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The Evaluation of Cognitive Constructs Using Structural BEquation Modeling

Morton Ann Gernsbacher & H. H. Goldamith
University of Texas at Austin

Though, in anthropomorphic terms, the field of cognitive psychology has barely
grown out of young adulthood, its development thus far has been markedly influenced by
several of its sister sciences (e.g., theoretical linguistics, artificial intelligence,
engineering science, philosophy). These influences are most noticeable within the
structural models cognitive psychologists propose to describe various aspects of
cognitive processes. This paper presents an approach to structural modeling that arose
from work within the field of econometrics and has recently been successfully applied to
describe behavioral processes within the fields of sociology and biometrical genetics.
We believe this approach to be particularly well suited for modeling cognitive behavior
because it helps to resolve several of the paradoxes involved with other methods of
modeling.

Rather ironically, cognitive psychologists demonstrate less catholic tastes in the
methodology they employ to verify their models than they do in outlining their models.
Most cognitive psychologists collect behavioral data from classical 2 by 2 designs and
then analyze these data with standard analyses of variance. Some potential problems
arise when we attempt to extrapolate from two or four cells of means (or a series of
such sets of data) to a more elaborate description of an underlying process. First,
although we manipulate our experimental variables in a binary fashion, very often these
variables occur naturally in a continuous distribution and it 1is this latter
distribution we often imply in our models. Second, in order to obtain laboratory
control, we systematically investigate the effects of different variables by pitting
them in a series of one-to-one contrasts. Thus, the entire model is seldom tested
simultaneously and we never gain an appreciation for the extent to which the model can
account for all the phenomena it purports to explain. Third, the degree of the
relationship between the theoretical constructs represented by the model and the
variables used to measure these constructs is often left unquantified. For example, how
well 1is the construct we call "long-term memory" indexed by the percentage of words
correctly recalled after a two-week interval? In actuality, any time we test a
theoretical model we are simultaneously testing the adequacy of a "measurement model."
With the approach we shall describe today, this fact is made explicit. Moreover, the
processes of model fitting and model testing are integrated into the same procedure.

Overview of Structural Equation Modeling

Structural equation modeling (SEM) 1s a comprehensive system for testing systems of
linear hypotheses involving both observed, or "manifest," variables and theoretical
constructs, or "latent" variables. Best known among the family of SEM approaches is the
Linear Structural Relationships (LISREL) approach (Joreskog & Sorbom, 1978) which we
used in the present demonstration. It is important to note that the SEM approach
requires that the investigator have an explicit theory guiding his/her research and that
all latent constructs in the theory be assessed, preferably with multiple convergent
measures. The implementation of SEM involves three major steps:

(1) Specification of the model. The SEM approach requires the investigator to
specify, a priori, a model in which theoretical constructs are hypothesized to be
functionally related to observed variables. In cognitive psychology, these wvariables
might be behavioral measures such as reaction time or performance accuracy on a
laboratory task or they could be stimulus characteristics such as orthographic
regularity or semantic meaningfulness as indexed by a normative scale. The theoretical
constructs are such entities as lexical familiarity, memory span, or the structure of
semantic categories. Furthermore, "“causal" (or functional) relationships among the
theoretical constructs must be specified. Thus, SEM can be thought of as a procedure
that combines elements of traditional multiple regression, factor analysis, and path
analysis.




(2) Model estimation. Once the model is specified, the values for the parameters
in the model are simultaneously estimated using an iterative procedure, which in the
case of LISREL is a maximum likelihood algorithm. The input for this analysis is a
variance-covariance matrix for all of the observed variables measured in the study. The
magnitude of three types of parameters can be estimated. Values for the hypothesized
causal relationships can be interpreted as partial regression coefficients. Values for
relationships that are not specified as being causal can be thought of as correlations.
Finally, the residual, or unexplained variation, in the latent variables and in the
manifest variables is estimated. The statistical significance of each of these
parameters (with exceptions noted later) can also be computed.

(3) Evaluation of goodness-of-fit of the model. The statistical evaluation of the
overall fit of the model to the data is a crucial element of the SEM approach, an
advantage that distinguishes SEM from most other data analytic procedures. A chi-square
statistic, with its associated degrees of freedom, is the most common indicator of the
likelihood that the observed variance/covariance matrix could have eamerged if the
specified model were "true." The number of degrees of freedom in a model is the
remainder when the number of parameters being estimated is subtracted from the unique
number of observed variances and covariances. If this difference is negative, the model
is, of course, not identified. Larger values of chi square, relative to the degrees of
freedom, indicate a poorer fit of the model to the data. It is this goodness-of-fit
evaluation that places SEM within the group of confirmatory, rather than exploratory,
statistical procedures.

The Constructs of Category Structure and Category Verification

Oover a decade of research in the field of cognitive psychology has been aimed
toward investigating human semantic memory. The general consensus emerging from this
body of work is that semantic memory is organized in a highly systematic and orderly
fashion. One of the most commonly described units of organization within this store is
the semantic category. Several principles have been proposed to underlie the
organizational structure of such categories. The most popular of these are the
principles of association frequency, semantic distance, featural overlap and typicality.

According to the principle of association frequency, membership in a semantic
category 1is a function of the frequency with which a category member, such as ROBIN has
been previously associated with a particular category concept, such as BIRD, and
vice-versa. Many of you will recognize this principle as underlying many specimens of
the very familiar breed of network models of conceptual knowledge. When speaking about
semantic categories, we have simply substituted the term "category concept" for the term
"superordinate" and the term "category member" for "subordinate." The principle of
association frequency is wusually assessed by collecting normative data upon the
frequency with which subjects will mention a category member in response to a category
nane, ard vice-versa.

A second principle proposed to underlie the structure of semantic categories is
based purely upon degree of intra-category similarity. The general procedure used to
assess this principle is to ask subjects to rate the similarity of pairs of members from
a particular category. These data are then submitted to a multidimensional scaling
procedure that places the category members in Buclidean space such that the metric
distances between category members 1is inversely and monotonically related to their
semantic similarity. And, according to this principle, category membership is a
function of a member's scaled position within the multidimensional configuration
revealed for that category.

A third principle that has been proposed to underlie the structure of semantic
categories 1is that of typicality. Typicality simply refers to the degree to which each
member of a category is believed to be a good exemplar of its category. For example,
most subjects will rate a ROBIN as being a very typical member of the category BIRDS
while a CHICKEN is usually rated to be much less so.

A fourth principle that has been proposed to underlie the structure of semantic
categories involves the notion of features. Features are attributes or properties of a




semantic concept. Though the possession of a feature by a concept can only be present
or not present, semantic features themselves are believed to vary in a more continuous
fashion in regard to their importance in defining category membership. For example, a
feature of the category BIRDS such as "has feathers," might be more important in
defining category membership, while a feature such as "perches in trees" might be less
criterial. Given that each category member can also be described by a set of
characteristic features, according to the principle of featural overlap, membership in a
semantic category is a function of the number and type (more or less criterial) of
categorically descriptive features shared between the category member and the category
concept.

Clearly, each of these principle that have been proposed to underlie the structure
of semantic categories implies the existence of a theoretical construct, namely Category
Structure. Thus, in the nomenclature of SEM, Category Structure is a latent variable.
Also common to each of these structural principles is an empirical prediction. Each
principle predicts that Category Structure affects behavioral processes. The laboratory
measure comuonly used to evaluate this prediction is performance on a timed category
verification task. 1In this task, subjects are presented with the name of a category
member and asked to verify that it belongs to its appropriate category. Both the speed
with which a subject responds (i.e, reaction time) and his/her accuracy of response
(i.e., error rate) are provided. Thus, it has been proposed that measures of these four
principles are related to the latent variable Category Structure. Category Structure,
in turn, has been proposed to influence another latent variable, what we will call
Category Verification. The latter variable is measured by reaction time (RT) and error
rate. Here 1is a prime example of the proposal of implicit constructs and their causal
relationships that requires evaluation in a simultaneous fashion.

In this study, we collected several independent sets of data upon one rather large
sample of items. These items were eight semantic categories (viz., FRUITS, VEHICLES,
FURNITURE, VEGETABLES, BIRDS, SPORTS, CLOTHING) and twenty each of their respective
members. The data collection was arranged into two stages. In the first stage,
measures of each of the four structural principles were obtained for the entire set of
items in procedures identical to those employed by previous researchers. In the second
stage, measures of performance (i.e., speed and accuracy) on the speeded category
verification task were obtained, using the previously measured items as experimental
stimuli. A different group of 50 undergraduates at the University of Texas participated
in each aspect of the data collection. These subjects provided us with a data base
composed of 24,000 weasures of association frequency, 4825 measures of feature
criteriality, 80,000 measures of feature possession, 76,000 measures of semantic
distance, 807 measures of typicality, 12,750 RTs (with the effects of word length
removed) , and 136 erroneous responses. These data were reduced to a more manageable 6 X
6 (four structural principles and two performance measures) correlation matrix that we
proceeded to analyze using the SEM approach.

Application of Structural Equation Modeling

From the theoretical guidance outlined above, the model 1in Figure 2 has been
specified, estimated, and evaluated. Before discussing the model itself, we should
clarify the notation used in Figure 1. Manifest variables are represented by
rectangles, latent variables are depicted as circles, the direction of causal or
functional relationships is specified by arrows, and unexplained relationships are
denoted by curved lines. Each figure that we could draw using the symbols in Figure 1
and the conventions of path analysis specifies a series of linear equations that are
simultaneously solved by the LISREL procedure. For the analysis presented here, we used
the RAM parameterization (McArdle & McDonald, 1981) of version IV of the LISREL program
(Joreskog & Sorbom, 1973).

[t us now consider each of the portions of the model. On the left side are the
manifest wvariables hypothesized to represent different, but correlated, aspects of the
latent variable Category Structure. In one sense, we can think of Category Structure as
a factor and the standardized partial regression coefficients .69, -.57, .82, ard .79 as




factor loadings for the 4 observed variables. Note that these coefficients are high and
that the residual variance in each manifest variable is low. The negative value for
semantic distance is simply due to the fact that the Multidimensional Scaling program
(ALSCAL) used to derive the measure scales dissimilarities rather than similarities.

The two undirected relationships at the extreme left of Figure 1 represent
unexplained associations between residual variation between Semantic Distance and
Typicality and between Typicality and Featural Overlap. The existence of these weak but
statistically significant relations means that there is systematic covariance within
these pairs of manifest variables that is not common to the other two variables.

Switching our attention to the right side of Figure 1, we find the measuramnent
model for Category Verification. Gernsbacher (1982) has empirically demonstrated that a
combination of Reaction Time and Error Rate is a much more comprehensive measure for
evaluating performance in many speeded cognitive paradigms than either of the two
measures alone. Even the low error rate observed in these data (viz., mean percentage
of error = 5%) contributes substantially to the Category Verification latent variable.
We do notice, however, that RT is the stronger contributor.

The key prediction of the model is that Category Structure bears a functional
relationship to (or "causes") performance on the Category Verification task. Thus, we
examine the directed path in the center of Figure 1. The standardized partial
regression coefficient of .95 shows that the influence of Category Structure on
verification performance is strong indeed! This rather startling degree of
predictability from a collection of paper-and-pencil measures completed in a classroom
to choice RT performance obtained under highly standardized laboratory conditions alerts
us to the potential power of the SEM approach. Compare this regression coefficient of
.95 to the zero order Pearson product-moment correlations of .56, -.49, .69, and .49
between, respectively, Association Frequency, Semantic Distance, Typicality, and
Featural Overlap, and RT in these same data.

There ars some other noteworthy points concerning the estimation procedure. The
sets of directed relations on both sides of Figure 1 are simultanecusly derived so as to
maximize the predictability of Category Verification from Category Structure. Thus, we
can conclude from the fact that Typicality is the principle most strongly related to
Category Structure that Typicality also 1is the best single predictor of Category
Verification. From the rules of path analysis, we know that the magnitude of this
prediction is .82 X .95 = .78. Still employing the rules of path analysis, we can
account for all of the standardized variance in, say RT, by computing (.85 X .85) + .28
= 1.00.

Our next task is to evaluate the adequacy of the model as a whole. As specified in
Figure 1, the model does fit the data rather well. In addition, the first-order
derivatives (supplied by LISREL-IV) for each of the potential parameters of the model
are uniformly low, thus imdicating no local areas of lack of fit in the model.

In many cases, the chi square statistic may lead to rejection of the model. The
LISREL-1IV program provides information on the loci of lack-of-fit that permits one to
change the model to improve fit. Ideally, the investigator would next collect fresh
data and attempt to confirm the revised model. 1In actual practice, the model is often
"fixed" to improve fit based on preliminary attempts to fit the model. In fact, the
three undirected relations in Figure 1 were added to the model in this fashion.

Within the constraints of our data, we can pit rival structural equation models
against one another. The result is a test of the relative ability of the two alternate
theories to account for the observed covariation. One model we were interested in
specified that the four categorization principles should contribute equally to the
Category Structure latent variable, i.e., that the four partial regression coefficients
be constrained to be equal during the maximum likelihood estimation process. When we
evaluated this model, we found a chi square of 51.88 with 10 df. 1In an opposing model,
all conditions were equivalent, except that the four principles of categorization were
allowed to vary freely in their estimated contribution to the latent wvariable. This
latter model yielded a chi square of 42.56 with 8 df. Neither model fits very well, but

achieving optimal fit is not the purpose of this comparison. A statistical comparison



of the two models shows that X diff = 9.32 with 2 df, a significant difference (p =
.01) . This comprehensive test of models offers evidence that the four principles are
not equivalent measures of Category Structure.

Concluding Remarks

One goal of this paper has been to convey samething of the potential of the SEM
approach for model building and testing within the realm of cognitive psychology
research. In attempting to do this, we have underemphasized the difficulties of the
approach. Perhaps it is appropriate to conclude with some cautions, that are discussed
more fully by Horn and McArdle (1984). Given that SEM, 1like any multivariate
maximization procedure, capitalizes on chance relationships in the data, replication of
complex findings is mandatory. Issues of identification can be quite intractable, so
much so that studies not initially conceptualized with SEM in mind are often unsuitable
for SEM analysis. On the other hand, SEM has potentials we have not explored; for
example, interactive terms can be entered into the systems of equations and multiple
groups of subjects or items can be analyzed simultaneously. On balance, the approach is
worth the attention of a discipline that utilizes complex models and is in need of
methods for testing them comprehensively.
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FIGURE 1. A Structural Equation Model of the Relationship Between

Category Structure and Category Verification
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