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Abstract

The Human Connectome Projects in Development (HCP-D) and Aging (HCP-A) are two large-

scale brain imaging studies that will extend the recently completed HCP Young-Adult (HCP-YA) 

project to nearly the full lifespan, collecting structural, resting-state fMRI, task-fMRI, diffusion, 

and perfusion MRI in participants from 5 to 100+ years of age. HCP-D is enrolling 1300+ healthy 

children, adolescents, and young adults (ages 5–21), and HCP-A is enrolling 1200+ healthy adults 

(ages 36–100+), with each study collecting longitudinal data in a subset of individuals at particular 

age ranges. The imaging protocols of the HCP-D and HCP-A studies are very similar, differing 

primarily in the selection of different task-fMRI paradigms. We strove to harmonize the imaging 

protocol to the greatest extent feasible with the completed HCP-YA (1200+ participants, aged 22–

35), but some imaging- related changes were motivated or necessitated by hardware changes, the 

need to reduce the total amount of scanning per participant, and/or the additional challenges of 

working with young and elderly populations. Here, we provide an overview of the common HCP-

D/A imaging protocol including data and rationales for protocol decisions and changes relative to 

HCP-YA. The result will be a large, rich, multi-modal, and freely available set of consistently 

acquired data for use by the scientific community to investigate and define normative 

developmental and aging related changes in the healthy human brain.
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1. Introduction

A growing number of large-scale neuroimaging studies have contributed to recent progress 

in deciphering human brain structure, function, and connectivity. One such endeavor is the 

Human Connectome Project (HCP), a pair of NIH-funded consortia that refined existing 

methods, developed new methods, and acquired foundational data to characterize brain 

networks in healthy young adults aged 22–35 (Glasser et al., 2013, 2016a, 2016b; 

Setsompop et al., 2013; Smith et al., 2013b; Van Essen et al., 2013; Fan et al., 2016). The 

success of this ‘Young-Adult’ HCP (HCP-YA), prompted NIH to launch the Lifespan 

Human Connectome Projects, which include three consortia that collectively target the 

human postnatal lifespan using “HCP-style” data acquisition, analysis, and sharing. Here, 

we provide an introduction and overview to the many aspects of the imaging protocols that 

are common to two of these projects – the Lifespan Human Connectome Projects in 

Development (HCP-D) and in Aging (HCP-A) [http://www.humanconnectome.org], which 

were both funded under the auspices of the NIH Blueprint for Neuroscience Research, 

starting in the summer of 2016.2 We include analyses of imaging data that help to frame the 

imaging protocol in the context of HCP-YA and justify the protocol choices. Separate 

publications address aspects that are unique to the HCP-D project (Somerville et al., 2018) 

and the HCP-A project (Bookheimer et al., under review).

A major consideration in planning the imaging protocol for HCP-D/A was the challenges 

particular to scanning younger and older populations. These include an increased tendency 

for head motion at both younger (Satterthwaite et al., 2012) and older ages (Mowinckel et 

al., 2012; Geerligs et al., 2017), coupled with a reduced tolerance for long individual scans 

and long overall scan sessions (e.g., due to boredom and reduced compliance at younger 

ages, and muscular or joint discomfort or other medical comorbidities at older ages). Key 

decisions about MRI hardware and protocol design were made with these challenges in 

mind. Thus, a common theme of this paper is how to manage the challenges of imaging a 

diverse span of ages in a harmonized but optimal manner.

1.1. Relation to HCP-Young Adult project

The HCP-D and HCP-A protocols were strongly influenced by the original HCP Young-

Adult (HCP-YA) Project, for which data acquisition was conducted at Washington 

University (3T customized ‘Connectom’ scanner) and the University of Minnesota (7T 

scanner) from 2010 to 2016 (Van Essen et al., 2013). Thus, many common data components 

exist between the HCP-D, HCP-A, and HCP-YA projects. First, both HCP-D and HCP-A 

include the same imaging modalities as collected in the HCP-YA: structural imaging (T1w 

2The third component of the NIH-funded Lifespan Human Connectome Project is the “Baby Connectome” project, which spans ages 
0–5 years and uses data acquisition and analysis customized for very young children [http://babyconnectomeproject.org].
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and T2w), diffusion imaging (dMRI), resting state functional connectivity (rfMRI), and task-

based functional imaging (tfMRI). However, a different scanner platform was used and 

various changes were made to the imaging protocols in order to customize the HCP-D/A 

projects to the scientific and pragmatic needs of their specific study populations (see Image 
Acquisition). The HCP-YA imaging data were acquired over two days in four sessions of 

~1-h each, which exceeds the tolerance of many younger children and older adults. Hence, 

we shortened the duration for each modality. We modified the task fMRI to make the tasks 

maximally informative about functional domains of high interest for each lifespan stage. We 

also maximized the similarity of the HCP-D, HCP-A, and HCP-YA out-of-scanner 

assessments, although some of the behavioral assessments are only appropriate for limited 

age ranges (see Somerville et al., 2018; Bookheimer et al., under review for details on the 

behavioral assessments of each individual project).

The NIH Funding Opportunity Announcements for HCP-D and HCP-A excluded the 22–35 

years age range under the rationale that the young adult age range was already well sampled 

by the HCP-YA project. This poses challenges for bridging the full lifespan across the HCP-

D, HCP-A, and HCP-YA projects, since the 3T data for HCP-YA were collected on a 

customized ‘Connectom’ scanner using a longer scan protocol and modestly different scan 

parameters. In contrast, scanning for HCP-D and HCP-A is conducted on standard Siemens 

3T Prisma scanners. Thus, work is needed to determine the degree to which the data can be 

merged across projects, as well as with other large-scale projects. To aid in addressing this 

issue, we have acquired data on the HCP-D/A and HCP-YA platforms in the same 17 

participants (see MRI Scanner). These scans will be analyzed and made publicly available to 

enable systematic analysis of the impact of hardware and protocol differences, and to enable 

users to investigate approaches for maximally harmonizing and jointly analyzing HCP-D 

and HCP-A with the extensive young-adult data collected by the HCP-YA study. 

Additionally, data from more than 100 healthy subjects in the 22–35 age range, scanned 

using protocols very similar to ours, will be made available via the NIH-funded 

Connectomes Related to Human Disease projects. We will also facilitate harmonization with 

the brain imaging component of the UK Biobank prospective epidemiological study (Miller 

et al., 2016) [http://imaging.ukbiobank.ac.uk], which has an imaging target of 100,000 

participants, by scanning 20 participants from the HCP-A project through the Biobank 

imaging protocol on a standard Siemens 3T Skyra scanner at the Athinoula A. Martinos 

Center for Biomedical Imaging at Massachusetts General Hospital (which is the same model 

scanner being used for the Biobank project).

1.2. Harmonization across sites

To meet the HCP-D/A recruitment and diversity goals, data are currently being acquired at 

four different institutions for each project.3 All scanning is conducted on a common 

platform across sites running the same software version (E11C) using an electronically 

distributed protocol. One volunteer served as a “human phantom” who was scanned at each 

3HCP-D data acquisition is conducted at Harvard University, University of California-Los Angeles, University of Minnesota and 
Washington University in St. Louis. For HCP-A, Massachusetts General Hospital serves as the 4th acquisition site instead of Harvard. 
Additionally, investigators at the University of Oxford play a key role in guiding acquisition and data analytic approaches, as in HCP-
YA.
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site twice (5–7 months apart); these data will be analyzed for site effects within a single 

individual. Additionally, using ongoing QC processes (Marcus et al., 2013; Hodge et al., 

2016) we monitor for possible site differences in imaging measures and check for drifting or 

abrupt changes in measures as a function of time. Initial analyses of QC data indicate that 

less than 10% of variance is explained by site on QC measures derived from resting-state 

data such as temporal SNR, relative (frame-to-frame) motion, and image smoothness. Thus, 

even though there may ultimately be some statistically significant differences across sites 

(due to the power to detect even small differences with a large number of subjects), we 

anticipate that variability will be mainly attributable to non-site-specific factors. To ensure 

procedures are followed consistently and accurately across sites, we instituted a set of 

“standard operating procedures” (SOPs), training sessions, frequent cross-site 

communication, and evaluation visits to each site by the lead coordinator.

2. MRI hardware

Scanning at all sites uses a Siemens 3T Prisma, a whole-body scanner with 80mT/m 

gradients capable of a slew rate of 200T/m/s. These gradients are the product variant of the 

100mT/m research gradients used in the customized 3T ‘Connectom’ (HCP-YA) scanner. 

High gradient strength is especially valuable for diffusion MRI (dMRI), as it achieves high 

diffusion weighting with high sensitivity (Sotiropoulos et al., 2013), made possible by the 

much shorter echo times that can be achieved compared to previous generations of 

commercial gradient systems. The 32-channel head coil enables high acceleration factors via 

simultaneous multislice (SMS; i.e., “multiband”) acquisitions (Feinberg et al., 2010; Xu et 

al., 2013), for which we are using the multiband EPI sequences available through the Center 

for Magnetic Resonance Research (CMRR) [http://www.cmrr.umn.edu/multiband].4 

Together, these technologies enable whole brain imaging with submillimeter structural MRI, 

sub-second BOLD fMRI, high spatial resolution perfusion imaging, and high angular and 

spatial resolution diffusion imaging with higher signal to noise than is possible on more 

conventional 3T MRI scanners.

To enable analysis of the cumulative impact of hardware and protocol differences between 

the Prisma (HCP-D/A) and customized ‘Connectom’ (HCP-YA) scanners/protocols, 17 

participants were scanned through the full HCP-YA protocol (prior to decommissioning the 

customized ‘Connectom’ scanner in 2016) and then enrolled in the HCP-A study. As an 

initial analysis of this data we computed the temporal SNR (tSNR) of the resting-state data. 

tSNR was very similar between the Prisma and ‘Connectom’ scanners (Fig. 1), but with 

differences that will nonetheless need to be carefully considered for their potential to 

manifest as “group” differences in downstream analyses.

4Siemen’s VE11C software version introduced their implementation of SMS for fMRI and dMRI (with add-on SMS license). To our 
knowledge there has not yet been a rigorous comparison with the CMRR implementation. The CMRR version also includes useful 
features such as: (i) option to save the “single-band reference” image, (ii) option to automatically write the raw k-space data to a 
remote disk, (iii) more robust control of reversed phase encoding polarity, and (iv) dicom logging of physiological recordings. For 
these reasons, along with the breadth of experience with the CMRR sequences, including feedback from hundreds of independent 
investigators over the course of nearly a decade, we continue to use the CMRR implementation.
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Participants 8–21 years old in HCP-D and all participants in HCP-A use the Siemens 32-

channel Prisma head coil. See Supplemental Text for some additional details regarding this 

choice, including our plans for the head coil for scanning the 5–7 year olds.

3. Image acquisition

To promote consistently high data quality, to ensure participant satisfaction across the 

lifespan, and to accomplish that in the context of a large-scale study, it was important to 

reduce the total scanning from the 4 sessions of HCP-YA to 2 sessions for HCP-D/A. When 

designing the protocol, we targeted approximately 45 min of total scan time per session, so 

that most participants would be “in the bore” less than 60 min. The reduction of the alloted 

scanning duration by over 50% relative to HCP-YA necessitated some difficult choices. For 

example, while we added a perfusion scan to the HCP-D/A protocols (see below), some 

other potentially informative scans such as fluid attenuated inversion recovery (FLAIR) and 

susceptibility weighted imaging (SWI) were considered but in the end not included. 

Additionally, we targeted protocol adaptations that would help reduce the impact of an 

increased tendency for motion and/or discomfort in the youngest and oldest individuals. This 

includes the use of navigators and real-time motion correction in the T1w/T2w structural 

scans (see T1w and T2w structural imaging), use of a 2D (rather than 3D) sequence for 

arterial spin labeling (see Perfusion imaging), and generally shorter individual run durations 

relative to HCP-YA. Table 1 provides an overview of the imaging protocol in HCP-D and 

HCP-A, while Table 2 summarizes the main differences between the HCP-D/A and HCP-YA 

imaging protocols. The field-of-view for all scans is positioned automatically using 

Siemens’ AutoAlign feature (in conjunction with appropriate rotations and position offsets 

saved with each scan) to ensure consistent positioning and angulation across participants. A 

detailed listing of all scan parameters is available at http://protocols.humanconnectome.org, 

where an importable protocol file is also available for Siemens scanners.

3.1. T1w and T2w structural imaging

The commonly used MPRAGE sequence (Mugler and Brookeman, 1990) was used for the 

T1w scan and a variable-flip-angle turbo-spin-echo (TSE) sequence (Siemens SPACE) 

(Mugler et al., 2000) for the T2w scan. High spatial resolution and the combined use of both 

T1w and T2w information improves the quality of surface reconstructions (van der Kouwe et 

al., 2008; Glasser et al., 2013) and enables generation of cortical estimates of myelin based 

on the T1w/T2w ratio (Glasser and Van Essen, 2011; Shafee et al., 2015). However, for 

HCP-D/A we made two key changes to the acquisition methods.

First, the T1w scans use a multi-echo MPRAGE (van der Kouwe et al., 2008) in place of the 

conventional MPRAGE pulse sequence. The multi-echo version acquires 4 different echoes 

for each line of k-space within the same scan duration as a conventional single-echo 

MPRAGE scan of the same spatial resolution by using rapid switching of the readout 

gradient (higher bandwidth). The higher bandwidth reduces susceptibility-induced 

distortions, while the consequent lower SNR of the individual echo images is offset by 

combining the 4 echoes. The resulting root mean square (RMS)-averaged T1w image has 

contrast and SNR that is comparable to a normal MPRAGE. The high bandwidth also 
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enables the bandwidth to be matched to the T2w scan, thus ensuring more precise voxel-

wise registrations, benefiting cortical estimates of myelin (Shafee et al., 2015).

Second, the HCP-D/A protocol includes embedded volumetric navigators (vNavs) in the 

T1w and T2w sequences for prospective motion correction and for selective reacquisition of 

the lines in k-space that are heavily corrupted by subject motion (Tisdall et al., 2012). To this 

end, very short, low-resolution, 3D echo-planar imaging volumetric navigators are acquired 

once for every TR period (i.e., every ~2.5–3 s), registered in real-time, and the resulting 

positional information used to update the image FOV position during the scan in a similar 

manner to the prospective motion correction sometimes used for BOLD scanning (Thesen et 

al., 2000; Zaitsev et al., 2006). Real-time motion correction can substantially reduce bias in 

brain morphometry results, where motion might induce measurable morphometric 

differences (Reuter et al., 2015; Tisdall et al., 2016). In the HCP-D/A protocol, the vNavs 

are acquired with the body coil to yield a more homogenous image, and their initial position 

is set (automatically using AutoAlign) to exclude most of the neck, so that the registration is 

driven primarily by the brain. In the HCP-D/A protocols, up to 80 s of k-space reacquisition 

is allowed at the end of the vNav-enabled MPRAGE and SPACE scans to replace the 

motion-corrupted k-space lines in the final image reconstruction. This adds modestly to the 

maximum possible duration of the T1w and T2w scans, but is more efficient than having to 

re-collect an entire scan and choosing the one with less degradation due to motion. As of 

June 2018, fewer than 5% of the T1w and T2w scans for both HCP-D and HCP-A have been 

rated as ‘poor’ based on a manual quality inspection (Marcus et al., 2013). The low 

incidence of poor structural scans in these cohorts is likely attributable to the use of the real-

time motion correction and k-space reacquisition.

We also reduced the overall duration of the structural scanning by acquiring a single T1w 

and T2w scan, each with 0.8 mm isotropic voxels, in HCP-D/A (except when the initial scan 

is poor quality). Both structural scans use a sagittal FOV of 256 × 240 × 166 mm with a 

matrix size of 320 × 300 × 208 slices. Slice oversampling of 7.7% is used, as is 2-fold in-

plane acceleration (GRAPPA) in the phase encode direction and a pixel bandwidth of 744 

Hz/Px. For the T1w scan, other parameters include: TR/TI = 2500/1000, TE = 

1.8/3.6/5.4/7.2 ms, flip angle of 8 deg, water excitation employed for fat suppression (to 

reduce signal from bone marrow and scalp fat), and up to 30 TRs allowed for motion-

induced reacquisition. For the T2w scan, other parameters include TR/ TE = 3200/564 ms, 

turbo factor = 314, and up to 25TRs allowed for motion-induced reacquisition.

Last, given the central role of the hippocampus in studies of aging, for HCP-A we added a 

2D, T2w, turbo-spin-echo scan with high in-plane resolution (0.39 × 0.39 mm) and 2 mm 

coronal-oblique slices oriented approximately perpendicular to the long axis of the 

hippocampus. This high in-plane resolution allows identification of hippocampal and 

amygdalar subregions (Iglesias et al., 2015; Saygin et al., 2017; Book-heimer et al., under 

review).

3.2. BOLD imaging

T2*-weighted scans sensitive to the BOLD contrast are used for resting and task-based 

functional MRI. The scan parameters used for the fMRI scans in HCP-D and HCP-A are 
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very similar to those used in HCP-YA. Specifically, the fMRI scans are acquired with a 2D 

multiband (MB) gradient-recalled echo (GRE) echo-planar imaging (EPI) sequence (MB8, 

TR/TE = 800/37 ms, flip angle = 52°) and 2.0 mm isotropic voxels covering the whole brain 

(72 oblique-axial slices). Except for certain task-fMRI acquired with a single run (see Table 

1), functional scans are acquired in pairs of two runs, with opposite phase encoding polarity 

so that the fMRI data in aggregate is not biased toward a particular phase encoding polarity. 

For HCP-D/A we use anterior-to-posterior (AP) and posterior-to-anterior (PA) phase 

encoding rather than left-to-right (LR) and right-to-left (RL) phase encoding as used for 

HCP-YA (Smith et al., 2013a). This is because the allowable echo-spacings on the Prisma 

are such that one cannot achieve a shorter overall echo-train-length when using LR/RL 

phase encoding compared to AP/PA, despite the smaller required L-R phase field-of-view. A 

pair of spin echo images with AP and PA phase encoding polarity with matching geometry 

and echo-spacing to the GRE scans are also acquired at the beginning and middle of each 

scanning session for mapping and correction of image distortions related to magnetic field 

inhomogeneities.

Additionally, for HCP-D/A all sites introduced Framewise Integrated Real-time MRI 

Monitoring (FIRMM) (Dosenbach et al., 2017) approximately 9 months after the onset of 

data collection in each project. We are using FIRMM with all BOLD scans (both resting-

state and task) to provide valuable real-time feedback to the scanner operators regarding 

subject movement. Operators then use this information to provide feedback to participants 

between fMRI runs. If excessive motion is observed at the beginning of a run, that run is 

aborted, the participant asked if they are comfortable, and are reminded of the importance of 

staying still.

3.2.1. Multiband multi-echo piloting—Although the above-described parameters 

were ultimately adopted as the best compromise for harmonization with HCP-YA, in a 

piloting phase we evaluated a multi-echo (ME) fMRI sequence as an alternative to the single 

echo approach of the HCP-YA (Kundu et al., 2012, 2013). An ME sequence permits 

separation of fMRI data into TE dependent (hence a BOLD effect) and TE independent 

(presumed artifact) components, thereby facilitating the denoising process. However, to 

achieve the same spatial resolution, the acquisition of additional echoes typically 

necessitates in-plane acceleration to maintain a reasonable total readout time, which in turn 

(1) significantly reduces SNR and (2) limits the achievable slice acceleration factor, thereby 

resulting in longer TRs, which has implications for the robustness of certain denoising 

algorithms and multivariate-style analyses (Feinberg et al., 2010; Smith et al., 2013a). For 

the piloting, we were particularly interested in whether the standard single echo (MB only) 

acquisition (with shorter TRs) and the existing HCP denoising pipelines (i.e., FIX; Griffanti 

et al., 2014; Salimi-Khorshidi et al., 2014) overcomes the denoising benefits of a ME (plus 

MB) acquisition, which has longer TRs (and consequently fewer time points, but additional 

echoes per time point). Towards this goal, we developed and evaluated a Multiband Multi-

echo (MB-ME) GRE-EPI imaging sequence and compared it with the standard single echo 

MB sequence, which was used in the HCP-YA protocol.

Twelve healthy participants, comprising 6 young (1M/5F, 29.7 ± 4.4 y.o.) and 6 older adults 

(4M/2F, 73.5 ± 8.0 y.o.), were recruited for the MB-ME piloting. We limited comparison to 
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scans with 2.0 mm isotropic spatial resolution, to maintain compatibility with the resolution 

used for HCP-YA. Single-echo BOLD data (MB8-SE) were acquired using MB = 8, TE = 

37.0 ms, TR = 770 ms. ME acquisitions required in-plane GRAPPA acceleration (Siemen’s 

‘iPAT’) and partial Fourier (pF) to achieve the desirable short initial TE. Two-echo data 

(MB5-ME2) used MB = 5, iPAT = 2, pF = 6/8, TE = 14.6/37.1 ms, TR = 970 ms.5 Three-

echo data (MB4-ME3) used MB = 4, iPAT = 2, pF = 6/8, TE = 14.6/37.1/59.6 ms, TR = 

1650 ms. Ten minutes of eyes-open resting-state acquisitions were acquired using each of 

these three scans in each participant, with the order randomized across participants.

Scans were evaluated in terms of their ability to detect resting-state networks (RSNs), using 

an analysis very similar to that employed in Feinberg et al. (2010) to compare acquisitions 

with differing MB factors and TRs (see Fig. 2 caption for further details). From the final 

mixture-model-corrected (MMC) spatial maps we computed the number of grayordinates 

above a threshold, the sum and mean of the MMC Z-stat values above that threshold, and the 

maximum MMC Z-stat value.

Results (Fig. 2) indicated that for all four measures, for both the processing that did not (top 

row, A-E) and did (bottom row, F-J) have FIX applied, the highest median values were 

obtained with the MB8-SE data. The MB5-ME2 data – which was appealing for its still 

competitive temporal resolution (TR < 1 s), but with the disadvantage of not being 

compatible with the MEDN approach – had lower median values than MB8-SE and the 

difference was statistically significant except for the mean measure of the non-FIX’ed data 

(Fig. 2C), and the count (Fig. 2F) and sum (Fig. 2G) measures of the FIX’ed data. Since the 

threshold (Zt the equal probability threshold between activation and noise) itself differed 

across processing variants (Fig. 2E and J), we conducted additional analyses that quantified 

the sum and mean measures using a common spatial mask and the top 1% of Z-stat values 

(for each processing variant). Those results were broadly consistent in that the median 

values (across subjects) were again highest for the MB8-SE data (Supplemental Figure 2).

In the end, in the context of collecting fMRI with 2.0 mm spatial resolution, we did not find 

a compelling reason to switch to a ME protocol for HCP-D/A, especially given that the 

HCP-YA was acquired with the single echo approach. We acknowledge that at lower spatial 

resolutions (i.e., larger voxels) ME might become advantageous over single echo, since the 

required readout times decrease, allowing more echoes to be acquired without needing 

additional in-plane acceleration, or alternatively to acquire the data with shorter TRs. In 

addition, the relative SNR is higher with larger voxels, making the impact of in-plane 

acceleration less problematic.

3.2.2. Resting state fMRI—For participants 8 years and older, HCP-D and HCP-A 

acquire 26 min of resting state scanning in four runs of 6.5 min each, consistent with recent 

findings and recommendations for obtaining robust connectivity estimates from rfMRI data 

(Laumann et al., 2015; Glasser et al., 2016b; Noble et al., 2017; Pannunzi et al., 2017). 

Though this is longer than in most rfMRI studies, it is less than half of the 58 total minutes 

5Rather than keeping the total acceleration (i.e., product of the MB and iPAT factors) of the MB-ME scans fixed at 8, we decided to 
use MB = 5 for the MB5- ME2 scans (yielding a total acceleration factor of 10) so that one of the two MBME scans could achieve a 
sub-second TR.
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of rfMRI data collected per participant in HCP-YA (Smith et al., 2013a). This reflects the 

need to reduce overall scan time, plus the fact that resting scans can be particularly difficult 

for children to tolerate as they are unstructured experiences compared to active task 

participation or movie watching. For the youngest ages (5–7 years) we reduced the 

individual runs to 3.5 min each because young children generally cannot tolerate viewing a 

fixation cross for 6.5 min, but we acquire six rfMRI runs instead of four, for a total of 21 

min.

During rfMRI scanning, participants view a small white fixation crosshair on a black 

background. Participants are instructed to stay still, stay awake, and blink normally while 

looking at the fixation crosshair.

3.2.3. Task fMRI—HCP-D and HCP-A both include three fMRI tasks [Table 1; HCP-D: 

Guessing, Go/NoGo (“CARIT” task), and Emotion; HCP-A: VisMotor, Go/NoGo, and 

FaceName]. Other than the number of frames collected per run, the acquisition parameters 

for tfMRI and rfMRI are identical. Because two of the three fMRI tasks are unique to each 

project, task details and example data are provided in the project-specific papers 

Bookheimer et al. (under review) and Somerville et al. (2018). All tasks were programmed 

in PsychoPy (Peirce, 2007, 2009) and are freely available at http://

protocols.humanconnectome.org.

Participants receive guided instructions and practice for all tasks prior to entering the MRI 

scanner (see PsychoPy download package for details), which can be extended as needed 

until the participant demonstrates comprehension of the tasks. Participants also view brief 

instruction reminder screens in the MRI scanner immediately before each task begins. 

Scanner operators monitor participants’ button responses and accuracy in real-time 

(prompting reinstruction or early aborting of a scan when necessary).

During functional tasks, images are presented to the participant using site-specific, pre-

existing projection systems viewable through a mirror mounted on the head coil housing. 

Because sites have different projection systems, we quantified the viewable visual field for 

each scanner and calibrated each site’s visual settings to match the on-screen stimulus 

dimensions at each site in units of visual degrees. Button response data are acquired using 

identical button boxes (2-button left and right; Current Designs, Inc.,Philadelphia, PA).

3.3. Diffusion imaging

The HCP-YA protocol acquired 53 min of dMRI data per participant, providing in-vivo 3T 

data of unprecedented quality in terms of both spatial and angular resolution (Sotiropoulos et 

al., 2013). However, collecting that much dMRI data was not feasible for HCP-D/A and, as 

such, the dMRI was reduced to approximately 21 min for both projects in order to 

accomodate all of the modalities in the shortened available scan time. To cope with this 

reduction in scan time, while also maintaining a high enough diffusion SNR for higher than 

typical spatial and angular resolutions, we increased the MB factor from 3 to 4, and 

increased the voxel size from 1.25 to 1.5 mm isotropic. With the increase in MB and the 

larger voxels (thus requiring fewer slices and also allowing for shorter readout durations), 

the TR for the dMRI of HCP-D/A was considerably shortened (3.23 s vs 5.52 s for HCP-
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YA), which allowed for more q-space samples to be acquired per unit time. While the overall 

duration for dMRI in HCP-D/A is 60% shorter than HCP-YA, we end up collecting only 

31% fewer diffusion-weighted volumes in total for HCP-D/A and the same number of 

volumes per shell for the 2 shells (b = 1500 and 3000 s/mm2) acquired in the HCP-D/A 

protocol. During four consecutive dMRI runs, q-space is densely sampled with 185 

diffusion-weighting directions, each acquired twice with opposite phase encoding direction 

(AP and PA) to facilitate robust correction of distortions. The directions are sampled on the 

whole sphere, with the shells interleaved within each dMRI run and 28 b = 0s/mm2 volumes 

equally interspersed across the four runs.9 A partial Fourier factor of 6/8 and no in-plane 

acceleration is used (same as in HCP-YA). We considered the use of even higher MB factors 

(5 and 6) for the dMRI to further reduce the TR and either sample additional points in q-

space or reduce the overall scan time (or some of both). However, the shorter TRs do 

introduce some SNR penalty due to T1 relaxation effects (i.e., reduced recovery of 

magnetization). In addition, it was recently demonstrated that shorter TRs (<3 s), or reduced 

effective time between successive excitations in dMRI (e.g., due to differing slice-ordering 

schemes), can result in movement artifacts related to spin-history effects (Andersson et al., 

2017) that are currently not correctable. Given this, and the intrinsically low SNR of 

diffusion images at high b-values, the overall benefits, if any, of much shorter TRs are not as 

significant in the < 3s range, which would be achieved by MB = 5 (TRmin = 2.6 s) and MB = 

6 (TRmin = 2.2 s). This is in contrast to fMRI where image SNR is inherently higher and the 

motion/spin-history effect is less of an issue for shorter TRs (due to the lack of large 

diffusion-sensitization gradients). Thus the optimization of fMRI using higher accelerations 

and shorter TRs involves different considerations (Feinberg et al., 2010). It is possible that 

further shortening of the TR (higher accelerations) for diffusion MRI may be beneficial in 

certain scenarios. Realizing these benefits will depend on many factors, such as the intended 

diffusion analysis and corresponding models (which may be extremely sensitive to q-space 

sampling), cohort or subject specific effects (e.g., motion), or coil specific effects (e.g., g-

factors).

We compared the dMRI protocols for HCP-D/A and HCP-YA by quantifying their contrast-

to-noise-ratio (CNR), uncertainty in estimating the main fiber orientation in the corpus 

callosum (CC), and their ability to estimate 2- and 3-way fiber crossings in the centrum 

semiovale (CSO). These particular measures were chosen because collectively they capture 

not only basic image quality (CNR) but also the impact of protocol choices such as voxel 

size and the specifics of the q-space sampling (e.g., number/distribution of shells) on some 

downstream measures derived during tractography. To investigate whether CNR is predictive 

of performance on the uncertainty and %-crossing measures we generated scatterplots of 

“Raw CNR” and “Effective CNR” versus those two measures (Fig. 3; see caption for 

details). The HCP-D/A and HCP-YA protocols are similar in terms of fiber orientation 

uncertainty in the CC (Fig. 3A and B) and percentage of 2-way crossings detected in the 

CSO (Fig. 3C and D). However the percentage of 3-way crossings detected in the CSO is 

about 10 percentage points higher in the HCP-YA protocol compared to HCP-D/A (Fig. 3E 

9The actual diffusion vector tables specify 6 b = 0 volumes per run, but due to a peculiarity of the Siemens interface an extra b = 0 
volume is acquired at the beginning of each run, yielding 28 b = 0 volumes in total.
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and F), consistent with the increased total imaging time of the HCP-YA dMRI protocol. The 

scatterplots also indicate that Effective CNR is a reasonable single predictor of the 

uncertainty and %-crossing values across both protocols. The quantification in Fig. 3 shows 

that the dMRI protocol for HCP-D/A has favorable properties relative to the dMRI protocol 

used for the HCP-YA study despite its 60% shorter overall acquisition duration. This sort of 

quantification is also valuable for situating the HCP-D/A and HCP-YA dMRI protocols in 

the context of other studies. Toward that goal, Supplemental Figure 3 contains a comparison 

of CNR that includes data from the UK Biobank project (Miller et al., 2016) (including 

quantification of CNR separately by b-value) and Supplemental Figure 4 is analogous to Fig. 

3, but with UK Biobank additionally included as part of the scatterplots.

3.4. Perfusion imaging

Arterial spin labeling (ASL) (Detre et al., 1992; Alsop et al., 2015) is a non-contrast-

enhanced perfusion imaging method that provides quantitative measurements of cerebral 

blood flow (CBF) as a surrogate marker of brain metabolism and function, making it an 

informative complement to structural and functional connectivity measures. Cerebral blood 

flow is high during childhood and declines progressively during adolescence, stabilizing in 

later adolescence (Biagi et al., 2007; Satterthwaite et al., 2014). Age-associated alterations in 

vascular health are also important for understanding the basis of variation and disease in 

later life. Cerebral blood flow is a critical marker of neurovascular health that is altered 

across a range of conditions of aging including ‘typical’ aging (Leenders et al., 1990; Parkes 

et al., 2004; Chen et al., 2011; Zhang et al., 2017) and Alzheimer’s disease (Hays et al., 

2016). Despite recent progress, changes in CBF across the lifespan remain understudied. We 

accordingly included ASL in both the HCP-D and HCP-A imaging protocols to build 

foundational knowledge about this key aspect of brain function.

Although validated using 15O-water PET (Heijtel et al., 2014) and shown to be reproducible 

over time (Jain et al., 2012), ASL imaging has a relatively low signal-to-noise ratio (SNR). 

Also, arterial transit time (ATT) – the travel time of labeled blood from the labeling site to 

the imaged tissue – is an essential parameter in CBF quantification, yet it changes during 

normal development and aging (Hutchins et al., 1996). Thus, it is important to 

simultaneously measure ATT and CBF by performing ASL imaging acquisition with 

multiple post-labeling delays. We also strove to maximize spatial resolution for ASL to 

improve the ability to assess subtle perfusion changes in the cortical gray matter ribbon and 

in small subcortical brain regions.

Improving ASL resolution is challenging, especially for a multi-delay protocol and within 

the ~5 min acquisition time available in our overall protocol. Recently, several studies have 

reported improvements in the SNR efficiency of ASL. Pseudo-continuous arterial spin 

labeling (PCASL) can improve labeling efficiency and perfusion SNR (Wu et al., 2007; Dai 

et al., 2008). Single-shot 3D imaging methods, such as 3D GRASE (Gunther et al., 2005), 

have been applied for PCASL imaging to increase perfusion SNR, with segmented 3D 

imaging readouts used to reduce spatial blurring due to T2 decay (Tan et al., 2011). 

Segmented 3D PCASL has been recommended as a consensus choice for ASL in clinical 

applications (Alsop et al., 2015). However, segmented 3D acquisitions to improve spatial 
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resolution are highly sensitive to head motion common in young children and elderly 

subjects. Recently, multiband (MB)/simultaneous multislice (SMS) 2D EPI has been 

successfully applied for high resolution whole brain PCASL imaging with a demonstrated 

improvement in perfusion SNR efficiency (Li et al., 2015). Compared to segmented 3D 

GRASE, 2D MB-EPI is less sensitive to subject motion due to its accelerated single-shot 

volume acquisition.

For HCP-D/A we evaluated two acquisition strategies for multi-delay PCASL imaging: 

single-shot 2D MB-EPI and segmented 3D GRASE with background suppression. The total 

acquisition time was limited to approximately 5 min for five post-labeling delays. An initial 

pilot study using low spatial resolution (3.5 mm isotropic voxels) and healthy young adults 

showed no significant differences between the 2D and 3D approaches on ATT and CBF 

quantified in 6 subjects (Fig. 4) (Li et al., 2017), indicating consistent quantification with 

either approach. However, significant T2 blurring was present in 3D GRASE (collected with 

4 segments) and 2D MB-EPI was less sensitive to subject motion, and thus suffered less 

from data loss compared to 3D GRASE. Compared to 2D MB-EPI, 3D GRASE acquires 

fewer perfusion measurements within the same scan duration, as the acquisition time per 

volume is longer due to the segmented acquisition. In particular, only a single measurement 

could be acquired for three of the post-labeling delays for the piloted multi-delay 3D 

GRASE protocol, thus potentially compromising ATT measurement if even just a single 

volume was corrupted due to motion, which is likely to be a common problem in the young 

and elderly populations of the HCP-D/A projects. Together these factors motivated us to 

choose 2D MB-EPI over 3D GRASE for multi-delay PCASL imaging.

A second pilot study evaluated high spatial resolution PCASL scans (2.5 mm isotropic), 

closer to that of the other imaging modalities (and to our recommendations for ‘HCP-style’ 

paradigms; Glasser et al., 2016b). Due to the prevalence of motion issues using 3D GRASE, 

this pilot study focused on 2D MB-EPI PCASL. Fig. 5 shows ATT and CBF maps acquired 

using the high-resolution 2D MB-EPI protocol for one subject. This high-resolution multi-

delay 2D MB-EPI PCASL protocol yielded high quality ATT and CBF maps, and provided 

plausible ATT and CBF estimates (Fig. 4), thereby warranting its adoption for CBF 

quantification in both HCP-D and HCP-A.

During the ASL scan, participants 8 years and older view a small white fixation crosshair on 

a black background (same as for the rfMRI scans). However, the 5–7 year olds in HCP-D are 

allowed to watch a movie during the ASL scan, given concerns about asking the youngest 

children to view a fixation cross for 5.5 min. We avoid having the older children and adults 

watch a movie lest it induce cognitive or visual processing related variations in the ASL 

measurements.

3.5. Ancillary data collected during scan session

3.5.1. Pulse oximetry and respiration—Pulse oximetry and respiration data are 

acquired during rfMRI, tfMRI, and dMRI scans. We did not use these physiological 

measures as part of the ‘minimal-preprocessing’ or denoising of HCP-YA, nor do we intend 

to do so for HCP-D/A (due to the challenges in obtaining and confirming high quality 

recordings in all subjects). Nonetheless, collection of these measures provides a large 
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aggregate dataset for investigators interested in evaluating various approaches for removing 

physiological noise from fMRI and dMRI data (Glover et al., 2000; Birn et al., 2006; Chang 

et al., 2009; Power et al., 2017; Glasser et al., 2018). Physiological measurements are 

sampled at 400 Hz using the built-in Siemens Physiological Monitoring Unit and wireless 

sensors connected to pulse oximetry and respiratory bellows. Using an option available in 

the CMRR multiband sequences, the recordings are automatically recorded into the scan 

session itself as custom formatted DICOM files, containing timing information and 

universally unique identifier codes to (i) eliminate the need to separately gather and transfer 

the files, and (ii) ensure robust synchronization of physiological measurements to image 

acquisitions.

3.5.2. Eye monitoring—Wakefulness can strongly influence resting state network 

measures (Tagliazucchi and Laufs, 2014; Laumann et al., 2017; Glasser et al., 2018). 

Accordingly, we make video recordings of one eye during all scans involving viewing of a 

fixation cross (i.e., resting state for all participants, and ASL for participants 8 years and 

older). The cameras at each site (either MREyes from Clear View Designs, or Eyelink from 

SR Research) utilize infrared light sources and sensors to illuminate the participant’s eye 

unobtrusively in the darkened scanner bore. The video sources are connected to a USB 

frame grabber (Epiphan DVI2USB) to convert the analog video sources to digital inputs, and 

the digital videos are synchronized with the scan acquisition and recorded at a frame-rate of 

30 Hz using customized PsychoPy scripts and the OpenCV library. A small field of view 

including only the left eye is captured to avoid recording identifying facial features. Eye 

monitoring commenced in 2017 for some sites and in 2018 for others.

4. Informatics and public release

The HCP-D and HCP-A are intended to serve as multipurpose datasets that scientists can 

use for a wide variety of analytical purposes. We will continue to release ‘unprocessed’ data 

for users that desire access to the imaging data at its most basic level.10 In addition, the 

HCP-D/A funding includes limited funding to support the adaptation of the analysis pipe-

lines successfully developed and implemented for the HCP-YA project, which allowed users 

to begin their analyses with ‘minimally-pre-processed’ (Glasser et al., 2013; Sotiropoulos et 

al., 2013) Supplemental Table 1) and denoised data (Griffanti et al., 2014; Salimi-Khorshidi 

et al., 2014) that had undergone distortion correction, within- and cross-subject spatial 

registration, and generation of surface-based data representations. The focus on a wide age 

range and also the longitudinal component in both HCP-D and HCP-A poses some new and 

distinct challenges that will necessitate adaptations of the existing HCP-YA processing and 

analysis pipelines. In brief, some of the issues that we hope to investigate or incorporate for 

HCP-D/A include: (i) appropriate atlases and templates across the age span; (ii) increasing 

the sensitivity to detect longitudinal change through the use of specific “longitudinal stream” 

pipelines (Reuter et al., 2010, 2012; Reuter and Fischl, 2011; Yendiki et al., 2016); (iii) 

10The ‘unprocessed’ data will be released with a file naming and directory structure that is consistent with the format we used for 
HCP-YA, which preceded the development of the Brain Imaging Data Structure (BIDS) standard (Gorgolewski et al., 2016). We 
encourage the community to develop a ‘converter’ that will support the application of ‘BIDS Apps’ (Gorgolewski et al., 2017) to HCP 
data.
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extending FIX-denoising to task-fMRI data, using a ‘multi-run’ version of FIX to help 

ensure robust denoising of shorter fMRI runs and removing global physiological noise from 

fMRI data with temporal ICA (Glasser et al., 2018); (iv) whether the ‘MSMAll’ (areal-

feature) registration (Robinson et al., 2014, 2018) and multi-modal parcellation (Glasser et 

al., 2016a) derived for HCP-YA perform robustly over the full age range and with the 

reduced amount of data for each modality; (v) removal of additional possible sources of age-

dependent biases in the diffusion data by correcting for within-volume movement 

(Andersson et al., 2017) and susceptibility-by-motion interaction (Andersson et al., 2018); 

and (vi) development of a cortical ‘surface-aware’ perfusion processing pipeline based on a 

Bayesian inference approach (Chappell et al., 2009, 2010).

Data sharing for the HCP-D/A will transition from the ‘ConnectomeDB’ database that 

served HCP-YA to a cloud-based data sharing environment managed by the NIMH Data 

Archive (NDA), working closely with the Connectome Coordinating Facility (CCF) centered 

at Washington University. The CCF is an NIH-funded facility built on the original HCP 

informatics infrastructure (Marcus et al., 2011, 2013; Hodge et al., 2016) that provides 

central quality control (QC), image processing, and data coordination services for the 

Lifespan and Con- nectomes Related to Human Disease projects. Imaging and associated 

behavioral data are uploaded to the CCF’s internal XNAT-based system (Marcus et al., 

2007), where identifying information is removed, images are converted from DICOM to 

NIFTI format, and initial QC pipelines are run to ensure the images were obtained using the 

proper acquisition protocol and that the uploaded set of files is complete and error-free. 

Acquired images and pipeline output files will be uploaded along with the behavioral and 

clinical data to the NDA, which will serve as the clearinghouse for public access to the CCF 

data sets. As was done for the HCP-YA, HCP-D/A data will be distributed using two-tier 

data access terms that allow for open access to the majority of the data and restricted access 

to a limited subset of the data deemed to be particularly sensitive to the study participants’ 

privacy. HCP-D/A data will be distributed by the CCF and NDA in multiple data releases 

over the course of the studies. We anticipate that the first major wave of data will be released 

in early 2019, with the data in its entirety ready for public release in 2022. Release of 

longitudinal specific processing for the subjects with multiple visits will likely be 

implemented as a single ‘longitudinal’ release following the conclusion of the projects.

Hormonal assays relevant to each project (see Somerville et al., 2018; Bookheimer et al., 

under review) will be carried out on blood or saliva samples and also on hair samples, and 

blood/saliva samples will be stored in the Rutgers University Cell & DNA Repository 

(RUCDR) in compliance with NIH data and sample sharing policies. The release of 

hormonal data will lag behind the brain imaging and assessment data, as it will be processed 

in large batches at the end of the studies.

5. Conclusion

The Human Connectome Projects in Development and Aging are large scale extensions to 

nearly the full lifespan (ages 5–100+ years) of the original HCP in Young Adults. The data 

being acquired will be openly released to the scientific community, providing a rich resource 

for exploration of cross-sectional differences and longitudinal changes across the lifespan, as 
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well as a reference for exploration of atypical development and aging. The data include a 

variety of MRI modalities that will allow state-of-the-art interrogation of structural, 

functional, and connectomic properties.

The HCP-D/A imaging protocols are substantially similar to the HCP-YA, but differ in some 

important respects given both the challenges and differing scientific priorities in imaging 

younger and older populations, as well as changes in scanner hardware. We have explained 

the basis and rationale for these changes in this article. We have also briefly outlined the 

analysis and informatics plans for the HCP-D/A. Some hard protocol choices were 

necessary, such as reducing the amount of data collected in the rfMRI, tfMRI, and dMRI 

modalities. Protocol changes (whether large or small) as well as even subtle changes over 

time in scanner performance can manifest as differences in the downstream measures 

derived from MRI. Thus, direct aggregation of the HCP-D/A data with the existing HCP-YA 

data will need to be carried out and interpreted carefully and cautiously.

An important avenue of future work will be to quantify the impact of these protocol 

differences, for which the ‘harmonization’ datasets collected by the HCP should be valuable. 

Even in the context of a common (identical) scanning protocol, careful interpretation of MRI 

data is necessary that wrestles with the issues of possible confounds and epiphenomena 

(Weinberger and Radulescu, 2016; Smith and Nichols, 2018), which is especially relevant in 

interpreting developmental or aging related changes in MRI-based measures when known 

confounds (e.g., motion) also change as a function of age. However, much effort is being 

currently invested toward understanding and dealing with these challenges, so that 

meaningful neurobiological insights can be derived from MRI data (Eickhoff and Etkin, 

2016). Large scale neuroimaging studies such as HCP-D and HCP-A are part of the 

maturation of the field. These studies will provide a rich and novel dataset collected in a 

consistent fashion across a wide age range. We are confident that the data generated by these 

projects, when combined with appropriate analysis and interpretation, will yield new 

insights into normative developmental and aging related changes in healthy human brains.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Scatterplots of temporal SNR (tSNR) of surface vertices (left panel) and subcortical voxels 

(right panel) in the Prisma scanner (used for HCP-D and HCP-A) versus the customized 

‘Connectom’ scanner (used for HCP-YA), colored according to the relative density of the 

points (black = low density; light yellow = highest density). tSNR maps (mean signal over 

time divided by the standard deviation over time) were computed for all four resting-state 

runs from 17 participants (age range 22–35 years; mean age = 28.4; 10 females) who were 

scanned using both scanners/protocols (average interval: 6.4 months) after (i) processing 

with the HCP ‘minimal-preprocessing’ pipeline to yield a 2 mm standard grayordinate 

(CIFTI) representation (59412 surface vertices and 31870 ‘subcortical’ voxels, including 

cerebellum), (ii) truncation of the longer ‘Connectom’ rfMRI scans to a duration equivalent 

to the rfMRI scans collected on the Prisma (~6.4 min), and (iii) application of a Gaussian-

weighted linear high-pass filter with a soft cutoff of 2000 s. Maps of tSNR were computed 

for every run, then median maps were computed across subjects within scanner and phase 

encoding direction. The resulting median maps were averaged across phase encoding 

directions for each scanner, and then plotted against each other here, separately for cortical 

vertices and subcortical voxels. Note the differing ranges of the axes between the two panels. 

The red diagonal line is the line of identity. The Prisma scanner data (HCP-D/A protocol) 

tends to have slightly higher tSNR, but also includes a slightly longer TR (see BOLD 
imaging), and thus more T1- recovery but fewer volumes for a given acquisition duration. 

tSNR was computed without any adjustment applied for these small protocol differences. 

The clusters of outliers both above and below the main diagonal in the subcortical panel 

arise from voxels at the edges of the subcortical structures that experienced different degrees 

of smoothing when mapping the volume into subcortical grayordinates, and should thus be 

ignored. Data and maps are available at https://balsa.wustl.edu/study/show/gjjZ, including 

tSNR maps computed separately for ‘AP’ and ‘PA’ phase encoding polarity (HCP-D/A 

protocol) and ‘LR’ and ‘RL’ polarity (HCP-YA protocol), which can be visualized to 

appreciate the subtle spatial effects of phase encoding polarity on tSNR in the orbitofrontal 

and inferior temporal regions.
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Fig. 2. 
Evaluation of multiband multi-echo (MB-ME) scans from the perspective of resting-state 

data. MB-ME scans, with two (MB5-ME2) and three (MB4-ME3) echoes, were compared to 

a standard single-echo (MB8-SE) scan (all acquired with 2 mm isotropic voxels). Data 

processing started with the standard HCP ‘minimal- preprocessing’ to yield a grayordinate 

(CIFTI) representation (Glasser et al., 2013). For the ME scans, the HCP pipeline was run 

on the first echo, and the estimated spatial transformations were then applied to the 

subsequent echoes before recombining into a preprocessed ME time series. The multi-echo 

data were then combined via an optimal T2*-weighted average (Posse et al., 1999). Multi-

echo denoising (MEDN) (Kundu et al., 2012) was applied as a processing variant for the 

MB4-ME3 data.6 Data were analyzed both without (first row) and with (second row) FIX 

denoising (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) to remove structured-noise 

artifacts, with the accuracy of the FIX classification visually confirmed.7 As a convenience 

for comparison, the values for MB4-ME3+MEDN are replicated in the second row. All 

analyses included high-pass filtering (using a Gaussian-weighted linear high-pass filter with 

6The multi-echo denoising approach of Kundu et al. (2012) requires 3 or more echoes.
7We used the FIX trained-weights file derived from (and applied to) the HCPYA data (HCP_hp2000.RData) with a threshold setting 
of 10. The ensuing FIX classifications (into ‘signal’ and ‘noise’ components) were visually confirmed to be accurate for all processing 
variants in all subjects. Specifically, the true positive rate was 100% for nearly all subjects and processing variants, and the median 
true negative rate across subjects was higher than 98.5% for all processing variants.
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a soft cutoff of 2000 s) and regression of 24 motion parameters (filtered by the same high-

pass filter) as a precursor to FIX in the case of the FIX’ed data, or following MEDN for the 

MB4-ME3+MEDN analysis. Data were then processed similar to Feinberg et al. (2010). 

Briefly, grayordinate-based spatial maps were derived using dual-regression from a 

canonical set of 100 resting-state networks (RSNs),8 for each of 12 subjects and the 

displayed acquisition/processing variants. Z-statistic maps from dual-regression were then 

mixture-model-corrected (separately for each participant, RSN, and processing variant) to 

ensure valid and comparable null distributions across the different processing variants, thus 

correcting for the true (temporal) degrees of freedom of the different acquisitions. From 

those mixture-model-corrected (MMC) spatial maps we computed measures of the count 

(A,F), sum (B,G), and mean (C,H) MMC Z-stat above a threshold, and the maximum (D,I) 

MMC Z-stat values, where the threshold (E,J) was determined during the mixture modeling 

as the value where the null part of the modeled distribution crossed the ‘activation’ part (i.e., 

equal probability of activation vs. noise). Those were then averaged across the 100 resting-

state networks to yield a value per subject per processing variant. The distribution of those 

measures across 12 subjects (6 younger and 6 older) is shown for each processing variant via 

box plots, which show the mean (open circle), median (horizontal line), and 25th/75th 

percentiles (the interquartile range; edges of the box); the whiskers extend to the closest data 

point within 1.5 times the interquartile range and the small closed gray circles show 

‘outliers’ beyond those thresholds. Statistical comparison between processing variants was 

performed using a paired t-test. *p < 0.05; **p < 0.01, ***p < 0.001 (not corrected for 

multiple comparisons).

8Specifically, the 812 subjects from the HCP-YA ‘S1200’ release with complete resting-state data that was generated using the ‘r227’ 
reconstruction. This should represent a good (i.e., “ground truth”) estimate of a 100-dimensional RSN given the very large quantity of 
data involved in its derivation. See http://www.humanconnectome.org/documentation/S1200/HCP1200-DenseConnectome+PTN
+Appendix-July2017.pdf for further details.
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Fig. 3. 
Comparison between HCP-D/A and HCP-YA dMRI protocols in terms of CNR, fiber 

orientation uncertainty, and detection of 2- and 3-way fiber crossings. For assessing the 

HCP-D/A protocol, we selected 18 older subjects from the Development (HCP-D) study, so 

that their mean age (18 years) would be reasonably close to the 19 selected HCP-YA 

subjects (mean age 28 years). “Raw CNR” was computed as part of FSL’s ‘eddy’ tool, 

which models and corrects for the effects of eddy currents and subject motion using a 

Gaussian Process (GP) model (Andersson and Sotiropoulos, 2016). For each subject, a CNR 

map was computed for each b-value shell as the ratio std(GP)/std(res), where std(GP) is the 

standard deviation of the GP predictions from ‘eddy’ and std(res) is the standard deviation of 

the residuals (i.e., the difference between the observations and the GP predictions) for that b-

value shell (Bastiani et al., 2018). “Effective CNR” divides the raw (per image) CNR by the 

voxel volume, but multiplies it by the square root of the total number of volumes collected at 

a given b-value. Those normalizations reflect the presumption that CNR increases 

approximately linearly with voxel volume but by the square root of the number of 

(independent) samples when averaging. Two different analyses were run using two different 

ROIs in standard MNI space (left column): the corpus callosum (CC, blue) and the centrum 

semiovale (CSO, yellow). Uncertainty (expressed in degrees) in the estimation of the main 

fiber orientation in the CC was regressed onto the raw (A) and effective CNR (B) values 

(averaged across CC voxels and b-shells). Shaded area represents the 95% confidence 
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region. For effective CNR we compute a single regression across the data from both 

protocols. The higher the CNR (i.e., higher angular contrast), the lower the uncertainty. 

Similarly, panels (C)–(F) show the dependency between raw and effective CNR values 

(averaged across CSO voxels and b-shells) and estimated sub-voxel fiber configuration 

complexity in the CSO, quantified as the percentage of voxels in the CSO mask where two 

(C,D) or three (E,F) fiber populations were estimated. Up to three fiber compartments in 

each voxel were fitted using the multi-shell extension of the ball-and-stick model (Behrens 

et al., 2007; Jbabdi et al., 2012) using an automatic relevance determination prior weight of 

1. Higher CNR results in the estimation of more crossing fibers, especially 3-way crossings.
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Fig. 4. 
Measurements of arterial transit time (ATT) and cerebral blood flow (CBF) in gray (GM) 

and white (WM) matter from the multi-delay PCASL pilot studies. A ‘low’ spatial resolution 

pilot study collected 3D GRASE (collected with four segments, in black) and 2D MB-EPI 

with an MB factor of 6 (in dark gray) in the same subjects (N = 6, 3M/3F, mean age of 28 

years), with 3.5 mm voxels over 4.5 min. A ‘high’ spatial resolution resolution pilot 

collected 2D MB-EPI with an MB factor of 6 and 2.5 mm voxels over 5.5 min (in light gray) 

in a different set of subjects (N = 5, 2M/3F, mean age of 28 years). The error bars represent 

the standard deviations. For the low spatial resolution (3.5 mm) pilot, no significant 

differences were found between the ATT or CBF values in either GM or WM between the 

2D and 3D approaches (paired t-test), indicating comparable ATT and CBF quantification 

with either approach (Li et al., 2017). There were also no significant differences between the 

ATT or CBF values in either GM or WM between the low and high spatial resolution 2D 

MB-EPI acquisitions (t-test). Preprocessing of the ASL data for the ATT and CBF 

quantification was performed using SPM (i.e., GM/WM segmentation of a T1w anatomical 

scan, and motion correction and coregistration). ATT maps were generated based on the 

weighted delay approach (Dai et al., 2012), and CBF maps generated using a single 

compartment perfusion model that took into account the estimated ATT (Wang et al., 2013) 

using custom Matlab scripts. Mean ATT and CBF within GM and WM was then computed 

for each subject.
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Fig. 5. 
High spatial resolution 2D MB-EPI PCASL. An example subject’s (male, 21 years old) 

arterial transit time (ATT) and cerebral blood flow (CBF) maps acquired using 2D MB-EPI 

PCASL with high spatial resolution (2.5 mm in-plane resolution with sixty 2.27 mm thick 

slices with a 10% slice gap) and five post-labeling delays (0.2, 0.7, 1.2, 1.7 and 2.2 s) with a 

5.5 min overall duration. The axial slices displayed are spaced by 7.5 mm, with the left 

hemisphere of the brain on the left side of the image. See Fig. 4 caption for details regarding 

the generation of the ATT and CBF maps.
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Table 1

Imaging protocol for 8–100+ year-old participants
a,b

.

Session 1

Modality Scan Resolution (mm)
c fMRI volumes Duration (min:sec)

d Participant action

Spin echo field maps AP & PA 2.0 0:18 NA

BOLD Resting state Run 1 AP 2.0 488 6:41 Fixation

Run 2 PA 2.0 488 6:41 Fixation

Multiecho T1w MPRAGE
T1 vNav Setter

e 8 0:01
Movie

f

T1 0.8 8:22 Movie

T2w SPACE
T2 vNav Setter

e 8 0:01 Movie

T2 0.8 6:35 Movie

T2w TSE (HCP-A only) HighRes Hipp 0.4 × 0.4 × 2.0 3:31 Movie

Spin echo field maps AP & PA 2.0 0:18 NA

BOLD Task 1
g

HCP-D: Guessing Run 1 PA 2.0 280 3:55 Task

Run 2 AP 2.0 280 3:55 Task

HCP-A: VisMotor Run 1 PA 2.0 194 2:46 Task

BOLD Task 2
g

HCP-D: Go/NoGo Run 1 PA 2.0 300 4:11 Task

Run 2 AP 2.0 300 4:11 Task

HCP-A: Go/NoGo Run 1 PA 2.0 300 4:11 Task

BOLD Task 3
g

HCP-D: Emotion Run 1 PA 2.0 178 2:33 Task

HCP-A: FaceName Run 1 PA 2.0 345 4:47 Task

Cumulative scan duration 45–48 min

Session 2

Modality Scan Resolution (mm)
c fMRI volumes Duration (min:sec)

d Participant action

Spin echo field maps AP & PA 2.0 0:18 NA

BOLD Resting state Run 1 AP 2.0 488 6:30 Fixation

Run 2 PA 2.0 488 6:30 Fixation

Spin echo field maps AP & PA 2.0 0:18 NA

Diffusion Run 1 1.5 5:38 Movie

98 dir AP

Run 2 1.5 5:38 Movie

98 dir PA

Run 3 1.5 5:42 Movie

99 dir AP

Run 4 1.5 5:42 Movie
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Session 2

99 dir PA

ASL Field Map AP & PA
2.5

h 0:18 NA

ASL PCASL
2.5

h 5:29
Fixation

i

Cumulative scan duration 43 min

AP = anterior to posterior phase encoding direction; PA = posterior to anterior; TSE = turbo-spin-echo; ASL = arterial spin labeling; PCASL = 
Pseudo-continuous ASL.

a
The youngest participants (5–7 years old) in HCP-D complete a slightly modified imaging protocol, which differs only in that it includes (i) three 

rfMRI runs per session (six in total), each consisting of 263 volumes, and (ii) a single run (PA polarity) of the Guessing and Go/NoGo tasks (which 
are otherwise identical).

b
For conciseness, a “Localizer block”, consisting of brief localizer and AutoAlign scout scans is omitted.

c
Isotropic spatial resolution (voxel size), unless noted.

d
Durations reflect what is listed on scanner, which includes calibration and discarded scans. For the T1w MPRAGE and T2w SPACE scans, the 

listed durations also include up to 80 s of k-space reacquisition.

e
The “T1/T2 vNav setter” scans are very short scans that write the imaging parameters for the volumetric navigators to a file that is then read by the 

main T1w/T2w scans for setting the navigator parameters.

f
Participant selects a movie/documentary from options provided by each site.

g
HCP-D has two runs of the first two tasks (for its 8–21 year old participants), acquired with opposite phase encoding polarity; HCP-A has only a 

single run of all three tasks.

h
Nominal slice thickness of 2.27 mm with a 10% gap (yielding 2.5 mm between slices).

i
The 5–7 year old participants are allowed to watch a movie during the ASL scan.
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Table 2

Main differences between HCP-D/A and HCP-YA imaging protocols.

HCP-D/A HCP-YA Rationale for changes

# Acquisition 4 per project 1 More sites necessary

Sites to achieve diversity
and recruitment
goals

Scanner Prisma 3T with Customized 3T Common scanner

80 mT/m ‘Connectom’ with desired for all sites;

gradient coil 100 mT/m
gradient coil

‘Connectom’ scanner retired

T1w and T2w 0.8 mm voxels 0.7 mm voxels Larger voxels provide

structurals some additional
‘margin’ for ensuring sufficient anatomical
SNR in deep brain
regions given that
SNR is naturally
lower towards the
center of multi-
channel coils

Used volumetric No navigators Prospective motion

navigators correction; see text
for more details

Single T1w and Two complete Shorter duration to

T2w scan scans of each improve tolerability

acquired acquired for younger and older populations

T1w structural Multi-echo
(TE = 1.8/3.6/ 5.4/7.2 ms)

Single echo
(TE = 2.1ms)

See text

6/8 slice partial No partial Fourier To allow the

Fourier navigators to fit
within the allowed TI (1000 ms)

General fMRI TR/TE = 800/ TR/TE = 720/ Necessary to

parameters 37 ms (Full 33.1 ms (Full maintain a full

Fourier) Fourier) Fourier k-space acquisition in the
presence of a slightly longer echo-train-
length (which itself
was necessitated by different gradient
coil and change to the phase encoding axis)

Resting-state 488 frames per 1200 frames per Shorter duration to

fMRI run (26 min total) run (58 min total) improve tolerability for younger and older populations

Task fMRI 3 tasks per
project

7 tasks Shorter, yet
customized to functional domains of high interest to each project

dMRI 2 shells 3 shells Shorter scan time

(b = 1500/ (b=1000/2000/ (fewer total volumes)

3000 s/mm2); 3000 s/mm2); 90

92–93 directions directions per shell

per shell

MB = 4; MB = 3; Maintain sufficient

TR = 3.23 s; TR = 5.52 s; diffusion SNR given

1.5 mm voxels 1.25 mm voxels the fewer total
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HCP-D/A HCP-YA Rationale for changes

volumes (see text)

fMRI, dMRI, & AP/PA phase LR/RL polarity See text

Spin echo encoding polarity

field maps

High- New to HCP-A

resolution

hippocampal

PCASL New to HCP-D and HCP-A
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