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Abstract

C57BL/6 mice exhibit spontaneous cerebellar malformations consisting of heterotopic neurons
and glia in the molecular layer of the posterior vermis, indicative of neuronal migration defect
during cerebellar development. Recognizing that many genetically engineered (GE) mouse lines
are produced from C57BL/6 ES cells or backcrossed to this strain, we performed histological
analyses and found that cerebellar heterotopia were a common feature present in the majority of
GE lines on this background. Furthermore, we identify GE mouse lines that will be valuable in the
study of cerebellar malformations including diverse driver, reporter, and optogenetic lines. Finally,
we discuss the implications that these data have on the use of C57BL/6 mice and GE mice on this
background in studies of cerebellar development or as models of disease.
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Introduction

The use of mouse models has led to significant advancements in knowledge of cerebellar
function and development, as well as cerebellar diseases. Diverse inbred and outbred strains,
F1 hybrids, recombinant inbred lines, and consomic strains are among the many powerful
mouse tools used by investigators to study the cerebellum. Moreover, a great deal of research
devoted to understanding the molecular mechanisms of cerebellar development and disease
involves studies using genetically engineered (GE) mice, including transgenic, knock-out,
and knock-in lines. In light of novel methods to easily and rapidly manipulate the genome of
mice such as the CRISPR Cas system, the production and use of GE mice to model a variety
of cerebellar disorders will likely continue to increase in the future.

The background strain of embryonic stem (ES) cells used to produce GE mice as well as the
background strain of the mice used to propagate the GE line will affect the observed
phenotype. GE mice are often produced using ES cells from FVB/N [1, 2], C57BL/6, and
129/S families of inbred strains—each of which has advantages and limitations. For
example, it is known that FVB/N mice are homozygous for mutation of Pde6B [3-6], which
causes retinal degeneration and blindness within the first month of life. Furthermore, both
FVB/N and 129/S inbred strains are homozygous for the deletion polymorphism of DiscI [7,
8], which has been implicated in learning and memory in mice [7, 9] as well as
schizophrenia in humans [10-12]. Reduced growth or agenesis of the corpus callosum has
also been observed in 129/S strains [13]. Finally, C57BL/6 mice are homozygous for a
variant of Cah23 (cadherin 23; [14]), which results in age-related hearing loss [15] due to
dysfunction of cochlear hair-cell tip-links [16, 17].

C57BL/6 mice exhibit spontaneous neurodevelopmental malformations of the posterior
cerebellar vermis, which develop postnatally. These malformations are characterized by
heterotopia of granule cells in the molecular layer, indicative of neuronal migration defect
[18-20]. Several other neuronal and glial cell types are present in cerebellar molecular layer
heterotopia (MLH) as well as diverse axonal constituents [21], indicative of abnormal
cellular and synaptic organization. Although behavioral and physiological studies linking
MLH to functional changes are lacking, the presence of heterotopia in this widely used
inbred strain has important implications for its use in studies of the cerebellum.

The mechanisms underlying MLH formation are unknown; however, heterotopia formation
is a heritable and weakly penetrant trait requiring homozygosity of one or more C57BL/6
alleles [20]. One predication from earlier findings suggests that MLH should be observed in
GE mice either (1) produced with C57BL/6 ES cells or (2) backcrossed to a C57BL/6
background. In a recent report, we did indeed identify GE mice on a C57BL/6 background
with heterotopia following analyses of images from the Allen Brain Atlas database [22].
However a limitation of that study was a lack of primary data from histological material
prepared and examined in our laboratory. In the present report, primary histology was used
to demonstrate that diverse GE mouse lines, including F1 crosses of Cre-driver and /oxP-
reporter mice, produce offspring that exhibit heterotopia. In addition, new histological data
from the several digital databases provides an extensive list of novel GE mice that exhibit
heterotopia, including mice well-suited to study cerebellar development and the MLH
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phenotype. Finally, we discuss the implications that these data have on the use of C57BL/6
mice and GE mice on this background in studies of cerebellar development or as models of
disease.

Materials and Methods

Approvals for the following studies were obtained from the New York Institute of
Technology, University of California Santa Cruz, and the Children’s Hospital of
Philadelphia. Methods for harvesting brains, tissue sectioning, staining, and identification of
heterotopia have been extensively described by our group [19, 20, 22]. In the present report,
all brains examined were from mice older than postnatal day (P) 14. Note that we previously
determined that MLH are visible as early as P4 and that the presence/absence of heterotopia
does not change with age [19]. For this reason, comparisons of heterotopia prevalence
between mice of different ages in the present report is appropriate given that all mice were at
least 2 weeks old at the time of sacrifice, at which time lobule/fissure patterning and
neuronal migration are nearly complete [23]. We previously determined that there are no
quantitative differences in the prevalence of cerebellar MLH between sexes [19]; therefore,
data from male and female mice are combined. Finally, no differences in heterotopia
prevalence have been previously observed between mice obtained directly from commercial
vendors and mice bred in an academic vivarium from commercially obtained breeders [19].
All primary histological data from GE lines and crosses were from mice bred in academic
vivaria from breeders obtained commercially or unless otherwise specified.

Breeding pairs of B6.Cg-Tg(Tek-cre)1Ywa/J mice (referred to as 77e2-Cre mice) were
obtained from The Jackson Laboratory; stock #008863; Bar Harbor, ME, where the line was
backcrossed onto C57BL/6 mice for = 8 generations and continues to be maintained on a
C57BL/6J background. Characterization of this mouse strain has shown panendothelial
expression of the Cretransgene [24]. Breeding pairs of STOCK-
HprtCAG-LSL-ALPL/CAG-LSL-ALPL knock-in mice (referred to as HprtALPLALPL mice) were
obtained from Dr. Jose Luis Millan (Sanford Burnham Prebys Medical Discovery Center, La
Jolla, CA, 92037). This line was developed using ES cells derived from the 129P2/OlaHsd
(1290la) mouse strain as previously described [25] and has been maintained on a C57BL/6
congenic background. HprtALPL/ALPL female mice were crossed with 77e2- Crel+ male mice
and brains of F1 male mice from these litters were examined for heterotopia regardless of
genotype.

Breeding pairs of C57BL/6 J—Ldlr"b301) mice (referred to as Lalr"b301/HIb30I mice) were
obtained from The Jackson Laboratory where ethylnitrosourea mutagenesis was originally
induced in C57BL/6J mice and the line subsequently maintained in this same background
[26]. A cohort of Tie2-Crel+ and Hprt ALPL/ALPL mice were each crossed to

Lall 71301 HIBS0I for two generations to obtain a homozygous mutant L df/?/301/H1b301
background. 7ie2- Crel+; Lalrb301/HIb301 mice were intercrossed with

HprtALPL/ALPL. | qpHIb30L/HI30I mice, Brains from male mice from these litters were
examined for the presence of heterotopia regardless of genotype.

Cerebellum. Author manuscript; available in PMC 2019 January 10.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Cuoco et al.

Page 4

Breeding pairs of B6.129P2- Lyz2m1(cre)lfosy mice (referred to as Lyz2°" mice) were
obtained from The Jackson Laboratory (stock #004781). The line was originally produced in
129P2/OlaHsd-derived E14.1 ES cells and backcrossed to C57BL/6J mice for > 6
generations and then maintained on a C57BL/6J background [27]. A cohort of Lyz2CTe/*
mice were crossed to Lalr"b391 for two generations to obtain a homozygous mutant

Ll 71b301/HIb301 hackground. Lyz2Cre/* [ gl1030L/HIb30L mice were intercrossed with
HprtALPL/ALPL | qjpHIbS0L/HIB30L mice. Brains from male mice from these litters were
examined for the presence of heterotopia regardless of genotype.

Breeding pairs of /s/1im1(cre)Sev/ driver mice (referred to as /s/Z¢" mice) were obtained
from an existing colony at University of Pennsylvania where they were initially produced
using 129S ES cells and backcrossed and maintained on a C57BL/6J background [28].
/511" mice are commercially available (The Jackson Laboratory; stock #024242). Breeding
pairs of B6.Cg-Gt(Rosa)26Sortm14(CAG-tdTomato)Hze/j reporter mice (referred to as Ail4
mice) were purchased from The Jackson Laboratory (stock #007914). A/i14 mice were
produced using 129S6/SvEvTac x C57BL/6, F1-derived G4 ES cells and were subsequently
backcrossed and maintained on a C57BL/6J background. A/iZ4 mice express tdTomato, a red
fluorescent protein, following deletion of a /oxP-flanked STOP cassette when crossed with
mice expressing Cre recombinase [29]. A cohort of brains from F1 hybrid mice produced by
crossing hemizygous /s/7€"€ mice and homozygous AiZ4 mice were examined for the
presence of heterotopia. In the present report, only F1 hybrid mice that expressed tdTomato
were examined for the presence of heterotopia.

Breeding pairs of B6.Cg-Tg(Thy1l-GCaMP3)6Gfng mice (referred to as 7hy1-GCaMP3
mice) were purchased from The Jackson Laboratory (stock #029860) where the line was
first made using C57BL6/J x CBA Floocytes and then backcrossed and maintained on a
C57BL/6J background. These mice express GCaMP3 in diverse regions of the neo-cortex
and subcortical nuclei [30]. These mice were not genotyped; however, only brains that
exhibited GCaMP3 expression were used in the present study, signifying that all brains were
from mice that were at least hemizygous for the GCaMP3allele.

Breeding pairs of B6.Cg-Snap25tm3-1Hz¢/) mice (referred to as Snap25¢CMPbsmice) were
purchased from The Jackson Laboratory (stock #025111) where the line was produced using
129S6/SvEvTac x C57BL/6 F1-derived G4 ES cells and then backcrossed and maintained
on a C57BL/6J background. These mice express GCaMP6s exclusively in neurons
throughout the brain. These mice were not genotyped; however, only brains that exhibited
GCaMP6s expression were used in the present study, signifying that all brains were from
mice that were at least hemizygous for the GCaMPé6s allele.

Breeding pairs of C57BL/6J - Tg (Thyl -GCaMP6s)GP4.3Dkim/J mice (referred to 7hy1-
GCaMP6s mice) were purchased from The Jackson Laboratory (stock #024275). This line
was created and has been maintained on a C57BL/6J background. These mice were not
genotyped; however, only brains that exhibited GCaMP6s expression were used in the
present study, signifying that all brains were from mice that were at least hemizygous for the
GCaMPésallele.
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Brains from a cohort of Tg(CAG-EGFP/Mapllc3b)53Nmz mice [31] (referred to as LC3-
eGFP mice) were backcrossed and maintained on a C57BL/6 background in a colony at New
York Institute of Technology College of Osteopathic Medicine. Brains were generously
donated by Qiangrong Liang. These mice were not genotyped; however, only brains that
exhibited eGFP expression were used in the present study, signifying that all brains were
from mice that were at least hemizygous for the eGFPallele.

Examination of Digital Histological Material

We have extensively described our approach of using digital histological data found in the
Allen Brain Atlas (ABA,; brain-map.org) as a tool to identify the ontogeny, cell types, axonal
constituents, and gene expression profiles of cerebellar [19-22] and neocortical heterotopia
[32, 33]. In the present report, we specifically used data from the Mouse Connectivity
database, which includes histology from neuronal tracing experiments performed in
C57BL/6J mice as well as in diverse Cre-driver lines [34-36]. Additional material was
examined from the 7ransgenic Characterization database, which contains in situ
hybridization data from expression studies performed on numerous driver lines (Cre, Dre,
Flp, etc.) and reporter lines (/oxF, FRT, etc) in addition to driver-reporter hybrid mice as
previously described [29, 37-39]. Approximately 8-12 photomicrographs of the posterior
cerebellum from each brain in these datasets were examined. Brains containing MLH were
documented and digital photomicrographs of representative examples were archived and
annotated. Note that in the present report, we use the abbreviated mouse nomenclature for
driver and reporter lines found on the ABA webpages when discussing these data below so
that readers can more easily find these same data online. However, in Tables 1 and 2, we
provide the official strain names for all lines specifically described in the text. Additional
information about the driver and reporter lines can be found at the following page on the
ABA website (http://help.brain-map.org/display/mouseconnectivity/Documentation).

Virtual histological material was also examined from the Cell Type Specific Connectivity
database and the Transgenic: Cell Counts database of the Mouse Brain Architecture Project
(MBAP; http://mouse.brainarchitecture. org/cellcounts/hua/), the Enhancer TRAP mouse
line database (eTRAP; https://enhancertrap.bio.brandeis.edu/), and the GENSAT Cre Mice
database (http://www.gensat.org/cre.jsp) according to search methods previously described
[40]. A description of the methods used in the preparation of data in the MBAP database can
be found at the following website: http://www.brainarchitecture.org/documentation.
Methods used in the preparation of data in the GENSAT Cre database [41-43] and eTRAP
database [44] have been previously described. Brains exhibiting MLH were documented and
digital photomicrographs of representative examples were archived and annotated. Note that
in the present report, we use the abbreviated mouse nomenclature for driver and reporter
lines found on the MBAP databases when discussing these data in the text below so that
readers can more easily find these same data online. However, in Table 3, we provide the
official strain names for all lines described in the text.
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Results

Heterotopia Are Found in GE Driver and Reporter Mice as well as Driver-Reporter Crosses

In the time since our previous report documenting cerebellar heterotopia in GE mice [22],
vast amounts of new data have been added to the Mouse Connectivity and Transgenic
Characterization databases of the ABA. In light of this, we performed analyses of this
additional histological data in order to identify the potential presence of heterotopia in novel
GE mouse lines. A total of 1702 serial-sectioned brains from the Mouse Connectivity
database were examined for the presence of cerebellar MLH using methods previously
described by our group and which have been successful in identifying cerebellar MLH [19-
22]. Material in this database includes > 120 coronal sections throughout the entire rostral-
caudal extent of each brain from 101 distinct Cre-driver mice injected with neuronal tracers
for the study of the mouse connectome [35]. Material from wild-type C57BL/6J mice
injected with neuronal tracers is also found in this database. We have extensively
documented that MLH are readily identifiable in coronal and sagittal sections by
identification of several histological features characteristically found at the vermal midline.
For example, compared to the normal cyctoarchitecture of the posterior vermis (Fig. 1a-b),
MLH are characterized by heterotopic collections of stained cells that are present in between
the molecular layers of lobules V11 and IX (Fig. 1c—d) which can be seen as forming an
“island” of cells surrounded by an otherwise normal appearing molecular layer. As shown in
Fig. 1e—f, heterotopia can also be characterized by a bridge of stained cells traversing the
molecular layers of lobules V111 and IX. In both brains with heterotopia, regions lacking pia
are evident between lobules VIII and IX in those areas containing heterotopic granule cells
that have failed to migrate.

MLH were indeed apparent in brains found in the Mouse Connectivity database. We
observed MLH in 920 of 1702 (54%) brains in this database which included 91 of 101
(90%) distinct Cre-driver lines that exhibited heterotopia. A list of Cre-driver lines
exhibiting heterotopia is found in Table 1, including the number of mice in each line that
exhibited heterotopia as well as a representative reference experiment identification number
which can be used to view this material directly on the ABA website. Using this approach,
our analyses of heterotopia prevalence cannot rule outthat MLH may be found in a given
Cre-driver line, when 7= 0 heterotopia are observed from among a small sample of brains.
Instead, this type of analysis can provide evidence that a given mouse line does exhibit some
prevalence of MLH, when 17> 1 cases with heterotopia is identified. For example, as
indicated in Table 1, we did not find any brains with heterotopia among 10 of 101 Cre-driver
lines. However, with only one exception, fewer than eight total brains were available for
examination from each of these driver lines that did not demonstrate any prevalence of
heterotopia. Nevertheless, as shown in Table 1, we did identify heterotopia in over 90
distinct Cre-driver lines even when very few brains were available for examination for that
line.

Figure 2 illustrates examples of the normal cytoarchitecture of the posterior vermis (a—c) and
MLH (d—f) in a C57BL/6 mouse brain found in the Mouse Connectivity database. As shown
in Fig. 2(g-i), MLH observed in Cre-driver lines in this database had cytoarchitecture and
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histological profiles identical to heterotopia observed in C57BL/6 mice (Fig. 2d-f) [19, 20].
As indicated in Table 1, we found that all but 3 of 91 Cre-driver lines exhibiting MLH were
maintained on a congenic C57BL6/J background. Grm2-Cre_MR90 and Oxtr-Cre_ ON66
mice (see Table 1 for details of each mouse line) were reported to be on a FVB/
NCrl:CD1(ICR) background while the background of Lypd6-Cre_KL156 was not reported
(official mouse line name was not found). As shown in Table 1, only four of ten lines not
exhibiting MLH were on a congenic C57BL6/J background, while the remaining six where
either on an unknown or FVB/NCrl:CD1(ICR) background.

Although not a specific goal of the present study, we observed GFP-labeled axons in
heterotopia in C57BL/6J wild-type mice Fig. 2(d—f) as well as Cre-driver lines in the Mouse
Connectivity database which differed from the normal pattern of GFP-labeled axons
restricted to the granule cell layer observed in mice without heterotopia (Fig. 2a—c). For
example, as shown in Fig. 2(g—i), GFP axons with swellings characteristic of en passant
synapses were visible among heterotopic granule cells in a Crh - IRES - Cre (BL) mouse
(experiement:167213641; Table 1) which was injected with a Cre-dependent virus targeting
the dorsal cochlear nucleus. GFP-labeled axons in heterotopia were also observed in a
Slc6ad-CreERT2_EZ13 mouse (experiment #114155190; Table 1), a Rasgrf2—2A-dCre
mouse (experiment #313141786; Table 1), and a Sim1-Cre mouse (experiment:165035106;
Table 1) which were injected with a Cre-dependent virus targeting the dorsal raphe nucleus,
parabrachial nucleus, and lateral hypothalamic area, respectively. Taken together, these data
point to widespread prevalence of MLH in Cre-driver lines and suggest that diverse axon-
types from various subcortical nuclei innervate cells in heterotopia.

Recognizing that C57BL/6 mice and numerous Cre-driver lines exhibit MLH, we predicted
that reporter lines would also exhibit heterotopia. Therefore, an examination of data from the
Transgenic Characterization of the ABA database was performed with specific focus on all
available data from reporter lines. Figure 3 illustrates examples of the normal
cytoarchitecture of the posterior vermis (a—b) and MLH (c—d, e—f) in sagittal sections of
C57BL/6 mouse brains found in this database. As shown in Fig. 3(g—j) and Table 1, we did
indeed observe MLH in several reporter lines including: A714, Ai27, Ai32 (data not shown),
Ai39, and Af75data not shown)mice(see Table 1 fordetailsabout each reportermouse
line).The cytoarchitecture and histological profiles of MLH in these reporter lines were
identical to heterotopia observed in C57BL/6 mice (Fig. 3c—f) and are consistent with our
observations of MLH in Cre-driver lines. As shown in Table 1, all reporter lines found to
exhibit heterotopia were maintained on a congenic C57BL/6 background. When crossed to
Cre-driver lines, these reporter lines can be used to express variants of the optogenetic
proteins channelrhodopsin (A7i27, Ai32) or halorhodopsin (A739). These data demonstrate
that Cre-driver lines as well as reporter lines can exhibit cerebellar heterotopia.

A major experimental use of the aforementioned GE lines includes producing driver-reporter
crosses for selective labeling and manipulation of particular cell types. Consequently, we
examined novel data on the Transgenic Characterization database of driver-reporter F1
hybrids for the presence of heterotopia. Table 2 lists examples of MLH observed in diverse
F1 hybrids including those resulting in expression of a variety of fluorescent proteins,
genetically encoded calcium indicators, and optical stimulators/inhibitors. In all cases, both
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the driver line (Table 1) and the reporter line were on a congenic C57BL/6 background.
Figure 4 illustrates that F1 crosses of the same driver line known to exhibit heterotopia with
several different reporter lines (ex. Ai32, Ai35, Ai40, Ai57, Ai87: see Table 2 for details of
each line) can result in offspring that exhibit heterotopia. These data indicate that heterotopia
formation is a heritable trait that can be observed in diverse crosses of GE mice.

Additional Datasets Demonstrating Cerebellar Heterotopia in GE Mice

In order to confirm and extend on our observations of heterotopia in GE mice in the ABA,
we searched for additional databases with histological data from GE mice including the
MBAP, eTRAP, and GENSAT Cre databases. As shown in Fig. 5 and Table 3, heterotopia
were evident in diverse Cre lines and driver/reporter crosses present in the MBAP databases.
In particular, we observed heterotopia in 8 out of 20 (40%) distinct driver/reporter F1 hybrid
lines (17 of 151 total brains examined had heterotopia) in the MBAP databases including
Cre-driver lines crossed with different reporter lines. We also observed heterotopia in two
out of two Cre-driver mouse lines (five out of ten brains examined) found in the Cell Type
Specific Connectivity database of the MBAP. As shown in Table 3, all Cre-driver lines and
the and crosses with A/Z4 reporter mice identified in the MBAP databases are the same lines
and identical crosses found to exhibit heterotopia in our analysis of data in the ABA
databases. We list representative examples of similar findings in both the MBAP and ABA
databases in Table 3. These results confirm our observations of MLH in GE mice using data
from independent research groups.

A total of 140 distinct mouse lines were found in eTRAP database though only one to two
brains per line were available for examination. These lines were developed and maintained
on a C57BL/6 background [44]. Heterotopia were observed in 9 of 140 (6.43%) lines in the
eTRAP database (including lines: PBAS, P222, P181, P133, P126, P103, P125, P074,
P024). As shown in Fig. 5(j—0), heterotopia in mice found in the eTRAP database were
identical to those observed in C57BL/6 mice as well as other GE lines on this background.

We did not find any brains with heterotopia among the 145 different Cre lines present in the
GENSET database, as these mice were generated on a FVB/N background. Nevertheless,
our observations in the MBAP and eTRAP databases extend upon our observations in the
ABA databases.

Examination of Primary Histological Data Confirm Findings Using Databases

In order to confirm and extend on our observations using digital databases, we examined
primary histological material prepared in our laboratory from a variety of GE mice for the
presence of heterotopia. All of the lines in these studies were bred in academic vivaria and
were maintained on a C57BL/6 background. First, as shown in Fig. 3(k-I), heterotopia were
found in two of four (50%) A/14 reporter mouse brains examined, which is consistent with
our observations of heterotopia in crosses with A/Z4 mice in the ABA and MBAP databases
(Tables 2 and 3). In addition, we observed heterotopia in two of four (50%) 77e2-Cre/+ mice,
three of six (50%) Lyz2°"®* mice, and five of eight (62.5%) Ldl//"b30L/HIb30I mice (data not
shown). However, we did not observe heterotopia in any HprtALPL/ALPL mice (n= 6; data
not shown).
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Brains from several different F1 driver-reporter crosses were also examined in our
laboratory. For example, we observed heterotopia in 6 of 16 brains (35.7%) from /s/1¢7€/*:
Air14 mice (Fig. 6g-1). As shown in the representative examples in Fig. 6, robust tdTomato-
expression was observed in scattered granule cells and mossy fibers in the posterior
cerebellum in /s/1€7¢*; Aj14mice. MLH in these F1 hybrid mice had heterotopia identical
to that observed in C57BL/6 mice or other Cre-driver mice crossed to A7Z4 mice. As shown
in Fig. 6(k-1), tdTomato-labeled granule cells as well as mossy fiber axons were present in
heterotopia though the exact origin of these axonal projections is unknown.

As shown in Fig. 7(c—d), we observed heterotopia in 77e2-Cre/+;Hprt*LPL* F1 mice (6 of
19 brains; 31.57%). Heterotopia were also present in 4 out of 17 (23.5%) mice produce by
crossing 77e2-Cre/+;Ldlf"030VHIb30I mice with Hprt ALPL/ALPL,LdlrHIb301/HIb301
mice. Heterotopia were also present in 4 out of 14 (28.6%) mice produced by crossing
Lyz2C re / +; Lalrb30VHI30L mice with Hprt ALPL/ALPL .| gff116301/H1b301 mice. As shown
in Fig. 7(g-h), heterotopia were also found in the progeny of three-way crosses of GE mice
in the Allen Brain Atlas. Thus, primary histological analyses in our laboratory confirm that
crosses of driver and reporter mice can result in progeny that exhibit heterotopia.
Additionally, we identify /s/7¢"€ mice as a novel resource to for labeling granule cells and
mossy fibers in heterotopia.

A major goal of the present study was to identify mouse lines that would be valuable for the
study of cerebellar heterotopia. As shown in Fig. 8 from primary histological data produced
in our laboratory, several additional GE mouse lines (all on a congenic C57BL/6
background) exhibit heterotopia and can be used for calcium imaging of GCaMP variants.
For example, 7hyI-GCaMP3/+ mice with heterotopia (Fig. 8a—c; 3 of 12 brains; 25%) allow
for imaging of labeled axons in heterotopia which likely include spino-cerebellar and
reticulo-cerebellar projections. 7hy1-GCaMP6s/+ mice with heterotopia (Fig. 3d—f; three of
nine brains; 33%) are well-suited for imaging the few scattered GCaMP6s-expressing cells
found in heterotopia and in the normal granule cell layer. In contrast, lack of clear GCaMP6s
expression in the cerebellum makes Snap256CaMP6s* mice (Fig. 8g—i) not very useful as a
tool for calcium imaging in mice with heterotopia (three of six brains; 50%). Finally, as
shown in Fig. 8(j—I), GFP expression in the somata and dendrites of LC3-eGFP mice with
heterotopia (5 of 13 brains with heterotopia; 38.46%) allow for determination of changes in
Purkinje cell development and morphology associated with heterotopia formation.

Discussion

Cerebellar Heterotopia Are Commonly Found in GE Mice

In the present report, we demonstrate that malformation of the posterior cerebellar vermis is
a common phenotype of GE mice on the C57BL/6 background. In particular, heterotopia
were observed in humerous Cre-driver mice, reporter mice, and several other GE mice.
Moreover, crossing driver and reporter mice also resulted in progeny that exhibit heterotopia.
An important caveat to our approach is that we can only identify GE lines that exhibit the
phenotype when at least one brain was observed with a malformation from a sample of
brains from a given GE line. In contrast, this approach cannot rule out that a line does
exhibit some prevalence of heterotopia when we do not observe any heterotopia in a sample
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of brains examined from any given line. Furthermore, it cannot be assumed that if
heterotopia are not observed in a small sample of brains from one or more lines that are
intended to be crossed that F1 progeny from these strains will not exhibit heterotopia. Our
findings exemplify this point. Specifically, we did not observe heterotopia0 of 6
HprALPL/ALPL mice: however, we did find heterotopia in 7ie2-Cre/+:Hprt*LPH* F1 mice.

Another caveat to our approach of using digital histological databases is that it relies heavily
on the number of brains available to examine, the number of sections available per brain, the
quality of sectioning and staining, etc. which may have affected our findings of different
percentages of GE lines with heterotopia among the different databases that were used.
Thus, there are likely more lines that exhibit heterotopia that what was observed, and there
also exists the possibility that all GE lines on a C57BL/6 background will exhibit cerebellar
heterotopia with some prevalence.

Our findings extend on our earlier observations of heterotopia in C57BL/6 mice and related
strains [19-22] and suggest that heterotopia are caused by a heritable, weakly penetrant
recessive allele found in the C57BL/6 lineage [20]. Consistent with this model, nearly all of
the GE mice found to exhibit heterotopia were either created with C57BL/6 ES cells or were
backcrossed onto the C57BL/6 background. Furthermore, we did not observe any
heterotopia in the GENSAT Cre database, which includes data from Cre lines generated
from ova of FVB/N mice (Taconic Farms), a strain that we previously found to never exhibit
heterotopia [20]. One prediction from our findings is that some prevalence of heterotopia
will be present in any GE line or hybrid cross of GE lines once homozygosity for the
C57BL/6 heterotopia allele is present in line. Likewise, it is anticipated that no heterotopia
will be observed in F1 hybrid mice produced by crossing one GE line on a C57BL/6
background with another GE line on a different background (such as 129 or DBA, [20]).
Thus, identifying the causal allele for heterotopia formation is an important area for future
research.

Implications of Heterotopia on the Use of GE Mice

Our results have important and broad implications for the use of GE mice in studies of
cerebellar development, function, and disease. First, data in the present report argue strongly
that some prevalence of heterotopia formation will be found in most (if not all) GE mice
produced with C57BL/6 ES cells or backcrossed onto the C57BL/6 background. Thus,
investigators will have to consider how the presence of heterotopia in experimental and
control groups will affect interpretation of study outcomes. For example, knock-out mice are
a popular tool for examining the role of a given gene and gene product on cerebellar
development. Likewise, Cre-driver lines are commonly crossed with “floxed” lines to
produce conditional knock-in or knock-out lines for similar types of studies. One prediction
from our results is that a majority of GE mouse models will exhibit heterotopia with some
prevalence simply due to the contribution of the C57BL/6 background. In this scenario, GE
mice exhibiting heterotopia could be interpreted as arising due to genetic perturbation. Thus,
careful histological examination of hetero/hemizygous and homozygous mice (and wild-type
controls) will be necessary to evaluate results in developmental studies using GE mice on a
C57BL/6 background.

Cerebellum. Author manuscript; available in PMC 2019 January 10.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Cuoco et al.

Page 11

Despite the above caveats, developmental studies using GE mice have the potential to
contribute to understanding of the molecular mechanisms of heterotopia formation. For
example, consider the scenario where a knock-out or conditional knockout line exhibits
100% prevalence of MLH formation, while the hemizygous mice exhibit a prevalence of ~
30% (similar to C57BL/6 wild-type controls). Conversely, consider the scenario where the
knock-out or conditional knock-out exhibits 0% prevalence of MLH formation, while the
hemizygous mice exhibit a prevalence of ~ 30% (similar to wild-type controls). Both of
these disparate findings would strongly point to an interaction between a causal allele for
heterotopia formation with the gene deleted in the GE model.

Resources for Studying Development and Malformation of the Posterior Cerebellum

In the present report, we identify numerous GE models that are well-suited for the study of
the formation and physiological consequences of heterotopia. For example, we have
identified that /s/7¢ mice as well as Gabra6-IRES-Cre, Kcnc2-Cre, and Calb1-2A-dgCre
lines from the ABA exhibit heterotopia (Table 1). Given that impairment of granule cell
migration is the characteristic feature of MLH, and that Isl1 and Gabra6 are only expressed
in granule cells [45, 46], /s/1¢¢ and Gabra6-IRES-Cre lines (Table 1) will be valuable
models for future use in live-imaging and/or gene expression studies when crossed to
reporter mice which also exhibit some prevalence of MLH. Similarly, LC3-eGFPas well as
Kcnc2-Cre and Calb1-2A-dgCre lines will be valuable for targeting Purkinje cells
associated with heterotopia. Thus, combined with our findings of MLH in GCaMP mice
(Thy1-GCAMP3and Thyl-GCAMPEs lines) and channelrhodopsin mouse lines, we
demonstrate that there are diverse GE mice that will be valuable in future physiological,
developmental, and mechanistic studies

Genetic and Cellular Model of Heterotopia Formation in C57BL/6 Mice and GE Mice on the
C57BL/6 Background

Several recent findings strongly suggest that heterotopia formation is a trait controlled by
one or more weakly penetrant recessive alleles [20]. First, F1 hybrid crosses between
C57BL/6 and DBA/2J mice never exhibit heterotopia. Crosses between C57BL/6 and 129S6
mice also do not exhibit heterotopia, suggesting that homozygosity of one or more C57BL/6
alleles is required for heterotopia formation. Second, recombinant inbred mice such as the
BXD29-TIr4/s-2J) line (where C57BL/6 and DBA/2J are parental strains) also exhibit
heterotopia, consistent with a requirement of homozygosity for heterotopia expression.
Finally, consomic mice with chromosome 1 from the A/J mouse genotype on an otherwise
C57BL/6 background also exhibit heterotopia, suggesting that one or more causal allele is
found outside of chromosome 1.

While the genetic mechanisms are still unknown, the cellular and tissue-level mechanisms of
heterotopia formation are becoming better understood. In particular, histological analyses
clearly demonstrate a loss of pia in regions containing heterotopic granule cells. In addition,
heterotopia are also associated with spatial and morphological disorganization of Bergmann
glia and radial fibers [19]. Thus, we posit that a deficit in pia formation during cerebellar
foliation likely affects radial glial endfoot attachment and the formation of the glial limitans.
Alternatively, abnormal development of Bergmann glial fibers affects pial formation. In
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either case, disruption of radial fibers ultimately leads to the failure of granule cells to exit
the molecular layer (external granule cell layer) which leads to heterotopia formation by
these cells. Lending further support to our model of heterotopia formation, knock-out mice
with deletion of molecules affecting leptomeningeal or radial glia integrity such as b1-
integrin [47], -y3-laminin [48], and dystroglycan [49, 50] display heterotopia that are nearly
identical (but more severe) to those observed in C57BL/6 mice and GE mice on the
C57BL/6 background.

Conclusion

Malformation of the posterior cerebellar vermis is a common neuroanatomical phenotype of
genetically engineered mice on the C57BL/6 background and should be considered when
designing studies using mouse models on this background.
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Normal

C57BL/6J wildtype
Heterotopia

Heterotopia

Fig. 1.
Nissl-stained, coronal sections of C57BL/6J mice demonstrating the normal (a—b) posterior

vermis and 2 examples (c—d and e—f) of heterotopia from 2 different C57BL/6J mice (all
data from Allen Brain Atlas). Scalebars in microns: a, ¢, e = 1049; b, d, f = 420
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Rostral

Normal

Heterotopia

Heterotopia

Fig. 2.

Serial, coronal sections demonstrating the normal (a—c) and malformed (d-f) organization of
molecular layers between lobules VIII and IX in C57BL/6J mice. Note GFP-labeled mossy
fibers in the granule cell layers as well as among heterotopic neurons (arrows in d—f). Serial,
coronal sections demonstrating heterotopic neurons in the molecular layer of a Crh-IRES-
Cre(BL) mouse (experiement:167213641) which was injected with a Cre-dependent virus
targeting the dorsal cochlear nucleus. Note GFP-labeled mossy fibers in the granule cell
layers as well as among heterotopic neurons. Refer to Table 1 for official names of GE
mouse line used in this figure. All data from the Mouse Connectivity Database of the Allen
Brain Atlas. Scalebars in microns: a—i = 140
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Ai27

Reporter lines with heterotopia
Ai39

Ail4

Fig. 3.
a—d Nissl-stained, sagittal sections of C57BL/6J mice demonstrating the normal posterior

vermis (a) and two examples (c—d) of heterotopia from two different C57BL/6J mice. G-L,
Nissl-stained, sagittal sections of three different reporter mouse lines demonstrating
heterotopia of the posterior vermis. Refer to Table 1 for official names of GE mouse lines
used in this figure. Data in a—j from the 7ransgenic Characterization Database of the Allen
Brain Atlas. Scalebars in microns: a, ¢, e = 1199; b, ¢, f = 466; g, i = 1141; h, j =399; k =
1000; I = 400
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Emx1-IRES-Cre;Ai87

Emx1-IRES-Cre;Ai57

Fig. 4.
Nissl-stained, sagittal sections of different F1 hybrid mice demonstrating a normal posterior

vermis (a) and examples of heterotopia (b—f) following crossing of Emx1-IRES-Cre mice
with different reporter lines. Refer to Tables 1 and 2 for official names of GE mouse lines
used in this figure. All data from the 7ransgenic Characterization Database of the Allen
Brain Atlas. Scalebars in microns: a, b, f =799; ¢ = 879; d, e = 791
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Mouse Brain Architecture Project

Crh-Cre;Ai14

PValb-Cre;H2B-GFP  SOM-Cre;H2B-GFP

Enhancer Trap Line Database

Line P125 Line P103 Line P024

N,

Fig. 5.

a—% Nissl staining (left and middle panels) and reporter protein expression (right panels) in
adjacent sections from three different Cre-driver//oxP reporter F1 hybrid mice with
heterotopia from the MBAP database. Refer to Table 3 for official names of mouse lines
used in a—g. j—o Examples of three different GE mouse lines with heterotopia from the
eTRAP database. Arrows in all panels point to heterotopia
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IsI1™/Ai14 mice

tdTomato-ISH

Gad1-ISH

Calb2-IRES-Cre/Ai14 mice

Coronal

Gad1-ISH

tdTomato-ISH

I
/L

Sagittal

Fig. 6.

Coronal

Sagittal

tdTomato

tdTomato/DAPI

Coronal (a—d, g—h) and sagittal (e—f, i—I) of different Cre-driver lines crossed with Aj74
reporter mice exhibiting heterotopia. tdTomato (a) and Gad1 (b) expression in a Penk-IRES-
Cre; Ai14 mouse indicates the presence of Penk-expressing GABAergic neurons in
heterotopia. Inset in a is nissl staining of heterotopia in adjacent section from same mouse.
tdTomato (a) and Gad1 (b) expression in a Calb2-IRES-Cre; AiZ4 mouse indicates the
presence of granule cells and GABAergic neurons in heterotopia. Inset in ¢ is nissl staining
of heterotopia in adjacent section from same mouse. Sagittal sections (e—f) from another
Calb2-IRES-Cre; Ai14 mouse with numerous Calb2-granule cells in the heterotopia. Inset in
e is nissl staining of heterotopia in adjacent section from same mouse. Refer to Table 1 for
official names of mouse lines used in a—e. tdTomato fluorescence (i) and DAPI
counterstaining (j) in a coronal section from a /s/2¢"¢, Aj14 mouse indicates the presence of
granule neurons in heterotopia. tdTomato fluorescence (g) and DAPI counterstaining (h) in a
sagittal section from a /s/1¢"¢, Aj14 mouse indicates the presence of granule neurons in
heterotopia. k-1, High magnification of labeled granule cells and axons (arrows) from
heterotopia in same brain. Refer to Table 1 for official names of mouse lines used in this
figure. Data in a—f from the 7ransgenic Characterization Database of the Allen Brain Atlas.
Scalebars in microns: a—d = 262; e = 879; f = 198; g—j = 300; k, | =25
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Fig. 7.

Nigssl—stained sections from F1 mice from 7ie2-Cre or Lyz2°" driver lines crossed to
HprtALPL/ALPL renorter mice (a—d). Arrows point to normal molecular layer (a-b) or
heterotopia in affected brains (c—€). Heterotopia in complex crosses consisting of three
different lines (e-h). Data in gand h from the Allen Brain Atlas. Scalebars in microns: a, c,
e, f=1000; b, d = 400; g, h = 1756
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Fig. 8.

Sagittal sections from 7hyI-GCaMP3 (a—c), Thyl-GCaMP6s (d—f), Snap25CCaMPes (g-i),
and LC3-eGFP (j-1) lines with heterotopia. Native GCaMP or GFP expression shown
(green) as well as counterstaining with DAPI (blue) or propridium iodide (red) to
demonstrate heterotopia. Low magnification images shown in left-side panels and higher
magnification images of heterotopia shown in middle and right-side panels. Scalebars in
microns: a, d, g, j = 750; b, ¢, e, f, k, 1 = 300; h, i = 150
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