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ALGORITHMS FOR PROPAGATING UNCERTAINTY ACROSS

HETEROGENEOUS DOMAINS

H. CHO† , X. YANG‡ , D. VENTURI§ , AND G. E. KARNIADAKIS†¶

Abstract. We address an important research area in stochastic multi-scale modeling, namely
the propagation of uncertainty across heterogeneous domains characterized by partially correlated
processes with vastly different correlation lengths. This class of problems arise very often when com-
puting stochastic PDEs and particle models with stochastic/stochastic domain interaction but also
with stochastic/deterministic coupling. The domains may be fully embedded, adjacent or partially
overlapping. The fundamental open question we address is the construction of proper transmission
boundary conditions that preserve global statistical properties of the solution across different subdo-
mains. Often, the codes that model different parts of the domains are black-box and hence a domain
decomposition technique is required. No rigorous theory or even effective empirical algorithms have
yet been developed for this purpose, although interfaces defined in terms of functionals of random
fields (e.g., multi-point cumulants) can overcome the computationally prohibitive problem of pre-
serving sample-path continuity across domains. The key idea of the different methods we propose
relies on combining local reduced-order representations of random fields with multi-level domain
decomposition. Specifically, we propose two new algorithms: The first one enforces the continuity
of the conditional mean and variance of the solution across adjacent subdomains by using Schwarz
iterations. The second algorithm is based on PDE-constrained multi-objective optimization, and
it allows us to set more general interface conditions. The effectiveness of these new algorithms is
demonstrated in numerical examples involving elliptic problems with random diffusion coefficients,
stochastically advected scalar fields, and nonlinear advection-reaction problems with random reaction
rates.

Key words. Multi-scale stochastic modeling, Schwarz methods, parallel domain decomposition,
dimensionality reduction.

AMS subject classifications. 60H35, 34F05.

1. Introduction. Propagating uncertainty across different domains is a prob-
lem of major interest in many areas of mathematics and physics, e.g., in modeling
random heterogeneous materials [37,39], coarse-graining atomistic and mesoscopic sys-
tems [18,19,25,43,54], coupling atomistic to continuum models [24,30,31] or stochastic
simulations involving partial differential equations (PDEs) relying on distinct random-
ness on different subdomains [21–23,45, 50].

This class of problems can be addressed by using stochastic domain decomposition

methods [15, 26, 34, 49, 51]. One of the most critical aspects of these methods is the
construction of proper transmission boundary conditions to propagate the stochastic
solution across different subdomains. A straightforward extension of classical deter-
ministic algorithms [20, 35], e.g., based on Monte Carlo or sparse grid probabilistic
collocation [6, 7] yields prohibitively expensive schemes, since the interface operator
has to be applied to each solution sample. On the other hand, interfaces defined in
terms of functionals of the stochastic solution (e.g., multi-point cumulants) can yield,
in principle, a tremendous reduction in computational cost. However, very few rig-
orous theories or even empirical algorithms have been developed to perform domain
decomposition in stochastic simulations with functional interfaces [3]. Our aim in
writing this paper is to fill this gap. Although our method is not limited to stochastic
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Diffusion N(x, t, u;ω) = ∇a(x;ω) · ∇u+ a(x;ω)∇2u

Advection N(x, t, u;ω) =
∂u

∂t
+ V (x;ω)∇u

Advection-Reaction N(x, t, u;ω) =
∂u

∂t
+ V (x)∇u − k(x;ω)(1 − u2)

Table 1.1

Examples of nonlinear operators defining the initial/boundary value problem (1.1).

PDEs with global solution trajectories, we begin the discussion of our new methods
by considering the following model

(1.1)






N(x, t, u(x, t;ω);ω) = f(x, t;ω), x ∈ D

B(u(x, t;ω)) = g(x, t;ω), x ∈ ∂D

C(u(x, t0;ω)) = z(x;ω), x ∈ D

,

where D ⊆ R
d is a bounded spatial domain with boundary ∂D, N is a nonlinear

operator, B is a boundary operator, C is an initial condition operator and ω is an
element of the sample space. We assume that the initial/boundary value problem (1.1)
is well posed for each realization of the random forcing f(x, t;ω), random boundary
conditions g(x, t;ω) and random initial condition z(x;ω). Examples of N are given
in Table 1.1. Note that we are considering both time-dependent as well as time-
independent problems. In the latter case the initial condition operator is obviously
not needed. We decompose D into a set of P subdomains {D1, ...,DP } such that

(1.2) D =

P⋃

i=1

Di, Di = Di ∪ ∂Di.

A classical Schwarz method to compute the solution to the SPDE (1.1) in a covering

of D is summarized in Algorithm 1. At each iteration and at each time step we solve
(in a predetermined sequence) P restricted stochastic PDE systems in the form

(1.3)





Ni(x, t, u
n
i (x, t;ω);ω) = fi(x, t;ω), x ∈ Di

B(uni (x, t;ω)) = g(x, t;ω), x ∈ ∂Di \ Γi

B(uni (x, t;ω)) = g̃i(x, t;ω), x ∈ Γi

,

where uni (x, t;ω) denotes the solution in Di at the n-th iteration, Γi is the boundary
of Di lying in the interior of D, while Ni and fi are, respectively, the restrictions of
N and f to Di. The artificial boundary conditions g̃i on Γi are determined by the
stochastic solution from the previous iteration.

The first step in solving the sequence of local stochastic PDEs (1.3) relies in
representing their solution appropriately. This is crucial in stochastic domain de-
composition, as local stochastic expansions usually do not preserve multi-point sta-
tistical properties across different domains. If we follow a naive approach, we can
simply discretize (1.1), e.g., by using of probabilistic collocation [10, 11, 28], polyno-
mial chaos [8, 48, 50], or reduced basis methods [7], and then apply Algorithm 1 to
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begin
n = 1;
initialize {u0i }

P
i=1 at random;

while
∥∥un−1 − un

∥∥
x∈D

> ε do

for 1 ≤ i ≤ P do
solve the restricted PDE system (1.3) on Di;

end

n = n+ 1;
end

end

Algorithm 1: Classical domain decomposition method with overlapping domains.

each solution sample of (1.1). Although this process can be effectively parallelized [6],
it does not exploit the possibly low-dimensional structure of the stochastic solution
within each subdomain Di. Such low-dimensionality, as we will see, is a consequence
of the finite correlation length of the solution field.

Our object is to develop new stochastic domain decomposition (SDD) algorithms
by imposing proper transmission boundary conditions between heterogeneous stochas-
tic domains and stochastic systems. The starting point is to construct a representation
of the stochastic solution in each domain Di that preserves global statistical proper-
ties. This topic is discussed in detail in the next section 2 that leverages on local

low-dimensionality. In section 3 we propose two new SDD algorithms that seek cou-
pling across the interfaces in a weak sense: the first one enforces the continuity of
the conditional mean and the variance of the solution across adjacent subdomains
by using Schwarz iterations. The second one simultaneously interfaces multiple func-
tionals of the stochastic solution, such as the first few statistical moments, through
PDE-constrained optimization. In section 4 we apply the proposed algorithms to
different stochastic problems. Specifically, we consider stochastic elliptic problems,
stochastically advected scalar fields and nonlinear advection-reaction problems. For
each system we perform systematic convergence studies. The main results are then
summarized and discussed in section 5. We also include an appendix in which we
prove convergence of the local expansion method discussed in section 2.

2. Embedding Random Processes. In this section we consider the problem
of embedding a random process or a random field defined on a domain D into a set of
subdomains Di ⊆ D. By “embedding” here we mean representing the solution locally
in such a way that prescribed statistical properties are preserved across different
subdomains. This has advantages in terms of dimensionality if the process has a
finite correlation length, as the local representation usually involves a reduced number
of random variables. Consequently, the stochastic problem (1.1) can be reduced, at
least in principle, to a sequence of local stochastic problems in each Di of smaller
dimension. A major challenge when embedding globally defined processes and fields
in a set of subdomains is the preservation of global statistical properties. Indeed,
we cannot expect that, in general, the two- or three-point correlation functions are
preserved across different subdomains. This is a serious issue, since such multi-point
statistics are often key elements of the stochastic solution. In other words, if the
domain decomposition is not done appropriately in terms of local expansions and
suitable stochastic interface conditions, we may introduce a systematic error when
computing the solution to (1.1) through the system (1.3).
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Fig. 2.1. Embedding a stochastic process with finite correlation length into a non-overlapping
covering of [0, 1]: the restriction of the process f(x;ω) to each subdomain Ii yields a subprocess
fi(x;ω) that can be represented in terms of a smaller number of random variables.

2.1. Local Expansions. Let us consider a random function f(x;ω), x ∈ D with
given mean and covariance

(2.1) f̄(x) = 〈f(x;ω)〉 , C(x, y) = 〈f(x;ω)f(y;ω)〉 − 〈f(x;ω)〉 〈f(y;ω)〉 .

Given a decomposition of D in terms of P overlapping subdomains {D1, ...,DP }, we
would like to represent f(x;ω) locally in each subdomain Di, in such a way that the
two-point statistical properties are preserved, even when computed across different
subdomains. In particular, let us assume that the correlation length of f(x;ω) is
relatively short, compared to the characteristic length of D. Then, it is reasonable
to assume that the restriction of f(x;ω) to Di is statistically correlated only with
the restriction of f(x;ω) to the neighboring subdomains, say Di−1 and Di+1 in a
one-dimensional setting. This allows us to represent f(x;ω) in Di by using a set of
random variables that are shared only among adjacent subdomains.

To this end, we introduce a new set of subdomains {I1, ..., IP ′} to propagate the
correlation structure of f(x;ω) across different Di. For instance, if Di and Di+1 are
adjacent and the correlation length of f(x;ω) is smaller than both |Di| and |Di+1|,
then we could define the subdomain Ii+1 ⊂ Di ∪Di+1. In this way, the restriction of
f(x;ω) to Ii+1 allows us to propagate the correlation structure of f(x;ω) from Di to
Di+1. It is important to remark that the random process f(x;ω) is first represented
locally on the new subdomains {I1, ..., IP ′}, then later redistributed on {D1, ...,DP } to
obtain the solution of the stochastic problem. In general, {Ii} is different from {Di}.
However, if the local processes on each Di are statistically independent, then we can
take Ii = Di. The method can be thought of as a two-level domain decomposition, in
which each level represents a decomposition of D, e.g., {Di} and {Ii}. The procedure
is sketched in Fig. 2.2 for P ≥ 3 and Fig. 2.3 for P = 2. In general, however,
when solving (1.1) we allow for a multi-level domain decomposition, e.g., each level
corresponding to multi-correlated stochastic processes with different scales. The
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−2

0

2

4

D1
D2 DP

D

I3I1 I2 IP IP+1ρP
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Fig. 2.2. One-dimensional domain decomposition with overlapping subdomains. Shown are the
subdomains {Di} used to compute the solution to (1.1) and the subdomains {Ii} used to represent
the external random forcing f .
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Fig. 2.3. One-dimensional domain decomposition of [0, 1] into two overlapping domains
{D1,D2} and three expansion intervals {I1, I2, I3} (Figs. (a) and (b)). In Figs. (c) and (d)
we show how {I1, I2, I3} partition the domain of a Gaussian covariance function with constant
correlation length lc = 0.08 (Fig. (c)) and variable correlation length ranging from 0.08 to 0.02
(Fig. (d)). In both cases, the overlap ρi between Ii and Ii+1 is chosen to be larger than the largest
correlation length in Ii ∩ Ii+1.

overlap between the subdomains {I1, ..., IP ′}

∆i
def
= Ii ∩ Ii+1, ρi

def
= |∆i|

should be chosen to be larger than the correlation length of f(x;ω) (see appendix A
for the error analysis). In the presence of multi-correlated random processes [4] we
can define a domain decomposition for each process.

2.1.1. A One-Dimensional Example. With reference to Fig. 2.2, let us con-
sider two overlapping coverings of D, {I1, ..., IP+1} and {D1, ...,DP } in which Di and
Di+1 share the same local representation of f(x;ω) in Ii+1. We first compute the
Karhunen-Loève (K-L) expansion of f(x;ω) on the i-th subdomain Ii. To this end,
we simply restrict the covariance function (2.1) to Ii and solve the well-known K-L
eigenvalue problem [4, 41, 42]. We denote Ci(x, y) as the local covariance function
on Ii ×Ii. In order to ensure that the local expansions preserve the global statistical
properties on the overlapping subdomains, i.e., C(x, y) =

∑P+1
i=1 Ci(x, y)1Ii×Ii

,
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(a) (b) (c)

Fig. 2.4. Filtered local covariance functions (2.3) over three expansion intervals as in Fig.
2.3(c) and corresponding first four K-L eigenfunctions. The overlap region is set to ρ1 = ρ2 = 0.2.

Ci(x, y) is smoothly filtered to zero on the overlapping region ∆i × ∆i and the
adjacent Ci+1(x, y) takes the counterpart that remains after subtracting the filtered
covariance from the global one. In order words, we define a filter Fi such that

(2.2) Fi[Ci(x, y)] =

{
Ci(x, y), (x, y) ∈ (Ii × Ii)\(∆i ×∆i),

Ci(x, y)f(x, y), (x, y) ∈ ∆i ×∆i,

where f(x, y) is a smooth function (e.g., a Gaussian or an arctan function) that decays
from one to zero toward the boundary of Ii, and Fi = 0 elsewhere on (Ii×Ii)

c. This
allows us to define the following filtered local covariances

(2.3)





Ĉ1(x, y) = F1[C(x, y)], (x, y) ∈ I1 × I1,

Ĉi(x, y) = Fi[C(x, y) − Ĉi−1(x, y)], (x, y) ∈ Ii × Ii, (i = 2, ..., P )

ĈP+1(x, y) = C(x, y)− ĈP (x, y), (x, y) ∈ IP+1 × IP+1,

We comment that any continuously decreasing function with the denoted bound-
ary condition can be used for the filter, since the summation of the local covariance
will still be C(x, y). However, the smoothness of the filter, i.e., the regularity of
Fi[Ci(x, y)], will affect the number of terms in the local K-L expansion. As an exam-
ple, in Fig. 2.4 we apply the arctan filter to the Gaussian covariance function shown
in Fig. 2.3 (c). It can be easily verified that

(2.4) C(x, y) =

P+1∑

i=1

Ĉi(x, y)1Ii×Ii
, (x, y) ∈ D ×D,

i.e., the global covariance function C(x, y) can be represented as a summation of
filtered local covariances Ĉi(x, y). Now, the local K-L expansion of f(x;ω) on Ii can



PROPAGATING UNCERTAINTY ACROSS DOMAINS 7

be computed by using the local covariance function Ĉi(x, y) as

(2.5) fi(x;ω) =
∞∑

m=1

√
λi,mei,m(x)ξi,m(ω), x ∈ Ii,

where λi,m and ei,m(x) are eigenvalues and (normalized) eigenfunctions of the integral
equation

∫

Ii

Ĉi(x, y)ei,m(x)dx = λi,mei,m(y).

The (uncorrelated) random variables ξi,m(ω) can be obtained through projection as

ξi,m(ω) =
1√
λi,m

∫

Ii

fi(x;ω)ei,m(x)dx.

Finally, the approximation of the random function f(x;ω) can be written as a sum-
mation of truncated K-L expansions in each Ii, i.e.,

(2.6) fM (x;ω)
def
=

P+1∑

i=1

(
Mi∑

m=1

√
λi,mei,m(x)1Ii

ξm,i(ω)

)
, x ∈ D,

where Mi is chosen to achieve a prescribed level of accuracy in each Ii. Here is
where the finite correlation length of f(x;ω) comes in. In fact, the number of random
variables Mi strongly depends on how much we “zoom-in” (with Ii) into the graph
of C(x, y). The series expansion (2.6) allows us to solve the stochastic problem (1.1)
by using domain decomposition. In a one-dimensional setting the solution in each
subdomain Di depends only on (Mi+Mi+1) random variables, which is usually much
smaller that the number of random variables arising from the global K-L expansion.
Also, Di shares Mi and Mi+1 random variables with its adjacent domains Di−1 and
Di+1, respectively.

3. Interfacing Subdomains. The choice of the interface condition between dif-
ferent subdomains is an open question in stochastic domain decomposition methods.
No rigorous theory has yet been developed for interfaces defined in terms of func-
tionals of a stochastic field, e.g., mean, variance or multi-point correlations, although
this is of fundamental importance when propagating uncertainty across subdomains.
Interfacing the whole stochastic field, e.g., through Monte Carlo or sparse colloca-
tion approaches [6, 7] is prohibitively expensive, since the interface operator has to
be applied to each sample. On the other hand, if we interface only low-dimensional

functionals of the stochastic solution, e.g., few statistical moments, then we obtain
a tremendous reduction in computational cost at the expense of a possible accuracy
loss. In this section we propose two new SDD algorithms that exploit the basic idea of
interfacing only low-dimensional functionals of the solution in different subdomains.
Specifically, the first algorithm uses an interface condition defined in terms of a set of
conditional moments (section 3.1). The second algorithm, on the other hand, simul-
taneously interfaces multiple functionals of the stochastic solution, such as the first
few statistical moments, by using PDE-constrained optimization (section 3.2). The
accuracy of both methods is assessed numerically in section 4.
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3.1. Conditional Moment Interface Method. Our first SDD algorithm is
based on interfacing moments or cumulants of the stochastic solution across differ-
ent subdomains by using Schwarz iterations. Schwarz methods are well-established
for deterministic problems, and convergence results can be found in several books
[20, 32, 35, 40] and reviews [52, 53]. In particular, it has been found that the conver-
gence rate of classical algorithms is rather slow and very much dependent on the extent
of overlap between different subdomains. To overcome these drawbacks, new classes
of Schwarz methods were proposed in recent years, e.g., optimized Schwarz methods.
These new algorithms are based on a more effective transmission of information at
interfaces between subdomains. For instance, Robin-Robin conditions [14] and con-
ditions expressed in terms on non-local operators [5, 12, 13, 17] can yield convergence
without overlap.

The conditional moment interface method we propose in this section imposes the
interface condition between different subdomains Di by using the statistical moments.
These are easily computed by using the random variables of the local K-L expansion
in the overlapping region Ii between different subdomains. If we denote by ξi =
(ξi,1, · · · , ξi,Mi

) such random variables, then the conditional average of the solution
can be expressed as

〈u(x, t; ξi, ξj)| ξi〉
def
=

∫
u(x, t; ξi, ξj)p(ξj |ξi)dξj ,

where p(ξj |ξi) is the conditional probability density of ξj given ξi. The artificial

boundary condition g̃i in the system (1.3) can be selected by imposing the conservation
of the k-th conditional moment∗

(3.1) µk(B(uni (x, t; ξi, ξi+1))| ξj) = µk( g̃i(x, t;ω)| ξj), x ∈ Γi, j = i or i+ 1,

where

(3.2) µk(u|ξj) =

{
〈u|ξj〉 , k = 1,〈
(u− 〈u|ξj〉)

k|ξj
〉
, k > 1,

Unfortunately, this condition (3.1) alone does not allow us to determine g̃i uniquely,
due to the uncommon random variables, i.e., the complement of ξj . A simple choice
among multiple boundary conditions is to impose the same conditional mean for fixed
ξi over all collocation points of ξi+1, i.e.,

(3.3) g̃(x, t; ξi, · ) =
〈
uni−1(x, t; ξi−1, ξi)

〉
i−1

.

Obviously, this satisfies Eq. (3.1) for k = 1. However, when implemented in (1.3) the
scheme dissipates excessively the variance at the boundaries, since the variance with
respect to ξi+1 is imposed to be zero. In order to mitigate this effect and achieve a
better accuracy for higher-order moments we propose hereafter several corrections. To
this end, let us first introduce the mean-shifted boundary condition, which basically
imposes continuity of the mean solution across different subdomains. This can be
expressed by the following boundary condition

g̃ni [1](x, t; ξi, ξi+1)
def
= uni (x, t; ξi, ξi+1)− 〈uni (x, t; ξi, ξi+1)〉i+1(3.4)

+
〈
uni−1(x, t; ξi−1, ξi)

〉
i−1

.

∗In practice, we use the marginal expectation 〈u(x, t; ξi, ξj)〉j
def
=

∫
u(x, t; ξi, ξj)p(ξi, ξj)dξj that

appears after multiplying the conditional average with p(ξi).
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Note that (3.4) satisfies Eq. (3.1) for k = 1, and at the same time it does not
affect the variance of the solution within the subdomain Di. This overcomes the
variance dissipation problem arising from the simpler boundary condition (3.3). A
further improvement of the interface condition can be obtained by using second-order
statistical properties. We shall call the corresponding boundary condition as variance
scaling boundary condition. Specifically, we set

g̃ni [2](x, t; ξi, ξi+1)
def
=
(
uni (x, t; ξi, ξi+1)− 〈uni (x, t; ξi, ξi+1)〉i+1

) σi−1(u
n
i−1)

σi+1(uni )
(3.5)

+
〈
uni−1(x, t; ξi−1, ξi)

〉
i−1

,

where σj(u) is defined by

σj(u(x, t;ω))
def
=
[〈
u(x, t;ω)2

〉
j
− 〈u(x, t;ω)〉

2
j

]1/2
.

Note that (3.5) satisfies Eq. (3.1) for both k = 1 and 2, but it may lead to unstable
Schwarz iterations due to the division by σj(u). To avoid such instabilities, we com-
bine (3.4) and (3.5) into one scheme. This yields the conditional moment interface
Algorithm 2, in which for simplicity we have considered only two domains D1 and
D2 (three expansion intervals I1, I2 and I3; see Fig. 2.3). The boundary conditions
appearing in the algorithm are explicitly given as

g̃nr [1](x, t;ω) = un1 (x, t; ξ1, ξ2)− 〈un1 (x, t; ξ1, ξ2)〉1 +
〈
un−1
2 (x; ξ2, ξ3)

〉
3
,

g̃nr [2](x, t;ω) = (un1 (x, t; ξ1, ξ2)− 〈un1 (x, t; ξ1, ξ2)〉1)
σ3(u

n−1
2 )

σ1(un1 )
+ 〈un1 (x, t; ξ1, ξ2)〉3,

g̃nl [1](x, t;ω) = g̃n2 [1](x, t; ξ2, ξ3),

g̃nl [2](x, t;ω) = g̃n2 [2](x, t; ξ2, ξ3).

We initialize the iterative sequence by using the mean boundary condition (3.4), and
iterate until a prescribed tolerance ǫ is achieved on the residual

r =
‖un(x, t;ω)− un−1(x, t;ω)‖x∈D

‖un−1(x, t;ω)‖x∈D

.

We call n∗ the transition iteration for which r < ǫ, and denote the computed bound-
ary condition as g̃n

∗

i [1](x, t; ξi, ξi+1). After the transition iteration, we switch the
boundary condition to the following weighted one

(3.6) g̃ni (x, t; ξi, ξi+1) = wg̃n
∗

i [1](x, t; ξi, ξi+1) + (1− w)g̃ni [2](x, t; ξi, ξi+1),

where w ∈ [0, 1] is the weight between the converged solution from the mean shifting
boundary condition and the new solution from variance scaling approach. Note that
the condition (3.6) is equivalent to the mean shifting condition (3.4) in the limit
w → 1.

Analytical convergence of the proposed iterative algorithm is an open question
at this point. Still, we emphasize that the local solutions correspond to the exact
random excitation from the original system (1.1), and the boundary conditions (3.4)-
(3.6) impose continuity in the first few moments of the solution. In particular, it
takes advantage of the local expansions developed in section 2 that attain the exact
global covariance structure while providing a set of common random variables among
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begin
n = 1
initialize {u0i }

2
i=1 at random

take the local boundary condition g̃nr ≡ g̃nr [1] and g̃
n
l ≡ g̃nl [1] while

‖un−1 − un‖x∈D > ε or ‖un1 − un2‖x∈D1∩D2
> ε̄ do

solve

N1(x, t, u
n
1 (x, t;ω);ω) = f1(x, t;ω), x ∈ D1

B(un1 (x, t;ω)) = g(x, t;ω), x ∈ ∂D1 \ Γ1.

B(un1 (x, t;ω)) = g̃nr (x, t;ω), x ∈ Γ1

N2(x, t, u
n
2 (x, t;ω);ω) = f2(x, t;ω), x ∈ D2

B(un2 (x, t;ω)) = g(x, t;ω), x ∈ ∂D2 \ Γ2.

B(un2 (x, t;ω)) = g̃nl (x, t;ω), x ∈ Γ2

if ‖un−1 − un‖x∈D > ǫ‖un−1‖x∈D then
n∗ = n

else
g̃nr ≡ wg̃n∗r [1] + (1− w)g̃nr [2],
g̃nl ≡ wg̃n∗l [1] + (1− w)g̃nl [2].

end

n = n+ 1
end

end

Algorithm 2: Conditional moment interface method.

the adjacent subdomains. Thus, continuity can be imposed strongly on the shared
random space along with matching up to the second-order moments on the remaining
variables. In case of locally independent stochastic excitation, i.e., Ii = Di, where the
subdomains do not share a common random space, the conditional moment in the
boundary condition becomes a regular moment. Still, rigorous analysis will be the
subject of our future work, and a recent study in [3] proposes a guideline of the error
contribution concerning local polynomial chaos expansions.

3.2. PDE-Constrained Interface Method. The conditional moment inter-
face method discussed in the previous section can be reformulated as a PDE-constrained

optimization problem:

(3.7) min
g̃

J (g̃) s.t. Eq. (1.3),

where g̃ = (g̃1, g̃2, · · · , g̃P ) = (g̃(x|Γ1
, t;ω), g̃(x|Γ2

, t;ω), · · · , g̃(x|ΓP
, t;ω)),

J (g̃) =

P−1∑

i=1

R∑

k=1

∥∥µk(ui(x, t; g̃i, ω)1Γi+1∩Di
)|ξi+1

)
− µk( g̃i+1| ξi+1)

∥∥

+
∥∥µk(ui+1(x, t; g̃i+1, ω)

k1Γi∩Di+1

∣∣ ξi+1)− µk( g̃i| ξi+1)
∥∥ ,

(3.8)

defined as in Eq. (3.2). Clearly, if u is the exact solution to Eq. (1.1) then J = 0.
Within this framework, Algorithm 2 can be considered as an iterative approach to
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solve the optimization problem (3.7) with R = 2. Intuitively, the choice of R depends
on the statistical information we are willing to keep. For example, if we select R = 1 in
(3.8) then (3.7) is expected to yield results similar to the conditional moment interface
method with the mean-shifted boundary condition.

Within the optimization framework it is rather easy to define generalized interface

conditions between the random solution in different subdomains. To this end, we
simply need to specify a suitable objective function J (or a set of functions) to be
minimized. Suppose, for example, that we are interested in preserving the first R
statistical moments of the solution across different domains. In this case we can
consider

(3.9) J (g̃) =
P−1∑

i=1

R∑

k=1

‖µk(ui(x, t; g̃i, ω)1Di∩Di+1
)−µk(ui+1(x, t; g̃i+1, ω)1Di∩Di+1

)‖2,

where ‖ · ‖2 is the L2 norm on the physical space, and µk is defined as

(3.10) µk(u) =

{
〈u〉 , k = 1,〈
(u− 〈u〉)k

〉
, k > 1.

The main difference between (3.8) and (3.9) is that we replaced conditional moments
with moments. With this new objective function, we can solve the PDE-constrained
optimization problem (3.7) to obtain the boundary conditions g̃, hence determining
the global solution u. The optimization problem (3.7) can also be split into a sequence
of local problems, e.g., involving only few domains Di at a time. For example we could
consider

(3.11) min
g̃1

J1(g̃1), min
g̃2

J2(g̃2), · · · , min
g̃P

J2(g̃P ) s.t. Eq. (1.3),

and solve the multi-objective optimization problem by using, e.g., computational game
theory [33,36]. In this framework each objective function Ji is considered as a player
in a game. Each player tries to minimize his objective iteratively in a cooperative
(Stackelberg games [47]) or a non-cooperative (Nash games [27]) setting. We refer
to [33, 36] for additional details.

In each subdomain Di the solution ui is determined by fi, g̃i and Ni (see Eq.
(1.3)). Therefore, for a given fi and Ni, the stochastic solver in each Di can be
represented by the mapping

Fi : g̃i 7→ ui.

At this point, we expand g̃i(x, t;ω) in a polynomial chaos basis ψim(x;ω)

(3.12) g̃i(x, t;ω) =

Qi∑

m=1

ci,m(t)ψi,m(x;ω),

and rewrite Eq. (3.9) as

J (c1, c2, · · · , cP ) =
P−1∑

i=1

R∑

k=1

‖µk(ui(x, t; ci)1Di∩Di+1
)(3.13)

−µk(ui+1(x, t; ci+1)1Di∩Di+1
)‖2,
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begin
initialize ci with the results of deterministic problem;

prepare SPDE solver in each subdomain Di, i.e., set the mapping
F † : ci 7→ ui;

set the objective function J (c1, c2, · · · , cP ) in (3.14) and choose
appropriate weights wk defining the norm, if necessary;

solve the optimization problem minJ (c1, c2, · · · , cP ) subject to Eq. (1.3).
end

Algorithm 3: PDE-constrained interface method.

where ci(t) = (ci,1, ci,2, · · · , ci,Qi
). Note that in this way we built a new mapping

representing the stochastic solver in each subdomain Di

F † : ci 7→ ui.

We conclude this section by emphasizing that the objective function (3.9) can also
take a weighted form

(3.14) J (g̃) =

P−1∑

i=1

R∑

k=1

wk‖µk(ui(x, t; g̃i)1Di∩Di+1
)− µk(ui+1(x, t; g̃i+1)1Di∩Di+1

)‖2,

to account for possible different magnitudes in the statistical moments or cumulants.
The SPDE-constrained optimization method is summarized in Algorithm 3.

3.3. Comparison between the Conditional Moment and the PDE Con-

strained Interface Methods. The conditional moment interface method enforces
the continuity of the conditional mean and variance of the solution across adjacent
subdomains by using Schwarz iterations. In particular, by representing the correla-
tion structure in terms of shared random variables, the algorithm allows us to perform
convergent iterations. On the other hand, the PDE-constrained method provides a
general framework to perform domain decomposition on stochastic PDEs. In practice,
it allows us to set quite general interface conditions by minimizing suitable functionals
of the random solution. The algorithm does not leverage on shared random variables
across adjacent domains as before, but it performs a full PDE-constrained optimiza-
tion in terms of moments or cumulants. This can be considered as an extension of
well-known techniques for deterministic PDE [2, 16, 29].

4. Numerical Results. In this section we compare the performances of our
SDD algorithms in numerical examples involving linear and nonlinear stochastic PDEs.
Specifically, we consider elliptic problems with random diffusion coefficients, randomly
advected scalar fields, and nonlinear advection-reaction problems with random reac-
tion rate. The governing equations are summarized in Table 1.1.

4.1. Stochastic Elliptic Problem. Let us consider the stochastic elliptic prob-
lem

(4.1) −
d

dx

(
a(x;ω)

du(x;ω)

dx

)
= sin(2πx), u(0;ω) = u(1;ω) = 0, x ∈ [0, 1],
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Fig. 4.1. Stochastic elliptic problem. Statistical moments of the solution for random diffusion
coefficients with variable correlation length. Reference solution (black line); Results from the condi-
tional moment interface method (SDD-M) (red circles) and the PDE-constrained interface method
(blue x). It is seen that the solution computed by the proposed SSD algorithms is accurate.

(a) (b)

1 3 5 7 9
10

−4

10
−3

10
−2

10
−1

iteration

 

 

0 0.5 1
10

−4

10
−3

10
−2

10
−1

w  

〈u〉

〈u2〉

〈u3〉

〈u4〉

SDD-M
〈u〉
〈u2〉
〈u3〉
〈u4〉

SDD-S

Fig. 4.2. Stochastic elliptic problem. (a) Relative L2 error in the first four moments as
computed by the conditional mean (SDD-M) and conditional standard deviation (SDD-S) algorithms
with w = 0.2 and ǫ = 10−3. (b) Relative error versus the weight w for fixed ǫ = 10−4. It is seen
that the SDD-S algorithm improves the accuracy in computing higher-order statistical moments near
w = 0.2.
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Fig. 4.3. Stochastic elliptic problem. Relative L2 error in the first four moments for dif-
ferent transition thresholds ǫ. The threshold determines the accuracy and number of iteration for
convergence, hence, it must be selected by taking into account the target error level.

where the diffusion coefficient a(x;ω) is assumed to be a random process with mean
and covariance function

(4.2) 〈a(x;ω)〉 = 1, Cov{a(x;ω), a(y;ω)} = σ2
a exp

[
−
|x− y|2

l2c

]
.

We will study processes with constant as well as variable correlation lengths lc (see Fig.
2.3(c,d)). The prototype stochastic problem (4.1) has been studied with many dif-
ferent techniques, e.g., Wick-Malliavin approximations [46], stochastic collocation [1],
polynomial chaos [50] and domain decomposition methods [6,7]. The latter approach
was shown to be effective and massively parallel, but it did not exploit the fundamen-
tal relation between the correlation length of the random diffusivity and the domain
decomposition of (4.1).

Hereafter we demonstrate computational advantages of such low-dimensional rep-
resentation. To this end, we consider an overlapping covering of the spatial domain
[0, 1] in terms of two subdomains {D1,D2}. By using the local K-L expansion method
we discussed in section 2, we embed the random function a(x;ω) into the set of sub-
domains Ii shown in Fig. 2.3(a,b). This yields a set of sub-processes in the form
(2.5), which allow us to construct local reduced-order stochastic representations of
a(x;ω) preserving second-order statistical properties (see the Appendix A). Specifi-
cally, we assume that the random variables ξi(ω) in (2.5) are uniform on [−1, 1], and
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Fig. 4.4. Stochastic elliptic problem. Comparison between the relative L2 errors of the SDD-S
method (−−) and the PDE-constrained method (−·−) for constant lc = 0.08 (Fig. (a)) and variable
lc (Fig. (b)). It is seen that the SDD-M method is more accurate than the PDE-constrained method.

error in
〈
uk
〉

k = 1 k = 2 k = 3 k = 4

Conditional moment method 2.9514e-04 1.0076e-03 1.7654e-03 2.8584e-03

PDE-constrained method 7.4173e-04 2.9523e-03 4.7312e-03 7.7749e-03

Table 4.1

Stochastic elliptic problem. Relative L2 errors in the first four statistical moments and the stan-
dard deviation of the solution computed by using the conditional moment and the PDE-constrained
interface methods.

that σa = 0.2 in (4.2). The dimensionality in the random space reduces from 12 to
9 in each subdomain for the constant correlation case, and from 17 to 12 and 13 for
the other case, where the K-L expansion is truncated to achieve 95% eigen-spectrum.
The solution on Di can be written as ui(x;ω) = ui(x; ξi(ω), ξi+1(ω)), where ξ2(ω) are
the random variables shared between the subdomains D1 and D2. The whole spatial
domain D is discretized by using 10 spectral elements of order 10, and we consider a
probabilistic collocation method for the random variables ξi.

In Fig. 4.1 we compare the first four moments computed by the global K-L and
the decomposed K-L expansion for random diffusion coefficients a(x;ω) with variable
correlation length. The domain decomposed solution is computed by using the SDD
algorithm with mean boundary condition (SDD-M) - Eq. (3.4). We found that
although we are interfacing the subdomain D1 and D2 only through the conditional
mean field, the decomposed solution basically coincides with the global one just after
few iterations. Specifically, the results of Fig. 4.1 are obtained at the fourth iteration.

Convergence of SDD with mean shifted boundary condition (3.4) (SDD-M) and
with variance scaling boundary condition (3.6) (SDD-S) is demonstrated in Fig. 4.2.
It is seen that the L2 error in the fourth moment, which is the largest one, becomes
smaller than 1% after the third iteration. Also, the SDD-S method is more accurate
than SDD-M. We also performed convergence studies in terms of other parameters
appearing in the SDD-S method, in particular the transition threshold ǫ and w. The
results are summarized in Fig. 4.2(b) and Fig. 4.3. In particular, in Fig. 4.2(b) we
plot the L2 error of the SDD solution versus w for fixed ǫ = 10−4. It is seen that there
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Fig. 4.5. Stochastic elliptic problem. Relative L2 error in the first- and fourth-order mo-
ment versus the iteration number in SDD-M method. Shown are results for different numbers of
subdomains P .

P 1 5 10 20

‖Ii‖ 1 0.2 0.1 0.05

Mi 119 23 12 6

Table 4.2

Stochastic elliptic problem. Length of Ii and number of random variables Mi in the local K-L
expansion within each Ii as a function of the total number of subdomains P . Here Mi is determined
by setting a threshold of 5% in the error of the second order moment computed by the truncated K-L
series.

exist an optimal value of w near w = 0.2, which coincides with the ratio between the
noise amplitude σa and the mean. Note also that in the limit w → 1 the error of
SDD-S coincides with SDD-M (see section 3.1).

The effects of the transition threshold on the convergence of the Schwarz iterations
is studied in Fig. 4.3 for ǫ = 10−2, 10−3, and 10−4. In particular, we found that the
solution computed with smaller ǫ is more accurate but it exhibits a slower convergence
rate. Thus, the parameter ǫ determines both accuracy and convergence of Schwarz
iterations. The errors obtained by using ǫ = 10−2 are the largest ones, but still
bounded by 10−2. In Table 4.1 and Fig. 4.4 we compare the relative L2 errors
obtained by using the conditional moment and PDE-constrained interface methods
with R = 2 and wk = 1. Specially, we consider the problem (4.1) with random
diffusion coefficient of correlation length lc = 0.08. In all cases, it is seen that the
conditional moment interface method is more accurate than the PDE-constrained
interface method. The computational cost of both methods is discussed in section 5.

4.1.1. Extension to Multiple Subdomains. So far we considered only two
overlapping domains D1 and D2 to compute the solution to (4.1). We now extend the
SDD algorithms to multiple subdomains {D1, ...,DP } and {I1, ..., IP+1}, with P = 5,
10 or 20. In particular, we set

(4.3) Di = [xi−1 − δ′, xi + δ′], Ii+1 = [xi−1 + ρ′, xi+1 − ρ′],
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where {xi}
P
i=0 are points in [0, 1], while δ′ and ρ′ are positive numbers determining

the extent of overlap between subdomains (see Fig. 2.2). When {xi}
P
i=0 are uniformly

spaced, with spacing △x (i.e., xi = i△x), the overlapping region is δ = |Di ∩Di+1| =
2δ′ and ρ = |Ii ∩ Ii+1| = △x − 2ρ′. The length of the expansion intervals 2△x and
the overlapping length ρ should be selected by taking into account the correlation
length of the diffusion coefficient, here set to lc = 0.008. Thus, we choose δ′ and
ρ′ in order to obtain ρ = 0.04, 0.04, and 0.03 for P = 5, 10, and 20, respectively.
Thanks to the finite correlation length of the diffusion coefficient, we have that the
number of terms in the local K-L expansion decreases significantly when we increase
the number of subdomains (see Table 4.2). This allows us to solve a sequence of local
low-dimensional problems when performing Schwarz iterations.

Convergence of the SDD-M algorithm with multiple subdomains is shown in Fig.
4.5, where we plot the relative L2 error of the first- and fourth-order moment. Note
that as the number of subdomains increases to P = 20, the convergence rate deteri-
orates due to errors in the local K-L expansion. This can be improved by setting a
tighter threshold for the K-L truncation error (see Appendix A). We do not apply
Algorithm 3 to solve this problem because the number of variables in the objective
function is too large for P = 20. Indeed this yields a high-dimensional global opti-
mization problem (3.7) requiring specifically designed algorithms to be solved. An
alternative way to proceed is to split the objective function into several functions and
consider multi-objective optimization, e.g., based on computational game theory. An
advantage of using this approach relies on the fact that the high-dimensional opti-
mization problem can be split into a sequence of low-dimensional ones. The global
minimizer is constructed in an alternating-direction setting, e.g., by solving each local
optimization problem independently and then iterate on the subsequent ones.

4.2. Stochastic Advection. Next, we consider the stochastic advection prob-
lem

∂u(x, t)

∂t
= −a(x;ω)

∂u(x, t)

∂x
, x ∈ [0, 1], t ≥ 0,(4.4)

with initial condition u(x, 0) = sin(2πx). The mean velocity is set to 〈a(x;ω)〉 =
1/(2π) and the covariance function is assumed to be as in Eq. (4.2) with σa = 1/(10π).
We consider both Gaussian covariances shown in Fig. 2.3(c,d), i.e., with constant
and variable correlation lengths, and represent a(x;ω) by using the local K-L we
discussed in section 2 decomposed into the two subdomains as shown in Fig. 2.3(a,b).
Regarding the boundary conditions, we set periodic boundary conditions u(0) = u(1)
for the case where a(x;ω) has constant correlation length, and a Dirichlet condition
u(0) = sin(−t) for variable correlation lengths. In Fig. 4.6 we plot the first four
moments of the solution to (4.4) as computed by the SDD-S and the PDE-constrained
interface methods, for the case where a(x;ω) has constant correlation length lc = 0.08.
Here we set ǫ = 10−2 and w = 0.1 in the SDD-S algorithm. It is seen that both
methods yield accurate statistical moment up to t = 1.0 (see also Fig. 4.8). In
Fig. 4.7 we study the standard deviation of the solution at t = 0.5, for advection
velocities with variable and constant correlation lengths. In the latter case, Fig.
4.7(b), we see that the SDD-S algorithm provides more accurate results than SDD-M,
by preserving the periodicity of the standard deviation. In this test, we notice that
the difference between the errors of two methods is very small when t is small, and the
PDE-constrained method is more accurate for the problem with periodic boundary
conditions.
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Fig. 4.6. Stochastic advection problem. First four statistical moments. The reference solution
(black line) is compared with the SDD-S method (red line) and the PDE-constrained interface method
(blue line) at two different times: t = 0.1 (red square, blue x) and t = 1.0 (red circle, blue +).
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Fig. 4.7. Stochastic advection problem. Standard deviation of the solution at t = 0.5. The
reference solution (black line) is compared with the results obtained by using the conditional moment
interface methods: SDD-M (red x), SDD-S (red o) and the PDE-constrained method (blue +).
In particular, in Fig. (a) we study the case where the random advection velocity has a variable
correlation length ranging from 0.02 to 0.08. Results for the case of constant correlation length are
shown in Fig. (b).

4.3. Stochastic Advection-Reaction. In this last example we consider an
advection-reaction problem with nonlinear reaction term and stochastic reaction rate

(4.5)
∂u

∂t
= V (x)

∂u

∂x
+ (k0(x) + σkk1(x;ω))R(u),
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Fig. 4.8. Stochastic advection problem. Relative L2 errors in the first four statistical moments
of the solution versus time. We show results computed by using the SDD-S (−) and the PDE-
constrained (− · −) interface methods for the cases of constant correlation length (lc = 0.08) and
periodic boundary conditions (Fig. (a)), and variable correlation length ranging from 0.08 to 0.02
and Dirichlet boundary condition (Fig. (b)).

where

V (x) = −
1

2

(
1 + e(sin(2πx)+cos(2πx))/2 − cos(2πx)

)
,

k0(x) = 1−
2

5

(
e− sin(2πx)/2 + cos(2πx)

)
,

σk = 0.2, R(u) = 1−u2, with initial condition u0(x) = sin(2πx) and periodic boundary
conditions. This problem was studied in [43] by using the Mori-Zwanzig projection
operator method (see also [38,44]). The perturbation in the reaction rate, k1(x;ω), is
modeled as a Gaussian random field with Gaussian covariance function and correlation
length varying from 0.08 to 0.02 (see Fig. 2.3(d)). The results of our simulations by
using two subdomains as in the previous section are shown in Fig. 4.9, where we plot
the first four moments of the stochastic solution at different times obtained by using
the SDD-M and PDE-constrained interface methods. The relative L2 error of such
moments is plotted in Fig. 4.10 versus time. It is seen that the SDD-M method is
more accurate than the PDE-constrained method. Both algorithms produce the same
error slope in time.

In addition, we consider a random reaction rate with a Gaussian covariance kernel
having correlation length lc = 0.008, and compute the solution by using the SDD
algorithm on multiple subdomains as in section 4.1.1. We take the subdomains {Di}
and {Ii} defined as in (4.3) for P = 5, 10, and 20. The dimensionality of the random
space associated with this decomposition is shown in Table 4.2. The relative L2

errors in the first four statistical moments are plotted in Fig. 4.11 for P = 5 and
P = 20. Although the errors slightly increase as we divide the domain into smaller
subdomains, the accuracy does not depend strongly on P . In particular, Fig. 4.11(b)
plots the error with respect to P , which shows that the error stays in the same order
of magnitude. Thus, we observe that the convergence of the SSD method depends less
on the number of subdomains for this problem than the Poisson equation in section
4.1.1.

5. Summary. In this paper we proposed new stochastic domain decomposition
methods for multi-scale propagation of uncertainty in heterogeneous stochastic sys-
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Fig. 4.9. Stochastic advection-reaction problem. First four statistical moments of the solu-
tion to the advection reaction equation (4.5) with correlation length that varies from 0.02 to 0.08.
The reference solution (black line) is compared with the SDD-M method (red line) and the PDE-
constrained interface method (blue line) at two different times: t = 0.5 (red triangle, blue +) and
t = 1.0 (red circle, blue x).
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Fig. 4.10. Stochastic advection-reaction problem. Relative L2 errors in the first four statistical
moments of the solution to the the stochastic advection reaction problem (4.5) versus time. We
show results computed by using the moment interface SDD-M (−) and the PDE-constrained (− ·−)
methods for the case of variable correlation length decomposed into two subdomains.

tems. The key idea relies on new types of interface conditions between different
subdomains combined with reduced-order local representations of random processes
and fields. This allows us to reduce the stochastic problem to a sequence of prob-
lems of smaller stochastic dimension, while properly propagating uncertainty across
domains. We proposed two new algorithms for this purpose, based on conditional mo-
ments (section 3.1), and PDE-constrained optimization (section 3.2). In both cases,
the interface conditions are defined by low-dimensional functionals of the stochastic
solution (e.g., moments or cumulants). We emphasize that no rigorous theory has yet
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Fig. 4.11. Stochastic advection-reaction problem. Relative L2 errors in the first four statistical
moments versus time (a) by using P = 5 (−) and P = 20 (− · −) number of subdomains. Fig. (b)
plots the error versus P at time t = 1 which shows that the error does not depend strongly on P .

Conditional moment method PDE-constrained method

Cdet

(
N
P

)
· C(M) · nitr · P Cdet

(
N
P

)
· C(M) · Copt(M,P ) · P

Table 5.1

Comparison between the computational cost of the conditional moment and the PDE-
constrained interface methods. Here Cdet is the cost of the deterministic solver on a single subdo-
main, C(M) is the number of (sparse grid) collocation points, nitr is the Schwarz iteration number,
and Copt counts the number of deterministic solves in the PDE-constrained optimization. In our
simulations, Copt ∼ O(102) while nitr is usually less than 10. In these cases the PDE-constrained
method is more costly.

been developed for stochastic systems with interfaces defined in terms of functionals of
the stochastic field. However, the numerical tests we performed in section 4, demon-
strate that the SDD methods proposed here are relatively accurate and efficient for
both linear and nonlinear problems. The computational cost of the new algorithms
is summarized in Table 5.1. In particular, the conditional moment interface method
requires a deterministic solve at each Schwarz iteration within each subdomain. This
has to be multiplied by the number of (sparse grid) collocation points we use to repre-
sent the parametric input uncertainty. On the other hand, the computational cost of
the PDE-constrained method is proportional to Copt times the cost of a deterministic
solve, where Copt in our examples is of the same order of magnitude as the number
of gPC coefficients in the local polynomial chaos expansions i.e., O(102). Hence, in
our examples the PDE-constrained method is more costly, since nitr < 102.

There are interesting connections between the conditional moment and the PDE-
constrained methods. In particular, the conditional moment method can be seen as
an algorithm to solve a special type of PDE-constrained optimization problem. In fu-
ture work we will exploit this connection further. Although, our methods impose the
interface condition in a weak sense that does not guarantee sample-wise continuity of
the solution, we emphasize the applicability of our methods to systems without global
description of the random field, e.g., atomistic to continuum coupling problems, and
particularly the PDE-constrained method can be considered as an extension of deter-
ministic optimization-based coupling methods [30, 31]. Another interesting research
direction is the localized optimization approach based on computational game theory
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mentioned in section 3.2. In such framework, each objective function is considered as a
player which tries to minimize his value in a cooperative (Stackelberg games [47]) or a
non-cooperative (Nash games [27]) way. In this setting, local optimization can be used
in connection with the conditional moment approach to develop a predictor-corrector

scheme. We will also extend the conditional moment method to interfaces defined by
higher-order moments. This can be done, e.g., by using non-normal transformation
techniques [9].

Summary:

1. The conditional moment method is more accurate than the PDE-constrained
method and it is computationally more efficient for a large number of subdo-
mains. This is particularly true for nonlinear problems.

2. The PDE-constrained method allows us to couple stochastic simulations with
generalized interface conditions, and it is applicable regardless of the structure
of the random solution. The computational efficiency of the method can be
enhanced by splitting the global optimization problem into local ones and
then using multi-objective optimization.

3. Both conditional moment and PDE-constrained algorithms can be paral-
lelized.

In future work, we will extend the proposed algorithms to stochastic systems with
hybrid coupling, e.g., stochastic particle simulations coupled with stochastic PDEs and
embedded multi-dimensional domains. In addition, analytical study of our iterative
scheme will be in the subject of our future work. A recent study in [3] proposes a
method of analysis concerning a local polynomial chaos expansion. However global
trajectories should be available, which is not usually possible for the problem we
consider here.
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Appendix A. Convergence Analysis of the Local K-L Expansions. In this
section we prove that the local expansion method introduced in section 2, preserves
the two-point correlation function of the field across different subdomains. To this
end, let us compute the error in representing the global covariance function in terms
of local expansions, i.e.,

(A.1)

∥∥∥∥∥C(x, y)−
P+1∑

i=1

Ĉi(x, y)1
(x,y)
Ii×Ii

∥∥∥∥∥ =
∥∥∥C(x, y)1(x,y)

∩i(Ii×Ii)c

∥∥∥ ≤ O(εC).

Here εC is an upper bound of C(x, y) on ∩i(Ii × Ii)
c which depends on the length

of the subdomains and the overlapping region. The convergence of the local K-L
expansion is given by the usual K-L theorem, provided that the filtered covariance
function Ĉi(x, y) is smooth and positive semi-definite. In fact, the L2 error is obtained
as

(A.2) ε2i
def
=

∫

Ii

〈(
fi(x;ω)−

Mi∑

m=1

√
λm,iem,i(x)ξm,i(ω)

)2〉
dx =

∞∑

Mi+1

λm,i,
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so that each series can be truncated according to the error of the local eigenspectrum.
An upper bound for the error in the covariance function is obtained as

‖C(x, y) − 〈fM (x;ω)fM (y;ω)〉‖ ≤

∥∥∥∥∥C(x, y)−
P+1∑

i=1

Ĉi(x, y)1
(x,y)
Ii×Ii

∥∥∥∥∥

+

∥∥∥∥∥

P+1∑

i=1

Ĉi(x, y)1
(x,y)
Ii×Ii

−

(
P+1∑

i=1

Mi∑

m=1

λm,iem,i(x)em,i(y)1
(x,y)
Ii×Ii

)∥∥∥∥∥

≤
∥∥∥C(x, y)1(x,y)

∩i(Ii×Ii)c

∥∥∥+
∥∥∥∥∥

P+1∑

i=1

(
Ĉi(x, y)−

Mi∑

m=1

λm,iem,i(x)em,i(y)

)
1
(x,y)
Ii×Ii

∥∥∥∥∥

≤ O(εC) +
P+1∑

i=1

O(εi).

The first part is due to domain decomposition while the second part is due to the
truncation of the local expansions (see Fig. A.1(c,d) that plots the errors related to
these quantities). If D is bounded and Ci(x, y) are positive semi-definite, both εC and
εi go to zero. This is demonstrated numerically in Fig. A.1(a), where we plot the error
in the covariance function as the number of subdomains P increases. In particular,
the covariance function of f(x;ω) is chosen to be Gaussian with correlation length
lc = 0.008. Compared to the global K-L expansion (P = 1), the decomposed K-L
expansion converges much faster in each subdomain as we increase P . This is due
to the fact that the relative correlation length of the process becomes larger when
we “zoom-in” with the domain decomposition (see Fig. 2.1). This implies that the
local K-L expansion requires a smaller number of random variables (m) to achieve the
same level of accuracy. In Fig. A.1(b) we plot the relative error on the entire domain
D versus the total number of random variables, i.e., m · P , Note that the global K-L
expansion gives a lower bound for the errors, since it is the optimal representation
of the process on D . We also observe that the total number of random variables to
achieve the same level of accuracy increases as we increase P .
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