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A Bayesian Approach for Spatio-Temporal
Data-Driven Dynamic Equation Discovery

Joshua S. North∗, Christopher K. Wikle† and Erin M. Schliep‡

Abstract. Differential equations based on physical principals are used to rep-
resent complex dynamic systems in all fields of science and engineering. When
known, these equations have been shown to well represent real-world dynamics.
However, since the true dynamics of complex systems are generally unknown,
learning the governing equations can improve our understanding of the mecha-
nisms driving the systems. Here, we develop a Bayesian approach to data-driven
discovery of nonlinear spatio-temporal dynamic equations. Our approach can ac-
commodate measurement error and missing data, both of which are common in
real-world data, and accounts for parameter uncertainty. The proposed framework
is illustrated using three simulated systems with varying amounts of measurement
uncertainty and missing data and applied to a real-world system to infer the tem-
poral evolution of the vorticity of the streamfunction.

Keywords: Bayesian Dynamic Discovery, Data-Driven Discovery, Nonlinear
Dynamic Equation, Partial Differential Equation.

1 Introduction

Dynamic equations parameterized by partial differential equations (PDEs) – equations
relating a partial derivative of a variable to a function of its current state – are used
across all fields of science and engineering to describe complex processes. Dynamic equa-
tions encode physical processes by a set of mathematical equations, enabling complex
systems such as the spread of infectious disease (Bolker and Grenfell, 1995; Mangal
et al., 2008; Kühnert et al., 2014), evolution of invasive species (Hastings, 1996; Liu
et al., 2019), weather and climate (Charney et al., 1950; Holton and Hakim, 2012), and
the flow of fluids (White and Majdalani, 2006) to be characterized and modeled (see
also Higham et al., 2016, for further discussion). Given that any real world process is
only approximately characterized by mathematical relationships, mathematically de-
rived dynamic equations are inherently unable to completely characterize a real world
system. This suggests that observations of the real world system could be used to better
inform the underlying dynamic equations.

Recently, there has been a push to use data to discover the governing equations in
complex systems. Originally proposed using symbolic regression (Bongard and Lipson,

∗Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA,
1 Cyclotron Road jsnorth@lbl.gov

†Department of Statistics, University of Missouri, Columbia, MO, 146 Middlebush Hall wik-
lec@missouri.edu

‡Department of Statistics, North Carolina State University, Raleigh, NC, 2311 Stinson Drive em-
schliep@ncsu.edu

© 2023 International Society for Bayesian Analysis

https://bayesian.org/resources/bayesian-analysis/
mailto:jsnorth@lbl.gov
mailto:wiklec@missouri.edu
mailto:wiklec@missouri.edu
mailto:emschliep@ncsu.edu
mailto:emschliep@ncsu.edu


2 Bayesian Discovery of PDEs

2007; Schmidt and Lipson, 2009), the focus has since shifted to sparse regression and
deep modeling. The original sparse regression approach, termed Sparse Identification
of Nonlinear Dynamics (SINDy; Brunton et al., 2016), used numerical differentiation
to construct a response that is regressed against a library of functions that potentially
govern the system - a library is simply a list of functions (library terms), such as
derivatives in spatial or temporal dimensions, that potentially relate the current state
of the system to its partial derivative. Through sparse regression, either with an ℓ1
penalization term (Tibshirani, 1996) or using a thresholding approach (Zheng et al.,
2019; Champion et al., 2020), key terms governing a variety of ordinary differential
equations (ODEs) are identified. The SINDy framework was extended to include PDEs
and parametric forms (Schaeffer, 2017; Rudy et al., 2017, 2019a,b), stochastic dynamical
systems (Boninsegna et al., 2018), uncertainty quantification of the parameters (Zhang
and Lin, 2018; Yang et al., 2019; Niven et al., 2020; Fasel et al., 2021; Hirsh et al., 2021),
and has been incorporated into a Python package (PySINDy; de Silva et al., 2020).

Deep models used for data-driven discovery of dynamics can broadly be grouped into
two categories – approximating dynamics (Raissi et al., 2017; Raissi and Karniadakis,
2018; Raissi et al., 2020; Sun et al., 2019; Wu and Xiu, 2020) and discovering dynamics
(Both et al., 2021; Xu et al., 2019, 2020, 2021; Long et al., 2017, 2019). Using deep
models to approximate the dynamics of complex systems enables a computationally
inexpensive method to obtain measurements of otherwise difficult to simulate systems
while still obeying physical principles (see Reichstein et al., 2019, for an in-depth discus-
sion on the topic). However, our goal is the discovery of the governing equations where
“data-driven discovery” refers to the discovery of the functional form of the system;
there are various deep modeling approaches that have also been used in this context.
Combining deep modeling and sparse identification, Both et al. (2021) approximate
the PDE using a neural network, which is used to compute derivatives and construct
a sparse formulation similar to the SINDy approach. Long et al. (2017, 2019) use a
symbolic neural network, an extension of symbolic regression, and a numerical approx-
imation of differential operators in a feed-forward network to discover PDEs and Xu
et al. (2021) use a fully connected neural network with a genetic algorithm to express
and generate terms of a PDE.

Two open problems in data-driven discovery are (i) accounting for measurement
uncertainty (i.e., missing data and measurement error) and (ii) parameter uncertainty.
Existing methods that extend the SINDy framework to account for uncertainty quan-
tification employ either a bootstrap approach (Fasel et al., 2021) or a Bayesian approach
with variable shrinkage/selection priors placed on the coefficients associated with the
library terms (Zhang and Lin, 2018; Niven et al., 2020; Hirsh et al., 2021). These ap-
proaches directly follow the first steps of the SINDy framework, where derivatives are
computed numerically, data is de-noised, and the feature library is constructed. In this
manner, the removal of the uncertainty associated with the observed data is decoupled
from the modeling process (i.e., not model based); the estimate for the system uncer-
tainty is then dependent on the numerical differentiation method, which subsequently
influences the estimate of the parameter uncertainty. Yang et al. (2020) developed a
method to jointly account for uncertainty in the observed data and parameters based
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on differential Bayesian programming. While this approach directly accounts for mea-
surement uncertainty, it requires derivatives be computed using a numerical solver (e.g.,
Runge-Kutta), which can lead to numerical instabilities and cannot accommodate miss-
ing data.

To account for measurement uncertainty and missing data when modeling complex
nonlinear systems, statisticians have incorporated dynamic equations parameterized by
PDEs into Bayesian hierarchical models (BHM; Berliner, 1996; Royle et al., 1999; Wikle
et al., 2001). These models, sometimes called physical statistical models (PSM), enable
modeling mechanistic relationships within a probabilistic framework (see Berliner, 2003;
Cressie and Wikle, 2011; Kuhnert, 2017, for an overview). PSMs are composed of three
sub-models – data, process, and parameter models. To account for measurement and
mechanistic uncertainty, PSMs consider the dynamics to be latent in the process stage,
and represent the observed data in the data stage conditioned on these latent dynamics.
While PSMs have been used to model and better understand complex systems, such
as ocean surface winds (Wikle et al., 2001; Milliff et al., 2011) and the spread of avian
species (Wikle, 2003; Hooten and Wikle, 2008), they require the dynamic relationships
(although not weights/parameters associated with those relationships) to be specified
a priori. To increase flexibility for representing complex processes, PSMs consider the
parameters that describe the influence of dynamic components to be random, and often
allow them to have spatial or temporal dependence, enabling the data to inform the
model. While PSMs are adaptable to a variety of problems and provide inference on
how the process may be evolving, they cannot be used to discover new dynamical
relationships.

Recently, North et al. (2022) proposed a Bayesian data-driven discovery method
that accounts for measurement and parameter uncertainty using a BHM framework
composed of data, process, and parameter models for ODEs. Analogous to PSMs, the
dynamics are modeled as a latent process and measurement error is accounted for in
the data model. Allowing the dynamics to be a latent random process is different than
previous data-driven discovery methods that attempt to quantify uncertainty. To link
the dynamic system to its derivatives probabilistically, the dynamic process and all the
derivatives are modeled using a basis expansion with a common set of basis functions.
Derivatives are then obtained analytically using the basis expansion, such that depen-
dence between the dynamic process and its derivatives is explicit. A library of potential
functions can be constructed based on the basis coefficients and functions, and a variable
selection prior can identify the key functions governing the nonlinear system.

Here, we propose a spatio-temporal extension to Bayesian data-driven discovery for
PDEs. The general framework follows North et al. (2022), however the addition of the
spatial dimension requires a complete reformulation of the process model. To account for
the extra dimension (i.e., space), we model the dynamic process as a higher-order tensor
where the dimensions represent space, time, and the number of components (sometimes
called the system states) in the system. The tensor is decomposed using differentiable
basis functions in space and time, probabilistically linking the dynamic system with
its spatial and temporal derivatives. The basis decomposition is incorporated into the
BHM, enabling potential functions to be constructed using the basis functions and
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coefficients. A variable selection prior on the coefficients produces a sparse solution set of
the resulting system. In contrast to the ODE discovery problem, the library of potential
functions for PDEs can exhibit strong multicollinearity. An additional contribution of
this work is an approach to account for multicollinearity in high dimensional dynamic
systems.

We demonstrate our method using data generated from Burgers’ equation, the heat
equation, and a predator-prey reaction-diffusion equation with varying levels of mea-
surement error. In addition, we demonstrate our model’s ability to accommodate missing
data using Burgers’ equation. The simulations show that our approach is robust to mea-
surement error and missing data, able to learn the dynamics of complex systems, and
provides formal uncertainty quantification on parameter estimates and the confidence
of the discovered dynamics. Last, we apply our method to infer the evolution of atmo-
spheric vorticity over time having only observed the streamfunction and obtain results
that coincide with geophysical balances (i.e., the barotropic vorticity equation).

The remainder of this paper is organized as follows. In Section 2 we define the
tensor and derivative notation used throughout the manuscript. In Section 3 we give
background on the general dynamic system, showcase how inference on the derivative
of the system is made, and present the Bayesian hierarchical model. In Section 4 we de-
scribe parameter estimation and discuss modeling choices. In Section 5 we demonstrate
our method on multiple simulated data sets and in Section 6 we perform inference on a
real-world system. Section 7 concludes the paper.

2 Preliminary Notation

In this section we define tensor and derivative notation. All variables in this section
are used only for illustrating notation. Problem specific notation will be introduced in
Section 3.

2.1 Tensor Notation

PDEs are commonly defined over multiple dimensions (e.g., space, time, components),
and benefit from the use of higher-order tensor notation when the number of dimensions
is three or more. We generally follow the notation of Kolda and Bader (2009) and
refer the reader to their work for more details and references of tensor notation and
applications.

Let X ∈ RI1×I2...×IN be a tensor of order N where the (i1, i2, ..., iN ) element is
denoted by x(i1, i2, ..., iN ). A slice of the tensor is a two-dimensional section where all
but two indices are held constant. For example, the horizontal, lateral, and frontal slices
of the third order tensor Y ∈ RI×J×K are denoted by Yi::, Y:j:, and Y::k, respectively. A
tensor can be converted to a matrix using n-mode matricization (also known as unfolding
or flattening). The n-mode matricization of the tensor X, denoted by X(n), arranges the
mode−n fibers (the higher-order equivalent of matrix rows and columns) to be columns
in the resulting matrix. For example, the possible modes of Y are Y(1) ∈ RI×(J×K),
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Y(2) ∈ RJ×(I×K), and Y(3) ∈ RK×(I×J). In general, we will only be concerned with the
mode-3 matricization of a tensor and will denote Y in place of Y(3) (all other modes
will be properly denoted).

To multiply a tensor by a matrix B ∈ RJ×In , we use the n-mode product (i.e.,
multiply a tensor by a matrix or vector in mode n). The n-mode product of the tensor
X and matrix B is denoted as X×nB and is of size I1×I2...×In−1×J×In+1× ...×IN .
Equivalently, in terms of unfolded (matricized) tensors, Z = X×n B ⇔ Z(n) = BX(n).

2.2 Tensor Basis Representation

Let Y ∈ RI×J×K be the order 3 tensor from Section 2.1. Define the expansion of the
(i, j, k) element of Y as

y(i, j, k) ≡
I∑
p=1

J∑
q=1

K∑
r=1

g(p, q, r)a(i, p)b(j, q)c(k, r),

where {a(i, p) : p = 1, ..., I}, {b(j, q) : q = 1, ..., J}, and {c(k, r) : r = 1, ...,K} are basis
functions and {g(p, q, r) : p = 1, ..., I, q = 1, ..., J, r = 1, ...,K} is the tensor of associated
basis coefficients. To reduce the dimension, we keep the first P < I,Q < J , and R < K
terms from a, b, and c, and define each basis function at values p = 1, ..., P , q = 1, ..., Q,
and r = 1, ..., R, respectively. That is, we obtain the approximation

Y ≈
P∑
p=1

Q∑
q=1

R∑
r=1

g(p, q, r)a(p) ◦ b(q) ◦ c(r) = [[G;A,B,C]] = G×1 A×2 B×3 C,

where ◦ is the vector outer product, G is a P × Q × R tensor, A is a I × P , B is a
J × Q, and C is a K × R matrix of basis coefficients where each column is given by
a(p) ≡ (a(1, p), ..., a(I, p)), b(q) ≡ (b(1, q), ..., a(J, q)), c(r) ≡ (c(1, r), ..., c(K, r)), and
[[G;A,B,C]] is shorthand notation introduced in Kolda (2006). Our basis decomposition
is similar to the Tucker decomposition (Tucker, 1966), except we assume A,B, and C
are known and our goal is to estimate G. Note, we provide the expansion only for an
order 3 tensor (sufficient for this manuscript), but the concept can be extended to higher
order tensors.

2.3 Derivative Notation

As discussed in Section 1, we propose a method to discover the governing equations in
PDEs. As the name suggests, a PDE is composed of partial derivatives of some variable
u = u(x, y, t) that is indexed in space or time or both. We denote partial derivatives using

a subscript, for example ∂u
∂t = ut,

∂u
∂x = ux,

∂2u
∂t2 = utt, and so forth. We denote the ith

order of a derivative generally as ∂(i)t
∂t(i)

= ut(i) . In order to disambiguate notation, we de-
note the index of a vector/matrix/tensor using parentheses (e.g., a(i), a(i, j), a(i, j, k)),
reserving the subscript to denote derivatives.
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Within the PDE literature there are different choices of notation to denote the same
operation. For example, the Laplacian operator can be denoted as ∆u = ∇2u = ∇·∇u =
∂2u
∂x2 +

∂2u
∂y2 = uxx+uyy. Wherever an operator such as the Laplacian is used for the first

time, we will define it. This may result in our notation differing from other texts, but
we aim to be consistent within the paper.

3 Bayesian Dynamic Equation Discovery

Here we propose a general hierarchical model for making inference on nonlinear spatio-
temporal dynamic systems. We begin by motivating the general class of PDEs and
manipulate them to fit within a statistical framework.

3.1 Dynamic Equations

Consider the general PDE dynamic system describing the evolution of a continuous field
{u(s, t) : s ∈ Ds, t ∈ Dt},

ut(J)(s, t) = M (u(s, t),ux(s, t),uy(s, t),uxy(s, t), ...,ut(1)(s, t), ...,ut(J−1)(s, t),ω(s, t))
(3.1)

where the vector u(s, t) ∈ RN denotes the realization of the N -dimensional system at
location s and time t (e.g., u(s, t) = [u(s, t, 1), u(s, t, 2), ..., u(s, t, N)]′), M(·) represents
the (potentially nonlinear) evolution function, and ω(s, t) represents any covariates that
might be included in the system. Here, s ∈ {s1, ..., sS} = Ds is a spatial location in the
domain with |Ds| = S, and t ∈ {1, ..., T} = Dt is the temporal realization of the system
where |Dt| = T . We define (3.1) in two dimensions (i.e., Ds ∈ R2 and s = (x, y)′), but
the problem can be simplified to one dimension (i.e., Ds ∈ R1 and s = x) or generalized
to higher spatial dimensions (i.e., Ds ∈ R3 and s = (x, y, z)′). Finally, as is common
in the dynamic systems literature, we refer to the N -dimensional multivariate vector
u(s, t) as the state or system state, and use the term component to refer to each of the
N elements of u(s, t).

We reparameterize 3.1 to be intrinsically linear (in parameters) as

ut(J)(s, t) = Mf (u(s, t),ux(s, t),uy(s, t),uxy(s, t), ...,ut(1)(s, t), ...,ut(J−1)(s, t),ω(s, t)) ,
(3.2)

where M is a sparse matrix of coefficients of dimension N × D and f(·) is a vector-
valued nonlinear transformation function of length D. The input of the arguments for
f(·) are general and contain anything that potentially relates to the system. For ex-
ample, this could include terms describing advection, diffusion, dispersion and growth,
polynomial functions and interactions, or sinusoidal functions, and are chosen based on
a general mechanistic understanding of the system. This results in D being quite large,
meaning (3.2) has the potential to be highly over-parameterized. Thus, we will employ
regularization to induce sparsity in the matrix M.
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As an example of a classic PDE within our framework, consider the reaction-diffusion
equation

ut(s, t) = W∇2u(s, t) + c(u(s, t)),

where u(s, t) = [b(s, t), d(s, t)]′ represents the densities of two processes (i.e., N = 2),
W is a diagonal matrix where diag(W) = [Wb,Wd] are the diffusion constants, and
c(u(s, t)) = [cb(b(s, t), d(s, t)), cd(b(s, t), d(s, t))]

′ are (non)linear reaction functions. The
reaction-diffusion equation can be used to model the densities of prey (b) and predator
(d) populations (Hastings, 1996). For a predator-prey model, a possible choice for the
reaction function, with the spatial and temporal indices suppressed, is c(u(s, t)) =
[γb− δbd,−µd+ ηbd]′. This is a simplistic representation of the Lotka-Volterra system
where γ and δ represent the prey’s birth and predation rates, respectively, and µ and
η represent the predator death and kill success rates, respectively. Following (3.2), and
again suppressing the spatial and temporal indices, we have[

bt
dt

]
=

[
γ 0 −δ Wb Wb 0 0
0 −µ η 0 0 Wd Wd

] [
b d bd bxx byy dxx dyy

]′
.

Typically we do not know f(·) = [b, d, bd, bxx, byy, dxx, dyy]
′ and instead highly over-

parameterize f(·) by including a library of potential terms and select against the coef-
ficients in M to identify relevant terms.

In real-world problems, (3.2) does not hold exactly. Stochastic forcing could perturb
the system (e.g., weather systems, demographic stochasticity) or there could be error in
the model specification. We accommodate this unknown stochasticity by including an
additive error term

ut(J)(s, t) = (3.3)

Mf
(
u(s,t),ux(s, t),uy(s, t),uxy(s, t), ...,ut(1)(s, t), ...,ut(J−1)(s, t),ω(s, t)

)
+ η̃(s, t),

where, for example, η̃(s, t)
i.i.d.∼ N(0, Σ̃U ) is a mean zero Gaussian process with vari-

ance/covariance matrix Σ̃U . In general, spatial or temporal dependencies could be con-
sidered in this error term.

To represent (3.3) using tensor notation, let U = {u(s, t, n) : s ∈ Ds, t = 1, ..., T, n =
1, ..., N} where U ∈ RS×T×N is the tensor of the dynamic process. Similarly, let F ∈
RS×T×D be the function f(·) evaluated at each location in space-time and η̃ ∈ RS×T×N

is the space-time-component uncertainty tensor. The tensor formulation of (3.3) is then

Ut(J) = F ×3 M+ η̃. (3.4)

This forms the core of our process model, where we relate the temporal derivative of
some space-time-component process to a nonlinear function of its current state. While
not explicitly stated in (3.4), F is still a function of the state process U.

Continuing the reaction-diffusion example and placing it within the context of tensor
notation, Ut is the S × T × 2 tensor of temporal derivatives where (U::1)t and (U::2)t
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are the first order temporal derivatives associated with prey and predator, respectively.
Similarly, F is the S × T × 7 tensor of the function f(·) evaluated at all space time
location. Each third-order slice of F represents the evaluated function at each space-
time location. Specifically, for the reaction-diffusion example presented above, F::1 is
the density of the prey population at each space-time location, F::2 is the density of the
predator population at each space-time location, F::3 is the density of the product of
the prey and predator population at each space-time location, F::4 is the second order
derivative in the x direction of the predator population at each space-time location, and
so on.

3.2 Basis Representation

As described in Section 2.2, we can represent the U tensor using basis functions. De-
composing U in terms of a finite collection of spatial, temporal, and component basis
functions, we write

U ≈
P∑
p=1

Q∑
q=1

R∑
r=1

a(p, q, r)ψ(p) ◦ ϕ(q) ◦ θ(r) = A×1 Ψ×2 Φ×3 Θ := [[A;Ψ,Φ,Θ]]

where A ∈ RP×Q×R, Ψ ∈ RS×P , Φ ∈ RT×Q, and Θ ∈ RN×R. Here, Ψ,Φ, and Θ are
matrices of spatial, temporal, and component basis functions, respectively, and A is a
tensor of basis coefficients (traditionally called the core tensor).

We can obtain derivatives of the elements of U analytically by taking derivatives of
the basis functions. Specifically, let Ψ and Φ be matrices of basis functions differentiable
up to at least the highest order considered in (3.1). We then compute spatial and
temporal derivatives of U by computing the derivatives of Ψ and Φ. That is, denote
∂
∂xΨ = Ψx,

∂
∂yΨ = Ψy,

∂
∂tΦ = Φt, and so forth. Derivatives of U are then computed

as

∂

∂t
U = A×1 Ψ×2 Φt ×3 Θ = [[A;Ψ,Φt,Θ]]

∂

∂x
U = A×1 Ψx ×2 Φ×3 Θ = [[A;Ψx,Φ,Θ]]

∂2

∂x∂y
U = A×1 Ψxy ×2 Φ×3 Θ = [[A;Ψxy,Φ,Θ]],

(3.5)

and so forth. Representing (3.4) using the basis decomposition, we have

[[A;Ψ,Φt(J) ,Θ]] = F ×3 M+ η,

where η may include truncation error due to the low-rank representation of the basis
functions. While not explicitly stated, F now depends on Ψ,Φ,Θ, and A.

Proposition 1. The mode-3 decomposition of [[A;Ψ,Φt(J) ,Θ]] = F ×3 M + η where

η(s, t)
i.i.d.∼ NN (0,ΣU ) in space and time at location s and time t is

ΘA(ϕt(J)(t)⊗ψ(s))′ = Mf(A,ψ(s),ψx(s),ψy(s),ψxy(s), ...,ϕt(0)(t), ...,ϕt(J)(t),ω(s, t)) + η(s, t),
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where ⊗ denotes the Kronecker product, A is a R×PQ matrix of basis coefficients, ψ(s)
is a length-P vector of spatial basis functions, ϕ(t) is a length-Q vector of temporal basis
functions, and Θ is a N ×R matrix of component basis functions.

Proof. See supplementary material.

Decomposing (3.4) in terms of basis functions and taking the mode-3 matricization
accomplishes two tasks. First, this enables inference on derivatives of the process u(s, t)
when only the process is known (e.g., see (3.5)). Second, keeping fewer basis functions
than observations (e.g., P < S, Q < T ) allows the reconstruction of U to be smooth
(Wang et al., 2016).

Note, we include Θ for generality in the construction of our method. While one
could specify Θ in terms of basis functions, our goal is not to reduce the dimension of
the system state variables. In our analyses, we choose Θ to be the identity matrix.

3.3 Transformation of Derivative

Up to this point, we have considered PDEs that relate the temporal derivative (of some
order J) of the continuous surface u on left-hand side (LHS) of (3.1) to a function of its
current state on the right-hand side (RHS) of (3.1). However, equations with a spatio-
temporal derivative of u on the LHS are common (e.g., vorticity equation, Higham et al.,
2016). For example, the LHS of (3.1) could depend on the Laplacian operator, where
∇2ut(J)(s, t) = uxxt(J)(s, t) + uyyt(J)(s, t).

To be more general, we now allow the LHS of (3.1) to be a function of spatio-temporal
derivatives of u and consider the more general PDE

g(ut(J)(s, t)) =M (u(s, t),ux(s, t),uy(s, t),uxy(s), ...,ut(1)(s, t), ...,ut(J−1)(s, t),ω(s, t)) ,
(3.6)

where g(·) is some linear differential operator. The original PDE (3.1) is a special case
of (3.6) where g(·) is the identity function.

Proposition 2. Let g(·) be a linear differential operator. The basis formulation of a PDE
with a space-time function g(ut(J)(s, t)) on the LHS is

ΘA(ϕt(J)(t)⊗ g(ψ(s)))′.

Proof. See supplementary material.

From Proposition 2, the basis representation of a PDE with a spatio-temporal func-
tion on the LHS is

ΘA(ϕt(J)(t)⊗ g(ψ(s)))′ =

Mf(A,ψ(s),ψx(s),ψy(s),ψxy(s), ...,ϕt(0)(t), ...,ϕt(J)(t),ω(s, t)) + η(s, t),
(3.7)

where η(s, t)
i.i.d.∼ NN (0,ΣU ) in space and time. Completing the example from before

using the g = ∇2 Laplacian operator, the LHS for (3.7) is ΘA(ϕt(J)(t) ⊗ (ψxx(s) +
ψyy(s)))

′.
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3.4 Data Model

We assume v(s, t) is an observation of the N -dimensional latent process u(s, t) outlined
in Section 3.2 with some unknown measurement uncertainty. We model v(s, t) using a
generalization to the traditional linear measurement error model that links the dynamics
to the observed process (e.g., see Cressie and Wikle, 2011, Chapter 7). That is, we model

v(s, t) = H(s, t)u(s, t) + ϵ̃(s, t), (3.8)

where v(s, t) ∈ RL(s,t), H(s, t) ∈ RL(s,t)×N is the incidence matrix that maps from
u(s, t) to v(s, t), and uncertainty in the observations of the process are captured by

ϵ̃(s, t)
indep.∼ NL(s,t)(0, Σ̃V (s, t)). The dimension of the data, L(s, t) ≤ N , is allowed to

vary based on the space-time location due to potentially missing data and we assume
the errors are independent in space and time.

Within the hierarchical model, missing data are accommodated by allowing the
dimension of the incidence matrix, H(s, t), to vary in time. Since missing data are
handled in the data model and the latent process is fully specified, missing data do
not impact the process model specification. If there are no missing data at time t and
location s, then L(s, t) = N and H(s, t) = IN . When one or more system components
are missing data, the row corresponding to the missing system component is removed.
For example, if we have a three-dimensional system, say u(s, t) = [a(s, t), b(s, t), c(s, t)]
and the observation component for b(s, t) is missing at location s and time t, then

H(s, t) =

[
1 0 0
0 0 1

]
.

See Chapter 7 of Cressie and Wikle (2011) for more discussion of this approach for
accommodating missing observations in hierarchical spatio-temporal models.

Incorporating the basis expansion of the process in (3.8), at location s and time t,

v(s, t) = H(s, t)ΘA(ϕt(0)(t)⊗ψ(s))′ + ϵ(s, t), (3.9)

where ϵ(s, t)
indep.∼ NL(0,ΣV (s, t)) and ϵ(s, t) now accounts for both measurement error

and the discrepancy between the “true” underlying process and our approximation using
the basis formulation.

3.5 Parameter Model

The data and process equations correspond to the first and second level of our hierar-
chical model, respectively. For convenience, we restate (3.9) and (3.7) for location s and
time t

v(s, t) = H(s, t)ΘA(ϕt(0)(t)⊗ψ(s))′ + ϵ(s, t)
ΘA(ϕt(J)(t)⊗ g(ψ(s)))′ = Mf(A,ψ(s),ψx(s),ψy(s),ψxy(s), ...,ϕt(0)(t), ...,ϕt(J)(t),ω(s, t)) + η(s, t),
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where ϵ(s, t)
indep.∼ NL(s,t)(0,ΣV (s, t)) and η(s, t)

i.i.d.∼ NN (0,ΣU ). For clarity, we
present the details on the model parameters in Table 1. Our goal is to make inference on
the unknown parameters M,ΣU ,ΣV (s, t), and A. The sparse matrix M identifies the
nonlinear dynamic equation, ΣU captures the error dependencies within the dynamic
equation, ΣV (s, t) captures the measurement uncertainty associated with the observed
data, and A defines the smooth latent process.

Model Symbol Description Dimension
Variable

Data v(s, t) Observed data L(s, t)× 1
Data H(s, t) Mapping matrix L(s, t)×N
Data ϵ(s, t) Data uncertainty vector L(s, t)× 1
Data ΣV (s, t) Measurement error covariance matrix L(s, t)× L(s, t)

Process u(s, t) Dynamic process N × 1
Process A Basis coefficient tensor P ×Q×N
Process A Basis coefficient matrix (mode-3) N × (P ×Q)
Process ψ(s) spatial basis function for location s P × 1
Process ϕt(j)(t) jth order temporal basis function for time t Q× 1
Process Θ Component basis function matrix N ×R
Process M Dynamic evolution matrix N ×D
Process Γ Inclusion indicator matrix N ×D
Process f(·) Feature library D × 1
Process η(s, t) Process uncertainty vector N × 1
Process ΣU Dynamic equation error covariance matrix N ×N

Dimension
T Number of observed time points 1
S Number of observed spatial locations 1
L(s, t) Dimension of observation vector at time t and location s 1
N Dimension of latent process (dynamic system) 1
D Number of library functions 1
P Number of spatial basis functions 1
Q Number of temporal basis functions 1
R Number of component basis functions 1
J Highest order derivative in the dynamic system 1
Indices
t Time interval, t ∈ {1, ..., T} = Dt, |Dt| = T 1
s Spatial location, s ∈ {s1, ..., sS} = Ds, |Ds| = S 1
j Order of the derivative, j = 1, ..., J 1

Table 1: List of symbols used in the Bayesian hierarchical model.

To complete our Bayesian hierarchical model, we define the following priors on these
parameters. We use the spike-and-slab prior (Mitchell and Beauchamp, 1988; George
et al., 1993) to induce sparsity into M. We write

M(n, ·)|Γ(n, ·),σ2
U (n) =

D∏
d=1

[(1− γ(n, d))δ0 + γ(n, d)p(m(n, d)|σ2
U (n), ·)],
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where Γ is a matrix of inclusion indicators of the same dimension as M, M(n, ·) and
Γ(n, ·) are the nth row of the M and Γ, respectfully, m(n, d) and γ(n, d) denote the dth
column and nth row of M and Γ, respectfully, δ0 denotes the Dirac function at 0, σ2

U (n)
is the nth diagonal component of ΣU , p(γ(n, d) = 1|πn) = π(n), and π(n) ∼ Beta(a, b).
That is, if a variable is not included (i.e., γ(n, d) = 0), then the corresponding element
m(n, d) is zero. If a variable is included (i.e., γ(n, d) = 1), then the corresponding
element m(n, d) is non-zero. There are multiple choices for the prior p(m(n, d)|σ2

U (n), ·).
We specify the g-slab prior corresponding to Zellner’s g-prior (Zellner, 1986) where
scaling factor is taken to be the number of observations. See Malsiner-Walli and Wagner
(2016) for other potential choices and further discussion.

While other shrinkage/selection priors could be used, such as Stochastic Search
Variable Selection (SSVS; George et al., 1993), LASSO (Park and Casella, 2008), or
Horseshoe (Carvalho et al., 2010), we found the spike-and-slab to be preferable since it
performs well with correlated predictors (Ročková and George, 2014), which are gener-
ally present in the feature library (see Section 4). Additionally, the posterior summary
of the latent variable γ(n, d) gives the inclusion probability for each component of M,
providing further insight into the certainty of the recovered system. For all examples
presented below, we determine the identified system as composed of terms that are
included with at least 50% posterior probability. However, this threshold is subjective
and one could choose a different value depending on their specific application.

To estimate Γ and avoid reducibility of the Markov chain, we compute the marginal
posterior distribution [Γ|A] ∝ [A|Γ][Γ]. To compute this conditional distribution, we
need to compute [A|Γ], which is obtained by integrating over the parameters subject
to selection:

[A|Γ] =
∫ ∫

[A|M,ΣU ,Γ][M][ΣU ]dMdΣU . (3.10)

To make the integration in (3.10) analytically tractable and keep conjugacy in the model,
we restrictΣU to be diagonally structured whereΣU = diag(σ2

U (1), ..., σ
2
U (N)) and each

diagonal element is assigned the non-informative prior σ2
U (n) ∝ 1/σ2

U (n), n = 1, ..., N .
Then, the probability any element is included is given as

p(γ(n, d) = 1|·) = 1

1 + 1−π(n)
π(n) Rγ(n, d)

, (3.11)

where

Rγ(n, d) =
[A|γ(n, d) = 0]

[A|γ(n, d) = 1]
.

In situations where dependence between the components is required, a different prior
could be used.

There is potential for elements of the variance-covariance matrix ΣV (s, t) to have
small values. Inference using traditional conjugate Inverse Gamma/Wishart priors are
overly sensitive to the choice of hyperpriors when estimates are small (Gelman, 2006).
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Instead, we use the conjugate Half-t prior proposed by Huang and Wand (2013) for co-
variance estimation, which imposes less prior information and does not have as strong
of influence on small estimates. We restrict the measurement error covariance matrix
to be diagonally structured since it is often a reasonable assumption that this is inde-
pendent (Cressie and Wikle, 2011) (although this restriction can be removed if war-
ranted). Let ΣV (s, t) = H(s, t)diag(σ2

V (1), ..., σ
2
V (N))H(s, t)′, where each diagonal ele-

ment, σV (1), ..., σV (N), is assigned a conjugate Half-t(2, 10−5) prior.

Finally, in order to induce sparcity in the basis coefficients, we assign a Bayesian
elastic net prior (Li and Lin, 2010) to A. Specifically, our prior is

π(A) ∝ exp{−λ1∥A∥1 − λ2∥A∥22},

where λ1, λ2 are penalty parameters. The elastic net prior helps regularize the basis
coefficients against basis functions. While it is possible to specify hyperpriors for the
two penalty terms, we find inference is not overly sensitive to the choice of penalty
parameters and fix them each to a small value (e.g., 0.01 or 0.001).

4 Model Estimation

Our goal is to obtain samples from the joint posterior distribution [M,ΣU ,ΣV ,Γ,A|·].
We achieve this by sampling from the five full-conditional distributions [M|·], [ΣU |·],
[ΣV |·], [Γ|·], and [A|·] (see the supplementary material for the details of the distributions
and sampling algorithm) using a Markov chain Monte Carlo (MCMC) sampling scheme.
The four components M,ΣU ,ΣV and Γ are updated using classical Bayesian methods
and A is updated using a stochastic gradient approach. Due to the variety of problems
for which our method is applicable, some modeling choices are case specific. Additionally,
some aspects of the implementation of the MCMC framework warrant a more detailed
discussion. The following sections provide additional information pertaining to these
model specifications and procedures.

4.1 Basis Coefficient Estimation

The basis coefficients, A, completely define the latent process and all derivatives in
both space and time, meaning proper estimation is crucial to the discovery process.
Since A is embedded within the nonlinear function f(·) (see Proposition 1) and f(·) is
problem specific, we need a method for estimating A that can be generalized to a dif-
ferent systems. To accommodate a generically specified f(·), we use an adapted version
of stochastic gradient descent (SGD) with a constant learning rate (SGDCL; Mandt
et al., 2016). Whereas other approaches to estimate A (e.g., Expectation-Maximization
or Metropolis-Hastings) could be used, SGDCL provides important advantages – a con-
jugate updating scheme and a reduced computational cost for any specification of f(·).

As with SGD, SGDCL relies on the gradient of a loss function and a learning rate.
For SGDCL, the loss function is the negative log posterior for our parameters of interest,
A. The loss function at location s and time t is

L(A; s, t) = − log([v(s, t)|A,H(s, t),Θ,ϕt(0)(t),ψ(s),ΣV ]
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[A,Θ,ϕt(i)(t), g(ψ(s))|M,ΣU ,A,Θ,ϕt(0)(t), ...,ϕt(J−1)(t),ψ(s),ψx(s), ...])

− log([A]). (4.1)

The deterministic matrices Θ,ϕ, and ψ are included in the LHS of the conditioning
statement in (4.1) to make it clear which process, or derivative, is being considered. To
simplify notation, denote B0(s, t) = ϕt(0)(t) ⊗ ψ(s) and BJ(s, t) = ϕt(J)(t) ⊗ g(ψ(s)).

Then, the gradient of the loss function L(A; s, t), ∂L(A;s,t)
∂A = ∇AL(A; s, t) for location

s and time t is

∇L(A; s, t) =−Θ′H′(s, t)Σ−1
V v(s, t)B0(s, t) +Θ′H′(s, t)Σ−1

V H(s, t)ΘAB′
0(s, t)B0(s, t)

+Θ′Σ−1
U ΘAB′

J(s, t)BJ(s, t)−Θ′Σ−1
U Mf(s, t)BJ(s, t)

−BJ(s, t)A
′Θ′Σ−1

U M
.
F

′
(s, t) + f ′(s, t)M′Σ−1

U M
.
F

′
(s, t)

+
1

ST
(λ1sign(A) + 2λ2A) ,

where
.
F(s, t) generically denotes ∂

∂A f(A, ·).

SGDCL (Mandt et al., 2016) replaces the true gradient with the stochastic estimate,

∇̂LZ(A) =
1

|Z|
∑
z∈Z

∇AL(A; z),

where Z ⊂ Ds×Dt is a random subset of the observations, called a mini-batch, and |Z|
is the cardinality of the set. Within the context of a MCMC algorithm, the ℓth update
of A is given by

A(ℓ) = A(ℓ−1) − κ′∇̂LZ(ℓ)(A(ℓ−1)),

where Z(ℓ) denotes a random minibatch specific to the ℓ update and κ is the learning
rate. To accommodate different scales for each component, we allow κ to be a vector of
length N where each component can have a specific learning rate.

The final challenge to estimating A is computing
.
F(s, t). Because f(·) is problem

specific,
.
F(s, t) is also problem specific. One option is to use automatic differentiation

(AD) to analytically compute the derivative of f(·). There are many different libraries
and programs that perform AD, and we explored the use of the ForwardDiff (Revels
et al., 2016) package in Julia (Bezanson et al., 2017) with success. However, there is

computational overhead to AD. So, for all the examples presented here we derive
.
F(s, t)

analytically to mitigate this computation bottleneck.

4.2 Choice of Basis Functions

The choice of basis functions are subjective and have the potential to affect the model fit
(North et al., 2022). Furthermore, the choices of spatial and temporal basis functions do
not need to be the same (e.g., radial basis functions in space and Fourier basis functions
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in time). There are other choices regarding basis functions that need to be taken into
consideration (see Ramsay and Silverman, 2005, Chapter 3 for a discussion on how to
choose basis functions based on the “shape” of the data). The most important require-
ment is that the spatial and temporal basis functions need to be differentiable up to
at least the highest order spatial and temporal derivative considered, respectively. We
found local basis functions (e.g., B-splines) perform better than global basis functions
(e.g., Fourier basis functions) (see North et al., 2022), especially when there are local
regions with minimal curvature. For these reasons, we use B-splines of an order greater
than our highest derivative (in both space and time). We need to include enough basis
functions such that the estimated solution curve is flexible, the dynamics are captured,
and the posterior latent space is properly explored, but not so many such that unneces-
sary noise is introduced into the system. Empirically, we found a ratio of approximately
1 basis function to every 3 to 5 observations to work well. For example, in a system with
100 spatial locations and 200 temporal observations, we recommend letting P = 20 to
35 and Q = 40 to 65, respectively.

4.3 Choice of Feature Library

The choice of functions for the feature library is crucial to the identification of the
system. Our method is restricted to search over a predefined set of functions, meaning
that our method is unable to identify an important function if it is not included in the
library. For this reason, it is best to over-parameterize the feature library (and hence M)
instead of specifying a restrictive set of functions. Additionally, some knowledge of the
problem is beneficial (i.e., this is not a black-box approach). Having an understanding
of the potential dynamics a priori can assist in the recovery of important dynamics.
For example, if the system appears to diffuse over time, then a diffusion term should
be included. A good default choice is to include polynomial terms that interact with
varying orders of spatial and/or temporal derivatives of the process (e.g., see the library
for Burgers’ example) as this will cover a wide collection of systems.

With regard to the choice of g() in (3.6) and (3.7), scientific knowledge of the problem
is required. The choice of g() is not searched over as with the library terms; rather
it is pre-specified. For example, in our real-world example, the a prior goal was to
make inference on the change of atmospheric vorticity with time, and vorticity can
be represented as the Laplacian of the streamfunction. Because this transformation
function is not learned, it is a modeling choice that is user specified (the default choice
should be the identity as in Proposition 1).

4.4 Library Multicollinearity

A major issue facing the identification of spatio-temporal dynamic equations is mul-
ticollinearity in the feature library. Figure 1 shows the correlation between different
components of a library using data generated from Burgers’ equation. In this example,
the polynomial terms, u, u2, and u3, are very positively linearly correlated (ρ > 0.8),
posing a challenge to parameter inference. As with classical regression, multicollinearity
has the potential to introduce bias into the coefficient estimates, including altering their
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sign. While the spike-and-slab has been shown to perform well with correlated variables,
as discussed in Section 3.5, the problem still persists and can pose an estimation issue
in problems similar to the example using Burgers’ equation.

Figure 1: Correlation between terms of a potential feature library using data generated
from Burgers’ equation.

This issue originates from the over-inflation of minor reductions in the residual sum
of squares (RSS) when a highly correlated, but incorrect term, is included. Specifically,
the probability of including any term in the library (3.11) is dependent on the ratio of
the residual sum of squares for the model with the m(n, d) term included (RSSγ) to
the model without the m(n, d) term included (RSS\γ) through the value of Rγ(n, d).
That is, under the g-prior

Rγ(n, d) = (g + 1)1/2(RSSγ/RSS\γ)
ST/2−1.

Because RSSγ < RSS\γ , the ratio is bound between 0 and 1, where correct terms in the
library result in the ratio being closer to 0 and incorrect terms result in the ratio being
close to 1. However, as the ratio is raised to a power of ST/2 − 1 (proportional to the
number of observations), the value of R goes to 0 as the number of observations goes
to infinity, resulting in all variables being found significant. This issue is exacerbated
by correlated variables, especially if there are multiple confounding variables where the
system can be approximated by some linear combination of the feature library without
the true terms being included.

To combat this issue we propose a method to reduce the impact of correlated vari-
ables (i.e., variables where in the ratio of RSSs being close to 1 are found significant).
For this, we subsample the process when estimating the inclusion latent variable γ.
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That is, to compute (3.11) within each iteration of the Gibbs sampler, we randomly
sample the process. This results in

R∗
γ(n, d) = (g + 1)1/2(RSS\γ/RSSγ)

S∗T∗/2−1,

where S∗ and T ∗ are the size of the subsampled dimensions. We provide details on how
to choose the subsample size and our choices for the examples in the supplementary
material. Note that this subsampling is only done for the Γ update step of the algorithm.

5 Simulations

We illustrate the ability of proposed model to discover dynamic equations using data
simulated from two well known systems – Burgers’ equation and a reaction-diffusion
system. A third example, the heat equation, is included in the supplementary material.
For all three examples, we investigate the impact of measurement error on inference. We
introduce measurement error by adding white noise to the state vector. Specifically, we
let v(s, t) = u(s, t) + ζϵ(s, t), where u(s, t) is the simulated data, ϵ(s, t) ∼ N(0, σ2IN )
is the additive noise, σ is the standard deviation of the simulated process u(s, t), and ζ
is the percent of noise ranging from 0 to 100 - henceforth referred to as the ζ% noise.
In addition, we show how the model performs when data are missing at random for
Burger’s equation. Unless otherwise stated, all reported estimates are rounded to three
significant digits for readability. For all simulations and real-world examples, we obtain
5000 posterior samples and discard the first 2500 as burn-in. Convergence is assessed
visually via trace plots with no issues detected.

5.1 Burgers’ Equation

Burgers’ equation is a simplification of the Navier-Stokes equations, describing the speed
of a fluid at a location in space and time (Bateman, 1915; Burgers, 1948). We consider
Burgers’ equation in one spatial dimension defined by the nonlinear PDE

ut(s, t) = −u(s, t)ux(s, t) + νuxx(s, t),

where u(s, t) is the speed of the fluid at location s = (x) and time t and ν is the viscosity
of the fluid. Data are generated using spectral differentiation and the Tsit5 (Tsitouras,
2011) numerical solver from the Julia package DifferentialEquations.jl (Rackauckas and
Nie, 2017) with initial condition u(s, 0) = exp{−(s + 2)2} and ν = 0.1. The simulated
data consist of 256 spatial locations across 101 time points where Ds = [−8, 8] and
Dt = [0, 10] (Figure 2). We consider four cases – no noise, 2% noise, 5% noise, and 2%
noise with 5% of data missing at random.

For all four cases we specify the model with P = 50, Q = 20, |Z| = 100, κ = 10−4

and define the feature library as

[u, u2, u3, ux, uux, u
2ux, u

3ux, uxx, uuxx, u
2uxx, u

3uxx, uxxx, uuxxx, u
2uxxx, u

3uxxx].
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Figure 2: Data simulated from Burgers’ equation with (A) no added noise, (B) 2% added
noise, (C) 5% added noise, and (D) 5% of data missing at random and 2% noise.

After obtaining posterior samples, we keep only terms with greater than a 50% inclusion

probability to be included in the identified equation. The recovered equations and 95%

highest posterior density (HPD) interval without and with noise for the included terms

are shown in Table 2. In all four scenarios, the true components of the dynamic system

are correctly identified. In addition, the probability of including extraneous terms from

the feature library is low in each scenario (see Supplementary material Table 2), giving

confidence to our identified equation.

The credible intervals of all parameters cover the true value with the exception of uxx

in the cases with 5% noise and 2% noise with 5% missing data. In addition, no extraneous

terms are identified in any scenario. The probability of including another term (uxxx

for all four cases) is low, giving us relative certainty that the identified equation is

indeed correct. Clearly, the methodology eventually will fail when measurement error is

too large or there is too much missing data. For example, we found when the noise is

greater than 8% or more than 10% of data are missing, we no longer recover the true

model.
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Noise Missing Data Statistic Discovered Equation

Mean ut = −0.994uux + 0.098uxx
0% 0% Lower HPD ut = −1.022uux + 0.092uxx

Upper HPD ut = −0.964uux + 0.103uxx
Mean ut = −0.990uux + 0.096uxx

2% 0% Lower HPD ut = −1.033uux + 0.086uxx
Upper HPD ut = −0.954uux + 0.103uxx

Mean ut = −0.981uux + 0.094uxx
5% 0% Lower HPD ut = −1.022uux + 0.087uxx

Upper HPD ut = −0.951uux + 0.099uxx
Mean ut = −0.957uux + 0.087uxx

2% 5% Lower HPD ut = −1.003uux + 0.078uxx
Upper HPD ut = −0.931uux + 0.095uxx

Table 2: Discovered Burgers’ equation (mean) and lower and upper HPD intervals with
varying amounts of noise and missingness. The true Burgers’ equation is ut = −uux +
0.1uxx.

5.2 Reaction-Diffusion Equation

The reaction-diffusion equation can be used to model the change in concentration or
density of substances over time. We consider the 2D reaction-diffusion parameterized
by the PDE

ut(s, t) = W∇2u(s, t) + c(u(s, t)),

where u(s, t) = [b(s, t), d(s, t)]′ may represent the concentration or density of two pro-
cesses, W is a diagonal matrix of the diffusion coefficient for each process, and c(·)
is the (non)linear reaction function. The reaction-diffusion equation can be used to
model the interaction between a predator and prey population (Hastings, 1996; Liu
et al., 2019). To represent the interaction between prey and predator populations, we
let u(s, t) = [b(s, t), d(s, t)]′ where b(s, t) and d(s, t) are the densities of the prey and
predator populations, respectively. We define c(·) to be the classic Lotka-Volterra model
with a carrying capacity for the prey. Specifically,

c(·) =
[
cb(b(s, t), d(s, t))
cd(b(s, t), d(s, t))

]
=

[
γ0b(s, t)− γ0

γ1
b2(s, t)− βb(s, t)d(s, t)

µb(s, t)d(s, t)− ηd(s, t)

]
,

where γ0 is the prey growth rate, γ1 is the prey carrying capacity, β predation rate, µ
is the predator growth rate, and η is the predator death rate.

Suppressing the spatial and temporal indices, the predator-prey reaction-diffusion
equation is

bt =Wbbxx +Wbbyy + γ0b−
γ0
γ1
b2 − βbd

dt =Wddxx +Wddyy + µbd− ηd.
(5.1)
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Figure 3: Data generated from the prey (left) and predator (right) reaction-diffusion
system with 5% noise. Data are shown at time steps 11 (top, corresponding to t = 1)
and 31 (bottom, corresponding to t = 3).

Noise Component Statistic Recovered Equation

Mean bt = 0.400b− 0.266b2 − 0.500bd+ 0.099bxx + 0.100byy
0% Prey Lower bt = 0.399b− 0.267b2 − 0.503bd+ 0.098bxx + 0.099byy

Upper bt = 0.400b− 0.266b2 − 0.497bd+ 0.100bxx + 0.101byy
Mean dt = −0.100d+ 0.300bd+ 0.099dxx + 0.099dyy

0% Predator Lower dt = −0.100d+ 0.299bd+ 0.099dxx + 0.099dyy
Upper dt = −0.100d+ 0.300bd+ 0.100dxx + 0.100dyy

Table 3: Discovered predator-prey reaction-diffusion equation (mean) and lower and
upper HPD intervals with no noise. The true equations are bt = 0.4b− 0.26b2 − 0.5bd+
0.1bxx + 0.1byy and dt = 0.3bd− 0.1d+ 0.1dxx + 0.1dyy.

We simulate from (5.1) with γ0 = 0.4, γ1 = 1.5, β = 0.5, µ = 0.3, η = 0.1,Wb =
0.1,Wd = 0.1 using a central finite difference scheme over the spatial domain Ds =
[−10, 10] × [−10, 10] and the temporal domain Dt = [0, 10] with a spatial and tempo-
ral resolution of (0.5, 0.5) and 0.1, respectively. The prey and predator densities are
initialized as

b(s, 0) = exp{cos(2πx/15)sin(2πy/15)}
d(s, 0) = 0.1 exp{cos(2πy/30)sin(2πx/30− 5)},

respectively. We again consider three scenarios – no noise, 2% noise, and 5% noise
(Figure 3).

For all cases we specify our model with P = 225, Q = 40, |Z| = 100, κ = [10−4, 10−6]
and define the feature library as

[b, b2, b3, d, d2, d3, bd, b2d, bd2, bbx, bby, ddx, ddy, bx, by, bxx, byy, bxy, dx, dy, dxx, dyy, dxy].
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Noise Component Statistic Recovered Equation

Mean bt = 0.403b− 0.270b2 − 0.492bd+ 0.144bxx + 0.145byy
2% Prey Lower bt = 0.400b− 0.274b2 − 0.501bd+ 0.095bxx + 0.097byy

Upper bt = 0.405b− 0.267b2 − 0.487bd+ 0.163bxx + 0.164byy
Mean dt = −0.098d+ 0.297bd+ 0.136dxx + 0.138dyy

2% Predator Lower dt = −0.100d+ 0.296bd+ 0.095dxx + 0.099dyy
Upper dt = −0.098d+ 0.300bd+ 0.161dxx + 0.155dyy

Table 4: Discovered predator-prey reaction-diffusion equation (mean) and lower and
upper HPD intervals with 2% noise. The true equations are bt = 0.4b− 0.26b2− 0.5bd+
0.1bxx + 0.1byy and dt = 0.3bd− 0.1d+ 0.1dxx + 0.1dyy.

Noise Component Statistic Recovered Equation

Mean bt = 0.401b− 0.269b2 − 0.493bd+ 0.090bxx + 0.099byy
5% Prey Lower bt = 0.400b− 0.270b2 − 0.504bd+ 0.085bxx + 0.091byy

Upper bt = 0.403b− 0.267b2 − 0.487bd+ 0.093bxx + 0.102byy
Mean dt = −0.101d+ 0.300bd+ 0.092dxx + 0.106dyy

5% Predator Lower dt = −0.103d+ 0.297bd+ 0.086dxx + 0.097dyy
Upper dt = −0.099d+ 0.302bd+ 0.095dxx + 0.151dyy

Table 5: Discovered predator-prey reaction-diffusion equation (mean) and lower and
upper HPD intervals with 5% noise. The true equations are bt = 0.4b− 0.26b2− 0.5bd+
0.1bxx + 0.1byy and dt = 0.3bd− 0.1d+ 0.1dxx + 0.1dyy.

Posterior estimates of terms with greater than 50% inclusion probability are shown in
Tables 3, 4, and 5 for the case with no noise, 2% noise, and 5% noise, respectively.
With no noise, we see all terms are correctly identified and the 95% HPD intervals all
cover the truth. For the scenario with 2% noise, all terms are correctly identified and
all coefficients except for b2 in the prey equation cover the truth. The scenario with 5%
noise correctly identifies all terms and only b2 and bxx for the prey equation and dxx
for the predator equation have 95% credible intervals that do not cover the truth.

6 Barotropic Vorticity Equation

Here we show the ability of our model to discover governing dynamic equations using
real world data. The 500-hPa level of the atmosphere is often known as the “level
of non-divergence” because in the absence of strong cyclogenesis, the flow is essentially
horizontal and non-divergent at this mid-level of the atmosphere. Such flows can often be
modeled quite effectively with “barotropic” dynamics (in a barotropic fluid, the density
is constant along a constant pressure surface). Indeed, the first successful numerical
weather forecasts were based on the advection of relative vorticity (rotation of the fluid
in the horizontal dimension) at the 500-hPa level using the so-called barotropic vorticity
equation (BVE; Charney et al., 1950). The BVE is given as

ξt(s, t) = −v(s, t) · ∇(ξ(s, t) + f(ϕ(s))),
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where ξ = ∂v
∂x −

∂u
∂y is the relative vorticity, v(s, t) = (u(s, t), v(s, t)) is the non-divergent

horizontal wind vector with u(s, t) the wind component in the zonal (east-west) direc-
tion, v(s, t) the meridional (north-south) wind component, and f = 2Ωsin(lat(s)) is
the Coriolis parameter with Ω = 7.292× 10−5 radians per second, the angular speed of
rotation of the Earth (note – not to be confused with the dynamic discovery library as
defined previously), and lat(s) the latitude in radians at location s. The relative vorticity
and non-divergent wind components can each be written in terms of the stream function,
ψ. In particular, the vorticity is given in terms of the Laplacian of the streamfunction,

ξ = ∂2ψ
∂x2 + ∂2ψ

∂y2 , and the wind components are given by v = ∂ψ
∂x , and u = −∂ψ

∂y (e.g.,

Holton and Hakim, 2012). We can substitute these into the BVE to get an alternate
form (suppressing the spatial and temporal indices):

∇2ψt = ψyψxxx + ψyψxyy − ψxψxxy − ψxψyyy − ψxfy, (6.1)

where ∇2ψt = ψxxt + ψyyt. This form is very useful for dynamic discovery because we
need only consider functions of ψ. The first four terms on the RHS correspond to the
advection of relative vorticity and the last term on the RHS corresponds to the advection
of planetary vorticity (that associated with planetary rotation). Furthermore, note that
the streamfunction can be computed based on the observed geopotential height, Φ,
where ψ(s, t) = Φ∗(s, t)/f(lat(s)), Φ∗(s, t) = Φ(s, t)−

∫
D
Φ(s, t), and D is the observed

domain.

Figure 4: Streamfunction (m2/s) data at 12:00 UTC on November 1, 2, 3, and 4, 2018.
Purple and green correspond to lower value and upper values, respectively, with contour
lines included for visual aid.

Here, we use hourly data generated using Copernicus Atmosphere Monitoring Ser-
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vice information (2022)1 of relative geopotential height at 500-hPA. Data are col-
lected hourly from December 1st to December 31, 2018 over the spatial domain Ds =
[−150◦W,−50◦W ]×[20◦N, 60◦N ] at a resolution of 1.5 degrees (see Figure 4 for example
plots), resulting in (67 × 27) × 744 space-time locations. We compute the streamfunc-
tion from the geopotential height and use this as the observed data for the discovery.
We also compute the derivative of the Coriolis parameter in the latitudinal direction,
fy = 2Ωcos(lat(s)), and use it as a covariate in the model (i.e., ω(s, t) = fy(s) from
(3.7)).

We specify our model with P = 200, Q = 300, |Z| = 200, κ = 10−4 and define the
feature library as

[ψ,ψx, ψxx, ψy, ψyy, ψxy,ψxψxxx, ψyψxxx, ψxψyyy, ψyψyyy,

ψxψxxy, ψyψxxy, ψxψxyy, ψyψxyy, ψxfy, ψyfy].

Posterior estimates for the recovered equation are shown in Table 6, where only terms
with a posterior inclusion probability greater than 50% were kept. While we do not
know the true equation in this case (because the barotropic vorticity equation is only
an approximation of the dynamics in the atmosphere), we see the discovered equation
closely resembles the hypothesized BVE given in (6.1).

Although the sign for each discovered term aligns with the sign in the BVE, we note
that the coefficient values are different from the hypothesized equation and the plane-
tary vorticity term (ψxfy) is not significant. There are several reasons why this is likely
the case and not surprising. First, it is possible that this particular time period is not
barotropic (e.g., baroclinic), which would require library terms our current framework
cannot accommodate (e.g., flow in the vertical direction, density, temperature). Such
transient changes from barotropic to baroclinic flow regimes are common in the upper-
level atmospheric flow. The lack of significance of the planetary vorticity term is also
interesting. Recall that the meridional velocity is related to the gradient of streamfunc-
tion in the meridional direction, so this term can be alternatively written ψxfy = vfy.
Thus, if the flow is primarily zonal (east-west), the north-south flow component (v) is
quite small and this term may not be important for a particular time period. Indeed,
visual examination of the data suggests that the flow is dominated by zonal flow and
this is further confirmed seeing that the magnitude of the planetary vorticity term in
the BVE is an order of magnitude smaller compared to the relative vorticity terms.
Yet, the planetary vorticity term is still important to the advection of relative vorticity
because of the Coriolis effect on the flow, resulting in the term being identified as im-
portant (if not significant). We also note that the planetary vorticity term in the BVE is
important for supporting so-called Rossby waves (slowly moving westward propagating
synoptic-scale waves) in the upper level flow. Yet, the time period and spatial extent of
the data considered here are likely not sufficient to capture the full spatial and temporal
scale of Rossby waves (e.g., Holton and Hakim, 2012). Thus, it is somewhat remarkable
that the dynamic discovery methodology was still able to infer realistic properties of the
system of interest that generally align with the theoretical system. To the best of our

1https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?
tab=overview

https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?tab=overview
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knowledge, this is the first time that data-driven discovery methods have been applied
to real-world atmospheric data and have identified physically plausible features.

Statistic Discovered Equation

Mean ∇2ψt = 0.289ψyψxxx + 0.277ψyψxyy − 0.280ψxψxxy − 0.185ψxψyyy − 6.354ψxfy
Lower HPD ∇2ψt = 0.235ψyψxxx + 0.267ψyψxyy − 0.343ψxψxxy − 0.215ψxψyyy − 7.570ψxfy
Upper HPD ∇2ψt = 0.317ψyψxxx + 0.286ψyψxyy − 0.223ψxψxxy − 0.160ψxψyyy + 1.491ψxfy

Table 6: Discovered equation for the BVE (mean) and lower and upper HPD intervals
where the theoretical BVE is ∇2ψt = ψyψxxx + ψyψxyy − ψxψxxy − ψxψyyy − ψxfy.

7 Conclusion

We have proposed a data-driven approach for learning complex nonlinear spatio-temporal
dynamic equations that is robust to measurement error and missing data. Our ap-
proach uses a Bayesian hierarchical model where the dynamic equation is embedded
in the latent process enabling the discovery of dynamic equations within the statis-
tical framework. Additionally, the model provides probabilistic estimates of inclusion
for each component of the feature library and estimates of uncertainty for the recov-
ered parameters, giving a deeper understanding to the dynamic system. This all stems
from the expansion of the dynamic process in terms of basis functions, bypassing the
need for numerical differentiation and enabling the estimate of the derivatives within a
probabilistic framework.

Improvements to the current framework should focus on the specification of the
feature library and the selection prior. A feature library that is uninhibited by the users
choice (i.e., the model could generate library terms) would remove user bias. This is
akin to what has been proposed with symbolic regression. Also, a different choice in
selection prior for the coefficients, perhaps one that also penalizes model complexity,
has the potential to improve selection performance. While there are a variety of selection
priors in the literature, a prior directed towards this problem will provide noticeable
improvement on the identification of the system.

From the application perspective, the promising and intriguing results from the BVE
example suggest further investigation. In particular, it would be informative to consider
larger spatial domains (hemispheric) and temporal time periods (many months) to de-
termine if the presence of Rossby waves are sufficient to lead to a significant planetary
vorticity term. This also suggests experiments with numerical simulation models that
can easily be controlled to exhibit barotropic or baroclinic flow. Such models will allow
us to investigate the effects of the flow regime on the ability to detect realistic dynamics.

As a final point, our approach could be used to aid in a decision-based framework.
Dynamic equations provide a bridge between Granger and Pearl causality, where the
dynamic equation dually represents the graphical structure from the Pearl pedagogy
and the dynamic component from the Granger pedagogy. By identifying terms of the
dynamic equation, or put another way, the variables forcing the response (e.g., forcing of
green house gasses on temperature), then one can infer the cause and effect relationship
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of the system. Additionally, the system can be estimated multiple times where “impor-

tant” drivers of the response are omitted from the feature library to identify which other

potential drivers of the system. This could be used in a decision framework, where, now

knowing the underlying dynamics driving the system, the effects of various inputs can

be assessed by their impact on the response.

Supplementary Material

Supporting Material for “A Bayesian Approach for Spatio-Temporal Data-Driven Dy-

namic Equation Discovery”. The supplementary material contains a discussion of how

to select the subsample size, full conditional distributions and sampling algorithm, ex-

ample of the method for the heat equation, and proofs of proposition 1 and 2.
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