a unique solution and eliminates the need for a priori knowledge 

of the number of decay components that can be arbitrary for a complex fluorescing system 

such as tissue. In addition, the method provides a faster way of computing lifetimes that 

would be important for on-line data analysis as needed in a clinical setting.

2.3 Simulated data

2.3 Simulated data—To study the noise effect on the lifetime estimation, simulated 

mono-exponential decay curves convolved with experimental IRF, were generated. The 

lifetime values of these decays ranged from 0.5 ns to 15 ns with steps of 500 ps. White 

Gaussian noise and Poisson noise model were applied to the simulated decay curves 

separately. The former approximates the noise of a system using pulse sampling technique. 

The latter represents the noise of a shot-noise limited photon counting system. Although 

more comprehensive noise model of the pulse sampling technique is available [38], system 

dependent parameters are required to provide an accurate description. Here we chose white 

Gaussian noise as a valid simplification. Different levels of noise were introduced to the 

simulated decay curves resulting into SNR (signal-to-noise ratios) ranging from 10 dB to 60 

dB. For white Gaussian noise, the SNR is defined as SNR = 10log10
1

σ2 . (σ2 is the noise 

variance, while the peak amplitude is normalized to 1.) For Poisson noise, the SNR is given 

by SNR = 10log10 N . (N is the number photons.) Next, we analyzed the two sets of 

simulated data using both phasor and Laguerre methods. (α=0.9181 was used for Laguerre 

method.)

When using fiber-optics for fluorescence excitation and collection, the acquired transient 

signals are often contaminated by a background signal due to the fiber autofluorescence. For 

studying the effect of background on lifetime estimation from measured decay curves, we 

considered four cases: background present, background removed, and two cases where the 

background was partially removed. To remove the background, the mean value of the 

separately measured background signal and decay curves were first determined and then 

their ratio was used to normalize the background. The normalized background was 

subtracted from the decay curve with 3 different scaling factors of 2, 1 and 0.5. Four sets of 

synthetic data with bi-exponential behavior were generated for the cases mentioned above 

and analyzed with both phasor and Laguerre methods. The lifetimes of two components 

were randomly distributed between 0.5 ns to 10 ns and their contribution to the total decay 

curve was also randomly chosen. An experimental IRF, recorded separately was used to 
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perform the convolution and finally a measured background was added to all the decay 

curves and noise was added. We note that the direct current (DC) background effect is not 

evaluated here. The pulse-sampling technique used and therefore, this study is independent 

from ambient illumination since the pre-amplifier used is AC coupled that filters out any DC 

components of the acquired signals. Thus, the DC background effect is minimal. Moreover, 

the treatment for DC background effect for the phasor approach has been considered 

previously by Reinhart et al. [39] using photon counting instruments.

2.4 Experimental data

Experimental data was generated using fluorescence dye solutions and a piece of fresh 

tissue. Time-resolved fluorescence measurements were performed in a C120 solution 

(Exciton, Coumarin 440, 5 mM in Ethanol) using a multi-spectral time-resolved 

fluorescence spectroscopy device developed by our group and reported previously [40]. In 

brief, fluorescence was induced by a 355 nm pulsed diode laser (HE1060-10uJ-SP, 

frequency tripled, Fianium, UK), spectrally resolved by a custom-made wavelength selection 

module (WSM) into four different bands of central wavelength/bandwidth 390/40 nm 

(channel 1), 452/45 nm (channel 2), 545/50 nm (channel 3) and 629/53 nm (channel 4), 

detected by a single micro-channel plate photomultiplier (MCP-PMT) and finally time-

resolved by a fast digitizer (National Instruments, PXIe 5185, 3 GHz bandwidth, 12.5 GHz 

sampling rate). For the case of C120 only channel 2 was used, as this fluorophore presents 

an emission peak at 430 nm. The fluorescence decay of the Coumarin solution was recorded 

with different levels of SNR by changing the PMT anode voltage and by averaging the 

decays.

Raster scanning measurement on fresh tissue (purchased from a supermarket) was 

implemented over a 25×25 mm2 region with scanning speed 2 mm/s and vertical step 0.5 

mm. Fluorescence lifetime data was collected from different tissue types (i.e. bone, fat, 

muscle). Background is removed from the experimental data as explained before.

3.Results and discussion

3.1 Simulated data

3.1.1 Effect of SNR on lifetime estimation accuracy—In this section, we 

demonstrate the behavior of the two methods using both Gaussian and Poissonian statistics. 

Figure 2 (a) shows the phasor plot for the decay curve with lifetime of 10 ns and different 

ranges of SNR generated using Gaussian noise. The phasor of a mono-exponential decay 

curve falls on the global semicircle and as it is shown on figure 2 (a), a decay curve with 

high SNR generates a phasor point on the semicircle. By decreasing the SNR, the points in 

the phasor deviate from the semicircle, are shifted towards the origin and present more 

spread.

Two decay curves are shown for extreme SNRs in figure 2 (a) and it also demonstrates how 

the lifetimes are estimated after generating the phasor plot. For curves with low SNR, the 

measured phase shows a larger deviation in comparison to the phase of a decay curve with 

higher SNR. This inaccuracy in phase measurement results in inaccuracy of the estimated 
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lifetimes. Figure 2 (b) depicts the histogram for the lifetime estimation of a decay curve with 

given value of 10 ns calculated with both phasor and Laguerre methods. The relative error 

for a lifetime of 10ns is computed as 0.0045 and 0.036 from phasor and Laguerre methods 

respectively. However, the relative standard deviation is calculated as 0.157 and 0.074 from 

phasor and Laguerre. The relative error is a measure of accuracy (how far is the maximum of 

the histogram from the real value) and the relative standard deviation is a measure of 

precision which reflects the width of the histogram calculated from lifetime estimation using 

the two techniques. While the phasor shows a better accuracy, the precision for the Laguerre 

method is higher. The histogram from the phasor method is broader but the maximum is 

closer to the real value. On the other hand, the histogram from Laguerre method is sharper 

but its peak position is far from the real value. Figure 2 (c) and figure 2 (d) depict the 

relative error and relative standard deviation, respectively. For shorter lifetime values, the 

error for lifetime estimation was large (0.8 for lifetime of 1ns) for both methods. This is due 

to the lower number of sampling points of decay curves with shorter lifetimes. This error 

levels out at the central region of the graph for both methods but it increases again due to the 

truncation of the decay curves. Truncation occurs because of the limited total acquisition 

period of decay curves which prevents complete recording of the decays. This trend is more 

pronounced for the estimated lifetimes from the Laguerre method. The results for the effect 

of Gaussian noise on the accuracy of lifetime estimation are shown in Figure 3 for three 

different lifetimes of 1 ns, 5 ns and 10 ns. The plots show the relative error as a function of 

SNR. Phasor shows more vulnerability to higher Gaussian noise. As the noise level increases 

the average of estimated lifetime deviates from the real values towards smaller values [14]. 

This trend is less significant for the calculated lifetimes from Laguerre approach but it also 

deviates towards smaller lifetime values. As the noise level increases, approximation of 

lifetime values is based on earlier temporal locations of the decay curve, biasing the results 

towards smaller lifetime values (i.e. faster decays). By increasing the SNR, the estimated 

lifetime from the phasor approach is recovered rapidly towards true values and in 

comparison, the lifetimes calculated by Laguerre method provide more accurate estimation. 

In comparison with the Laguerre method, the phasor approach provides higher speed and 

accuracy but the precision is lower.

Analysis of 5000 decay curves using the phasor approach on a standard personal computer 

(PC) takes less than 0.6 seconds. The same amount of data is analyzed with Laguerre within 

8.5 seconds. However, the susceptibility of the phasor method to noise is higher when 

compared to Laguerre. As shown in figure 3, the relative error for estimated lifetime values 

decreases rapidly with larger SNR values using the phasor method. This improves both 

precision and accuracy of lifetime estimation. With larger SNR available, the phasor method 

provides a better dynamic range. However, Laguerre shows lower accuracy for shorter 

lifetime values even with very high SNRs.

The simulation is repeated for mono-exponential behavior using Poissonian noise (Figure 4). 

In contrast with the case of Gaussian noise, as the SNR decreases the phasor cloud spreads 

around a given point along the phasor global semicircle. Figure 4 (b) shows the shape of the 

phasor cloud for a decay curve with lifetime of 10ns and different levels of SNR. Also, in 

comparison to the case when only Gaussian noise is present, the precision of both methods 

increases. This becomes obvious when the relative standard deviations (figures 4(c) and 
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4(d)) are compared to figures 2(c) and 2(d). The accuracy follows the same trend as before 

and Laguerre shows more susceptibility to truncation of the decay curves as the relative error 

is larger for longer lifetimes.

Figure 5, shows the relative error as a function of SNR for three different lifetime values 

1ns, 5ns and 10ns. In contrast to the case with Gaussian noise, the phasor method shows 

lower relative error (higher accuracy) for all lifetime ranges in comparison to the Laguerre 

method. However, both methods show lower relative errors with Poissonian noise. Also, in 

comparison to Gaussian noise, the estimated lifetime values converge faster to the real 

values as the SNR increases.

3.1.2 Background artefact removal—Figure 6 shows the phasor plots for all the 

approaches of background removal. Interestingly, the removal of background can be easily 

observed in the phasor plot. As expected, the elongation of the phasor points from the top of 

the semicircle towards the (1,0) coordinate indicates the presence of a range of lifetime 

values in the data set. By subtracting a wrongly scaled background signal from the decay 

curves, the phasor clouds move towards inside or outside the phasor reference semicircle 

(figure 6 (a), (b)). The results are summarized in Table 1 for average of relative errors. The 

phasor shows more susceptibility to incorrect background subtraction. Also, figure 6 (e) 

shows the separately measured background profile.

3.2 Experimental Data

3.2.1 Effect of SNR on lifetime estimation accuracy—In this section, we analyze 

and compare the experimental data for different levels of SNR by variation of amplification 

voltage of the PMT and also averaging of decay curves. Figure 7 shows the phasor plot for 4 

different states. The variation of SNR is reflected on the size of the phasor cloud. [R6:] By 

using ~400 nJ pulse energy for excitation, and efficient Coumarin dye [41], we estimate the 

detected fluorescence photons are more than 10,000. According to the filtered Poisson 

process with additive Gaussian noise model for pulse sampling technique [38], low gain 

voltage and small number of averaging result in Gaussian noise dominated measurement; 

increasing the gain voltage and number of averaging will both increase the overall SNR, 

while shifting the noise characteristic toward the comprehensive noise model with both 

Gaussian and Poissonian components.Figure 7 (a) shows the phasor plot for a case where the 

measurement is performed with PMT anode voltage set to 1600V. Because both Gaussian 

and Poissonian noise are present, the elongation of the phasor cloud is not towards the origin 

of the phasor plot, as one might expect from the case where only Gaussian noise is present. 

By changing the voltage to higher values (i.e. 1800 V) the signal amplitude increases while 

the Gaussian noise remained the same. This results in a narrow elongation of the phasor 

cloud shape, which can be realized by comparing figurers 7(a) to 7(b). By changing the 

averaging size from 4 to 16 and to 64 both Poissonian and Gaussian noise decrease. This 

leads to further reduction of the total size of the phasor cloud as previously reported [32] and 

ultimately improves the accuracy of the lifetime estimation. When comparing the two 

methods, it was observed that although they show slightly different means over the entire 

data set they show a similar trend with regards to the standard deviation. Figure 8 

summarizes the results for 4 different voltages and averaging settings on a box plot. 
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Comparing the experimental data to simulated results, a few observations were consistent. 

Under low SNR conditions (1650V, 4AVG and 1800V, 4AVG) the mean lifetimes from 

Laguerre method (2.32 ns and 2.27 ns) are longer than the values from Phasor approach 

(2.31 ns and 2.24 ns); the standard deviations are also slightly higher for Laguerre method 

(0.31 ns and 0.12 ns) compared to Phasor approach (0.28 ns and 0.10 ns). This reflects the 

increased relative error and relative standard deviation of Laguerre method compared to 

Phasor approach at 2 ns point.

3.2.2 Imaging biological tissues—Figure 9 (a) and Figure 9 (b) depict imaging results 

from the tissue sample analyzed using both methods where the lifetime maps are overlaid on 

the white light images. Both methods have led to similar lifetime values. As demonstrated 

by the phasor plot (Figure 9 (c)), a range of different lifetime values exist in the imaged 

field. It is clearly realized due to the elongation of the phasor cloud indicating that multiple 

biological components with different lifetimes have been imaged. Figure 9 (d) shows a 

zoomed region and also two regions of interest indicated by white circles.

By finding the corresponding pixels to the selected regions in the phasor plot, it is possible 

to map the selected region of interests back to the image. This is due to the reciprocal 

property of the phasor method and it is explained elsewhere [20]. The small region on the 

top of the phasor corresponds to fat in the tissue and the larger region of interest is selected, 

highlights the muscle and bone marrow. Although the average lifetime of the fat and bone 

are similar on the lifetime maps (~6.5 ns), applying the reciprocal property of the phasor 

enables us to distinguish between these two types of the tissue. This is a great feature of the 

phasor approach which facilitates the separation of different tissues based on their decay 

curve and not the estimated average lifetime values. Thus, it provides a higher contrast for 

tissues with similar average lifetime values but different lifetime components.

4. Conclusion

The major challenge in the analysis of fluorescence lifetime data is the deconvolution of the 

instrument response function from the measured fluorescence decay curve to extract the 

intrinsic fluorescence decay dynamics and to quantify the lifetime value(s) of a fluorescent 

molecule. This procedure has been performed traditionally with iterative deconvolution 

methods using multi-exponential functions [42]. This methodology is slow, requires 

intensive computation, and is also biased with initial inputs.

Among many methods developed for analysis of fluorescence decay curves, fit-free 

algorithms like phasor and Laguerre deconvolution provide faster solution for analysis. This 

paper provides the first comparison of the performance of these two methods and evaluates 

their potential for online (real-time) characterization of tissues properties.

One of the interesting features of phasor plots is the graphical representation of the data. The 

level of SNR of the data can be easily inferred from the shape of the phasor cloud. Larger 

SNR, shows smaller cloud and lower SNR make the phasor cloud spread around the average 

lifetime phasor vector. Also with the background analysis, where the decay curves are single 

exponential, it is very easy to spot the proper background treatment; as the phasor cloud 
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moves outside or inside the reference semicircle with background subtraction which was not 

scaled correctly.

The lifetime approximation through a set of Laguerre basis functions is a robust non-

parametric model that has been used to study the fluorescence dynamics from biological 

tissues [30, 35, 36]. Application of this model does not require any a priori knowledge of the 

underlying decay characteristics or any information regarding the number of the 

fluorophores. By relying on expansion basis sets, this model is based on more simplified 

mathematical expressions and can be solved through more efficient numerical approaches 

[15].

While the phasor method shows a more accurate estimation of the lifetime values, the 

Laguerre based analysis resulted in a higher precision. However, the accuracy level of this 

method depends on the initial parameters (α=0.9181)]used for expansion and it is a function 

of the lifetime distribution in the decay curve. We observed that the Laguerre analysis is 

susceptible to the truncation and sampling of the data as it shows a larger error with shorter 

and longer lifetimes. On the other hand, Laguerre provides additional information about the 

decay mechanism through the expansion coefficients which can be used for more detailed 

analysis of the fluorescence decay. One of the strong points of Laguerre method is that it is 

less biased with the SNR and it provides lifetime estimation with higher precision for decay 

curves with very low SNR.

The trends of relative error and standard deviation are consistent between the two noise 

mechanisms used in this study (Gaussian and Poissonian). Although the trends of relative 

standard deviation were consistent for both methods in both noise configurations, 

quantitative conclusions can hardly be drawn due to different definitions of SNR for 

Gaussian and Poissonian noise. The mechanisms of Gaussian and Poissonian noises on the 

results of the phasor and Laguerre based analysis methods are different, while the Laguerre 

based analysis is optimized for Gaussian noise and the phasor performs better with 

Poissonian noise. Such a difference was indicated by the observation that the phasor clouds 

changed distribution for Gaussian and Poissonian noises. In experimental systems using 

pulse sampling or time-gating techniques, noise of both Gaussian and Poissonian 

characteristics can be present, which require characterization of the instrumental variability 

in lifetime estimation.

In conclusion, we studied two fit-free algorithms for real-time identification and diagnosis of 

tissues. The evaluation of the phasor method for graphical segmentation and quantification 

of different components in the image could be the subject for future studies.
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Figure 1. 
Plot of the modified semi-circle for different number of sampling points
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Figure 2. 
(a) The phasor plot for decay curves with given lifetime of 10 ns and different noise level. 

As the SNR decreases the phasor points are shifted towards the origin of the graph. (b) 

Histograms of lifetime estimation from phasor and Laguerre method. Phasor shows broader 

distribution but more accurate results. (c) The relative error for lifetimes from 0.5 ns to 10 ns 

calculated with both methods. (d) Relative standard deviation for same lifetime range as in 

(c) for whole range of SNRs from 10 dB to 60 dB.
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Figure (3). 
The relative error as a function of SNR for different lifetimes (a)1 ns (b)5 ns (c)10 ns and 

with Gaussian noise calculated by phasor and Laguerre method.
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Figure 4. 
(a) The phasor plot for decay curves with given lifetime of 10 ns and different Poissonian 

noise levels. As the SNR decreases the phasor points become more scattered around the 

given phasor point. (b) Zoomed in region from (a). (c) The relative error for lifetimes from 

0.5 ns to 10 ns calculated with both methods. (d) Relative standard deviation for same 

lifetime range as in (c).
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Figure 5. 
The relative error as a function of SNR for different lifetimes (a)1 ns (b)5 ns (c)10 ns and 

with Poissonian noise calculated by phasor and Laguerre method.
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Figure 6. 
Phasor plots for different background treatments. (a) background removed with scaling 

factor of 0.5. This causes the phasor points to move towards the origin of the semicircle. (b) 

background is subtracted with scaling factor of 2 where it pushes the phasor points outside 

of the semicircle. The artefact is more obvious with shorter lifetime values. (c) background 

is not removed and (d) background is properly removed. (e) measured background signal, 

(f)example of a decay curve where background is subtracted with scaling factor of 2.(g) 

background is not removed and (h) background is removed.
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Figure 7. 
The phasor plot for fluorescence decay curves of Coumarin solution recorded with 4 

different PMT voltages and averaging (a) 1600V and 4 averages (b) 1800V and 4 averages 

(c) 1800V and 16 averages (d) 1800V and 64 averages.
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Figure 8. 
Box plot for 4 different settings of PMT voltage and averaging size. P stands for phasor and 

L for Laguerre. The top and bottom of each "box" correspond the 25th and 75th percentiles 

of the lifetime distribution. The medians of lifetime measurements are shown in the middle 

of each box with a red line. The whiskers depict the extent of the data.
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Figure 9. 
Lifetime image of lamb tissue analyzed with (a) phasor and (b) Laguerre (c) phasor 

transformation of the lifetime image, (d) zoomed region of the phasor plot (e) segmented fat 

tissue using the reciprocal property of the phasor (f) segmented muscle and bone marrow. 

Note that the bone is excluded from the highlighted region.
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Table 1

Lifetime estimation results from phasor and Laguerre for simulated bi-exponential decay curves treated with 

different level of background scaling. Phasor method shows more susceptibility to background contribution in 

the decay curve, but when it subtracted properly from the decay curve, it shows lower relative error.

Simulation Relative Error
(Laguerre)

Relative Error
(phasor)

Scaling 2 0.14 0.21

Scaling 0.5 0.06 0.22

Properly removed 0.06 0.04

Not removed 0.07 0.2
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