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[1] Turbulence in the surf zone, the shallow region adjacent
to the shoreline, has a key role in beach erosion, fertilization,
dispersal, and larval settlement of marine invertebrates, and
microbial contamination dilution in beach waters. Breaking-
wave generated (the dominant source) surf zone turbulence
is understood poorly. A new surf zone turbulent dissipation
rate e scaling is derived, that collapses new field surf zone ¢
observations with relatively high skill compared to other
scalings. The vertically-uniform length-scale is 1/6 the water
depth, and 15% of the wave-energy flux gradient is dissi-
pated below the mean surface. Field and laboratory surf zone
turbulence observations are shown to be consistent using the
scaling. The non-dimensional surf zone diffusivity and sus-
pended sediment profile can be applied to sediment transport
and a range of biological processes including microbial path-
ogen contamination of beach waters. Citation: Feddersen, F.
(2012), Scaling surf zone turbulence, Geophys. Res. Lett., 39,
L18613, doi:10.1029/2012GL052970.

1. Introduction

[2] Turbulence in the surf zone, the shallow region (typi-
cally depth 4 < 4 m) adjacent to the shoreline, mixes verti-
cally, thereby setting the vertical distribution of currents
[Feddersen and Trowbridge, 2005], sediment [Ogston and
Sternberg, 2002], fecal indicator bacteria, larvae, or other
tracers. Surf zone turbulence is directly linked to tracer dis-
persion [Feddersen, 2007; Clark et al., 2010], successful
fertilization [Serrao et al., 1996], spore dispersal [Gaylord
et al., 2002], and larval settlement [Denny and Shibata,
1989; Crimaldi et al., 2002], and dilution of fecal indica-
tor bacteria [Grant et al., 2005; Rippy et al., 2012]. How-
ever, field observations of surf zone turbulence are sparse
[George et al., 1994; Bryan et al., 2003; Ruessink, 2010;
Feddersen, 2012] and breaking-wave generated turbulence
is understood poorly.

[3] For depth-limited wave breaking and weak mean
alongshore current, the surf zone turbulent kinetic energy
(TKE) balance is between downward vertical turbulent dif-
fusion from a near-surface breaking-wave turbulent source

and dissipation e,
d dk
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where z is the elevation above the bed, k is the TKE, and K is
the TKE eddy diffusivity. Surf zone breaking waves inject
turbulence at a rate related to the cross-shore gradient of
wave energy flux dF/dx [Battjes, 1975], where x is the cross-
shore coordinate.

[4] For deep water white-capping wave-breaking, turbu-
lence is enhanced [Agrawal et al., 1992], the mean turbu-
lence energetics follow (1), and the near-surface e scales
[Terray et al., 1996] as

Tz

where z' is the distance below the mean surface and Hj is the
significant wave height, and G is the white-capping induced
surface TKE flux parameterized to depend upon the wind
stress and the wave growth rates [Craig and Banner, 1994;
Terray et al., 1996]. Evidence for the —2 power-law expo-
nent has been found in deep water [Terray et al., 1996;
Drennan et al., 1996], in intermediate depths of 12 m [Gerbi
et al., 2009], and in the mid-to-upper water column in depths
as shallow as 4 m [Feddersen et al., 2007; Jones and
Monismith, 2008a, 2008b]. Implicit in this scaling, is that
the turbulent lengthscale / increases with distance below the
surface [Craig and Banner, 1994].

[5] A surf zone-modified Terray scaling that uses the
observed wave energy flux gradient dF/dx in place of param-
eterized white-capping TKE flux had no skill across surf zone
locations [Feddersen, 2012]. Although this scaling had some
skill at individual inner-surf zone locations in the mid-water
column, the best-fit power law exponent and other scaling
constants varied in the cross-shore [Feddersen, 2012], indicat-
ing it was not generally applicable to surf zone environments.

[6] Here, a new surf zone turbulence scaling is derived
assuming a vertically uniform turbulent length scale that is a
constant fraction of the depth (Section 2). Using new
observations from the IB09 field experiment (Section 3), this
scaling collapses the surf zone € observations when the mean
currents are not strong and yields an estimate of the fraction
of wave energy-flux gradient dissipated below the mean
surface (Section 4). Using the scaling, field and laboratory
surf zone € observations are shown to be consistent. The
turbulence scaling is used to derive the surf zone eddy dif-
fusivity and the suspended sediment concentration profile
(Section 5). The results are summarized in Section 6.

2. Surf Zone Turbulence Scaling

[7] In simple turbulence models (e.g., k-e model), the
balance between vertical turbulent diffusion and dissipation
(1) is written [Rodi, 1987] in terms of k and turbulent length-
scale /,

d(Cu k' 2dk/dz) k32 3)
e
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Figure 1. Depth /& versus cross-shore coordinate x. The
instrument frame locations (circles) are numbered 1-6.
Frame 4 had 3 locations in the vertical. The horizontal
dashed lines show the tide range standard deviation. Surf
zone locations were limited to frame 5 and onshore.

where K = C,,Jk'?, the RHS of (3) is ¢, and C,, = 0.57 [Rodi,
1987].

[8] Although the observed Terray scaling (2) is not
directly derivable from the TKE energetics (3), with an
ad-hoc choice of the surface length-scale and other model
constants, two-equation turbulence models (e.g., k-¢ and
k-w), with length-scale / o z', can reproduce the deep-
water white-capping z "2 power law dependence (2)
[Burchard, 2001; Umlauf et al, 2003; Jones and
Monismith, 2008a, 2008b]. In seaward of the surf zone
[Feddersen et al., 2007] or estuarine [Jones and Monismith,
2008a, 2008b] white-capping wave breaking, the shallow
depths preclude / o< z' over the entire water column, resulting
in poor fits of observed € to the Terray scaling (2) in the lower
water column. This also may have led to the poor fits of € to
the surf zone modified Terray scaling in the even shallower
depths of the surf zone [Feddersen, 2012].

[v] Here, a vertically-uniform length-scale equal to a
fraction (6) of the mean water depth (%) / = 64 is adopted for
the development of a new surf zone scaling. Choice of / =
Oh leads to an analytic solution for £ from the 2nd order
ODE (3). With the surface boundary condition of TKE flux
equal to the wave energy flux gradient, i.e., Kdk/dz = dF/dx,
the analytic solution of (3), once re-written for e, results in a
new non-dimensional e scaling,

d;—fdx — A exp(ad), (4)

where ¢ = z/h is the non-dimensional height above the bed,
the vertical decay-scale a = (3/2)" 2Cu/é, and the non-
dimensional € magnitude 4 = a/exp(«) is linked to the ver-
tical € decay scale. The only unknown is ¢ (or «). Near the
bed (¢ < 0), [ must decrease as the wave boundary layer
becomes important, and (4) is not appropriate.

[10] For a surf zone with turbulent energetics described by
(1), the constant / = 6k solution (4) is also a solution of the
coupled k-e equations with dissipation Schmidt number o, =
1. The € equation [Rodi, 1987] corresponding to (1) is

d /K de _ €2 (5)
\o.dz) ~ %
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where ¢, = 1.92 is a well-established k-¢ constant [Rodi,
1987] based on the observed decay of homogeneous tur-
bulence, and o, is the dissipation Schmidt number. For
classic logarithmic boundary layers [Rodi, 1987; Umlauf
and Burchard, 2003], o. = 1.1. To reproduce the z'~>
deep water ¢ scaling power-law exponent [Terray et al.,
1996], an unphysical o, = 2.4 is required [Burchard,
2001; Umlauf and Burchard, 2003]. In contrast, the con-
stant [ = 6h solution in (5) yields o, = 2/c,. = 1.04, very
close to one (equal TKE and e diffusivity), similar to the
value for a logarithmic boundary layer.

3. Surf Zone Observations

[11] The new dissipation scaling (4) is tested with recent
field surf zone dissipation observations from the IB09 field
experiment (Fall 2009 at Imperial Beach CA). Six instru-
mented tripod frames were deployed spanning the surf zone
on a cross-shore transect from near the shoreline to 4.5 m
mean water depth (Figure 1). The tripod frames were ori-
ented to minimize flow obstacles from cross-shore propa-
gating waves and the alongshore current. At each frame, the
vertical coordinate z is positive upward with z = 0 m at the
bed. Each instrumented frame had a buried pressure sensor
and downward looking 5 MHz Sontek Ocean Acoustic
Doppler Velocimeter (ADV), both sampling at 8 Hz. Data
was collected for 935 hours starting 14 September 2009,
with similar processing and quality control procedure as
previously used [Feddersen, 2012]. The total water depth 4,
ADV sensing volume height above the bed z, wave energy
flux F, and gradients dF/dx are estimated at each frame. The
wave energy flux F is calculated from co-located pressure
and ADV data over the sea-swell frequency band, as
described in Feddersen [2010]. Wave energy flux gradients
dF/dx at frame i are estimated by differencing F at frames
i+ 1andi— 1, except at frame 1 where shoreline F' =0 was
assumed, analogous to Feddersen [2010]. Frames are con-
sidered “within” the surf zone when located onshore of the
wave-energy-flux estimated surf zone boundary. This cor-
responds to the self-similar surf zone region where waves
have already “broken” and propagate as bores. The hourly
turbulent dissipation rate ¢ is estimated and quality con-
trolled from the high frequency ADV wvertical velocity
spectra [Feddersen, 2010]. The quality control methodology
often rejects data runs in the upper water column ¢ > 0.7)
with intense wave breaking due to elevated ADV noise or
inconsistency with an inertial subrange [Feddersen, 2010].

[12] The incident significant wave height H; varied
between 0.5 and 1.7 m. The surf zone mean alongshore
current (V') magnitude was typically (80% of the time)
<0.3 m s, indicating the bottom boundary layer generated
turbulence, neglected here, was not significant [Feddersen,
2012]. Surf zone €, measured below trough-level (generally
¢ <0.6), varied between 10~*and 2 x 10> m?*s . To avoid
significant bottom boundary layer generated turbulence, the
subsequent analysis is restricted to times when || <0.3 ms™".
The majority (80%) data points fall below z/k < 0.4.

4. Results

[13] The observed non-dimensionalized ek/(dF/dx) at all
surf zone locations with |V'| < 0.3 m s~ are consistent with
the new scaling (4) with skill /* = 0.44 (Figure 2). The
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Figure 2. Non-dimensional e4/(dF/dx) versus ( = z/h for
surf zone observations (N = 688, r? = 0.44) for |V| <
0.3 m s~ '. The fit to eh/(dF/dx) = Aexp[a(] (red dashed line)
results in best-fit o = 4.38(£0.19) and 4 = 0.0083(£0.0005).
The best-fit o (using C,, = 0.57) implies ¢ = 0.16 and theo-
retical 4 = 0.0548. The ratio 4/4 = 0.15 implies that only
15% of dF/dx is dissipated below trough level, consistent
with laboratory observations.

parameters « and A are fit independently to the data even
though the scaling has them linked (i.e., 4 = exp(a)/a).
The best-fit o = 4.38(40.19) implies that 6 = 0.16 and
the theoretical 4 = exp(a)a = 0.0548. The best-fit
A = 0.0083(40.0005) and the ratio between the best-fit and
the theoretical value A/4 = 0.15 implies that only 15% of the
energy lost by the wave field (dF/dx) is dissipated below the
water column (¢ < 1).

[14] The new scaling skill is a dramatic improvement over
a surf zone Terray e scaling (analogous to equation (2)) that
had essentially no skill across surf zone locations from the
HBO06 experiment [Feddersen, 2012]. The new scaling is
also superior to the surf zone Terray scaling when applied to
the IB09 data set. For the IB09 surf zone locations, the surf
zone Terray scaling (Figure 3) has some skill 72 = 0.27 with
best-fit power-law exponent of —1.7, near the canonical
—2 value. However, the surf zone Terray scaling skill is
significantly lower than the new scaling skill (+* = 0.44).
Furthermore, the deviation of the observations from the
surf zone Terray scaling best-fit curve (dashed in Figure 3)
is skewed at all z'/H;, indicating that a power-law fit (in a
least-squares sense) is not appropriate. This is consistent
with the limitations on turbulent length-scale in the surf
zone, particularly as the majority of € observations are in
the lower-part of the water column.

[15] Significant data scatter remains about the best-fit line
(dashed line in Figure 2) that the new scaling (4) does not
explain. At z/h > 0.45, frame 1 data gives rise to the data
cloud > the best-fit line, which likely results from differ-
ences in dF/dx estimation method. The general scatter may
result from cross-shore variation in the ratio of downward
surface TKE flux into the water column and dF/dx, poten-
tially resulting in cross-shore variation in the best-fit 4. This
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was observed in a laboratory inner-surf zone [Huang et al.,
2009] where the ratio of depth-integrated e to dF/dx varied
a factor of 2 in the cross-shore.

[16] With this new non-dimensional ¢ scaling (4), the field
and laboratory e observations are shown to be consistent. Lab-

oratory studies found non-dimensional €/ (g3h)1/ %o exp[a(]
with a = 4.5 [Govender et al., 2004], & = 3.68 [Huang
et al., 2009], and & = 3 [Yoon and Cox, 2010], similar
to the best-fit field o = 4.38 (Figure 2). The vertically-
uniform / with inferred 6 = 0.16 is consistent with inferred
vertically uniform laboratory surf zone length-scales with
I/h=0.1-0.2, over a similar { range (0.2 < ( <0.7) [Govender
etal.,,2004]. In the surf zone H/h = 0.4 [Raubenheimber
et al., 1996], implying that / = 0.4 Hy, similar to the surface
length-scale boundary condition required for deeper-water
white-capping wave breaking [Burchard, 2001]. In a surf
zone with typical depth ranging from 1-2 m, the inferred
length-scale of 0.16-0.32 m is consistent with the surf zone
0.2 m surface length scale boundary condition used by
Feddersen and Trowbridge [2005]. The inferred 15% of dF/
dx is dissipated below ¢ = 1 is consistent with the 10% level
inferred in detailed laboratory surf zone e(z) observations
[Govender et al., 2004; Huang et al., 2009].

5. Discussion

[17] From the new non-dimensional € scaling (4), the non-
dimensional eddy diffusivity X is

K(z) _ s4/3 4173 az

HdF ) =6"°4 exp(3 h)’ (6)
a different vertical structure than the commonly assumed
constant [Faria et al., 2000] or log-profile [Beach and
Sternberg, 1988; Denny and Shibata, 1989] based = uxxz
(where u= is the bed friction velocity). The dimensional K
depends on wave breaking (dF/dx) analogous to earlier
dimensional analysis [Battjes, 1975].

Offff! oo o

z'/Hg

10 10 10
eHs/(dF/dzx)
Figure 3. Terray scaled eHy/(dF/dx) against z'/H; for surf
zone observations (N = 688) for || < 0.3 m s™'. The best

fit power-law scaling eHs/(dF/dx) o (z'/Hs)" (red-dashed)
has best-fit v = —1.70 with skill »* = 0.27.
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[18] The wvertical distribution of the mean sediment
concentration C(z), is set by K, where the falling (with
velocity [wy|) sediment flux is balanced by upward diffusion
[Grant and Madsen, 1986] (i.e., —|w/C = K(z)d(/dz).
With (6), the non-dimensional sediment profile solution is
C@2)/Cy = exp[—pB/h)(1 — az/(6h)), where B = |wy]
[46*(dF/dx)]”"? is the vertical decay rate of the mean sed-
iment profile and C, is the near-bed concentration. The
concentration fall-off is weaker than exponential similar to
field observations [Ogston and Sternberg, 2002]. The ver-
tical sediment decay rate 3 depends strongly on the wave-
breaking energy flux. With coupled observations of C(z) and
dF/dx, this suspended sediment concentration scaling can be
tested. Together with the offshore-directed cross-shore flow,
also derivable [Faria et al., 2000] analogously using K, the
mean suspended sediment flux, which dominates during
offshore sandbar migration events [Gallagher et al., 1998;
Hoefel and Elgar, 2003], can be estimated.

[19] In addition, surf zone diffusivity K is directly linked
to biological processes such as the rate of successful external
fertilization [Denny and Shibata, 1989; Serrao et al., 1996]
and larval settlement [Denny and Shibata, 1989; Crimaldi
et al., 2002] of marine invertebrates, and mass transfer of
dissolved species to reef corals [Falter et al., 2007]. The
diffusivity is critical to the vertical distribution of macro-
algae spores and their dispersal distance [Gaylord et al.,
2002] in the wave dominated nearshore including the
surf zone. Microbial contamination in beach recreational
waters is linked to significant health risk [Haile et al.,
1999] and estimated [Ralston et al., 2011] to cause in
the US 5 million infections at a cost of $300 million
annually. This breaking-wave surf zone diffusivity has
direct application to improve predictions [Zhu et al., 2011;
Rippy et al., submitted manuscript, 2012] of microbial
water quality in beach waters.

6. Summary

[20] Here a new surf zone turbulence scaling assuming
weak mean currents and a vertically uniform length-scale
that is a constant fraction of the water depth /= 6. A constant
[ is consistent with the k-e equation with realistic dissipation
Schmidt number near one. The scaling gives an exponential
vertical structure of TKE, dissipation ¢, and diffusivity that
all depend upon the breaking wave energy flux gradient. The
scaling collapses new field surf zone dissipation observa-
tions with relatively high skill (#* = 0.44) compared to pre-
vious scalings. The best-fit to the scaling reveals that surf
zone turbulent length-scale is approximately 1/6 the water
depth and that 15% of the lost wave energy is dissipated
below mean-sea level. Field and laboratory surf zone tur-
bulence observations are shown to be consistent through the
scaling. The scaling also allows estimation of the diffusivity,
which has application to mean suspended sediment con-
centration and a range of biological processes.
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