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Abstract:    High precision uranium isotope measurements of marine clastic sediments 

are used to measure the transport and storage time of sediment from source to site of 

deposition.  The approach is demonstrated on fine-grained, late Pleistocene deep-sea 

sediments from Ocean Drilling Program Site 984A on the Bjorn Drift in the North 

Atlantic.  The sediments are siliciclastic with up to 30 percent carbonate, and dated by 

δ18O of benthic foraminifera. Nd and Sr isotopes indicate that provenance has oscillated 

between a proximal source during the last three interglacial periods – volcanic rocks from 

Iceland – and a distal continental source during glacial periods.  An unexpected finding is 

that the 234U/238U ratios of the silicate portion of the sediment, isolated by leaching with 

hydrochloric acid, are significantly less than the secular equilibrium value and show large 

and systematic variations that are correlated with glacial cycles and sediment provenance.  

The 234U depletions are inferred to be due to α-recoil loss of 234Th, and are used to 

calculate “comminution ages” of the sediment - the time elapsed between the generation 

of the small (≤ 50 µm) sediment grains in the source areas by comminution of bedrock, 

and the time of deposition on the seafloor.  Transport times, the difference between 

comminution ages and depositional ages, vary from less than 10 ky to about 300 to 400 

ky for the Site 984A sediments.  Long transport times may reflect prior storage in soils, 

on continental shelves, or elsewhere on the seafloor.  Transport time may also be a 

measure of bottom current strength.  During the most recent interglacial periods the 

detritus from distal continental sources is diluted with sediment from Iceland that is 

rapidly transported to the site of deposition.  The comminution age approach could be 

used to date Quaternary non-marine sediments, soils, and atmospheric dust, and may be 

enhanced by concomitant measurement of 226Ra/230Th, 230Th/234U, and cosmogenic 

nuclides. 

Keywords:  Isotope geochemistry, sediment transport, U-series isotopes, geochronology, 

North Atlantic, glacial cycles 
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1. Introduction 

 

The timescales of sedimentary processes are important for understanding the 

relationships between tectonics, climate, and landscape evolution.  However, the most 

important sedimentary timescales are difficult to determine despite recent advances in 

geochronology [1-3]. Here we present evidence that U-series isotope measurements of 

clastic silicate sediment provide a means of determining the time required to transport 

detritus from its site of generation by weathering and erosion to the site of deposition.   

The “transport time,” as defined here and illustrated with data from deep marine 

sediments, includes storage time, such as in soils, floodplains, and continental shelf 

environments.  The approach used emphasizes the role of α-recoil, rather than chemical 

leaching, in determining the extent of disruption of U-series radioactive equilibrium. 

 

The general conclusions of this paper derive from a study of U, O, Nd and Sr isotopes 

in fine-grained deep sea sediments, aged 10 to 365 ka, cored in the North Atlantic Ocean 

at Ocean Drilling Program Site 984A [4].  The drill site is located on the Bjorn Drift, 

where bottom currents have reworked the detritus and the sedimentation rates are high 

[5].  The sediments are largely siliciclastic, but have a significant carbonate component. 

A detailed late Quaternary climate record is available based on the δ18O of foraminifera 

and magnetic susceptibility.  The measured 234U/238U ratios of the silicate portion of the 

sediments change systematically through glacial cycles.  These variations can be 

understood in terms of α-recoil effects in fine-grained detritus [6, 7].  Below we review 

the expected behavior of 234U/238U ratios in fine sediment grains, which leads to the 

definition of a “comminution age” for sediment, and then evaluate the extent to which 

data for Site 984A fit the expected behavior.  The emphasis here on α-recoil needs 

justification, as many other authors have assumed that chemical leaching of solids is the 

primary mechanism for producing disruption to the U-series radioactive decay series.   
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This study is one of the first to apply high precision mass spectrometric measurements 

to U-series isotopes in silicate sediments.  In the earliest U- series isotopic studies, 
234U/238U ratios were measured by alpha counting techniques, where the precision of 

about ±5% to ±10% [e.g. 8, 9] was too poor to see the details of solid phase 234U 

distributions. The 234U/238U ratio can now be measured with an accuracy of ca. ±0.1% by 

TIMS and multi-collector ICPMS [3, 10-14].  The greatly improved measurement 

precision makes it possible to clarify the 234U loss characteristics of solids, and how they 

relate to grain size, mineralogy, surface area, and chemical environment. 

2. U isotopes in sediment grains 
 

2.1 General model for a-recoil effects 

Our interpretation of variations in the 234U/238U ratios in sediments is based on a 

model for the disruption of the 238U decay series due to the loss of the decay product 
234Th by recoil associated with the alpha decay of 238U [15-21] (Figure 1).  The recoil 

234Th atoms (24.1 days) rapidly β-decay to 234Pa (6.7 hours) and then to 234U.  In 

“normal” rock material, it is expected that the 234U/238U ratio will be the “secular 

equilibrium” ratio – the inverse of the ratio of the decay constants of the two nuclides: 

234U
238U SE .

=
λ238

λ234

= 0.00005489     or      
234U
238U

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

SE

=1 (1) 

The parentheses in the second equation denote the activity ratio. In general, 234U/238U 

ratios are discussed in terms of the activity ratio even though the isotope ratio is now the 

measured quantity [10, 22, 23].  A fragment of rock or mineral that is “normal” in this 

context is large enough that there is no loss of intermediate decay products in the U decay 

series, and undisturbed for a sufficiently long time to establish secular equilibrium 

(roughly 1 million years for the 238U decay series).  In most studies of U-series isotopes 

in silicate rocks, (234U/238U) is either not measured or not reported, because it is assumed 

that the ratio is very close to the secular equilibrium value. In studies where it is reported 

[e.g. 24, 25], which are studies of young volcanic rocks for the most part, the activity 

ratios average 1.000 ±0.005, and are unity within the analytical uncertainty. The 

conclusion that most rocks have the secular equilibrium (234U/238U) values probably 
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applies to crystalline rocks, but may not be an accurate description of some sedimentary 

rocks and volcanic tuffs, depending on porosity, grain size, and degree of lithification.  

 

In rock fragments or mineral grains that are sand size or smaller, a measurable 

fraction of the 234Th atoms produced from alpha decay of 238U is ejected from the solid 

grains into the surrounding medium (Figure 1).  One result of this effect is that surface 

water and groundwaters have (234U/238U) up to 20 times higher than the secular 

equilibrium ratio [3, 26 and others, 27-38].  As groundwater acquires a high (234U/238U), 

the solid phase (234U/238U) becomes less than 1, although for many materials the 

depletion is negligible.  Depletion in the (234U/238U) of solids becomes significant only 

when the grain size is sufficiently small or the surface area in contact with percolating 

fluids is large.   The (234U/238U) enrichment in pore waters is much larger than the 

(234U/238U) depletion in the associated solids because the U concentration in waters is 

typically 1000 times smaller than in solids. 

 

The lowering of (234U/238U) in fine-grained sediment, originally described by Ku [8], 

is easily measurable with modern mass spectrometric methods [3, 6], although it has not 

received much attention by comparison to (234U/238U) in natural waters.  The 234Th recoil 

distance is in the range 30 to 40 nanometers in silicates [15, 16, 39].  The original 

estimate by Kigoshi [15] was 55 nm in zircon (which would imply a range of about 70 

nm in feldspar), but more recent measurements, as well as calculations using the 

quantum-mechanical SRIM model [40], suggest that the value is closer to 30 nm for most 

silicate minerals [7].  For an ideal spherical mineral grain, the fraction of 238U decays that 

should result in the immediate ejection of the daughter 234Th atom from the grain 

(denoted here as fα) is [15]: 

fα =
3
4

L
r

−
L3

12r3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   (2) 

where L is the recoil distance and r is the grain radius. Measurements of 234U/238U ratios 

in fine-grained sediments suggest that the fraction of 234U atoms lost as a result of 234Th 

recoil is typically much greater than that predicted by the spherical grain model and the 
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mean grain size.  In deep-sea sediments with average grain size of about 10 µm, 

fractional depletions of 20 to 30 % in (234U/238U) are observed [6, 8, 9], whereas equation 

2 would predict 0.5% for spheres of 10 µm diameter.  This discrepancy may be one 

reason that preferential leaching of 234U from lattice-damaged sites is thought to be 

important. However, detailed consideration of grain geometry suggests that there is in 

fact little or no discrepancy. 

 

2.2.  Geometrical estimation of 234U loss 

 

Sediments have larger fα values than calculated with equation 2 for several reasons. 

Mineral grains are not typically spherical and they have surface roughness.  If a grain has 

a plate shape (or oblate spheroidal shape) with an aspect ratio of β and a surface 

roughness factor of λs, then fα will be larger than predicted by equation 2 by a factor of 

λs(1+β)/3 for disk-shaped grains, and approximately λs(3+β)/2 for oblate spheroids with 

β >5.  In addition, because sediments have a distribution of grain sizes, and the recoil loss 

factor is a function of grain surface area rather than volume, the finest fractions of the 

sediment make a contribution to the bulk sediment fα that is much larger than their mass- 

or volume fraction would imply.  A more accurate formulation for the bulk sediment 

fractional loss factor is therefore: 

 fα = X(r)β(r)λs(r) 3
4

L
r

−
L3

12r3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

L / 2

rmax

∫ dr      (3) 

where X(r) is the volume fraction of grains with major radius r.  Figure 2 shows a 

comparison of the fα value calculated for spherical grains with a specific radius, for disk- 

and oblate-spheroid-shaped grains with the same large dimension as the spheres, and with 

additional effects due to surface roughness and grain size distribution. For the example 

distribution, the enhancement of fα due to the presence of smaller grains is a factor of 

about 3. Also shown is an estimate of fα for Site 984 sediment using a measured grain 

size distribution from Carter and Raymo [41] and typical values of β (1 for the largest 

grains to 10 for the smallest), and λs (2 for the larger grains to 1 for the smaller grains).  

This figure shows that it is possible to account for the observed range of fα values in the 
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Site 984 sediments (about 0.135 to 0.19 as discussed below) entirely by α-recoil with 

reasonable values of β and λs, and without additional leaching effects. 

 

Another way to estimate fα is to use measurements of specific surface area [15, 29].  If 

the surface roughness is of the same scale as, or larger than the recoil range, then the 

following should apply: 

fα =
1
4

L ⋅ S ⋅ ρs          (4) 

where S (m2/g) refers to the specific surface area and ρs is bulk density. Unfortunately,  fα 

can be much smaller than one might predict from standard measures of surface area.  For 

example, the BET method is sensitive to surface roughness at the scale of the adsorbed 

gas molecules, which is about 0.3 nm.  Since the recoil length is about 30 nm, or 100 

times larger than the gas molecules, the BET measurements can grossly overestimate the 

recoil loss factor. 

 

There are other potential complications of the geometric analysis of recoil.  The 

geometric models will not provide an accurate description of preferential 234U loss from 

sediment grains if the grains are subject to preferential leaching of 234U [42-46], if the 

grains are undergoing active dissolution, or if there is 234Th implantation between grains 

[47]. Dissolution is expected to limit the amount of 234U depletion because the most 234U-

depleted parts of the grain – the near-surface regions – should also be the first to dissolve.  

The effects of preferential leaching, mineral dissolution, and implantation are discussed 

further below in the light of data presented here.  

3. The 234U comminution age 

According to the model presented above, when a small mineral grain is produced by 

erosion, it begins to leak 234Th to its surroundings and the bulk (234U/238U) starts to 

decrease.  If the grain size does not change substantially over time, the 234U/238U ratio 

will eventually reach a steady state value that is a function of the grain size (or surface-to-

volume ratio) and the 234Th recoil distance.  The time required to reach the steady state 

(234U/238U) appropriate to a particular grain population is about 1 million years (Figure 3). 
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The decrease in (234U/238U) measures the time since the small grain was produced, which 

is referred to here as the "comminution age." In the case of glacial sediment, the rock 

flour produced by glacial abrasion is produced directly from bedrock, and hence the time 

of “comminution” (literally “to reduce to powder”) is well defined in a geological 

context. For mechanical weathering by other processes, the production of sub-50 µm 

grains may be more extended in time. Regardless of the mechanism, once a particle 

reaches sufficiently small size, its (234U/238U) will begin to decrease, and the ratio will 

therefore be monitoring its “age.” If the time between production of the small grains and 

deposition on the sea floor is relatively short (10,000 years or less; which is much smaller 

than the 354,000 year mean life of 234U), then the particles will still have (234U/238U) 

close to the secular equilibrium value (or the bedrock source value) when they are 

deposited. If the timescale for transport to the site of deposition is much longer (greater 

than 50,000 years), then the grains will be deposited with (234U/238U) that is significantly 

less than the source rock value.  

 

The (234U/238U) ratios of sediment grains continue to decrease after sedimentation and 

burial.  Consequently, the comminution age of a sediment grain is the sum of the 

depositional age (time elapsed since deposition) and the “transport time,” or the time that 

elapsed between the formation of the grain and its deposition.  The (234U/238U) of bulk 

sediment (Figure 3) depends on its fractional loss rate (fα), and its comminution age.  

Measurements of sediment size fraction (234U/238U) as a function of depth below the 

seafloor (or versus age where it is known independently) potentially allow retrieval of 

both the effective fractional loss rate, and the comminution age at the time of deposition, 

using a graphical construct as illustrated in Figure 3b.  As described below, it may also be 

possible to estimate fα for a particular grain population by measuring the shorter-lived U-

series isotopes 230Th and 226Ra.  The comminution age at the time of deposition can be 

considered to be the "sediment transport time."  Because of the timescale set by the mean 

life of 234U, this approach is applicable only to sediments that are younger than about 1 

million years.  
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The mathematical expression for the comminution age is derived from the equation 

that describes the activity ratio of the comminuted solid: 

 

Ameas = (1− fα ) + Ao − (1− fα )[ ]e−λ234 tcom       (5) 

 

where Ameas is the measured activity ratio of the sediment, tcom is the comminution age, 

and Ao is the activity ratio of the provenance rock.  Equation 5 incorporates the 

approximation λ234 – λ238 = λ234, and the assumption that fα is constant.  Rearranging 

yields this expression for the comminution age: 

tcom = −
1

λ234

ln Ameas − (1− fα )
Ao − (1− fα )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥        (6) 

 

The uncertainty in the calculated comminution age is largely due to uncertainty in the 

estimate of fα, and partly to any uncertainty in Ao.   

 

4. Samples and Analytical Procedures 
 

The samples analyzed are from North Atlantic Ocean ODP Site 984A (61˚25.507’N, 

24˚04.939’W) drilled during Leg 162 [4]. Site 984 is located on the Bjorn Drift on the 

southeastern flank of the Reykjanes Ridge (southwest of Iceland) at about 1650 m water 

depth (Fig. 4).  The accumulation rate of the sediment is between 11 and 22 cm/kyr, 

which is high enough that the Quaternary sediment record is well displayed.  The 

sediment is mainly composed of well-sorted terrigenous silt [48] containing biogenic 

carbonate, basaltic material derived from Iceland, and a fine amorphous component that 

may be biogenic silica [41, 49].  Although it has been inferred that most of the detritus 

deposited at Site 984A is derived from Iceland, the results presented below, as well as 

those reported previously by Revel et al. [50, 51] for a nearby locality, clearly show that 

much of it has a continental source. Foraminiferal abundance and calcium carbonate 

contents are generally low. Calcium carbonate contents were not measured directly on 

samples from Hole 984A, but were found to be between 3% and 30%, with an average of 

 9



7% in the equivalent depth interval of Hole 984.  The mineralogy of the sediment is 

dominated by plagioclase, smectite, and quartz, with lesser amounts of illite, kaolinite 

and chlorite, in order of decreasing abundance [41].  The bottom current, which supplies 

sediment to the drift site (Figure 4), acts to select particles according to their hydraulic 

dimensions resulting in a condensed grain size distribution.  The average grain size, 

based on relatively few samples that have been measured is about 15 µm [41].  The Site 

984 location is fed sediment mainly by currents produced from Iceland Sill overflow 

water (ISOW), which are likely to carry sediment originally derived from the European 

continent as well as sediment derived from Iceland.  Ice-rafted debris is also present, but 

the expected deposition rate during glacial times (ca. 150 mg/cm2/ky) constitutes less 

than 1% of the total sediment flux [52]. 

  

Details of the analytical procedures as well as U isotopic data from the pore fluid are 

given in Maher et al. [6], who leached the sediment samples according to the sequential 

extraction procedure of Tessier et al. [53] with some modification. The sodium acetate 

leaching procedure did not remove all of the carbonate. To completely remove carbonate 

as well as authigenic phases, the samples for this study were leached in 1.5 N HCl for 30 

minutes in an ultrasonic shaker.  After removal of the leachate and subsequent distilled 

water rinses, the residues were completely digested using concentrated HF-HClO4.   

 

The HCl residues were analyzed for 234U/238U with the Lawrence Berkeley National 

Laboratory Isoprobe (Table 1). The analysis procedure incorporates an instrumental mass 

discrimination correction based on the 235U/238U ratio, and a Faraday-Daly 

intercalibration using an in-house secular equilibrium U standard [14].  The analytical 

precision is estimated to be ±0.15% of the activity ratio (2 sigma).  The samples were 

measured for Sr and Nd isotopes using standard chemical separation methods and the 

U.C. Berkeley ThermoFinnigan Triton multicollector thermal ionization mass 

spectrometer.  The analytical uncertainties in the 143Nd/144Nd and 87Sr/86Sr ratios are 

small (roughly 10 ppm of the ratio) and entirely negligible for the purposes of this study.   
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Oxygen isotope data were obtained at WHOI using standard techniques.  The 

sediment ages (Table 1) are determined from the foraminifer δ18O data by correlation to 

the timescale of Shackleton et al. [54], plus additional statistical treatment described in 

Raymo et al.[5].  The data are available from the supplement to Raymo et al.[5]. 

5. Results  

The (234U/238U) measured for pore fluid and bulk sediment from Site 984A [from 6], 

and the HCl-leached residues used in this study are shown in Figures 5 and 6. The pore 

fluids have elevated (234U/238U) as expected due to preferential release of 234U from the 

solids due to recoil, but not as high as they might be if it were not for concomitant 

dissolution (weathering) of silicate minerals and recrystallization of carbonate [6, 55].  

Both silicate weathering and carbonate recrystallization add U with low 234U/238U to the 

pore fluid. Primary marine carbonate is deposited with the seawater activity ratio of 1.146 

[56] and its presence affects the (234U/238U) of the bulk solids. The HCl leaching 

procedure attacks mainly authigenic minerals and carbonate, both of which tend to have 

(234U/238U) greater than unity. The residues from HCl leaching are assumed here to 

represent the detrital silicate fraction essentially free of carbonate and authigenic 

components.  

 

The measured (234U/238U) of the HCl-leached residues vary between 0.83 and 0.96 

(Figure 6).  There is pronounced cyclicity as a function of depth, which by comparison to 

the O isotope record appears to correspond to glacial cycles.  For the past three 100-kyr 

glacial cycles, the sediments deposited at Site 984A during interglacial periods have had 

relatively high (234U/238U), whereas during the prolonged glacial periods the 234U/238U 

ratios are relatively low.  This pattern does not apply to the sediments that are older than 

300 ka (i.e. deeper than about 45 meters mean composite depth (mcd)).    

 

Figure 7 shows the HCl-residue data plotted using the sediment age data so that the 

time evolution curves are straight lines as in Figure 3b. A simple interpretation of the 

pattern is that there is a bimodal distribution of initial (234U/238U).  One component of the 

sediments was deposited with an initial (234U/238U) near 1.00 and has a recoil loss factor 
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of 0.135.   The other component was deposited with an initial (234U/238U) near 0.88 and 

has a recoil loss factor of 0.19.    

 

The Nd and Sr isotope parameters (εNd and 87Sr/86Sr) are well correlated (Figure 8).  

This correlation is consistent with the sediments being composed of two components.  A 

similar correlation is observed for samples from the Gardar drift [50, 51].  The high – εNd 

component is likely to be Icelandic volcanic rocks.  The most extreme sample, from a 

depth of 49.84 m in the Site 984A core (mcd = 54.18 m) is taken from an ash layer and is 

an example of a pure volcanic component from Iceland.  Icelandic volcanic rocks vary in 

isotopic composition to some degree, but the values of εNd = +6.4 and 87Sr/86Sr = 

0.70355, which characterize the ash layer and the inferred sediment component, are 

typical and close to the overall Iceland average values.  The range of values for Iceland 

tholeiitic basalt is roughly εNd = +5 to +8 and 87Sr/86Sr = 0.7033 to 0.7037 [57].  The 

other sediment component must have εNd ≤ -10 and 87Sr/86Sr ≥ 0.715.  This low-εNd 

component is clearly derived from continental sources, and the isotopic ratios are a good 

match to typical European basement rocks [51, 58] and in particular, to glacial sediments 

of the southern margin of the Norwegian-Greenland Sea [59]. 

 

The comminution ages for the Site 984A samples are calculated assuming that the 

sediments are 2-component mixtures and that fa correlates with the initial (234U/238U).  

The uncertainty in fα is estimated to be about ±10% to ±20%, which yields an uncertainty 

in tcom of about the same relative magnitude.  Since the comminution ages are mostly in 

the range of 400 to 600 kyr, the uncertainties in tcom and in the inferred transport times are 

about ±40 to ±100 kyr.  Hence the transport times are not highly precise.   

 

The inferred bulk sediment transport time, Nd isotopic composition, δ18O data, and 

sedimentation rates derived from the δ18O data, are compiled and plotted against age in 

Figure 9.  The Nd isotopic composition and 234U/238U transport time are plotted against 

one another in Figure 10. The transport time changes systematically between glacial 

times and interglacial times for the past three glacial cycles.  The transport time varies 
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from less than 10 kyr (±50 kyr) up to 400 kyr (±100 kyr) and is generally long during 

glacial times.  The Nd isotope measurements also show corresponding, although not 

perfectly correlated, changes in provenance between glacial and interglacial times.  

During interglacial times the sediment is typically dominated by material derived from 

Iceland and transported rapidly to the site of deposition (Figure 10).  During glacial 

times, the sediment is generally from a continental source and has a long transport time.  

However, there are examples where detritus that is mostly from the volcanic source has a 

long transport time, and where detritus with a large continental component has a short 

transport time. The breakdown of the correlation between glacial cycles and transport 

time is clearest for the deepest three samples (ages 350 – 365 ka; Figure 9).  One of these 

is an ash sample and would not be expected to conform to the pattern. The other two 

samples are also largely from the volcanic source, but appear to have been transported 

quickly to the site of deposition even though they were deposited during a glacial period.    

6. Discussion 
 

6.1. Recoil loss factor, grain size and surface area 
 

The comminution age calculated from sediment (234U/238U) is dependent on the recoil 

loss factor, fα, which should be a function of grain size or specific surface area.  The data 

presented here on dated sediments are used to estimate fα (Figure 5) but it would be 

desirable to understand in more detail the relationship between grain size and recoil loss 

rates of 234U, and to be able to estimate fα from a measurable property of the sediment.  

Specific surface area has been measured by the BET method on some Site 984 bulk 

samples [55] and is found to be about 55 m2/g, which corresponds to fα ≈ 1.  This high 

value is probably a reflection of the extremely high surface area of the clay mineral 

fraction. The measured fα values suggest specific surface area of about 3 to 8 m2/g, which 

is close to that measured for feldspar with a grain size similar to that of the sediment at 

Site 984 [6, 60]. 
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A direct measure of the recoil loss rate could potentially be derived from 

measurements of other U-series isotopes.  Both 230Th (λ-1 = 109 kyr) and 226Ra (λ-1 = 2.3 

kyr) might be useful for this purpose.  These isotopes will reach steady state much faster 

than 234U (λ-1 = 354 kyr), and the relevant recoil ranges are similar to that of 234Th.  For 

example, our calculations using the online program SRIM [40], indicate that the recoil 

distances associated with 238U, 234U,  230Th decay in feldspar (density = 2.7 g/cm3) are 30, 

32, and 32 nm respectively.  With small corrections for the difference of recoil range, 

measurements of these isotopes in conjunction with measurements of 234U could yield 

direct estimates of fα.  For example, assuming that fα = (30/32)[1-(226Ra/230Th)], the 

comminution age is given by: 

tcom = −
1

λ234

ln (Ameas −1) − 0.94[(226Ra/230Th) −1]
(Ao −1) − 0.94[(226Ra/230Th) −1]

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

    (7) 

 

Measurements reported in the literature on suspended stream sediment are relevant to 

the idea of using 226Ra to estimate fα, and more generally to our interpretations of the 

deep-sea sediment U isotope ratios at Site 984.  Vigier et al [3] measured suspended 

sediment in the Mackenzie River of Northwestern Canada and found that the particles 

have (234U/238U) in the range 0.897 to 0.992. The grain size distribution of the samples 

was not measured, but the samples represent material retained by a 0.2 µm filter.  The 

maximum grain size is probably less than about 20 µm.  Considering the fine grain size, 

it is likely that the fα values are greater than 0.1, based on our measurements of Site 984 

sediments. If the mean grain size is in the range 1 – 10 µm, then the fα values are likely to 

be in the range 0.1 to 0.5.  The Vigier et al [3] measurements of (226Ra/230Th) confirm this 

inference; the measured values are 0.596 to 0.918, and in all cases  (226Ra/230Th) is 

smaller than (234U/238U).   Vigier et al [3] did not consider the geometric aspects of recoil 

loss despite the fine grain size of their samples, and used instead a chemical leaching 

model and (238U/230Th) to estimate that the “age” of the suspended load is in the range 5 

to 25 kyr.  They note that the ages inferred with their approach are low in comparison to 

soil residence times that should approach 100 kyr.  The calculated 234U/238U comminution 

ages using equation 7 are 102 to 387 kyr for the samples where tcom is relatively well 
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constrained by the data.  Four of the six samples have tcom between 102 and 151 ka.  

These ages accord better with estimates of soil residence times, and are also similar in 

magnitude to those estimated for the Site 984A sediments from the continental source.  

Thus the Vigier et al [3] data are consistent with our estimates of fα, the idea that 

(226Ra/230Th) can be used to estimate fα, and our overall model for comminution ages. 

Vigier et al [3] did not leach their sediment samples before dissolution, so it is possible 

that adsorbed Ra, Th or U affects to some extent their reported activity ratios, and hence 

also the inferred comminution ages. 

 

It is notable that the grain size range for the Site 984 sediments is close to ideal for 

observing systematic U isotope effects.  The Site 984 sediments have both an appropriate 

mean grain size and a relatively compressed grain size distribution due to sorting during 

bottom current transport.  The grain size distribution also does not vary drastically with 

time.  In other sedimentary settings, the grain size distribution may not be as uniform or 

consistent over time, and the U isotope measurements would need to be done on only the 

appropriate size fractions.  Separating the finest size fractions may also be a means to 

isolate eolian input where that is an issue.  If U isotope data are obtained only on the fine-

grained fraction, it is possible that its transport history is different from that of the coarser 

fractions.  This issue could be addressed by combining U isotope measurements of the 

fine fractions with cosmogenic nuclide measurements of the coarser fractions. 

 

6.2.  Natural preferential leaching and mineral dissolution 
 

As noted above, the interpretation of (234U/238U) values in solids may be affected by 

preferential leaching of 234U from sites within mineral grains in the interior regions (i.e. > 

30 nm depth from the surface).  If the 234U is leached only from sites within a few recoil 

distances of the grain surface, the net effect would be to increase the effective value of 

the recoil range.  This would not change the approach used here significantly, since the 

recoil loss rate cannot be directly estimated from the recoil range anyway.  Data from a 

sequence of Pleistocene fluvial sediments cored at the Hanford site in south central 

Washington [7, 61] are relevant to this issue. The Hanford sediments have a granitic 

 15



provenance and were deposited mainly by catastrophic flood events associated with 

deglaciation pulses during the Pleistocene [62].  The sediments vary in age from about 

15,000 years up to more than 1 million years [63]. The HCl-leached sand size fractions 

(>65 µm) have (234U/238U) close to the secular equilibrium value (0.988 to 1.006) 

whereas the fractions that are silt size and smaller (<45 µm) have activity ratios that are 

significantly lower (0.947 to 0.967) but higher than those measured for the Site 984A 

sediments.   The Hanford data provide little evidence that natural leaching by 

groundwater is lowering the 234U/238U ratios significantly, because the grains that are 

sufficiently large that they should not be affected by recoil (Figure 2), also show virtually 

no lowering of (234U/238U).  Any leaching that is occurring must be affecting only a thin 

region near the grain surface, to a depth that is not much greater in magnitude than the 

recoil range. 

 

The effect of dissolution on the (234U/238U) of sediment grains can be roughly 

evaluated by comparing the time necessary to achieve 234U depletion in the outer rind of a 

mineral grain as a result of recoil effects, which is λ234
−1 = 354 kyr, to the time scale for 

removing a layer of thickness L from the surface of a grain by dissolution.  This ratio: 

τ recoil

τ diss

=
R

λ234Lρ
         (8) 

depends on the specific mineral dissolution rate, R, which has been estimated for the Site 

984A sediments by Maher et al. [55] to be 2.5 x 10-18 mol/m2/sec (2.1 x 10-12 g/cm2/yr), 

assuming that the primary dissolving mineral is plagioclase feldspar or any material with 

approximately the same Ca concentration.  Using L = 30 nm and ρ = 2.7 g/cm3 yields a 

value for this dimensionless number of 0.1, which suggests that the 234U depletion 

structure of the grains at Site 984 is only slightly affected by dissolution.  If the depletion 

rind in the grains is actually thicker than L as a result of preferential leaching, then the 

effect of dissolution is proportionally smaller.  On the other hand, if the dissolution rate 

were significantly higher, then mineral dissolution would limit the amount of 234U 

depletion and tend to make the calculated transport times shorter. 
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6.3.  Effects of leaching during analysis and 234Th implantation 
 

An essential component of the analytical procedure used in this study is the leaching 

of the sediment samples in weak HCl.  The details of the leaching procedure may affect 

the results, and thus far we have not experimented extensively with different leaching 

procedures.  For deep-sea sediments like those of Site 984, which contain both primary 

and authigenic carbonate, it is necessary for the samples to be leached to remove 

carbonate.  Our results suggest strongly that leaching with acetic acid is insufficient to 

quantitatively remove carbonate [6].  Clay minerals, with their small grain size and large 

surface area, are likely to contain a significant amount of adsorbed U, Th and Ra, and 

hence leaching is also necessary to remove these adsorbed components.  Leaching may 

also affect the measured magnitude of recoil effects by removing some easily dissolved 

surface irregularities on silicate grains, and by leaching some 234U out of lattice-damaged 

sites beneath the grain surface.  The net effect of the HCl-leaching procedure we used 

does not appear to generate spurious (234U/238U) ratios, insofar as the 234U depletions we 

measure are reasonable, consistent in magnitude, and compatible with the grain size and 

likely surface roughness of the samples.  It is noteworthy that the ash sample at mcd = 

54.18 m, which should have started with the secular equilibrium (234U/238U) and was 

instantaneously transported to the ocean floor, has almost exactly the (234U/238U) ratio 

expected for the inferred age and estimated fα value.  In the study of Hanford sediments 

referred to above, we have shown that much stronger leaching does not yield the desired 

results.  Leaching of Hanford sediment with concentrated HNO3 apparently dissolves the 
234U-depleted surface regions of the grains, yielding residues with increased (234U/238U) 

[7]. 

 

Another potential complication is that recoil 234Th from mineral grains with high U 

concentration could be implanted into neighboring grains, either in the source rock or in 

the sediment [64].  This effect, which would tend to lower the communition ages, is 

probably insignificant in our data for two reasons.  The small recoil range of 234Th would 

restrict implantation to a small percentage of grain surfaces, and experiments suggest that 
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the 234U resulting from this implantation is rapidly leached away [19].  It is also possible 

that our HCl leaching procedure removes any implanted 234U. 

 

6.4.  Transport times for sediment 
 

An unexpected result of this study is that sediment transport times are as long as 300 

to 400 kyr.  Prevailing models suggest that fine-grained sediment is transported through 

stream systems rapidly; probably “instantaneously” (i.e. in less than 10 kyr) in terms of 

the resolution of our comminution ages.  Soil residence times are thought to be in the 

range 10 kyr to 100 kyr, although they must vary with climate and terrain.  More data are 

needed from other sedimentary environments to determine the generality of our results.  

Until now, sediment transport time has not been measured directly, but rather has been 

inferred from material balance in watersheds [e.g. 65].  

 

For the case of the drift sediments of Site 984A, the sediment may have a long 

transport time because it is redistributed from somewhere else on the ocean floor.  During 

both interglacial and glacial times, sediment derived mainly from Iceland, which is close 

to Site 984, is transported to the site rapidly.  Almost all of the sediment with long 

transport times is derived from the continental source.  It is therefore likely that this 

sediment was either stored on the continent or continental shelf areas for a relatively long 

time, or is older Pleistocene sediment that was reworked by the bottom currents.  If soil 

residence time is 100 kyr or more, and the sediment is reworked material deposited in 

earlier glacial cycles, then it might be reasonable to get total transport times of greater 

than 200 kyr as observed.  It is also possible that the comminution ages we calculate are 

too high due because the source rock activity ratio is less than one. 

 
6.5.  Glacial-interglacial sedimentation changes 

 

Both the cyclical variation in sediment provenance and the variations in transport 

time are significant for the oceanographic and sedimentary evolution of the North 

Atlantic.  The Bjorn Drift is one of several regions of the North Atlantic Ocean bottom in 
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which sedimentation rates are abnormally high (ca. 10-20 cm/kyr; Figure 9d).  The strong 

currents generated by southwestwardly flowing high-density waters of the Norwegian-

Greenland Sea flow over the shallow sills formed by the Iceland-Faeroe Ridge and 

deposit large amounts of reworked sediment along the Bjorn Drift [66, 67].  The fact that 

the sediments at Site 984A are reworked adds some complications to the temporal 

correlation of their properties with the benthic δ18O-record.  The data indicate that there 

are relatively rapid changes in sediment provenance that occur over time periods as short 

as 5000 years (Figure 11).  The lower time limit for provenance shifts is limited by 

sampling frequency for this study; it could be shorter than 5000 years.  The data for the 

transition to the present interglacial suggest that both the provenance and transport time 

track the global ice volume record within a few thousand years.  Similar changes in 

provenance were observed for North Atlantic drift sediments by Revel et al. [50].  

However, the older sediments in our record do not show such a good correlation between 

transport time and ice volume,  and only during the most recent glacial period was the 

sediment supply strongly dominated by the continental source (Figure 9b). 

 

The changes in sediment properties measured here could potentially be explained 

either by changes in the overall sediment sources for the North Atlantic, or by changes in 

the strength of the bottom currents [cf. 50].  The sedimentation rates vary by about a 

factor of two, but are not consistently correlated with either the changes in provenance or 

the transport times (Figure 9d).  Recent studies suggest that deep-water formation was 

sharply reduced and possibly even ceased during glacial conditions [68].  In the absence 

of a strong bottom current it might be expected that sedimentation at Site 984A would be 

dominated by detritus from Iceland.  The Nd and Sr data, as well as the U isotope data, 

do not support this idea because the glacial time periods are the time of greatest 

contribution from foreign, presumably current-transported, detritus.  The data presented 

here are more consistent with weaker bottom currents, or weaker continental sediment 

supply, during interglacial times.  An alternative explanation is that the glacial- to- 

interglacial changes mainly reflect the extent of glaciation of Iceland.  During the last 

glacial maximum, Iceland was entirely covered with continental glaciers [69] and 

surrounded by sea ice much of the year (Figure 4).  The sediment supply from Iceland to 
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Site 984 may have been low under these conditions.  The margins of Western and 

Northern Europe were largely south of the sea ice, and the shelf areas were above sea 

level (Figure 4, [70]), so glaciers may have been scouring and transporting older 

Pleistocene shelf sediment to the Norwegian-Greenland Sea and the eastern margin of the 

Atlantic, from where it was then transported to the Bjorn Drift by bottom currents.  Such 

sediment might arrive at Site 984 with a relatively large comminution age.   

 

During the last glacial period, sediment derived from the European continent and 

transported by bottom currents appears to have been the main contributor to 

sedimentation at Site 984.  In the next two earlier glacial periods, the sediment deposited 

at Site 984 was more typically a sub-equal mixture of volcanic and continental detritus.  

Although it is unlikely that ice-rafted detritus contributed significantly to the 

sedimentation, it is nevertheless the case that the IRD flux was highest in the last two 

glacial periods, and much lower in the next earlier two glacial periods [71].  In the 

earliest glacial period represented in our data (Marine Isotope Stage (MIS) 10; 339-362 

ka) the sediment was mainly derived from Iceland and there is little contribution from the 

continental source until peak glacial conditions just before the transition to the 

interglacial.  The results suggest that sedimentation patterns during glacial periods, and 

even within individual glacial periods, have varied substantially over the past 365 ky.  

7. Conclusions and implications 
 

The data presented here document systematic lowering of (234U/238U) in marine silicate 

sediments with grain size in the range of clay to medium silt and fine sand (0.1 to 50 

µm).  It is argued that the depletions in 234U are mainly due to α-recoil effects associated 

with the decay of 238U, rather than chemical leaching.  The (234U/238U) ratios can in many 

cases be converted to a model  “comminution age,” the time since the rock material 

constituting the particle was first reduced to a small size by erosion and weathering 

processes.   
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Calculation of U isotope comminution ages requires information on the 234U (or 234Th) 

α-recoil loss rate from mineral grains.  This loss rate can be inferred by measurements of 

samples from a stratigraphic sequence of known age or sedimentation rate.  Because the 

depositional age is known and the comminution age is the sum of the depositional age 

and the “transport time,” both the sediment transport time and the recoil loss rate can be 

obtained.  An alternative method for determining the α-recoil 234U loss rate is through 

measurements of other U series nuclides, in particular the (226Ra/230Th) ratio.  It is 

possible that with concurrent measurement of cosmogenic nuclides, the soil residence 

time and the transport time could be separated. 

 

Sediments from a North Atlantic drift site (ODP Site 984A) just south of Iceland were 

measured for U, Sr, Nd and O isotopes.  The 234U/238U ratios show large and systematic 

variations with depth in sediments that range in age from 10 ka to 365 ka.  The U isotope 

variations correlate with glacial cycles and with sediment provenance as determined by 

Nd and Sr isotopes.  During the last three interglacial times, the sediment at Site 984 was 

mainly derived from Iceland and transported rapidly (within about 10 kyr) to the site of 

deposition.  During the last glacial period the sediment is derived largely from a 

continental source, probably Northern Europe, and has a comminution age at the time of 

deposition of 300 to 400 kyr.  The long transport time measured for the glacial sediment 

is surprising, and suggests that the sediment is reworked from exposed shelf areas.  Site 

984 sediments may have yielded especially clear results because they are reworked by 

bottom currents, have at least two strongly contrasting sources, and have a relatively 

compressed grain size distribution.  Further work will need to address the effects of 

leaching during analysis, and the relationships between α-recoil, grain size and 

mineralogy. 

 

An implication of the data and models described here is that (234U/238U) measurements 

could be useful for determining the depositional ages of fluvial and lacustrine sediments.  

In areas of rapid erosion, it may be possible to assume that transport (and storage) times 

are short, and therefore that the comminution age equals the depositional age.  U isotope 
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measurements may also be useful for dating glacial deposits and atmospheric mineral 

dust, including that recovered from ice cores, and for measuring the age or production 

rates of soils. 
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Captions: 
 

Figure 1: Schematic diagram of recoil ejection of 234Th from a spherical grain as a result 

of the alpha decay of 234U, followed by beta decay of 234Th to 234U. The net effect is 

depletion in 234U relative to 238U in the surface layer of the grain, and an enrichment of 
234U relative to 238U in pore water surrounding the grain. Because 234Th is insoluble and 

particle reactive, ejected 234Th should adsorb to grain surfaces. When it decays to 234Pa 

and 234U, the recoil from beta-decay is too small to re-implant 234Th back into the grains 

(and any implanted 234U is likely to be easily leached and returned to the pore fluid).  

Similar recoil effects are associated with the α-decay of 234U,  230Th and 226Ra.    

 

Figure 2: Calculated and measured 234U recoil loss factors (fα) as a function of grain size.  

The solid line is a plot of equation 2, which applies to a single spherical grain, or a 

hypothetical sediment composed of spherical grains with a single grain size.  Also shown 

are lines for plate- and oblate spheroid-shaped grains.  The line labeled “Roughness=2” 

shows the effect of a surface roughness factor (λs) of 2 on oblate spheroidal grains.  The 

uppermost line adds the effects of a grain size distribution where 50% of the grains have 

the mean grain size, 25% are 10 times smaller, and 25% are 10 times larger than the 

mean grain size.  The mean grain size (15 µm) and inferred range of the recoil loss factor 

for sediment from ODP Site 984A is indicated.  The measured range of fα (the observed 
234U/238U depletion factor) of Hanford coarse silt (45 – 60 µm) is also shown.  In general, 

the observed fα values can be accounted for by α-recoil effects and do not require 

preferential leaching of 234U. 

 

Figure 3: Evolution of the (234U/238U) in sediment grains as a function of time. For large 

grains (>65 µm), the loss of 234U is small and they show no aging effects. For silt and 

clay sized grains, the fractional loss rate of 234U is between a few percent and 50%. Small 

grains produced by mechanical erosion initially should have the secular equilibrium 

isotope ratio, but eventually evolve an isotope ratio that is commensurate with their size. 

The time scale for this evolution is 1/λ234, which is 354 kyr.  After about a million years 
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the grains reach a steady state (234U/238U) that depends only on their size, but between the 

time of formation and 1 Myr after, the isotopic ratio depends on both size and age. 

 

Figure 4:  Map of the North Atlantic region showing the location of ODP Site 984 on the 

southeast side of Reykjanes Ridge.  Also shown are estimated locations of the shorelines 

at the last glacial maximum [LGM, 70] and the location and direction of flow of modern 

bottom currents in the northernmost Atlantic Ocean [5].  The heavy stippled line is the 

southern extent of winter sea ice at the last glacial maximum  [70].  The southern margin 

of summer sea ice at the LGM was much farther north, close to the upper boundary of the 

figure.  The southern extent of continental glaciers in Europe is also shown; all of the 

other land shown (Iceland, Greenland, Eastern Canada) was completely ice-covered at 

the LGM. 

 

Figure 5: U isotope ratio data for Site 984A sediments and pore fluids. Measurements by 

TIMS have uncertainties of about ±1% to ±3%. Measurements using multi-collector 

ICPMS (Isoprobe) have uncertainties of ±0.1% or slightly better depending on sample 

size.  Data from Maher et al. [6] 

 

Figure 6: (a) The 234U/238U activity ratio of HCl-leached residues of bulk Site 984 

samples plotted against mean composite depth.  (b) Foraminifer δ18O values versus depth 

from Raymo et al. [5]. 

 

Figure 7: Residue 234U/238U activity ratio versus exponential age factor.  The Site 984 

sediments appear to have variations in specific surface area that are correlated with the U 

isotopic ratio, which is likely to be common, but the range of the recoil loss factor is not 

large (fα = 0.135 to 0.19 in this case).  With the initial (234U/238U) value and fα, the 

“comminution age” can be calculated.  The sediment age is known independently from 

the O isotope data and correlations, so the sediment age can be subtracted from the 

comminution age, leaving the “transport time” for the sediment – the time between 

comminution and deposition.  
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Figure 8:  Sr and Nd isotope ratios (87Sr/86Sr and εNd) of HCl-leached bulk sediment from 

Site 984.  The data are consistent with sediments being two component mixtures.  One 

component has high εNd and low 87Sr/86Sr and is most likely sediment derived from 

Iceland volcanic rocks.  The other component has low εNd and high 87Sr/86Sr and is 

similar to European basement rocks [50, 51, 59]. 

 

Figure 9: (a) Calculated sediment transport time for the Site 984 sediments, (b) measured 

εNd value of Site 984 sediments, (c) foraminifer δ18O values plotted versus age, and (d) 

estimated sedimentation rate based on O-isotope chronology.  The dashed lines are 

provided to enable comparison between the graphs; they do not correspond to stage 

boundaries. 

 

Figure 10: Initial (at time of deposition) U isotope ratio and calculated transport time 

versus Nd isotope ratio, which indicates provenance.  The sediments appear to be mostly 

mixtures of detritus from Iceland, which gets transported quickly to the site, and 

continental detritus that has transport times of 300 to 400 kyr.  There are also many 

samples with similar mixed provenance but a range of calculated transport times.   
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