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THE p-ADIC GELFAND-KAPRANOV-ZELEVINSKY HYPERGEOMETRIC
COMPLEX

LEI FU, DAQING WAN AND HAO ZHANG

ABsTrRACT. To a torus action on a complex vector space, Gelfand, Kapranov and Zelevinsky in-
troduce a system of differential equations, called the GKZ hypergeometric system. Its solutions
are GKZ hypergeometric functions. We study the p-adic counterpart of the GKZ hypergeo-
metric system. In the language of dagger spaces introduced by Grosse-Klonne, the p-adic GKZ
hypergeometric complex is a twisted relative de Rham complex of meromorphic differential forms
with logarithmic poles for an affinoid toric dagger space over the dagger unit polydisc. It is a
complex of of Of-modules with integrable connections and with Frobenius structures defined on
the dagger unit polydisc such that traces of Frobenius on fibers at Techmiiller points define the
hypergeometric function over the finite field introduced by Gelfand and Graev.

Key words: GKZ hypergeometric system, Df-modules, twisted de Rham complex, Dwork trace
formula.

Mathematics Subject Classification: Primary 14F30; Secondary 11T23, 14G15, 33C70.

INTRODUCTION

0.1. The GKZ hypergeometric system. Let

w1 -t WIN
A =
Wnp1 -+ WnN
be an (nx N)-matrix of rank n with integer entries. Denote the column vectors of A by wy,...,wx €
Z™. Tt defines an action of the n-dimensional torus T% = Spec Z[t5", ..., '] on the N-dimensional
affine space AY = Spec Z[z1,...,zN]:
T2 x AY — AY, ((tl,...,tn),(xl,...,xN)> ey (£ gy N N ),

Let 71,...,7, € C. In [I0], Gelfand, Kapranov and Zelevinsky define the A-hypergeometric system
to be the system of differential equations

N .

Ej:lwijxjaanj +vf=0 (i=1,...,n),
o\ ¢ _ o\~

Iy >0 (E) =1y <0 (ﬁj [

where for the second system of equations, (A1, ..., \y) € ZY goes over the family of integral linear

relations
N
Z )\jo =0
j=1

(0.1.1)
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2 LEI FU, DAQING WAN AND HAO ZHANG

among wi,...,wy. We call the A-hypergeometric system as the GKZ hypergeometric system. An
integral representation of a solution of the GKZ hypergeometric system is given by
L g dtq dt,

(0.1.2) f(a:l,...,:cN):/t¥1~-~t;71"ezjy:1xj 1
b)) t tn

where ¥ is a real n-dimensional cycle in T™. Confer [I, equation (2.6)], [4, section 3] and [8]
Corollary 2 in §4.2].

0.2. The GKZ hypergeometric function over finite fields. Let p be a prime number, ¢ a
power of p, F, the finite field with ¢ elements, ¢ : F;, — @* a nontrivial additive character, and

X1y--sXn @ Fy — Q" multiplicative characters. In [7] and [9], Gelfand and Graev define the
hypergeometric function over the finite field to be the function defined by the family of twisted
exponential sums

N
(0.2.1) Hyp(z1,...,2n) = Z X1(t1)"-xn(tn)¢(z,@jt1ﬂ1j ---tg"f),
Jj=1

i1, tn €FY

where (z1,...,2y) varies in AN (F,). It is an arithmetic analogue of the expression (IIZ).
In [5], we introduce the ¢-adic GKZ hypergeometric sheaf Hyp which is a perverse sheaf on A]]F\Z
such that for any rational point x = (21,...,zn) € AN (F,), we have
Hyp(z1,...,ax) = (=1)" "V Tr(Frob,, Hyp;),

where Frob, is the geometric Frobenius at x. In this paper, we study the p-adic counterpart of the
GKZ hypergeometric system. It is a complex of Of-modules with integrable connections and with
Frobenius structures defined on the dagger space (JI1]) corresponding to the unit polydisc so that
traces of Frobenius on fibers at Techmiiller points are given by Hyp(x1,...,2ZN).

0.3. The p-adic GKZ hypergeometric complex. For any v = (v1,...,05) € ZJZVO and w =
(wi,...,wy,) € Z", write
xV =ayt iy, tY =ty [V =v 4 Fon.
Let K be a finite extension of @, containing an element 7 satisfying
14 p=o0.
Denote by | - | the p-adic norm on K defined by |a| = p~°"%(%). For each real number r > 0,
consider the algebras

K{r'x} = { Z avx" : ay € K, |ay|r'V are bounded},
vezt,

Kir'x) = { Z avXx’ : ay € K, lim |av|r‘v| =0}.
vezy, [v|—o0

They are Banach K-algebras with respect to the norm
I Z avX"||, = sup |ay |V
vezf,

We have K (r~'x) C K{r~'x}. Elements in K(r—!x) are exactly those power series converging in
the closed polydisc {(z1,...,2n): z; € Q,, |x;| < 7}. Moreover, for any r < 7/, we have

K{r''x} c K(r~'x) ¢ K{r 'x}.
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Let
K{x) = U K{r~'x} = U K{r~'x).

r>1 r>1
K{x}' is the ring of over-convergent power series, that is, series converging in closed polydiscs of
radii > 1.
Let A be the convex hull of {0,wy,...,wx} in R™, and let § be the convex polyhedral cone
generated by {wy,...,wy}. For any w € §, define

d(w) =inf{a > 0: w € aA}.
We have
d(aw) = ad(w), d(w+w') <d(w)+d(w’)
whenever a > 0 and w, w’ € 6. There exists an integer d > 0 such that we have d(w) € 1Z for all
w € Z™. For any real numbers r > 0 and s > 1, define

L(r,s) = | Z (XY aw(x) € K{r7'x}, [Jaw(x)]|,s?™) are bounded}

weZ™NJ

= { E AvwX 'tV ayw € K, |avw|r“’|sd(w) are bounded},
vezd ), wezrns

Lt = U L(r, s).

r>1,s>1

Note that L(r,s) and LT are rings. Let
N
F(x,t) = ijtlﬂlj R

j=1
Consider the twisted de Rham complex C" (L") defined as follows: We set
dt; dt; n
CH(Lh) ={ Z Firin— AN A e LTy L)

. ) ti, tiy

1<ip < <ipg<n

with differential d : C*(LT) — C*¥*+1(L') given by

dw) = (t?l <t exp(TF(x, t))) o odgo (t?l -t exp(TF(x, t))) (w)

= dyw+ Z (’yl- +szijxjtwj)t_,z A w
i=1 j=1 v

for any w € C*(LT), where dy is the exterior derivative with respect to the t variable. For each
je{l,...,N}, define Voo : C (L") — C (L") by

Vo (w) = (tVl < tIm exp(TF(x t))) o o 9 o (t"“ <t exp(TF(x t)))
dz; 1 n ’ arj 1 n )
Ow W

Since % commutes with d¢, Vo commutes with d : C*(LT) — C*1(LT). We have integrable
J z
connections ’

V:C(LY) = O(L) @iyt Qe gyt
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defined by
N
V(w) = ZV%((U) ® dzj,
j=1
where Q}qu is the free K{x}f-module with basis dz,...,dzy.

Consider the lifting of the Frobenius correspondence in the variable t defined by

D(f(x,1)) = f(x,t7).

One verifies directly that ®(L(r,s)) C L(r,¥/s) and hence ®(LT) c Lf. Tt induces maps ® :
Ck(LT) — CF(L') on differential forms commuting with dy:

dt; dt; dt; dt;
(I)( Z fi1~~~ik(x7t)T“/\"'/\le> = Z qkfiynik(xatq)rh/\'”/\?lk
1<iy<-<ig<n " Lk 1<iy < <ik<n “u k
Suppose furthermore that vi,...,v, € —Z and (y1,...,7,) € 0. Consider the maps F :

1—q
CK(LT) — C*(LT) defined by
-1
(0.3.1) F = (t;“ <t exp(TF(x, t))) o®o (t;“ <ot exp(nF (x4, t)))
(0.3.2) = (ﬂl(q_l) c 777D exp (1P (x9, ) — wF(x,t))) o .

Even though ¢]* - - - )" exp(mF(x,t)) does not lie in LT and multiplication by it does not define an
endomorphism on C" (L), the next Lemma [0 (i) shows that 7" ... 770 exp (ﬂ'F(Xq, t9) —
TF(x, t)) lie in LT, and hence the expression ([.3.2) shows that F' defines endomorphism on each
Ck(LY).

Lemma 0.4.

(i) t’ln(q*l) - -flxn(qfl) exp (mF (x4, t‘{);wF(x, t)) and t’fl(lﬂﬁ gD exp (TF(x,t)—mF(x7,t7))
lie in L(T,T’lppPT) for any 0 < r < ppITJ.

(i) Let C) (L) be the twisted de Rham complex so that CVI(LY) = CI(LT) for each k, and
dV . ¢k 5 ¢MF+L s given by

-1
dv = (t'lyl -t exp(mF(x9, t))) odg o (t’lh ot exp(mF(x, t)))

n N o dtz
dy —i—Z (%‘ +7r2wij:cjt J)T.
i=1 j=1 v

Let VY be the connection on CV (LT defined by

~1
vy o= (tY1 RS A exp(ﬂ'F(Xq,t))) o Bi o (ql ot exp(ﬁp(xq,t)))

EEN X

Then F defines a horizontal morphism of complexes of K (x)!-modules with connections

F eV (Lh, vy = (¢ (Lh),V).
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(iii) Let E(0,1)N be the closed unit polydisc with the dagger structure sheaf ([11]) associated to
the algebra K (x)', and let Fr be the lifting

Fr:EO,1)Y = EBO,D)Y, (21,...,2n5) = (2f,...,2%)
of the geometric Frobenius correspondence. We have an isomorphism
Fr*(C(L1), V) = (W (LT), v).

Proof. (i) Write exp(mz —7mz?) = 1+ 2 ¢;2z*. We have |¢;| < p~ by [15, Theorem 4.1]. Write
exp(mzd —mz) = 1-— (Z ciz') + (Z cizt)? — .
i=1 i=1
= 1+ dz'.
i=1

1,
Then we also have the estimate |¢}| < p~ 77 *. For the monomial z;t%/, we have

o0
exp (W(wjtwj )q — 7T(Ejtwj) — Z c;xétiwj7
=0

il < p~ 5 it = (T’lppp_f)ﬂ < (T’lppp_?)fd(zw”
Here for the last inequality, we use the fact that d(iw;) < 4 and the assumption that r <
ppp_izl. So we have exp (m(z;t"/)4 — wz;t%i) € L(r,r‘lppp_izl). Since r_lppp_izl > 1, the space
L(r, rflppp;ql) is a ring. So 7"V .07 exp (TF(x7,t7) — mF(x,t)) lies in L(r,rflpprql).
Similarly t'ln(liq) et exp (TF(x,t) — TF(x?,t9)) lies in L(r, r_lppp_izl).

(ii) Using the fact that ® o dy = dg o @ and P o a%j = a%j o ®, one checks that Fod®) =do F
and FoVW) = Vo F.

(iii) Consider the K-algebra homomorphism
K<y15"'7yN>T—>K<I17"'7$N>T7 yJH'I;I

This makes K (x)' a finite K (y)-algebra. We have a canonical isomorphism

LT,

R

ET ®K(y>Jf K<X>T

where LT is defined in the same way as L' except that we change the variables from x; to yj.
The connection V on Lt defines a connection on Lt ® Kyt K (x)! via the Leibniz rule. Via the
above isomorphism, it defines the connection Fr*V on Lf. Let’s verify that it coincides with the
connection V(! on L. Any element in LT can be written as a finite sum of elements of the form
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f(x)g(y,t) with f(x) € K[x] and g(y,t) € L'. By the Leibniz rule, we have

(Fr*V)%(f(X)g(y,t)) = %(f(x))g(y,t)+f(x)(V(g(y,t)),£)
0 )
= g, 6, (Zv o (g(y dym,a_%)
= a%(f( x))g(y.t) + F)V 2 (g(y, ))ga "
— Gl ( )+ gl 4))gat
= %(f(X))g(y, t) + f(X)a7j(g(y, t)) + qrzd ' f(x)g(y,t)
= 8%(f(x)g(y,t)) +qrat Y f(x)g(y, t)

= VI(f(x)g(yt)).
This proves our assertion. Similarly, one verifies that the connection Fr*V on Fr*(C7 (ET) can be
identified with the connection V() on C"(L). O
Definition 0.5. Suppose 71,...,7, € %qZ and (v1,...,7) € 0. The p-adic GKZ hypergeometric
complez is defined to be the tuple (C" (L"), V, F) consisting of the complex C" (L") of K (x)T-module
modules with the connection V and the horizontal morphism F : Fr*(C" (L"), V) — (C"(LT), V).

0.6. The GKZ hypergeometric ’DT module. Let

D' = U { Z fv(x) M : fo(x) € K{r7'x}, || fv(x)]»s'Y! are bounded},

r>1, s>1 vezgo

Uit +UN
a9zl -0z
possibly of infinite orders. This DT is also used in [14]. Let 'DPN@)(OO) be the sheaf of differential
operators of finite level and of infinite order on the formal projective space PV over the integer
ring of K with over-convergent poles along the oo divisor. For the definition of this sheaf, see [3].
By [13], we have

PV, D;,N o)) = U { Z fv(x fv(x) € K{r~'x}, | fv(x)|-s'"! are bounded},

r>1, s>1 VEZN

where for any v = (v1,...,0N) € Zgo, we set 0¥ = . D is a ring of differential operators

where v! = v1!---vy!. In section 1, we prove the following proposition.

Proposition 0.7. We have Dt = I'(PY, DI];N 0(09)).

In particular, by the result in [I3], DT is a coherent ring. Let 5% € DT act via V so_. Then LT

T

is a left Df-module, and the twisted de Rham complex C"(LT) is a complex of DT-modules. The
cohomology groups H*(C"(L1)) are also left Df-modules.
Let

CA) = {kiwi+---+kywn: ki € Z>o},

L U { Z aw (XY ¢ aw(x) € K{r7'x}, [law(x)|-s*™ are bounded}.
r>1,s>1 weC(A)
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C(A) is a submonoid of Z" N §, and L' is both a subring and a D-submodule of LT. Let

d¢; dt;,
Ok(LT/):{ Z fh Ak t — A A L. f'Ll Uk GLT/}NLTI( )
1<ip < <ix<n Lk

Note that d : C¥(LT) — C*+1(LT) (resp. V_a_) maps CK(L") to CF¥(LT) (vesp. C*(L")). So
C" (L") is a subcomplex of Df-modules of C"(L'). Let

N

0
+ v+ waUthwJ

E;
iy = 8 =

It follows from the definition of the twisted de Rham complex that the homomorphism
dit dt,
s on(Ll), fe f_l .../\t_

induces an isomorphism

LY/ Fi LV = H(C(LV)).
1=1

Let’s give an explicit presentation of the Df-module H™(C"(L")). Let

N
A = {)\:()\17"'7)\N)EZN.Z)\]W]:O}7

1o\ 1o\
o= H(Ea%) ‘LIO(W) (en)

)\j>0
E; 5 WijTj=—— 9 -+ (t=1,...,n),
Oz
7j=1
Consider the map
. T T VIWN+ oW
p: D= LV, > fux) |v\ (> fx) |v\ = > flotm AR
vezt, vezt, vezs,

It is a homomorphism of Df-modules. In §1, we prove the following theorems.

Theorem 0.8. ¢ induces isomorphisms

Df/y ooy 5 LV,
A€A
Dt /( ZDTE +> D0y = LYY F, LV = HY(C (L)),
AEA i

Moreover, there exist finitely many ™, ... u(™ € A such that

m

> D00 =Y DO,

i=1 AEA

Theorem 0.9. C' (L") and C" (L") are complexes of coherent D -modules.
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Definition 0.10. The GKZ hypergeometric Dt -module is defined to be the left Df-module

DT/(zn: DIE;,+ Y DOy = H"(C(LV)).
=1 AEA

The GKZ hypergeometric Df-module is the p-adic analogue of the (complex) hypergeometric
D-module ([I]]) associated to the GKZ hypergeometric system of differential equations ([@IT]).

0.11. Fibers of the GKZ hypergeometric complex. Let a = (a1,...,ax) be a point in the
closed unit polydisc E(0, 1), where a; € K’ for some finite extension K’ of K. Let’s specialize at
X = a, that is, apply the functor - ® g (x)t K’, where K’ is regarded as a K (x)T-algebra via the
homomorphism
K =K', z;~ a,.
Let
Ly = U{ Z awt™ : Gy € K, |aw|s?™ are bounded}.
s>1 weZmNd
In section 1, we prove the following.

Lemma 0.12. L' is flat over K(x)" and
LY @yt K 2 L.

Consider the twisted de Rham complex C'(LI)) defined as follows: We set

CUD={ X G A G S et =l
1<ii<-<ip<n “ ke
with differential d : C*(L}) — C*+1(L{) given by
dw) = (t?l <t exp(nF(a, t))) o odgo (t?l -t exp(TF(a, t))) (w)
. al w.\ dt;
= diw+ ; (’yl- +7Tj;wijajt J)Z ANw

for any w € C* (L};). By Lemma [0.T2] we have the following corollary.
Corollary 0.13. In the derived category of complezes of K (x)-modules, we have
O (LY) @yt K = C'(L).
The specialization of ® at a is the lifting of the Frobenius correspondence defined by
Do Ly = L, f(t) = F(£9).
It induces the maps ®, : C¥(LT) — C*(LT) on differential forms commuting with dy:
dtil dtik k dtil dtzk
(I’a( . Z fn...ik(t)z/\"'/\z): ‘ Z q filmij(tq)z/\”./\ﬂ
1<ip < <ipg<n 1<ii << <n

The specialization of F : C"(LT) — C"(LT) at a is given by

-1
F, = (t’lh <t exp(nF(a, t))) o®, 0 (ti” <t exp(nF(ad, t)))

(t;“(q_l) 10D exp (1 F(a?,t9) — wF (a, t))) 0 ®,.
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By Lemma [0 (i), t’ln(qfl) @Y exp (TF(a?,t7) — 7F(a,t)) lie in L}, and hence F, defines
an endomorphism on each C*(L}).

From now on, we assume that a is a Techmiiller point, that is, a? =a; (j=1,...,N). Then a
is a fixed point of Fr. In this case F, : C"(L]) — C"(L}) commutes with d : C9(L}) — CI+1 (L))
and hence is a chain map.

Consider the operator U, : Lg — Lg defined by
\I/a(z cwt™) = Z Cqwt™.
We extend it to differential forms by

(Y few®F AT =Y s ®)
1<i1<---<ip<n

tiy ik 1<ip < <ip<n
It commutes with d¢. Let Ga : C"(L}) = C"(L})) be the map defined by

dti, A A dti
ti, ti,

1
Ga = (0t exp(mF(at)) o Wao (6t exp(nF(at))

= Tao ﬂl(l_q)~-~t;yl"(17q)exp(7rF(a,t)—wF(aa,tq))).

Here by Lemma 04 (i), ¢]* =0 (079 e (TF(a,t) — 7F(a,t9)) lies in L} and hence Ga
defines an operator on C"(L{). Then Ga commutes with d : C*(L}) — C*1(L}). We thus get a
chain map G, : C" (L)) — C(L}).

Lemma 0.14. We have G, 0 Fy = id and F, o G4 is homotopic to id. In particular, Fy and G,
induce isomorphisms on H (C" (Lg))

In section 3, we show that each G, : C* (LJ;) — C* (LJ;) is a nuclear operator and hence the
homomorphism on each H*(C" (Lg)) induced by G, is also nuclear. We can talk about their traces
and characteristic power series. But F, does not have this property. Let

Tr(Ga, C (L)) = D _(—1)"Tr(Ga,C*(L)))
k=0

= S ()T (Ga, HE(C (L))

k=0
VTR RO ().
k=0
det(I — TGa, C" (L)) = ﬁ det(I TGy, C*(L)) ™
k=0

= [ det(t - TGa, HE(C(2f)) "
k=0

= T det(r - TESY, HEC (L)) T
k=0

Let x : Fj — @p be the Techmiiller character which maps each u in F} to its Techmiiller lifting.
By [15, Theorems 4.1 and 4.3], the formal power series 6(z) = exp(wz — w2P) converges in a disc
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of radius > 1, and its value 6(1) at z =1 is a primitive p-th root of unity in K. Let ¢ : F; — K*
be the additive character defined by

¥(@) = (1) @
for any a € F,. Let a; € F,; be the residue class a; mod p, let

N
= > xa(Normgy s, (1)) - X (Normgy s, (7))t (qum JF, ( S auy - aw ))
j=1

Ul ,yeeeyUn €F )y

be the twisted exponential sums for the multiplicative characters y; = x(!~97%, the nontrivial
additive character ¢ : F; — C;, and the polynomial F'(a,t), and let

m

L(F(@,t),T) = exp (Y Sm(F(é,t))T—m)

be the L-function for the twisted exponential sums. The following theorem is well-known in Dwork’s
theory. Its proof is given in section 2 for completeness.

Theorem 0.15. Suppose v1,...,vn € %qZ, ¥ = (",---y7n) € 9§, and suppose K' contains all
(¢ — 1)-th root of unity. Let a = (a1,...,an) be a Techmdiller point, that is, ag- = aj. Then each
Ga: C*(LY) — C*(L}) is nuclear. Moreover, we have

Sm(F(at) = Tr((¢"Ga)™,C (L))

= Y CDFT(( ™ HE(C (L),
k=0

L(F(a,t),T) = det(I —q"TGa, C (L))"

= [[det(1 - ¢"TF ", HNC (Lé)))(’”m,
k=0

In [2], Adolphson shows that L(F(a,t),T) depends analytically on the parameters a and ~.

0.16. The GKZ hypergeometric F-crystal. It follows from the definition of the twisted de
Rham complex that the homomorphism

dt dt,
1 n

induces an isomorphism
LT/> Fp, Lt = H"(C(LY)).
i=1
V defines a connection on H"(C"(L")), and F' defines a horizontal morphism

F:F*(H"(C (L), V) = (H"(C (L)), V).
Let U be the affinoid subdomain of the closed unit polydisc £(0,1)" parametrizing those points

a= (ay,...,an) so that F(a,t) = Zjvzl a;t™i is non-degenerate in the sense that for any face 7
of A not containing the origin, the system of equations
0 0
—F. (a,t)=---=—F:(a,t)=0

ot Oty
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has no solution in (F;)", where F;(a,t) = ij e, @tV When restricted to U, we have
H(C(Lh) =0

for k # n, and H"(C"(L")) defines a vector bundle on U of rank n!vol(A). Denote this vector
bundle by Hyp.

Definition 0.17. We define the GKZ hypergeometric crystal to be (Hyp, V, F').

Let a = (a1,...,an) be a point in U with coordinates in K’, and let Hyp(a) be the fiber of Hyp
at a. By Corollary [IL.I3} the fact C*(L') = 0 for k > n, and the fact that — Qg (x)t K is right
exact, we have

H™(C(LY) @yt K' 2 H™(C"(LY)).

So we have

Hyp(a) = L/ Y FiyaLd,
i=1

where I} y o = ti(% + v + FZ;\Ll wi;a;8%7. If a is a Techmiiller point, then we have
Sm(F(at)) = (=1)"Tr((¢"F, )™ Hyp(a)),
_1\yn—1
L(F(&,t),T) = det(I—q"TF " Hyp(a))™" .
Let a = (a1,...,an) and b = (b, ...,byx) be points in U with coordinates in K’, and let
Tan - Hyp(a) = Hyp(b)

be the parallel transport for Hyp. It is well-defined if |b; — a;| < 1 for all i. It can be described as
follows: For any formal power series f(t) € Q,[[Z™ N ¢]], we have

0
Vo (ep(-nF( 6)f() = exp(=mF(x,t)) o 5= o exp(nF (x, ) (exp(~F (x,£) (1))
En x]

= 0.
So exp(—mF(x,t))f(t) is horizontal with respect to V. But it is only a formal horizontal section
since it may not lie in L. Formally, Ta1, maps exp(—mF(a,t))f(t) to exp(—mF(b,t))f(t). So
Tab : Hyp(a) 5 Hyp(b) can be identified with the isomorphism

Taw: LE/ D> FiyaLl = LE/ > FiyuLl,  g(t) = exp (nF(a,t) — 7F(b,t))g(t).

i=1 i=1
This is well-defined if |b; — a;| < 1 for all i since we then have exp (7F(a,t) — 7F(b,t)) € L.
Since F' : Fr*(Hyp, V) — (Hyp, V) is a horizontal morphism, we have a commutative diagram

Hyp(a?) " Hyp(x9)
Fal 1 R
Tﬂ x
Hyp(a) —  Hyp(x).

Let {e1(x),...,em(x)} be a local basis for Hyp over U. Write

(@ F (a0, en®) = (@), enx)QX),
Tax(ei1(a),...,em(a)) (e1(x),...,enm(x))P(x)
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where P(x) and Q(x) are matrices of power series. Then we have

Q(x) = P(x")Q(a)P(x)~"

and hence
(0.17.1) (—1)"Su(F(x,t)) = Tr((Px)Q@)P(x)"1)™),
(0.17.2) L(F(%,t), 7)Y = det(I - TP(x*)Q(a)P(x)"")

1 -1 .
whenever :v‘;- =1 and a? = 1. Write

Voo (100, ear(®) = (2(x), - ear (%)) A5 ().
AsV o (Tax(er(a))) =0 for all k, P(x) satisfies the system of differential equations
2

0
8$j
Equations ([@ITI)-(0I73) give formulas for calculating the exponential sums and the L-function
using a solution of a system of differential equations.

(0.17.3) (P(x)) + Aj(x)P(x) = 0.

1. DI-MODULES
Lemma 1.1. Let m be a positive integer and let
m = ag + arp + agp® + - -
be its p-expansion, where 0 < a; < p—1 for all i. Define
olm)=ag+ar+az+---
(i) We have

m

ordp(L) = U(m).
m! p—1
(i1) For any real number € > 0, there exists 6 > 0 such that

o(m) < em—+4.

Proof. (i) We have
m m
| = — —
ord,(m!) [p} + [pQ} +
(a1 +agp+---)+(ag+asp+---)+---
a1 +ax(1+p) +as(L+p+p*) + -

a(p—1)  ax(p’—1)  a3(p®—1)

= 1 + - + o1 4.
_ m—o(m)
= -1
So we have .
ordp(L'>: m _m—a(m):o(m).
m! p—1 p—1 p—1

(ii) Choose M sufficiently large so that for any = > M, we have
p-1D(z+1) <ep”.
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Let
m=ag+ap+ -+ ap'
be the expansion of m, where 0 < a; < p—1 and a; # 0. If m > p™, then we have [ > M and
hence (p —1)(1 + 1) < ep'. So we have
om)=ap+a1+ - +a<(p-1(1+1)<epl <em
for any m > p™. Take § = max(c(1),...,o(p™)). Then we have o(m) < em + § for all m. O

1.2. Proof of Proposition Set
aV
B = — -1 vl .
U { Z fv(x) - fv(x) € K{r—x}, || fv(x)]|-s'V! are bounded}
r>1, s>1 Vezgo :
Let’s prove Bf = Dt. Given ZveZ;VO f\,(x)% in BT, choose real numbers 7 > 1,5 > 1 and C > 0
such that -
£+ ()-s™ < C.

> a0l Y (M) L

N : N
VEZZO VEZZO

We have

By Lemma [Tl (i), we have ord, (#) > 0. Hence

TN v vl
v || sV S I < C

|
So Zvezgo fv(X)% lies in DF.
Conversely, given Zvezg fv(X)a‘—:‘ in DT, choose real numbers r > 1,5 > 1 and C > 0 such
0 s
that =

If s < C.

We have p N
Z fv(X)m = Z (fv(X)m)q-
vezgo veZJZVO '
Choose € > 0 so that
S > pﬁ,

and choose d as in Lemma [[T] (ii). We have

[v]
ordp(L) < e|v|—|—5n.
v! p—1
Let s = sp 71 > 1 and let ¢’ = Cp%. We have
vl clv|+dn
Rl ™ < Gl
™ T
sn
= | fe®)llrspr=T
< .

So Zvezgo fv(x)5; lies in BT
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Lemma 1.3. Let S be any subset of Z%,. There exists a finite subset So of S such that S C
UVESO (V + Zgo)

Proof. We use induction on n. When n = 1, we have S C v+ Z>(, where v is the minimal element
in S C Zxo. Suppose the assertion holds for any subset of Z%, and let S be a subset of Zggl. If
S is empty, our assertion holds trivially. Otherwise, we fix an element a = (a1,...,a,41) in S. For
any i € {1,...,n+ 1} and any 0 < b; < ay, let

S’i,bi - {(Cl, - -;Cn+1) S S L cp = b’L}
By the induction hypothesis, there exists a finite subset 75 ;, C S; 5, such that
Sip;, C U (v +Z55H).

veET; b,

S c ( U U Si,bi)U(a+Zg—gl)

1<i<n+10<b;<a;

C ( U U U v+Z"+1)U(a+Z"+1).

1<i<n+10<b;<a; v€T b,

We can take Sy = UlSiSnJr1 UOSbiSai Tip, U{a}. O

Lemma 1.4.
(i) The ring homomorphism

¢:K<x,y>T—>LT/, Z FoX)yY Z Fo(x) v onwy

N N
VGZZO VEZ20

We have

is surjective, where'y = (y1,. .. ,yN) and

K{x,y)l = U { Z foX)YY : fo(x) € K{r~ 'z} and || fy(x)|,s"V! is bounded}.

r>1,s>1 ngN
(i) The homomorphism of DT—modules
. Pt i VIWN+ - FUNWN
DL Y A0S (X A0S - T
vezf, vezf, vezf,
18 surjective.

Proof. Decompose A into a finite union |J_ 7 so that each 7 is a simplicial complex of dimension

n with vertices {0, w;,, ..., w;, } for some subset {i1,...,i,} C {1,...,N}. For each 7, let (1) be
the cone generated by 7, and let

B(r) = zZ2"n{aw; +--+cyw;, 2 0< ¢ <1},

O(T) = {klwil 4+ 4 knwin : kl S Zzo}.

Being a discrete bounded set, B(7) is finite. Every element w € Z™ N§(7) can be written uniquely

as
w = b(w) + ¢(w)
with b(w) € B(7) and ¢(w) € C(7). So we have Z" N (1) = UWGB(T)(W + C(7)), and hence

o) = J©w) = U N(w+C(1))).

T T weB(T
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For each C(A) N (w + C(7)), the map
Zgo—>W+C(T), (kl,...,kn)HW—l—leil+---—‘rknwin

is a bijection. Applying Lemma [[3]to the inverse image of C(A) N (w + C(7)), we can find finitely
many ug,...,u, € C(A) N (w+ C(7)) such that

CA) N (w+C(r) = Jw+Cr)).

=1

We thus decompose C'(A) into a finite union of subsets of the form u+C(7) such that 7 is a simplicial
complex of dimension n with vertices {0, w;,,...,w; } for some subset {i1,...,i,} C {1,...,N},
and u € C(A) N (w + C(7)) for some w € B(7). Elements in L is a sum of elements of the form
> weutc(r) Aw(X)tY, where aw(x) € K{r~'x} and ||aw(x)|,s*™) are bounded for some r, s > 1.
To prove ¢ : K(x,y)! — L is surjective, it suffices to show ZwequC(T) aw (x)tW lies in the image
of ¢. Write u = cywy + -+ + cywy, where ¢; € Z>g. A preimage for Ewequc(T) aw (X)tY is

Ciy +v in TUn p
Z Qutviwi, + - Fva Wi, (X)yill b yicn ! H y;] .
Vlyeeny v, >0 j€{1 ..... N}*{’Ll ..... ’Ln}
Here to verify this element lies in K (x,y), we use the fact that
dlu+viw;, +--+uv,w,, ) =d(u) +vy+ -+ v,

since u, w, , ..., w;, all lie in the simplicial cone §(7). This prove ¢ : K (x,y)f — L is surjective.
It implies that ¢ : DT — L is also surjective. O

1.5. Proof of Theorem We have shown that ¢ is surjective in the proof of Lemma [[.4]

The ring D = K 8%’ ey ai} of algebraic differential operators with constant coefficients is
1 TN

isomorphic to the polynomial ring and is noetherian. So we can finitely many ™), ... u(™ € A
such that Du(l) ey Du“’” generate the ideal ZAGA DOy of D. Then they also generate the left

ideal » ycp DO, of DI. Suppose Y- fv (x) 2 lies in the kernel of ¢, that is,

71'\"\

D ol — g,
v

where fy(x) € K{r~'x} and || fy(x)||,-s!V! are bounded for some r,s > 1. For each w € C(A), let
Sw={veZly: w=viwi+ - +uNWn}.

Then we have

> fulx)=0.

VESw

For each nonempty Sy, fix an element v(©) = (’U§0), . ,UJ(\(,))) € Sw. For any v € Sy, let A\, =
v — v, We have A\, € A. Write

Uy, = il + -+ Py mldyom
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for some differential operators Py 1,..., Py m € D. We have
v oV gmin(v,v®) 19 \vi-v 1 9 \v"-v
7T‘V| - ﬂ"v(o)‘ o sz min(vj,vj(.o)) ( H (; 8$J) B H ; (; 817]) )
V> v <v;

amin(v,v(o) )

= —D
sz min(vj,v](.o)) v
6min(v,v(0))
= —(Pv)lmp‘(l) +"'+Pv,m|]#(m))7

. 0]
32, min(v;,05")

ov av
ZfV(X)W = Z Z fv(x)m

v weC (A) vESw
v 8‘,(0)
= > X f"(x)(W T v )
weC(A) vESw T vl
8min(v,v(0))

= Z Z (X)) —o (PyaO,0 + -+ Py m0yom)
WEC(A) VESw s (v ;)

amin(v,v(o))

- Z( Z Z fv(x)—ﬂ_zjmin(vj,v](.o))PV7k)DM(k)

k=1  weC(A)VESw
One can verify that ¢(0y) = 0 for all A € A. So we have
ker<p = ZDTDH(k) = Z DTDA.
k=1 AEA

For any g; € L' (i = 1,...,n), choose P; € DI such that ¢(P;) = g;. One can check directly
that E; (1) = F; (1). Moreover, F; , commutes with each V_o_ and hence with P;. So we have

J
‘P(Z PiEi,’Y) = ZpiEiy'y(l) = Z PiFiy'y(l) = Z Fiy'ypi(l) = ZFL'N’(PZ') = ZFiy’Ygi'

So we have

o) D'E;,) =Y Fi,L".

Together with the fact that ¢ is surjective and ker p = >, » DO, we get

Di/> DON=LV, DY/ DE,+Y DON)=L"/Y F,LV.
A€A =1 AEA =1

1.6. Proof of Theorem It is known that DT is coherent ([I3]). So by Theorem 0.8, £’ is a
coherent Df-module.

Keep the notation in the proof of Lemma [[4l Decompose A into a finite union (J. 7 so that
each 7 is a simplicial complex of dimension n with vertices {0, w;,,...,w; } for some subset
{i1,...,in} C{1,...,N}. Let B=J, B(7) which is a finite set. Consider the map

v @IV =L (f) = Y fat”

peB BEB
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Note that this a homomorphism of Df-modules. We will prove v is surjective and ker v is a finitely
generated Df-module. Combined with the fact that £ is a coherent Df-module, this implies that
L' is a coherent Df-module.

We have Z"Nd = |J, (Z"NS(7)). To prove 1) is surjective, it suffices to show every element in LT of
the form } - c7nqs(r) aw(2)t™ lies in the image of ¢, where aw(x) € K{r~'x} and ||aw(x)],s4™)
are bounded for some r,s > 1. Every element w € Z" N §(7) can be written uniquely as

w = b(w) + ¢(w)
with b(w) € B(7) and c¢(w) € C(r). We have
Z Ay ()Y = Z ( Z aw(ac)tc(w))tﬁ.
weZNé(T) BEB(T) wEeZ™NS(T), b(w)=p

Note that > aw (2)t°™) lie in LY. To see this, we use the fact that
weZ"N§(T), b(w)=p

d(w) = d(b(w)) + d(c(w))
since b(w) and c¢(w) all lie in the simplicial cone (7). Thus v is surjective.
Given 8, 8" € B, set
Lg g = {fe€ L. ft'@/_ﬁ// € LT/},
Sﬁ',ﬁ” = {W c C(A) W+ ﬂ/ — ﬂ// (S C(A)}

Note that elements in Lgr g are of the form aw(X)tV with aw(x) € K{r~'x} and

WESB/YB//

[|aw (x)||-5™) bounded for some 7,5 > 1. We have Sg/ gn 4+ w; C Sgr g for all j, and Lg: g is a
Df-submodule of L. For any f € Lg g+ and B € B, let
f if g=p,
g (s = —ft7 =7 i p=p",

0 if 8 € B\{#',5"}.
Then the map
Ly = LY, e (g ()
tpr,prr - Ligr,pr ) tpr,p\J)B)BeB
BeB
is a homomorphism of D-modules and its image is contained in ker ). We will prove each Lg: g
is a finitely generated Df-module, and

kerw = Z LB,;BN(LB,vﬂ”)'
ﬂ/)B//
It follows that ker is a finitely generated Df-module.
We have
Sprpr = JSspr N0 =) |J (Sasrn(w+C(r)).
T T wWeEB(T)
Again by Lemma [[3] for each Sg g» N (w + C(7)), we can find finitely many uy,...,u,, €
Sgr.gr N (W + C(7)) such that
Spr g N (w+ C (1)) = | J(wi + C(7)).
i=1

We thus decompose Sgr g into a finite union of subsets of the form u + C(7) such that 7 is a
simplicial complex of dimension n with vertices {0, w;,,...,w; } for some subset {i1,...,in} C
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{1,...,N}, and u € Sg g» N (w + C(7)) for some w € B(r). We claim that Lg g is gener-
ated by these t" as a Df-module. Indeed, elements in Lg g is a sum of elements of the form

Zwéu—i—C(T) aw (x)t™. We have

D D (X)(%ajﬁ ) (% a;im )"

weu+C(r) V1,..,Un 20

Suppose (f[go)) € Dsen L is an element in kert. We then have
> =0

BEB

Write B = {51, ..., 8%}, and write
féo) = Z agw (x)t%.

weC(A)
Define
1 w
fé ) — Z agw(X)t s
weC(A), wH(B—F1)ZC(A)
1 w
gé ) — Z aﬁw(X)t .

weC(A), wH(B—pB1)€C(A)

In particular, féi) is 0 since it is a sum over the empty set. We have g[gl) € Lgp, and

(1.6.1) U= 3 was) = ().
peB\{B1}

To verify this equation, we show it holds componentwisely. The equation clearly holds for those
component 3 # (1. Note that L is a direct factor of L in a canonical way as an abelian group.
Applying the projection LT — L1’ to the equation

S e =

BeEB
we get
0 1,5
f(l) + Z gé )tﬁ B — .
BEB\{p1}
This is exactly the 81 component of the equation [[.6.11
In general, for i = 1,..., k, we define
fg) _ Z agw(x)tY,
weC(A), wH(B-P1)gC(A),..., w+(B—B;)ZC(A)
gg) = Z agw (X)t™.

weC(A), wH(B—p1)EC(A),..., wH(B—Bi-1)EC(A),w+(8—B:)€C(A)

We have gg) € Lg g, and

S =3 a5 = (£5).

BEB
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We have fék) =0forall $ € B={p1,...,0n}. So we have

k
I =3"3" 1.5

i=1 BB
Hence ker1/) = EB' B Lgr B (Lﬁ’,ﬁ”)-
1.7. Proof of Lemma [0.12] Let R be the integer ring of K, and let

R(x)T = U{ Z avx' : ay € R, |ay|r!! are bounded },
r>1 VEZg0
Rix,y)l = U { Z auvX YV : auy € R, |auy|r' s are bounded },
r>1s>1 uvery,
LTR = U { Z AvwX 'tV : yw € R, |ayw|r!ls?™) are bounded},
r>1,s>1 vezgo, wEeZ"NS
L% = U { Z avwX 'tV 1 ayw € R, |avw|r‘”|sd(w) are bounded}.

r>1,5>1 veZgO, weC(A)
We have
Kx)'~Rx)'op K, L= L;% ®r K.

To prove L' is flat over K (x)T, it suffices to show LE is flat over R{x)T.
Keep the notation in the proof of Lemma [[.4] and The same proof shows that the following
homomorphisms

Pri—rh )= D fat?

BEB BEB
Rx,y)l = Ll > f@y¥ e Y flxeemvvtotonws

vezf, vezf,
are surjective. It is known that R(x,y)' is a noetherian ring by [6]. It follows that L}} is also
noetherian. We have
Ly/m* L} = (R/mMX[Z" N 6], R(x)/x"R(x)T = (R/7")[x].
So LTR/kaTR is flat over R(x)"/m* R(x)T for all k. By [12, IV Théoréme 5.6], L}} is flat over R(x)T.

Finally let’s prove Lt @ (xyt K= Lg. One can verify directly that in the case where K/ = K,
the homomorphism

LT LE > a0t = > ax(0)tY

wWeZMNS weZ"NS
is surjective with kernel (z1,...,2x)L". This proves our assertion in the case where K = K’ and
a=(0,...,0). In general, we have an isomorphism Ltex K' = L}(,, where

LTK, = U { Z UvwX 'tV ¢ yw € K, |ayw|r!"ls?™) are bounded}.

r>1,s>1 vezd , wezZrns

By base change from K to K’ and using this isomorphism, we can reduce to the case where K’ = K.
Then using the automorphism

K'(x) = K'(x), x;+ x; —aj,
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we can reduce to the case where a = (0,...,0).

1.8. Proof of Lemma [0.14. We first work with de Rham complexes and later with twisted de
Rham complexes. We have

Vyao0d, =id

on C'(Lg). Since K contains the primitive root of unity 6(1), it contains all g-th roots of unity.
Let p14 be the group of g-th roots of unity in K. For any ¢ = (C1,...,(n) € py, Write

Ct = (City, ..., Caln).
We have
S v = q" if glw,
&£ 0 otherwise.
Ky
So we have

oo WD cwt™) =D cqut™ = qin SO ewlct)™.

w CG#ZIL w

Let ©¢ be the endomorphism on differential forms defined by
dt;,

®C( Z flllk(t)dti/\/\dtl) = Z fil...ik(ct)%/\'”/\ ry

t; t;
1<ig < <ip<n “ ke 1<ii <---<ip<n ke

It commutes with di. We have
1
DoV, = 0 > e
Ceng
Let’s show @, 0 W, is homotopic to id. It suffices to that ©¢ is homotopic to id for each ¢ € py.
Let

Lh= |J { D) aw@tV: aw(T) € K{r T}, |law(T)|l-s*™ are bounded}.

r>1,s>1 weZmNd

Consider the de Rham complex (C"(L}), d) so that C’k(Ll}) is the space of k-forms which can be

written as a sum of products of dT, dt%, ..., 9= and functions in LTT, and d : C’“(LTT) — Ck+1 (LTT)

is the usual exterior derivative of differential forms. The substitution
ti— 1+ (G-t (i=1,...,n)
induces a chain map
01 (C(LY) db) = (C'(L]), d).

Here we use the fact that {; =1 mod p so that each 1+ ({; — 1)T is a unit in LTT. In particular,

d(a+@-nmn)
(I+(G—-DT)t;

evo : (C'(LL),d) = (C(L}),ds) (resp. evy : (C(LL),d) — (C(L}),dy)).

lies in C" (LTT) The evaluation at 7= 0 (resp. T = 1) induces a chain map

We have

evioL=0¢, evpor=id.
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To prove ©¢ is homotopic to identity, it suffices to show ev; is homotopic to evy. Note that
[ g(T,4)dT lies in L for any g(T,t) € L. Define = : C*(LL) — C*1(L{) by

E(f(T,t)%AmAO“—“) —0,

11 ik
dt; dt; 1 dt At
E(g(T,t)dT/\ TN ﬁ) = (/ g(T,t)dT)i Aeee A Tkt
tj, 79 0 tj, 27
Then we have
d¢Z 4+ 2d = evy — evg.
We now consider the twisted de Rham complexes. Let
FaaGauTC7L7EO7E17H
be the conjugates of
(I)au \I]au ®C7 L, €Vp, €Vy, E

by ¢ -t} exp(nF(a, t)) respectively. One verifies that they are defined on C"(L{) or C'(L}).
By the discussion above for the untwisted de Rham complexes, we have

1
GaFa=1id, FyGa=— T,
al'a alra q" CEZ” ¢
Hq
EioL=T; EyoL=id, dH+ Hd=E, —FE;.
It follows that each T is homotopic to identity and hence F,G, is also homotopic to identity.

2. DWORK’S THEORY

2.1. Let
m—1 )
0(2) = exp(rz — w2P),  Op(2) = exp(nz — 2P ) = H 0(="").
i=0

Then 6,,(z) converges in a disc of radius > 1, and the value 6(1) = 6(z)|,=1 of the power series
0(z) at z = 1 is a primitive p-th root of unity in K ([15, Theorems 4.1 and 4.3]). Let @ € Fym

and let u € @p be its Techmiiller lifting, that is, v?” = w and u = @ mod p. Then we have ([15]
Theorem 4.4])

O (u) = O(1) /0 (),
From now on, we denote elements in finite fields by letters with bars such as u, a;, @; etc and denote
their Techmiiller liftings by the same letters without bars such as u, a;,u; etc. Let ¢, : Fgm — K*
be the additive character defined by

Y (@) = (1) a0 ()
Then we have

Um (@) = exp(rz — 727 )| o=y
Denote 41 by ¢. We have ), = 9 o Trg . /r,. Let a1,...,an € Fq. For any 1, ..., U, € Fgm, we
have
N — —Wij —Wn j o N — —Wij —Wn j

1/’(Trll‘"qm/ll‘"q(z:jzl ajuy " Un )) = Hj:l U (@50 7 - Un ™)

N
= Imaexp(rz =m0, s e

(2.1.1)
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Let x : Fj — @; be the Techmiiller character, that is, x(@) = u is the Techmiiller lifting of
u e F, Itisa generator for the group of multiplicative characters on F,. Any multiplicative

character Fy — Q is of the form x, = = x"(1=9 for some rational number ~ €1 Z Moreover, for
any 4 € Fym, we have

m—1 _ . m
(21.2) X (Notmgy. e, (@) = (u+o++0" " y7(1-0) — y(1=a™),

Let Y1y Un € %qZ Set Xi = Xvi(l_q) ('L =1,.. .,TL).
Consider the twisted exponential sum

Sm(F(a,t) = S xa(Normgp g, (1)) -+ xn(Normgg e, (1)) (Tr]F . /Fq(ZN: 7 ))

Write exp(rz — 727" ) = 3200 ¢;2°. By the equations (L) and (ZI2), we have

Sm(F(a,t))
N
. y1(1=q™) Yn(1—g™) H — 21" ' ;
= E uy ) exp(mz — mz )lz:ajuf17~-~uif"ﬂ
7" ia =1
N [e'S)
1 _am
_ E u’Y (I—¢™) u'yn(l q )H (E :cz(a]ul 1j uwm) )
gm—1_q j=1  i=1
o
Z 1—q™ Z Y
= t}/l( q ) t’yn H ( CZ ajtwlﬂ PN tgnj )7‘) ti=u;
N
1—g™ _m m .
— E t}ll( ) A t;Yln(l qm) H exp (ﬂ-ajt"lﬂlj twnj _ ﬂ-ajtq Wij o t;ll wn]) P
am™=1_q J=1
k2

= Z (t’lyl(lfqm) e t?l”(l_qm) exp (ﬂ'F(a, t) — 7F(a, tqm))>

We thus have
(21.3)  Sa(Fat)= > (t}l“*qm)---tgn<1-q"‘>exp(7rF(a,t)—wF(a,tq’"))) -

m_y
ul =1

2.2. Let K’ be a finite extension of K containing all g-th roots of unity. Set
L(s)o = { Z awt™ 1 Gy € K, |aw|s?™ are bounded}.
wEZ™NS

We have Lg = Uy>1 L(5)o. Note that L(s)o (s > 1) and Lg are rings. Each L(s)o is a Banach space
with respect to the norm

Z awt™|| = sup |ayw|s?™

wezZ NS wEZrNS
Theorem 2.3 (Dwork trace formula). The operator Gy : Lg — Lg 1s nuclear, and we have

(¢ — )" (G, L) = Z (t'lyl(l*qm) (=) exp (TF(a,t) — 7F(a, tqm))) t;=u,; -

mo_q
ug =1
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Proof. For any real number s > 1, define
L(s)y = awtV i aw € K', lim |aw s4W) — 01,
) {WG;HJ d(w)_m' | J

For any s < s’, we have
L(S/)o C L(S)o C L(S)O,

and Lg = U1 L(s)o. Endow L(s)o with the norm
I awt™[ = sup |aw|s*™).
WEZNNS wEZ"NS

Then L(s)o is a Banach space with the orthogonal basis {t" }weznns. The inclusion L(s')o — L(s)o
is completely continuous. Indeed, choose s < s” < s’. We can factorize this inclusion as the
composite

L(s")o < L(s")o = L(s)o.

It suffices to verify the inclusion i : L(s”)o < L(s)o is completely continuous. Indeed, let Lg be
the finite dimensional K’-vector space spanned by a finite subset S of {t™ }weznns, and let

is: L(s")o = L(s)o

be the composite of the projection L(s”)o — Lg and the inclusion Lg < L(s)o. One can verify

that dw)
w
lis — il < sup (5)

wgS \S

So ig converges to i as S goes over all finite subsets of {t"}weznns. Moreover ig has finite ranks.
So ¢ is completely continuous.

Let H(t) = t'lyl(l*q) (D oy (rF(a,t)—7nF(a,t?)). By Lemma[0.4] we have have Hy(t) €
L(ppp_iz1 )o. For any s > 1, we have U,(L(s)g) C L(s?)¢. Consider the operator

Ga = (ﬂl -t exp(rF(a, t))) T o Wao (t}l -t exp(rF(a, t)))
= VY,o (t;“(l*‘n 1D exp (nF(a,t) — 7F(a, tq))>.
Ifl<s< p%, then G, induces a map Gq : L(s)o — L(s)o. It is the composite
L(s)o = L(s)o ) L(min (s,ppp_;l>>0 s L(min (sq,p%)>o — L(s)o.

Ga : L(s)o — L(s)o is completely continuous since the last inclusion in the above composite is
completely continuous. In particular, it is nuclear (JI5, Theorem 6.9]). Write

t?l(l_q) e t]l"(lfq) exp (ﬂ'F(a, t) — 7F(a, tq)) = Z cwt”.

We have
Ga(th) = Wa(> cwt™™)

w

= Tad cwut™)
w
= Z qu—utwa
w
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where cqw—u is nonzero only if u, w,qw —u € §. The matrix of Ga on L(s)o with respect to the
orthogonal basis {t"} is (cqw—u). By [15, Theorem 6.10] we have

Ga,L Zcqu u-

In particular, Tr(Ga, L(s)o) is independent of s. Similarly, Tr(GZ*, L(s)o) and

det(I = TGa, L(s)o) =exp (= 3 ww)

m
m=1

are independent of s. For any monic irreducible polynomial f(T') € K'[T] with nonzero constant
term, write ([I5, Theorem 6.9])
s) P Ws)y,

where N(s); and W(s); are Ga-invariant spaces, N(s); is finite dimensional over K’', f(Ga) is
nilpotent on N(s); and bijective on W(s);. We have

)= |J ker (f(Ga))™, W(s)y= [ im (f(Ga))™.
m=1 m=

For any pair s < s’, we have
E(S/)o C E(S)o, N(S/)f C N(S)f, W(S/)f C W(S)f.
Let Ny =U =1 N(s); and W; = p=1 W(s)s. Then

1<s<p P 1<s<p P

Ly = NP wy,
Ny and W; are Ga-invariant, f(Ga) is nilpotent on Ny and bijective on Wy. Since det(I —
TGa, L(s)o) is independent of s, all N(s); have the same dimension, and hence we have Ny = N(s) ¢

forall 1 < s < p%. This shows that G, : LJf — LT is nuclear and
Tr(Ga, L)) Zcqu .

On the other hand, we have

Z u® q—l ifq—1|w,
otherwise.

ud—1l=1
So we have
S (0 D exp (nF(a,t) — 7F(a,6) )
u371:1
=YY
w u§71:1
= (q - 1)n Z C(g—1)u-
We thus get

(4= )" Te(Ga, L) = > (077t D exp (nF(at) - 7F(a, 7))

g—1_
u; =1

ti=u;-
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This proves the theorem for m = 1. We have

Gro= (0t em(rF(a))  owio (6]t exp(rF(a,1)))
= Ulo (t?l(l_qm) 114 exp (1F(a,t) — mF(a,t7" )))
So the assertion for general m follows from the case m = 1. O
2.4. Proof of Theorem By the equation (ZI.3) and the Dwork trace formula 23] we have

S(F@8) = (¢ —1)"THE L))
= > (7))

(_1)krI\r((qn—kGa)m, L(TJ(Z)>.

For the L-function, we have

LE@.T) = exp( Y Su(Fa ) )

= o ( > zn:(_nkTr((qn*kGa)m, L))

= e (0 Se(renr i) )

m=1

_ ﬁ det (I TG, Lf)(Z)) o
k=0

This prove Theorem [0.15]
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