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Abstract

Repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are an important cause of

both motor neuron disease (MND) and frontotemporal dementia (FTD). Currently, little is known

about factors that could account for the phenotypic heterogeneity detected in C9ORF72 expansion

carriers. In this study, we investigated four genes that could represent genetic modifiers: ataxin-2

(ATXN2), non-imprinted in Prader-Willi/Angelman syndrome 1 (NIPA1), survival motor neuron 1

(SMN1) and survival motor neuron 2 (SMN2). Assessment of these genes, in a unique cohort of

331 C9ORF72 expansion carriers and 376 controls, revealed that intermediate repeat lengths in

ATXN2 possibly act as disease modifier in C9ORF72 expansion carriers; no evidence was

provided for a potential role of NIPA1, SMN1 or SMN2. The effects of intermediate ATXN2

repeats were most profound in probands with MND or FTD/MND (2.1% versus 0% in controls,

P=0.013), whereas the frequency in probands with FTD was identical to controls. Though

intermediate ATXN2 repeats were already known to be associated with MND risk, previous reports

did not focus on individuals with clear pathogenic mutations, such as repeat expansions in

C9ORF72. Based on our present findings, we postulate that intermediate ATXN2 repeat lengths

may render C9ORF72 expansion carriers more susceptible to the development of MND; further

studies are needed, however, to validate our findings.

Keywords

C9ORF72; ataxin-2; ATXN2; motor neuron disease; amyotrophic lateral sclerosis; frontotemporal
dementia; disease modifier

1. Introduction

To date, hexanucleotide repeat expansions in chromosome 9 open reading frame 72

(C9ORF72) are the most frequent genetic cause of two fatal neurodegenerative diseases:

motor neuron disease (MND) and frontotemporal dementia (FTD) (DeJesus-Hernandez et

al., 2011; Renton et al., 2011). It is largely unknown, however, why some of those

expansion carriers develop MND, whereas others develop FTD or a combination of both

diseases. We have already shown that GGGGCC expansion size and the presence of
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additional mutations in FTD-associated genes could act as disease modifiers in expansion

carriers (van Blitterswijk et al., 2013a; van Blitterswijk et al., 2013b). Moreover, we recently

reported that variants in transmembrane protein 106 B (TMEM106B) protect against

developing FTD in subjects harboring C9ORF72 repeat expansions (van Blitterswijk et al.,

2014).

In general, an intermediate CAG repeat length in ataxin-2 (ATXN2) (Elden et al., 2010; Lee

et al., 2011; Ross et al., 2011; Van Damme et al., 2011), an increased GCG repeat length in

non-imprinted in Prader-Willi/Angelman syndrome 1 (NIPA1) (Blauw et al., 2012b), and

abnormal copy numbers of survival motor neuron 1 (SMN1) and/or survival motor neuron 2

(SMN2) (Blauw et al., 2012a; Corcia et al., 2006; Corcia et al., 2002; Veldink et al., 2005;

Veldink et al., 2001) seem to be associated with MND risk. In our present study, we

investigated whether variants in these four genes may act as disease modifiers in the

presence of a C9ORF72 repeat expansion.

2. Methods

2.1. Study population

Our study cohort comprised 331 carriers of C9ORF72 repeat expansions (Table 1), provided

by the Mayo Clinic (n=121), Coriell Research Institute (n=71), University of British

Columbia, Canada (n=58), University of California, San Francisco (n=38), Robarts Research

Institute (n=11), Northwestern University Feinberg School of Medicine (n=9), Drexel

University College of Medicine (n=7), University of Western Ontario, Canada (n=7),

Banner Sun Health Research Institute (n=5), and University of Tübingen (n=4). Based on

clinical and/or pathological data available these subjects were diagnosed with MND

(n=127), FTD/MND (n=78) or FTD (n=92), with another diagnosis (n=7; e.g. Alzheimer’s

disease, alcohol abuse or behavioral impairment), or they were asymptomatic at time of last

evaluation (n=27; age at evaluation: 43.6±12.7).

We focused our primary analysis on the 266 unrelated probands with MND (n=120),

FTD/MND (n=71) or FTD (n=75) in order to fulfill the statistical assumption of independent

measurements, and on a group of neurologically normal controls of similar age and gender

obtained through the Mayo Clinic (n=376; Table 1). The 65 remaining expansion carriers

who were family members or who had received another diagnosis were included in

secondary analyses to examine the sensitivity of our results.

2.2. Genetic analysis

The presence of a GGGGCC repeat in C9ORF72 was determined using a 2-step protocol

(DeJesus-Hernandez et al., 2011). Briefly, genomic DNA was PCR-amplified with

genotyping primers and one fluorescently labeled primer, followed by fragment length

analysis. Repeat-primed PCR was performed for those individuals who were shown to be

homozygous for C9ORF72 repeats. A characteristic stutter pattern was considered evidence

of a C9ORF72 repeat expansion.

ATXN2 repeat length was assessed in cases and controls using fragment analysis with

fluorescently labeled primers on an ABI 3730 Genome Analyzer (Applied Biosystems) and
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GeneMapper software (primer sequences are available upon request). The repeat length of

NIPA1 was also determined in cases and controls with fragment analysis, as described

elsewhere (Blauw et al., 2012b). SMN1 and SMN2 copy numbers were investigated in our

cases with multiplex ligation-dependent probe amplification (MLPA) assays (MRC Holland,

the Netherlands), using the manufacturer’s instructions.

2.3. Statistical analysis

We compared the distribution of repeat lengths and copy numbers between C9ORF72

expansion carriers and controls, utilizing Fisher’s exact test. The following categorization

was used: normal (≤ 27 repeat units) and intermediate (>27 repeat units) for ATXN2, short (≤

6 repeat units), normal (7–8 repeat units) and long (>8 repeat units) for NIPA1, and

homozygous deletion (0 copies), heterozygous deletion (1 copy), normal (2 copies),

duplication (3 copies) and triplication (4 copies) for both SMN1 and SMN2. The distribution

was compared to controls for our entire cohort, and also separately for our disease

subgroups. For ATXN2 and NIPA1 we used control data generated as part of this study,

whereas a previously published meta-analysis was used for SMN1 and SMN2 (Blauw et al.,

2012a). We also assessed associations of repeat lengths and copy numbers with age at onset

using a Wilcoxon rank sum test or a Kruskal-Wallis rank sum test.

To allow further investigations of repeat lengths in ATXN2, we also used an alternative

categorization of ≤23 repeat units versus >23 repeat units. This alternative categorization

facilitated comparisons of both age at onset and survival after onset in our cases, because of

the larger number of subjects in each category. For this extra analysis we used a Wilcoxon

rank sum test (age at onset) and a log-rank test (survival after onset). Additionally, in

making these comparisons, we utilized linear regression models adjusted for gender and

disease subgroup (age at onset comparisons) and Cox proportional hazards regression

models adjusted for age at onset, gender, and disease subgroup (survival after onset

comparisons) to address the potential confounding influences of these variables. P-values ≤

0.05 were considered as statistically significant. All statistical analyses were performed

using R Statistical Software (version 2.14.0; R Foundation for Statistical Computing).

3. Results

The ATXN2 repeat length ranged from 14 to 31 repeat units in C9ORF72 expansion carriers,

and from 17 to 27 repeat units in controls, with 22 and 23 repeats being most common

(allele frequency of 96%). Intermediate ATXN2 repeat lengths were identified in 1.5% of our

266 MND, FTD/MND and FTD probands as compared to 0% of our 376 controls (P=0.029;

Table 2). When focusing on disease subgroups, intermediate repeat lengths were detected in

2.1% of probands with either MND or FTD/MND (P=0.013; versus controls), in 1.7% of

probands with MND (P=0.058; versus controls), in 2.8% of probands with FTD/MND

(P=0.025; versus controls), and in 0% of probands with FTD (P=1.00; versus controls).

These findings were comparable when including the 65 remaining expansion carriers who

were family members or who had received another diagnosis (e.g. 2.1% of all expansion

carriers [P=0.005; versus controls], and 2.0% of MND or FTD/MND patients [P=0.015;

versus controls]; Supplementary Table 1).
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The distribution of NIPA1 repeat lengths did not differ significantly between all probands

and controls (P=0.93), or between any of the disease subgroups and controls (P≥0.90; Table

2). Eight repeat units (allele frequency of 79%) and 7 repeat units (allele frequency of 19%)

were most prevalent, followed by 10 repeat units (allele frequency of <2%). For SMN1 and

SMN2 we did not detect significant differences in copy number between all probands and

controls (P=0.98 and P=0.11), or when comparing disease subgroups and controls (P≥0.23

and P≥0.21; Table 2). All findings were similar when including the remaining expansion

carriers (Supplementary Table 1).

We also investigated associations of repeat lengths and copy numbers with age at onset in all

probands and in the subgroup of probands with either MND or FTD/MND; however, there

was no evidence of a difference in age at onset for any of the genes investigated in this study

(Table 3), and these findings did not change when including the remaining expansion

carriers (Supplementary Table 2).

To further investigate ATXN2 repeat length, we also used an alternative categorization (≤23

versus >23). Due to the larger number of samples in each category this alternative

categorization has more power to detect associations, and allows adjustment of potential

confounding variables in age at onset and survival after onset analyses. We did not detect a

significant difference in age at onset (P≥0.81; Supplementary Table 3) or survival after onset

(P≥0.12; Supplementary Table 4) with this alternative categorization in all probands nor in

probands with either MND or FTD/MND. These findings were consistent when including

additional expansion carriers (Supplementary Table 3 and Supplementary Table 4), and

when performing a multivariable analysis adjusted for age at onset, gender and disease

subgroup (data not shown).

4. Discussion

We demonstrate that intermediate repeat lengths in ATXN2 might modify the disease

phenotype of C9ORF72 expansion carriers. These intermediate repeats were more

frequently encountered in our expansion carriers than in controls. Interestingly, they were

present in 2.1% of our probands with MND or FTD/MND (P=0.013; versus controls), but in

none of our probands with FTD (P=1.00; versus controls). We did not find associations

between ATXN2 repeat length and age at onset or survival after onset. Furthermore, no

significant differences were detected in repeat length or copy number of other genes

investigated in this study (NIPA1, SMN1, and SMN2). Based on our findings, we speculate

that intermediate ATXN2 repeats, previously shown to increase MND risk, may also

predispose to the development of MND in carriers of C9ORF72 expansions, influencing

their phenotype.

Ataxin-2 plays a vital role in RNA metabolism, associates with RNA-binding proteins, and

affects many cellular processes, including calcium signaling, glutamate toxicity and

mitochondrial stress (van den Heuvel et al., 2014). Importantly, a yeast screen also identified

ataxin-2 as a potent enhancer of transactive response DNA-binding protein 43 (TDP-43)

toxicity (Elden et al., 2010). Moreover, it has been shown that intermediate ATXN2 repeats

are associated with MND (Elden et al., 2010). In Drosophila, these intermediate repeats
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result in even more pronounced TDP-43 toxicity than repeats in the wild-type range (Kim et

al., 2013). The interaction between ataxin-2 and TDP-43 is probably mediated by poly(A)-

binding protein (PABP) (Kim et al., 2013), and is thought to promote the recruitment of

TDP-43 to stress granules, to affect the ability of stress granules to dissolve and/or to impair

the return of TDP-43 to the nucleus, especially upon exposure to stress (Li et al., 2013).

Since the initial report in 2010, many studies have confirmed the association between

intermediate ATXN2 repeat lengths and MND risk (Chen et al., 2011; Conforti et al., 2012;

Corrado et al., 2011; Daoud et al., 2011; Gellera et al., 2012; Gispert et al., 2012; Laffita-

Mesa et al., 2013; Lahut et al., 2012; Lee et al., 2011; Liu et al., 2013; Ross et al., 2011;

Soraru et al., 2011; Van Damme et al., 2011; Van Langenhove et al., 2012). Based on these

studies and on our present findings, we reanalyzed MND cases included in our original

ATXN2 report (Ross et al., 2011) supplemented with new MND cases. When excluding

carriers of C9ORF72 repeat expansions, and when using our cut-off of 28 ATXN2 repeats,

approximately 3% of our 525 MND patients harbored intermediate ATXN2 repeats. It should

be emphasized, therefore, that the frequency of intermediate ATXN2 repeats in studies

investigating MND risk seems similar to that detected in our current study focusing on those

patients with C9ORF72 repeat expansions. The effects of ATXN2 on MND risk, thus, are not

specific to C9ORF72 expansion carriers, but it is interesting that even on the background of

a strong pathogenic mutation such as a repeat expansion in C9ORF72, ATXN2 is still able to

confer MND risk, thereby modulating the disease phenotype.

Several of the aforementioned studies highlighted that ATXN2 repeat length did not appear

to influence clinical characteristics, including age at onset and survival after onset (Chen et

al., 2011; Conforti et al., 2012; Corrado et al., 2011; Daoud et al., 2011; Gispert et al., 2012;

Lee et al., 2011; Liu et al., 2013; Soraru et al., 2011; Van Damme et al., 2011), which is well

in line with our present findings. Furthermore, our results are consistent with reports that did

not find associations between ATXN2 repeat lengths and FTD (Ross et al., 2011; Van

Langenhove et al., 2012).

Our study has some limitations. Because of the relatively low number of subjects in several

categories, the possibility of type II error (i.e. a false-negative association) should be

considered. Additionally, for our case-control analyses, we used 28 repeats as cut-off to

define intermediate ATXN2 repeat lengths, based on the upper limit observed in our control

cohort. In literature, however, there is no consensus on the definition of intermediate ATXN2

repeats and different cut-offs have been used, depending on the population studied (e.g. 24,

27, 28, 29, 30, 31 and 32 repeats) (Chen et al., 2011; Conforti et al., 2012; Corrado et al.,

2011; Daoud et al., 2011; Elden et al., 2010; Gellera et al., 2012; Gispert et al., 2012;

Laffita-Mesa et al., 2013; Lahut et al., 2012; Lattante et al., 2012; Lee et al., 2011; Liu et al.,

2013; Ross et al., 2011; Soraru et al., 2011; Van Damme et al., 2011; Van Langenhove et al.,

2012). Lastly, we used control data from a recent meta-analysis for SMN1 and SMN2

(Blauw et al., 2012a). The distribution of our SMN1 and SMN2 copy numbers in cases, and

our ATXN2 and NIPA1 repeat lengths in both cases and controls, however, is very

comparable to that reported in literature (Blauw et al., 2012a; Blauw et al., 2012b; Laffita-

Mesa et al., 2013), and hence, it seems unlikely that usage of this data severely impacted our

findings related to SMN1 and SMN2.
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Previously, we showed that variants in TMEM106B protect C9ORF72 expansion carriers

from developing FTD (van Blitterswijk et al., 2014). Importantly, our present findings

reveal that intermediate repeat lengths in ATXN2 possibly drive C9ORF72 expansion

carriers towards MND, potentially due to effects on TDP-43 toxicity, stress granule

formation, RNA metabolism, and/or other cellular processes involved in MND pathogenesis.

Thus, both TMEM106B and ATXN2 may contribute to the phenotypic heterogeneity detected

in C9ORF72 expansion carriers. Further studies are needed, however, to confirm these

interesting findings and to elucidate the underlying mechanisms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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