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Abstract of the Dissertation

Strong Lens Line-Of-Sight Analyses in the Era of Massive Galaxy Surveys

One of the foundational goals of modern cosmology is the precise and accurate measurement

of the expansion rate of the universe, which is denoted by the Hubble constant (𝐻0). In recent

years, the results of the most mature methods available for making this measurement have diverged

to such an extent that some have called it a “crisis in cosmology.” The ultimate resolution of the

crisis is not yet clear, but there is no doubt that additional methods for constraining 𝐻0 can shed

light on this underlying problem.

Time-delay cosmography is one such method for constraining the expansion rate. It involves

careful measurements and modeling of strong lensing systems where the luminosity of the back-

ground object is variable. This variability appears at different times to the observer, and the length

of this “time delay” depends on the underlying cosmology in addition to the geometry and mass

distribution of the lens system itself. Chapter 1 of this dissertation provides an introduction to

modern physical cosmology, and further introduction to the theory of gravitational lensing and

time-delay cosmography.

The environment of the lensing system introduces perturbations that affect the results of the

cosmographic analysis, generally at the percent level. Accounting for this bias is crucial for

accurately measuring the underlying cosmological parameters. While some structures can be

accounted for in the primary mass model itself, this requires high quality data and significant

modeling time, and is generally not possible for the majority of objects in the field. The cumulative

effect of the remaining perturbers is known as the “external convergence” (𝜅ext) and must be handled

statistically.

This dissertation explores one technique for quantifying the collective impact of these remaining

objects. The technique involves comparing a summary statistics from a line of sight of interest to

summary statistics from large number of similar lines of sight in a suitable reference survey. This

provides an empirical estimate of the mass density in the field as compared to the Universe as a

whole, which can be compared to cosmological simulations to estimate the value of 𝜅ext. This

quantity is used directly in the final cosmological inference as a correction factor on the time-

ix



delay distance, which is inversely proportional to 𝐻0. Chapter 2 provides an introduction to these

techniques and an application to a time-delay lens.

Currently, there are only around a dozen time-delay lenses that have been fully analyzed to

put constraints on cosmological parameters. However the number of known systems is rising fast,

and the Legacy Survey of Space and Time (LSST) is expected to increase this number by around

a factor of 10. Working with these systems requires the development of tools that are capable

of operating at larger scale, and statistical models that can combine information from many lens

systems into a single estimate of cosmological parameters. Chapter 3 introduces a framework for

estimating the population distribution of 𝜅ext for a sample of lenses. I use this framework to show

that a sample of 25 lenses from the Strong Lensing Legacy Survey (SL2S) fall in preferentially

overdense lines of sight. This finding is expected based on previous work, but this dissertation

represents the first time this overdensity has been quantified in a way that is useful for time-delay

cosmography. Additionally, I present a new statistical model which may shed light into underlying

mass distribution in our lines of sight and provide a path forward for improving the measurement.

The analyses presented in this dissertation where accompanied by a significant amount of work

developing high-quality software to perform the analyses and enable future ones. The software

produced is capable of scaling to many more systems than are currently available for analysis and

adapting to significant changes in the underlying techniques without being rewritten. This software,

and some of the philosophy behind its development, is presented in detail in Chapter 4

Finally in Chapter 5 I draw some conclusions based on this work and look forward to the future

of the 𝜅ext measurement and cosmological software.
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Chapter 1

ΛCDM, The Hubble Tension, and
Time-Delay Cosmography

As with many cosmological analyses, the overarching goal of the work presented in this dissertation

is the precise anbd accurate inference of cosmological parameters. Time-delay cosmography aims

to provide a route to measuring parameters such as the Hubble constant. However in practice, the

work in this dissertation is several steps removed from this overall result. A solid grounding in

modern cosmology is therefore necessary to appreciate the importance of this work

In this chapter, I present an introduction to the core ideas that provide the foundation for my

work in later chapters. I begin with an introduction to the standard ΛCDM model of cosmology,

and discuss the current tension in measurements of the expansion rate. I then move to gravitational

lensing and the role of time-delay cosmography in shedding light on the source of this tension. I

briefly introduce the relationship of my work to time-delay cosmography, and discuss some of the

software practices that I utilize to produce my results.

1.1 How we Got Here: Brief History of Physical Cosmology
Humans have demonstrated interest in the stars since antiquity. For the vast majority of our history,

light pollution was virtually non-existent, and anyone spending time outside on a clear night could

see the stars more vibrantly than most of us living in the 21st century ever will. Interest in the

Universe and our place within it is embedded deep in the mythology of cultures around the world.

Ancient astronomers and mystics constructed elaborate cosmologies based on a blend of direct

observation and spiritual discovery.

1



At times, this mythology has clashed with the discoveries of the more empirically-minded.

Among the most famous examples in the western canon is that of Galileo, who was put on trial

by the Catholic church for championing the heliocentric model of the solar system developed by

Copernicus. But barriers are not only put up by individuals outside the scientific community.

Changes in understanding of the fundamental nature of reality has always been a uphill battle, and

history is littered with knowledgeable and talented scientists who have ended up tragically wrong.

This is a clear example of a common occurrence: the Universe will inevitably humble us just when

we think we’re starting to get a grasp on it.

However even as the heliocentric model fell out of fashion in the west, the idea of distant

galaxies and indeed a whole Universe beyond the Milky Way was largely out of reach. Galaxies

beyond the Milky Way have been observed for centuries, but were termed “spiral nebulae” and

thought to exist as part of our own Galaxy. However there were those who thought there may be

more to the story. Emmanuel Kant famously posited in 1755 that these “spiral nebulae” were in

fact “island universes,” but even he did not comprehend the true scale of the cosmos.

The observational foundations of modern cosmology were arguably laid in the early 19th

century by Henrietta Leavitt, who first discovered and quantified the period-luminosity relationship

of Cepheid variable stars (Leavitt & Pickering, 1912). This “standard candle” represented the first

time astronomers had a tool to measure the distance to objects that were beyond the range of parallax.

In 1924, Edwin Hubble used this relationship to show unequivocally that the “spiral nebulae” were

in fact beyond the bounds of the Milky Way (Hubble, 1925), kicking off a fundamental shift in our

scientific understanding of the cosmos.

At the same time, advances in theoretical understanding gave astronomers the tools to describe

a more dynamic Universe. Einstein’s General Relativity showed that spacetime (and by extension

the Universe itself) would bend and warp based on the the mass and energy it contained (Einstein,

1915). In 1927, Belgian physicist and Catholic priest Georges Lemaı̂tre presented his theory of

the “primeval atom,” which posited that the modern Universe had originated from a much smaller,

denser, and hotter Universe in the distant past (Lemaı̂tre, 1927). Though initially rejected by

Einstein himself, this theoretical development was put on firm footing in 1929 when Hubble clearly

demonstrated the redshift-distance relationship of distant galaxies, showing that the Universe was

indeed expanding Hubble (1929). He additionally provided an empirical estimate of the costant

2



which now bears his name and while the measurement itself was only correct to an order of

magnitude, the evidence was the beginning of the end for the steady-state model of the Universe

favored by many at the time.

Though the remainder of the 20th century, cosmology flourished as it became more of a precision

science. Penzias & Wilson (1965) first detected (accidentally) the cosmic microwave background, a

fundamental prediction derived from Lemaı̂tre’s primeval atom by Alpher & Herman (1948). Over

the coming decades, successive ground and space-based missions painstakingly charted the small

anisotropies in the CMB and used them to probe the foundational nature of the early Universe.

Meanwhile, additional observations suggested that the majority of the mass in the Universe is

invisible to even the most advanced telescopes. The term ”dark matter” was coined by Fritz

Zwicky based on a study of the Coma Cluster, where he demonstrated that the implied mass

of the cluster based on the movement of its members was inconsistent with the amount of visible

matter (Zwicky, 1933). Further observations throughout the 20th century confirmed his hypothesis.

Among the most famous example is the measurement of galaxy rotation curves such as in Rubin &

Ford (1970). However this imbalance between observed mass and gravitational effects is visible in

many phenomena, including gravitational lensing and the previously mentioned CMB. Although it

has never been directly observed, dark matter has clearly become the dominant paradigm to explain

these observations.

Perhaps the most recent shakeup to the baseline cosmological model came in 1998, when

evidence of the accelerated expansion of the Universe was presented simultaneously by teams

led by Adam Riess and Saul Perlmutter based on measurements of Cepheid-calibrated Type Ia

supernovae (Riess et al., 1998; Perlmutter et al., 1999). The accelerated expansion suggested the

existence of an additional energy component in the Universe, which came to be known as dark

energy. In the standard cosmological paradigm, this energy is thought to be intrinsic to spacetime

itself, but its exact nature remains stubbornly hidden. Attempts to quantify this intrinsic energy

with quantum field theory have resulted in what has been jokingly called the “worst prediction in

physics” due to overshooting the amount of dark energy needed to reproduce observations by some

100 orders of magnitude.

The work of the past century has culminated in the modern ΛCDM model of cosmology. This

model assumes the existence of a cosmological constant (Λ) represents the intrinsic energy of
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space time and is responsible for the dark energy component discussed above. It also assumes

the existence of cold dark matter (CDM), which is responsible for structure formation and makes

up a significant majority of matter in the Universe. While imperfect, the model is remarkably

successful in a number of regimes, particularly on large scales. It is without question an incredible

achievement, and has stood up remarkably well to the high-precision measurements of the last two

decades.

As presented here, physical cosmology has always been a data-oriented field. Although Einstein

initially rejected Lemaı̂tre’s (theoretical) proposal of an expanding Universe, he found Hubble’s

work to be far too convincing to be ignored. By modern standards, the quantity and quality of

available data was quite poor. Hubble’s discovery of universal expansion was made with only

24 objects, yet fundamentally undermined the position of those who believed in a steady-state

Universe. Similarly Riess et al. made their inference of accelerated expansion with 50 supernovae.

Cosmological data has historically been hard to come by, for the simple reason that telescopes are

expensive and the amount of time required to obtain high-quality data scales with distance.

However in the modern era, many sub-disciplines of cosmology are grappling with the opposite

problem. Modern galaxy surveys produce data containing billions of extragalactic objects across

thousands of square degrees of sky. Systems that were once wholly unique are now simply members

of a large population of many known systems. While ΛCDM has largely taken this data in stride,

there are tantalizing hints that there may be more to the story. In recent years one particular

discrepancy, known as the Hubble tension, has widened to the point that it can no longer be

ignored. This tension forms the background of much of the work presented in this dissertation, so

we begin with a brief overview of ΛCDM and review some of its shortcomings.

1.2 Foundations of ΛCDM
The ΛCDM model assumes a background spacetime that is homogeneous and isotropic on large

scales. This spacetime is described by a Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) metric:

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑎(𝑡)2
[

𝑑𝑟2

1 − 𝑘𝑟2 + 𝑑Ω2
]

(1.1)

where 𝑘 = −1, 0, 1 represents the intrinsic curvature and 𝑎(𝑡) denotes the value of the scale factor

at time 𝑡. It is conventional to set 𝑎 = 1 at the present day. We define the Hubble parameter as the
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fractional rate of increase of the scale factor at a given time:1

𝐻 (𝑡) = ¤𝑎(𝑡)
𝑎(𝑡) . (1.2)

For relatively nearby objects, the Hubble parameter can be estimated simply by taking the ratio

of their line-of-sight velocity to their absolute distance. However over the longer expansion history

of the Universe, the density of the various components of the Universe change and the Hubble

parameter evolves non-linearly according to the Friedmann equation:

𝐻2(𝑎) = 8𝜋𝐺
3

𝜌(𝑎) − 𝑘𝑐2

𝑎2 + Λ𝑐2

3
(1.3)

where G is the gravitational constant, 𝜌 is the energy density of the Universe, andΛ is a cosmological

constant.

The intrinsic spatial curvature of the Universe is determined by the combined energy density of

all its components. Often, it is useful to talk about the energy density of a given component of the

Universe as a fraction of the critical density of the Universe, which is the density of a universe that

is spatially flat on large scales:

Ωi =
𝜌i
𝜌c

(1.4)

where

𝜌c ≡
8𝜋𝐺
𝐻2 . (1.5)

It is conventional to recast equation 1.3 in terms of these densities and redshift (z), where 𝑧 = 0

denotes the present day. The relative rate of expansion of the Universe at a given redshift 𝑧 can

therefore be computed by

𝐻2(𝑧) = 𝐻2
0
[
Ω𝑟 (1 + 𝑧)4 +Ω𝑚 (1 + 𝑧)3 +Ω𝑘 (1 + 𝑧)2 +ΩΛ

]
(1.6)

where Ω𝑟 , Ω𝑚, Ω𝑘 and ΩΛ represent the density of radiation, matter, curvature, and dark energy

and the cosmological constant at the present day in units of the critical density, and 𝐻0 represents

the current value of the expansion rate.
1It is worth mentioning here that accelerated expansion actually does not mean that H is increasing, rather that ¥𝑎 is

positive.
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In standard ΛCDM, the Universe is flat (Ω𝑘 = 0). Radiation density falls off rapidly in the early

Universe both due to the increasing volume of the Universe and cosmological redshift. For the

systems studied in this dissertation, it is safe to approximate the above with a simplified relationship:

𝐻2(𝑧) = 𝐻2
0 [Ω𝑚 (1 + 𝑧)3 +ΩΛ] (1.7)

The scaling relationship above is set by the equation of state of the various components in the

universe, which is parameterized by

𝑤 =
𝑝

𝜌
(1.8)

where 𝑝 and 𝜌 represent the density and pressure of the component when modeled as a perfect

fluid. Given 𝑤, the relationship between the density of the component 𝜌 and the scale factor 𝑎 is

given by

𝜌 ∝ 𝑎−3(1+𝑤) . (1.9)

For example, matter is pressureless which leads to an equation of state 𝑤 = 0 and a scaling

relationship 𝜌𝑚 ∝ 1
𝑎3 . From a conceptual standpoint, matter dilutes in the universe as one might

expect. If the physical volume of a given region of the universe doubles, the density of matter

halves.

In classical ΛCDM, dark energy is modeled as a cosmological constant with equation of state

𝑤 = −1 for all times. This leads to the behavior shown above, where the density of dark energy

remains constant as the Universe expands. However, there are a number of extensions where

the dark energy equation of state is allowed to either take on a different value or vary over time.

Although the ΛCDM model is significantly more complicated than the relationship above would

suggest, late-Universe analyses are primarily sensitive to 𝐻0, Ω𝑚, and 𝑤.

1.2.1 Distance Measures in Cosmology

An expanding, dynamic spacetime complicates standard notions of distance. The Universe contains

no road signs or distance markers, making it difficult to determine an absolute distance scale. There

are a number of different measurements that are useful for different applications. For theoretical
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work it is often helpful to use comoving coordinants, which remain constant for objects with no

peculiar velocity. The comoving distance from an observer to a source at redshift 𝑧 is given by:

𝐷𝐶 =
𝑐

𝐻0

∫ 𝑧

0

𝑑𝑧′√︁
Ω𝑚 (1 + 𝑧)3 +ΩΛ

, (1.10)

where I use the same simplification introduced in Eqn. 1.7. Note that this equation is only valid

for a flat Universe.

A constant comoving distance will always result in a changing physical distance. This physical

distance is ultimately what our techniques must measure directly. One such physical distance which

will be useful in later sections is the angular diameter distances, which is given by

𝐷𝐴 =
𝐷𝐶

1 + 𝑧
. (1.11)

𝐷𝐴 is equivalent to the ratio of an object’s physical size to its angular size on the sky. A unique

property of relativistic cosmology is that this distance does not increase monotonically. Past 𝑧 ≈ 1.7,

the angular diameter distance decreases and objects appear larger on the sky.

However as one might expect, objects do appear dimmer with increasing distance according to

the inverse square law. Given a distant object of known intrinsic luminosity, the distance inferred

by comparing to its apparent luminosity is known as the luminosity distance and is given by

𝐷𝐿 = (1 + 𝑧)𝐷𝐶 , (1.12)

which does increase monotonically.

The difference between these distance measures is salient when inferring the value of 𝐻0

with different probes. Any measure that can empirically determine the relationship between

redshift and one of these distance scales implicitly probes the underlying cosmology. As such,

developing techniques for determining this relationship is one of the primary preoccupations of

modern cosmology.

1.2.2 Standard Techniques for Measuring 𝐻0 and the Hubble Tension

In practice, the headlining result for any distance measure is often the inferred value of 𝐻0. Although

there are practical reasons for this in some cases, this is not always the case. When fitting a ΛCDM
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cosmology to the Cosmic Microwave Background for example, the value of 𝐻0 is not among the

sampled parameters, and is instead derived after the fact.

Traditional techniques anchoring the distance scale can broadly be broken down into two

primary categories. The first, known as the “distance ladder,” involves the use of objects whose

absolute luminosity can be determined a priori, such that their relative luminosity can be inverted

to determine a luminosity distance. One of the foundational extragalactic rungs of this ladder is

the Cepheid period-luminosity relationship, which can calibrated by measurements of these stars

that are within range of parallax. Cepheids can then be used to calibrate the absolute luminosity

of Type Ia supernovae, which are among the most luminous events in the Universe and can be

seen at cosmological distances. Combined with redshift information of the supernovae hosts, this

technique directly measures the expansion history of the Universe. For the most recent results

produced with this technique, see Riess et al. (2022)

The second method involves observations of the cosmic microwave background and other

cosmic structures. With these methods, the entire cosmlogical model must be fit to the observed

data together. Broadly speaking, the distance scale can be determined by comparing the angular

size of CMB anisotropies to their expected physical size at recombination. This result is much

more model dependent than the distance latter but is extremely precise, with the most recent results

from the Planck team reaching sub-percent precision (Aghanim et al., 2020a).

Historically these techniques have generally been in agreement about the rate of expansion,

with the difference between their central values acceptable given the precision of the measurements.

However in the past decade or so, increased precision has revealed a significant discrepancy between

their inferred values. This so-called “Hubble Tension” may be the result of previously-unnoticed

systematics in one or both of the measurements, or the breakdown of the ΛCDM cosmological

model (see Knox & Millea, 2020, for an overview of some potential solutions). Work exploring

both of these hypotheses is ongoing, and this dissertation will not make an argument for or

against either. However regardless of the ultimate resolution, the tension highlights the need for

independent measurements of 𝐻0, particularly ones that do not depend (or depend only weakly)

on the background cosmological model. Time-delay cosmography represents one such technique

and is the subject of this dissertation. However a number of complementary techniques exist, such

Standard Sirens (e.g. Bom et al., 2024). Other techniques such as the Tip of the Red Giant Branch
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(e.g. Anand et al., 2022) can be used to replace or compliment rungs on the distance ladder. For an

overview of the results a variety of techniques, see Figure 1.1.

1.2.3 Cold Dark Matter and Structure Formation

Foundational to modern cosmology is the so-called “Cosmological Principle,” which posits that no

observer should think of themselves as being in a “special” place in the Universe. This principle

implies homogeneity and isotropy: the Universe should more or less look the same on large scales

to any observer at any location looking in any direction. This idea is consistent with observations

on a wide variety of scales. Yet structure does exist in the Universe on smaller scales. Although

structure formation is not the focus of this dissertation, much of the work presented in later chapters

is implicitly probing and attempting to quantify the structure in a small region of the Universe. As

such, I will take a moment to qualitatively discuss its origins in the standard model.

In the standard paradigm, dark matter is collisionless and decouples from the primordial plasma

at non-relativistic (cold) speeds. The seeds of cosmological structure are thought to be the result of

density perturbations laid down by inflation in the very earliest moments of the Big Bang. These

density perturbations have a nearly scale-invariant power spectrum, which result in the amplitude

of these fluctuations decreasing with size. Regions of higher density naturally attract more material

due to gravity, but baryonic matter cannot fall freely due to radiation pressure.

Dark matter on the other hand has no such constraint, and density perturbations continue to

grow over time. This initial growth is known as the “linear” regime of structure formation. In

this regime, dark matter density perturbations are small compared to the background density field,

and perturbations at different scales evolve independently. This picture provides an excellent fit to

observations of large-scale structure. However over time, perturbations grow to the point that they

can no longer be treated in a linear approximation. This regime is important for the contents of this

dissertation, because I aim to quantify mass densities in a small region of the Universe.

Eventually, galaxies form inside these dark matter structures. Over time, smaller dark matter

structures combine to form larger structures, resulting in the Universe as we see it today. Simulations

of structure formation based on this picture are consistent with data across a range of scales. On

smaller scales a number of discrepancies exist, but some of these may be mitigated by higher-

resolution simulations with more sophisticated galaxy formation models. (see Weinberg et al.,

2015, for an overview)
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Figure 1.1 Overview of measurements of 𝐻0 from a wide variety of methods as presented in
Di Valentino et al. (2021). Measurements above the dotted line are model-dependent early-
universe probes, while those below involve late universe probes and are generally less dependent
on the underlying model. The red and blue regions represent the current best measurements based
on the CMB (Planck Collaboration, 2020) and cephied-calibrated supernovae (Riess et al., 2022),
which are the current highest-precision measurements in their respective regimes. There is a clear
discrepancy between these results. Reducing the error bars on the plethora of additional techniques
is a primary goal of the astronomy community.

10



The most important fact for the purposes of this work is that the majority of mass in any large

region of space (that is, containing at least a few galaxies) is made up of dark matter. This presents

challenges for any astrophysical analysis, as the only way to infer the quantity of dark matter is

through its gravitational effects. Galaxy rotation is one such effect, but much more interesting

for the purposes of this dissertation is gravitaional lensing, which refers to the bending of light

by spacetime curvature as it passes by a massive object. Gravitational lensing studies require

significantly more mass to explain observations than can be seen with visible light.

1.3 Gravitational Lensing Fundamentals
In this section, I review gravitational lensing and some of the theoretical tools that can be utilized

to describe lens systems. Gravitational lensing refers to the apparent2 bending of light observed by

an outside observer when that light passes by a massive object. This effect is a result of the bending

of spacetime as predicted in Einstein’s General Relativity(Einstein, 1915)3, and first confirmed

observationally by the Eddington expedition in (Dyson et al., 1920).

1.3.1 Basic Formalism

a

According to General Relativity, a ray of light passing by a spherical mass 𝑀 will be deflected

by an angle 𝛼̂ given by

𝛼̂ =
4𝐺𝑀

𝑐2𝑟
(1.13)

where 𝑟 is the impact parameter, or distance of closest approach. However many objects in the

Universe are not spheres, and many lensing systems involve configurations where the light passes

too close to the mass for it to be approximated as such. In such cases, we must treat the mass

as distributed in space and integrate over this distribution to determine the lensing effect. When

the distances in the system are much larger than the scale of the mass itself (as with galaxy-scale

lenses), we can treat the primary lens as being infinitesimally thin:
2Everything is “apparent” in relativity. Light follows null geodesics in spacetime, which can be thought of as the

generalization of straight lines in a curved spacetime.
3Extensions to Newtonian mechanics also predict lensing, but by a different amount
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Figure 1.2 Geometry of a generic lens system with exaggerated angles. Typical angles are in the
arcsecond range. Figure adapted under CC BY-SA 4.0 license from original by Michael Sachs

®𝜃 − ®𝛽 = ®𝛼( ®𝜃) = 4𝐺
𝑐2

∫ ( ®𝜃 − ®𝜃′)Σ( ®𝜃′)
| ®𝜃 − ®𝜃′|2

(1.14)

where Σ represents the projected surface mass density of the lens at some angular position 𝜃′ and
®𝛽 is the (unobservable) angular position of the source on the sky. This is known as the “thin lens

approximation.” It is conventional to redefine the surface mass density in terms of the convergence

𝜅

𝜅( ®𝜃) = Σ( ®𝜃)
Σ𝑐𝑟

(1.15)

where Σ𝑐𝑟 is the lensing critical density given by
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Σ𝑐𝑟 ≡
𝑐2𝐷𝑠

4𝜋𝐺𝐷𝑑𝐷𝑑𝑠

(1.16)

where 𝐷𝑠, 𝐷𝑑 and 𝐷𝑑𝑠 represent the angular diameter distances from the observer to the source,

observer to the deflector, and deflector to the source respectively. The critical density denotes the

minimum surface density required to produce strong lensing, which I discuss in more detail in the

next section. It is often convenient to define the deflector mass in terms of the lensing potential

𝜓( ®𝜃) = 1
𝜋

∫
𝑑2𝜃′𝜅( ®𝜃′)𝑙𝑛|®(𝜃) − ®(𝜃′) | (1.17)

In this formalism the deflection angle and convergence can easily be extracted from the lensing

potential by

®𝛼( ®𝜃) = ®∇𝜓( ®𝜃) (1.18)

𝜅( ®𝜃) = 1
2
∇2𝜓( ®𝜃). (1.19)

The formalism presented here is generally sufficient for purposes of time-delay cosmography,

where the dominant source of lensing is a single galaxy at a cosmological distance from both the

observer and the background source. However there are cases where this formalism is inadequate,

such as weak lensing due to cosmic shear and in cases where a single background source is lensed

by multiple objects. In such cases it is sometimes possible to treat the system in the multiple-plane

formalism, where each lens is approximated as a thin lens. In practice this approach is challenging

both due to its computational complexity and the fact that most mass along any line of sight is

unobservable.

1.3.2 Strong and Weak Lensing

Generally speaking, gravitational lensing is divided into two primary regimes. Strong lensing

involves a source being lensed into multiple images or an Einstein ring. This occurs when the

path taken by the light from a background source passes within a region where 𝜅 > 1. Massive

galaxies are the only type of strong lens considered in this thesis, but galaxy groups and clusters

also commonly produce this effect.

Weak lensing refers to distortions of the apparent shapes of background objects as they pass

through the Universe. Formally, this occurs in cases where 𝜅 < 1. In practice, most ”weak lensing”
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analyses involve mass concentrations significantly less than one. Virtually every visible galaxy is

lensed, but these perturbations are generally much too small to be observed on individual objects.

Instead, weak lensing is usually measured with correlation statistics of many objects in some

region. This is an important cosmological tool as it can be used to trace the underlying large-scale

distribution of mass in the universe. Whether or not an object appears lensed (and by how much)

depends on the location of the observer with relation to the source and deflector. Strong lensing

is a relatively rare effect that requires precise alignment of an observer, source, and the lensing

structure.

1.4 Time-Delay Cosmography
Time-delay cosmography relies on the inherent asymmetry of real strong lens systems and the

cosmological distance scales intrinsic to their geometry to place constraints on cosmological

parameters, particularly 𝐻0. When an object is lensed into multiple images, the light from these

images will take different paths to the observer over different amounts of time. When the brightness

of the background source varies, this “time delay” will be directly observable since the variations

will appear in different images at different times. The background source in this analysis is usually

a quasar. However recently this analysis has been performed with observations of the supernova

Refsdal (Kelly et al., 2023), which bears the name of the Norwegian astrophysicist who first

proposed this technique in Refsdal (1964).

The time delay for a given lens system is the result of two effects. The first is the intrinsic

difference in path length between the various routes taken by light from the background object as

it passes by the lens and (ultimately) to the observer. The second is the Shapiro delay, which is an

inherent time delay observed in any physical process happening inside a gravitational potential. In

general these are competing effects. A ray of light passing near the center of the lensing potential

will travel less additional distance while experiencing a greater Shapiro delay than a ray of light

passing farther from the center. Time delays induced by these effects range in length from hours to

years, but are typically of order a few days to a few weeks for galaxy-scale lenses.

The amount of the delay depends on the geometry of the system and the primary mass itself.

Given a single lens and a background source, the total time delay between two images located at

angular positions 𝜃𝐴 and 𝜃𝐵 is given by
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Δ𝑡𝐴𝐵 =
𝐷Δ𝑡

𝑐
[𝜏( ®𝜃𝐴, ®𝛽 − 𝜏( ®𝜃𝐵, ®𝛽)] (1.20)

where 𝜏 is the Fermat potential

𝜏( ®𝜃, ®𝛽) = | ®𝜃 − ®𝛽 |2
2

− 𝜓( ®𝜃), (1.21)

and 𝐷Δ𝑡 is the time delay distance given by

𝐷Δ𝑡 = (1 + 𝑧𝑑)
𝐷𝑠𝐷𝑑

𝐷𝑑𝑠

(1.22)

where 𝑧𝑑 is the redshift of the deflector. This quantity is inversely proportional to 𝐻0 (see Eqn.

1.10). Given a well-measured time delay and model of the lensing galaxy, it is therefore possible

to invert this relationship to determine 𝐻0.4

As with nearly every other scientific analysis, this story is complicated when data are actually

gathered. Measuring time delays, for example, is challenging in practice because it requires

monitoring the system over many months or even years to catch the relatively small changes in

brightness. Similarly lens modeling is limited by the quality of data that is available for a given lens.

Even with excellent data, lens modeling requires a number of assumptions about mass distributions

in the lensing galaxies, though future surveys may be able to provide more empirical constraints.

The work presented here focuses on one of these uncertainties, which derives not from the lens

itself but from its environment.

1.4.1 The Mass Sheet Degeneracy and 𝜅ext

There is an important challenge in lens modeling that significantly complicates the picture presented

above. Suppose we have a model of a lens system mass distribution 𝜅( ®𝜃) and source position ®𝛽

that successfully reproduces the available observables for the system such as image positions,

magnification ratios, and time delays. We then introduce a family of models defined by

𝜅𝜆 ( ®𝜃) = 𝜆𝜅( ®𝜃) + (1 − 𝜆) (1.23)

®𝛽𝜆 = 𝜆 ®𝛽. (1.24)
4My advisor likes to remind me not to editorialize too much, but I must admit I find it mind-blowing that astronomers

have managed to both figure this out theoretically and execute it in practice.
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This family of models will reproduce the observables equally well, but will yield different values

of the product Δ𝑡 × 𝐻0:

𝐻0Δ𝑡 → 𝜆𝐻0Δ𝑡. (1.25)

This transformation is known as a “mass sheet transformation,” and the associated degeneracy

as the “mass sheet degeneracy.” Conceptually this transformation can be thought of as the scaling

of the given mass distribution, combined with the addition of a infinite mass sheet coplanar with

the lens. An infinite mass sheet is clearly non-physical, but it is possible to build models with

truncated mass sheets that still reproduce this degeneracy. Although it is not specific to time-delay

cosmography, breaking this degeneracy is crucial to obtaining reliable constraints on 𝐻0 from

strong lensing.

The mass sheet degeneracy can be broken by measuring stellar kinematics of the lensing galaxy.

In particular, the angular diameter distance to the deflector, 𝐷𝑑 can be independently inferred by

𝐷𝑑 =
1

1 + 𝑧𝑑

𝑐Δ𝑡𝐴𝐵

Δ𝜙𝐴𝐵

𝑐2𝐽 (𝜉𝑙𝑒𝑛𝑠, 𝜉𝑙𝑖𝑔ℎ𝑡 , 𝛽𝑎𝑛𝑖)
(𝜎𝑃)2 (1.26)

where 𝜎𝑃 is the line-of-sight projected stellar velocity dispersion of the lensing galaxy, and 𝐽 is a

form of the Jeans equation which captures information about the mass and light distributions of the

lensing galaxy. This independent inference of 𝐷𝑑 can be used to mitigate the effects of the mass

sheet degeneracy.

The mass sheet transformation can be broken down into an external and internal component. It is

the external mass sheet transformation, denoted 𝜅ext, which is the primary focus of this dissertation.

There is a clear physical origin of such a transformation. As the light passes through the Universe,

it will pass by many different mass structures which will affect its trajectory. These perturbations

are not directly observable, but can bias the resulting cosmological inference on the order of a few

percent. Specifically, if the value of 𝜅ext is known, it can be used to correct the inferred value of

the time-delay distance by

𝐷Δ𝑡 =
𝐷′

Δ𝑡

1 − 𝜅ext
(1.27)

where 𝐷′
Δ𝑡

is the uncorrected value of the time-delay distance. This directly propagates to inferred
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value of the Hubble constant by

𝐻0 = (1 − 𝜅ext)𝐻′
0 (1.28)

where 𝐻′
0 is the value of the Hubble constant inferred from the primary lens mass model, time

delays, and stellar kinematics.

Estimating 𝜅ext is difficult for a number of reasons, particularly the fact that the majority of mass

along the line of sight is in dark matter. Two techniques have been applied to constrain this mass

sheet in practice. The first uses galaxy number counts as tracers of the underlying mass distribution,

and compares them to similar lines of sight in simulations to estimate 𝜅ext for a given lens system

(e.g. Rusu et al., 2017; Buckley-Geer et al., 2020). This technique is the primary focus of this

dissertation, and procedures for using this technique to estimate 𝜅ext will be introduced at length in

Chapter 2

The second technique for estimating 𝜅ext is with weak lensing (e.g. Tihhonova et al., 2018).

Given high-resolution imaging data of the field, it is possible to estimate the shear field by cross-

correlating the shapes of background galaxies. This shear field can be used to reconstruct a

convergence field of the system, which is then compared to simulations to estimate the external

convergence. This technique makes good physical sense, as it attempts to model the actual

distribution of mass in the lens in field. However in practice it does not achieve meaningfully

better constraints than the first method, while requiring higher-quality data and more astronomer

hours. This technique was not explored during the preparation of this dissertation, but may be

worth revisiting in the future.

1.5 Astronomy at Scale: Challenges and Principles
Although this dissertation is about astronomy, it is also about software. The 𝜅ext analysis discussed

throughout this dissertation relies heavily on large galaxy surveys spread out over large areas of

sky. Developing software that can efficiently interact with these survey datasets is a significant

challenge in its own right.

The amount of data available to the astronomy community has expanded by orders of magnitude

in the last decade or two, and will continue to expand as next-generation surveys come online. This

presents a number of scientific challenges. By and large, the community is responding well to these
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challenges. Machine learning models, which are capable of crunching through data at tremendous

speed, have become a foundational tool in the discipline. In time delay cosmography, the results

from many different systems have been combined into hierarchical Bayesian models, which use all

information available from many systems to produce a single inference. These sorts of techniques

are being adopted elsewhere too, as systems that were once unique are now just a single member

of a large population.

But these analysis techniques implicitly rely on robust underlying data infrastructure that is

capable of serving the needs of many different astronomers. This data infrastructure receives

much less attention in the community. Operations teams for individual surveys must and do build

sophisticated infrastructure for managing and processing data as it arrives from the observatory.

However the tools necessary for the usage of the produced data at its full scale by downstream

astronomers is meaningfully lacking.

Modern astronomical datasets are large by any standard, but they are by no means unprecedented.

The LSST team estimates that the total cumulative volume of processed data delivered over the

10-year survey period will reach approximately 500 PB. However nearly a decade ago Amazon

Web Services debuted a service for moving exabyte scale datasets betweeen data centers, and as

far back as 2011 engineers at CERN were working on systems to store and process exabyte-scale

data produced by the LHC. These facts are not meant to downplay the significance of the challenge

of working at this scale, but only to point out that many of the challenges of working with these

datasets are well understood by systems engineers in the scientific community and the private sector.

Throughout my work, I have focused on what I call the “software-engineering approach to

astronomy.” This approach involves clearly separating scientific problems from engineering ones,

and developing the skills necessary to tackle these engineering problems effectively. It focuses on

producing reusable, extensible software that assumes an analysis will be performed many times over

a large data volume, but does not place unnecessarily tight constraints on what form that analysis

may take. This approach does not attempt to downplay the importance of exploratory analysis

or suggest that all astronomers should focus their time on becoming highly-competent software

engineers. Instead, it recognizes that the long-term sustainability of computational science is an

important goal that requires real expertise in topics outside astronomy.

The scientific work presented in Chapter 3 of this dissertation demonstrates the power of this
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approach. In that chapter, I build a population model of a large number of systems. Core to this

analysis is my ability to model the individual systems in this sample in a consistent and reliable

way. This does not eliminate the possibility of unaccounted-for biases in the measurement, or an

issue in the population model itself. But it does mean that these biases likely apply across the entire

sample, and changes made to mitigate these biases can be applied across the entire quickly and

reliably.

The tools used to perform these analyses were developed using the exact approach discussed

above. I recognized the set of computational needs that would be consistent across my work

(and likely others), and built tools designed to meet these needs while being flexible regarding the

specifics. The first tool I produced was heinlein, a data management library that provides a single

unified Python interface to data from some underlying survey. It is built in particular to accelerate

cone searches, where the dataset is queried for all data that falls within some distance of a given

point. This core ability is useful in a wide variety of contexts. I followed this with cosmap, which

is built on top of heinlein and provides a consistent interface for defining analyses that repeatedly

sample data from a large sky survey. cosmap handles parameter validation, I/O, logging, and the

flow of data through the analysis. cosmap makes no assumptions about what computations are

performed on the data, allowing for a wide variety of use cases.

While the motivation for building these tools was scientific, the approach taken to actually

producing them (and the decision about where one ends and the other begins) was based on

software engineering. I discuss some of these decisions more in Chapter 4.

1.6 This Dissertation
The work presented in this dissertation has two main aims. First, to develop software infrastructure

for estimating 𝜅ext rapidly and reliably. And second, to develop the techniques necessary to model

populations of lines of sight, which is useful for time-delay cosmography and may provide insight

into the strong lens selection function.

The software developed in the preparation of this dissertation has undergone and continues to

undergo updates and improvements. The lenskappa package discussed in Chapter 2 has been

almost entirely replaced by the cosmap package discussed in Chapter 3. This is a good thing, as my

understanding of the problem and the tools needed to solve it have improved significantly over the
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past several years, and incorporating that understanding into software has significant benefits. As

such, the discussion of software in Chapter 2 should be viewed primarily as a historical account.

Secondly, it is worth noting that the basic techniques for estimating 𝜅ext for a single lens system

existed well before I started working on this dissertation, and much of the work in Chapter 2 is

aimed at reproducing this analysis on a new system. As such, it also does not represent our most

up-to date understanding of our scientific techniques. However the core of the analysis remains

unchangedin Chapter 3. Inventing a new set of techniques is not the goal of this work. Instead,

the goal is to push our techniques into the era of big-data astronomy by developing next-generation

software tools and population analysis techniques. Additionally, certain aspects

Chapter 2 introduces the techniques I use to estimate 𝜅ext in depth and applies them to the

SDSSJ0924 lens system. As of the time of this writing, work on a full cosmographic analysis

of SDSSJ0924 incorporating the result from this chapter is ongoing. This chapter also includes

a discussion of the basic computational techniques used in the analysis, and some more general

principles of computation and its role in astronomy in the coming decades.

Chapter 3 presents a population model of the lines of sight to 25 strong lenses in the Strong

Lensing Legacy Survey (SL2S). I introduce a new statistical method for modeling these lines of

sight that has some implications for our understanding of the underlying physics. This analysis

uncovered a number of shortcomings in the software developed for Chapter 2 which are discussed.

We find that the lines of sight in the sample are drawn from a sample that is overdense as compared

to the population of all lines of sight in the Universe. Although this result is expected from previous

work, this chapter represents the first time observational data has been used to estimate 𝜅ext at a

population level.

In Chapter 4, I discuss in depth the software design principles I have used to build the tools used

to perform the analyses from the previous two chapters. I demonstrate how these implementations

allow users to iterate on their techniques more rapidly than would otherwise be possible, and be

more confident in their results do to the reliability and consistency of the underlying system. I

discuss the importance of these techniques to the long-term sustainability of astronomy in the era

of big data, and argue that the community should invest in developing individuals and teams who

are technically focused to work alongside their science-oriented peers.

Chapter 5 presents conclusions drawn from the preceding chapters, and looks forward to the
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future of time-delay cosmography in general and the line of sight analysis in particular. I also

discuss the future of my software and some of my longer-term vision for the kinds of analyses it

may be able to enable.
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Chapter 2

Practical Techniques for Estimating
External Convergence of Strong
Gravitational Lens Systems and
Applications to the SDSS J0924+0219
System

This chapter has been published in Astronomy & Astrophysics as a TDCOSMO Collaboration

paper.

2.1 Abstract
Time-delay cosmography uses strong gravitational lensing of a time-variable source to infer the

Hubble constant. The measurement is independent from both traditional distance ladder and CMB

measurements. An accurate measurement with this technique requires considering the effects

of objects along the line of sight outside the primary lens, which is quantified by the external

convergence (𝜅ext). In absence of such corrections, 𝐻0 will be biased towards higher values in

overdense fields and lower values in underdense fields. We discuss the current state of the methods

used to account for environment effects. We present a new software package built for this kind of

analysis and others that can leverage large astronomical survey datasets. We apply these techniques

to the SDSS J0924+0219 strong lens field. We infer the relative density of the SDSS J0924+0219

field by computing weighted number counts for all galaxies in the field, and comparing to weighted
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number counts computed for a large number of fields in a reference survey. We then compute

weighted number counts in the Millennium Simulation and compare these results to infer the

external convergence of the lens field. Our results show the SDSS J0924+0219 field is a fairly

typical line of sight, with median 𝜅ext = −0.012 and standard deviation 𝜎𝜅 = 0.028.

2.2 Introduction
One of the most important problems in modern cosmology is the so-called Hubble Tension: the

name given to an apparent discrepancy between the value of the Hubble Constant (𝐻0) inferred

from the Cosmic Microwave Background assuming the standard Λ-CDM cosmological model

(e.g. Aghanim et al., 2020b), and the value inferred from Cepheid-calibrated Type Ia supernovae.

(e.g. Riess et al., 2021). The solution to this discrepancy may involve unknown systematics, new

physics, or some combination of the two. Work on the resolution is ongoing, but having independent

methods for inferring the value of the Hubble constant is critical for solving the problem. Such

methods include using the tip of the red giant branch to calibrate supernovae,(Freedman et al.,

2019) and Baryon Acoustic Oscillations and Big Bang Nucleosynthesis (BAO+BBN) (Cuceu et al.,

2019), among others. Here we consider Time Delay Cosmography, which uses strong gravitational

lensing of time-variable sources (usually quasars) to infer the value of 𝐻0.

TDCOSMO is an international collaboration which aims to use strong gravitational lensing to

infer the value of 𝐻0 with sub-percent precision. A typical lens in the TDCOSMO sample involves

a source quasar being strongly lensed by a foreground galaxy, producing four images. When the

quasar’s luminosity varies, this variation appears in each of th eimages at different times. The

”time delay” between two images depends on the mass distribution of the lens, and the time-delay

distance:

𝐷Δ𝑡 = (1 + 𝑧d)
𝐷d𝐷s
𝐷ds

∝ 1
𝐻0

(2.1)

where 𝑧d is the redshift of the lensing galaxy (or ”deflector”), and 𝐷d, 𝐷s, and 𝐷ds are the angular

diameter distances to the deflector, source, and from the deflector to the source, respectively. Given

a model of the lens and a measurement of the time delays, it is possible to infer the time-delay

distance and therefore 𝐻0.

When analysing a strong lens, there are a number of sources of uncertainty that propagate to
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the final inferred value of 𝐻0 (see Millon et al., 2020, for a more complete overview). Among

these are so-called environmental effects: gravitational bodies besides the primary lens that affect

the lensing observables and, by proxy, the inferred value of 𝐻0. Accounting for these effects is

crucial in improving the precision of the inferred measurement. Broadly speaking we treat weak

perturbers differently from strong ones, with the difference being determined with the ”flexion

shift” formalism (see for example Buckley-Geer et al., 2020; Sluse et al., 2019; McCully et al.,

2017).

In this paper, we focus on the techniques for inferring the cumulative effect of all weak perturbers

along the line of sight to the source quasar. In principle, an ”ideal” analysis would include these

perturbers in a complete mass model of the system, rendering the analysis we do here unnecessary.

While this may be possible for a few systems where high-quality spectroscopic data of the perturbers

is available, it does not scale well to the large number of strong lensing systems we aim to analyze in

the future. Instead of building a complete model, we compare the field of interest to some suitably

large reference field, with the goal of estimating the relative density of the field as compared to the

universe at large. This is a purely statistical analysis. In this paper, we will discuss the current state

of this technique, apply it to the field around the SDSS J0924+0219 lens system (hereafter J0924,

see section 2.5.1), and discuss how it might be iterated upon in the future. The cumulative effect

of all weak perturbers is parameterized by the external convergence, denoted 𝜅ext.

While controlling uncertainties on individual lens systems is crucial, the precision of the 𝐻0

measurement can be improved by including many lenses in the final inference. Of course, this

is much easier said than done as the amount of work required to fully analyze a single lens is

significant. However in the modern era of data-driven astronomy, the amount of available data is

increasing by orders of magnitude and developing tools for efficiently analyzing these datasets is a

top priority. To that end, we introduce lenskappa, a new package designed specifically for the types

of environment analysis discussed in this paper, but with broader applications. lenskappa is built

on top of heinlein, a data management library designed for use with large astronomical survey

datasets. At present heinlein and lenskappa support Subaru Hyper Suprime Cam Strategic

Survey Program (HSC-SSP; Aihara et al., 2019), the Dark Energy Survey (Dark Energy Survey

Collaboration, 2005), and the CFHT Legacy Survey (Gwyn, 2012).

This paper is organized as follows: In Section 2, we outline the fundamentals of Time Delay

24



Cosmography and the basic process used to compute a value of 𝜅ext for a generic lens system. In

Section 3 we discuss the datasets used in our analysis, and introduce lenskappa. In Section 4, we

report the results of our analysis of the J0924 field obtained using lenskappa. In Section 5 we

discuss our results and look forward to later work.

2.3 Summary of the technique
At a high level, gravitational lensing is the result of the underlying mass distributions of the universe,

with greater concentrations of mass resulting in more significant lensing. In general, it is difficult

to assess the impact of any one mass structure on the image of some background object. Strong

lenses are naturally an exception, which occurs when a single, high-mass object falls on (or nearly

on) the axis drawn between an observer and some background source. However we are seeking

to understand the total lensing effect of many additional objects, each producing a tiny effect on

the lensing observables. As light passes through the universe, the amount of lensing it undergoes

will be determined by the relative concentration of mass along its full path of travel. Our analysis

therefore seeks to infer the effects of the mass distributions in our line of sight by comparing it to

many lines of sight in the universe. By determining how close this line of sight is to the average

line of sight in the universe, we can place constraints on its impact on our primary lens observables.

In this section, we introduce the basics of time delay cosmography and describe the technique we

use to estimate 𝜅ext for a generic lens system. For a more complete overview, we refer the reader to

Treu & Marshall (2016) and Birrer et al. (2022).

2.3.1 Fundamentals of Time Delay Cosmography, and Strong vs. Weak
Lensing

Time delay cosmography focuses on strong lensing of time-variable sources, usually a quasar. As

the luminosity of the source varies, this variation appears in each of the several images of the

source, but not at the same time. The time delay between any two images can be written as follows:

Δ𝑡𝑎𝑏 =
𝐷Δ𝑡

𝑐

[
(−→𝜃𝑎 −

−→
𝛽 )2

2
− (−→𝜃𝑏 −

−→
𝛽 )2

2
− 𝜓(−→𝜃𝑎) + 𝜓(−→𝜃𝑏)

]
, (2.2)

where −→
𝜃 represents the angular position of an image on the sky, −→𝛽 represents the actual (unob-

servable) angular position of the source on the sky, and 𝜓 is the scaled lensing potential. The first
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two terms are a result of the different distances traveled by the light for the two images, while the

later two terms are the difference in the Shapiro time delay. The goal of a complete cosmographic

analysis is to infer the time-delay distance (see eq. 2.1). Using measurements of the time delay

combined with a robust model of the lensing galaxy it is possible to measure the time delay distance

and, therefore, the Hubble constant.

The multiple images observed in such a system are en example of strong gravitational lensing.

Qualitatively, strong lensing is any lensing which produces multiple images of some background

object. Quantitatively, strong lensing occurs whenever the local density of the lens is greater than

the lensing critical density:

Σ𝑐𝑟 =
𝑐2𝐷𝑠

4𝜋𝐺𝐷𝑑𝑠𝐷𝑑

(2.3)

For a given perturber, the convergence at a given location is defined as the local density in units

of the critical density:

𝜅(−→𝜃 ) = Σ(−→𝜃 )
Σ𝑐𝑟

(2.4)

For 𝜅 < 1, strong lensing does not occur. Instead, mass distributions with 𝜅 < 1 result in

magnification or demagnification of the image of the background object. This is the situation

for the perturbers along the line of sight in our system that are not included in the primary lens

model, though we note that some perturbers that meet this criterion are included in the mass model

based on their flexion shift (see section 2.3.2), and therefore excluded from our statistical analysis.

However, the effect of the pertubers we do include in the estimate discussed here is not directly

observable because the actual angular size of the background object is not known.

We quantify the cumulative effect of all perturbers (not including those incorporated into

the primary lens model) and voids along the line of sight with the external convergence, 𝜅ext.

Conceptually, the value of 𝜅ext is the convergence of a mass sheet which, if placed coplanar to

the primary lens, would produce the same magnification or demagnification as the perturbers do

collectively. The external convergence is defined relative to that of a line of sight where the mass

distribution is smoothly distributed with a density equal to the global mass density of the Universe.

Therefore positive values of 𝜅ext represent lines of sight that are overdense with respect to the overall

density of the Universe, while underdense lines of sight have negative values.
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These perturbers can also produce shear, denoted 𝛾ext, which results in stretching and distorting

of the image of the source. However, this effect can be estimated in the primary lens model, as it

affects the location of the the images and the shape of the Einstein ring (if present). We use the 𝛾ext

constraint from the lens model in our analysis as an additional constraint (see section 2.3.6)

Assuming 𝜅ext can be measured, it serves as a correction factor to the computed value of the

time delay distance:

𝐷Δ𝑡 =
𝐷′

Δ𝑡

1 − 𝜅ext
, (2.5)

where 𝐷′
Δ𝑡

represents the uncorrected value of the time delay distance. This propagates directly to

the inferred value of the Hubble constant by

𝐻0 = (1 − 𝜅ext)𝐻′
0 (2.6)

where 𝐻′
0 is the value of the Hubble Constant inferred before correcting for the environment. We

see therefore that in the absence of the appropriate corrections, the inferred value of Hubble constant

would be biased towards higher values in an overdense field, and lower values in an underdense

field.

We now review the techniques we use to compute the value of 𝜅ext for a generic lens system.

2.3.2 Relevant Perturbers in the Line of Sight

To start, we identify objects along the line of sight that contribute to 𝜅ext. We separate objects into

strong and weak perturbers, using an operational definition discussed below. Strong perturbers

are generally close to the center of the field or a galaxy group (see for example Sluse et al., 2019;

Fassnacht et al., 2006). Strong perturbers are included explicitly in the mass model of the lens,

while weak perturbers are treated statistically. To separate these, we use the flexion shift formalism,

first proposed in McCully et al. (2017). The flexion shift of an object is given by

Δ3𝑥 = 𝑓 (𝛽) ×
(𝜃𝐸𝜃𝐸,𝑝)2

𝜃3 (2.7)

where 𝜃𝐸 and 𝜃𝐸,𝑝 are the Einstein radii of the main lens and perturber respectively, and 𝜃 is their

angular separation. The quantity 𝑓 (𝛽) is given by
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𝑓 (𝛽) =


(1 − 𝛽)2, if 𝑧 > 𝑧d

1, if 𝑧 < 𝑧d

 (2.8)

where

𝛽 =
𝐷dp𝐷s

𝐷p𝐷ds
(2.9)

and where 𝐷dp, 𝐷s, 𝐷p, and 𝐷ds are the angular diameter distances from the deflector to the

perturber, to the source/perturber, and from the deflector to the source. The flexion shift roughly

measures the perturbations to the images of the source due to 3rd order terms from the perturber.

Ultimately, what constitutes a ”weak” or ”strong” perturber is somewhat arbitrary, but there this is a

clear trade-off between the improvement from including a particular perturber in the mass model and

the amount of work required to do so. McCully et al. (2017) recommends using Δ3𝑥 = 10−4 arcsec

as the cutoff between strong and weak perturbers to ensure a < 1% bias on 𝐻0.

2.3.3 Comparison Datasets

The first step in determining the value of 𝜅ext is comparing the field of interest to a large number

of lines of sight from some large reference field. This comparison gives us an empirical estimate

of the relative matter density of the lens field as compared to all lines of sight in the universe. The

reference field should be large enough to avoid sampling bias. For a small comparison field (on the

order of a few 𝑑𝑒𝑔2) statistical overdensities or underdensities may occur (see for example Fassnacht

et al., 2010). However modern survey datasets are available which cover hundreds to thousands of

square degrees, allowing us to use a sufficiently large comparison field to avoid sampling bias (see

section 2.5.2 for a discussion of our choices for this analysis). Ideally the data for the reference

field and lens field are taken by the same instrument and processed by the same analysis pipeline.

This turns out to be the case for the analysis of J0924 discussed later in this paper, but will not be

true in general. At a very minimum we seek data with at least one band in common, with deep

enough observations to produce meaningful results. When comparing the survey dataset to our line

of sight, we set a magnitude cut and remove any objects from both datasets fainter than this cut.

Previous work (see Collett et al., 2013) has suggested that 𝑖 < 24 represents a good limit, as setting

a fainter limit does not appear to meaningfully impact the results of this style of analysis. This limit
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is also bright enough to be well above the detection limits of modern sky surveys, ensuring reliable

photometry.

Once the appropriate data are in hand, it is important to consider which objects should be used

in the comparison. It is important to set a magnitude cut that will remove objects too close to the

detection limit of the instrument for photometry to be reliable, while still leaving enough data to

make robust estimates of the relative density. However setting too bright of a limit will result in

having too few objects to compare to.

Additionally, we cut out all objects with a redshift greater than the redshift of the source quasar,

as these objects will not affect the path of the light as it travels from the quasar to our telescopes.

2.3.4 Weighted Number Counts of Lens Field

Because the value of 𝜅ext cannot be directly measured, we first define tracer quantities that can be

computed directly from the available data. By comparing the value of these quantities in the lens

field to the value of the identical quantity computed for a large number of reference fields, we obtain

an empirical estimate of the relative density of the line of sight of interest. As a first approximation,

we expect the greatest contribution to 𝜅ext from massive objects close to the center of the line of

sight. The primary mass contribution in any line of sight will be dark matter halos, but these are not

directly observable. To quantify the contribution from these weak perturbers, we compute weighted

number counts of the visible structures (i.e. galaxies) in the lens field as compared to a large number

of reference fields. This technique has been used extensively in previous work (Fassnacht et al.,

2006; Suyu et al., 2010; Greene et al., 2013; Buckley-Geer et al., 2020) . To do this, we select

a region of interest around the lens and compare it to a large number of identically-shaped fields

selected at random from the reference survey. At each step, we compute the ratio of the weighted

number counts for the galaxies in the lens field to the identical statistic computed in the given

reference field. For the given step, the value of the weight is therefore:

𝑊𝑖 =

∑
𝑗 𝑤 𝑗 ,lens∑
𝑗 𝑤 𝑗 ,𝑖

(2.10)

Where 𝑖 indexes the reference fields, 𝑗 indexes the galaxies in a given field, and 𝑤 is the value

of the weighted statistic for the given galaxy.

Following Rusu et al. (2017) we also consider a second style of weighting that improves our
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Name Value Symbol

Number Count 𝑤 𝑗 = 1 𝑤𝑛

Inverse Distance 𝑤 𝑗 = 1/𝑟 𝑗 𝑤1/𝑟

Potential 𝑤 𝑗 = 𝑚 𝑗/𝑟 𝑗 𝑤𝑝

Redshift 𝑤 𝑗 = 𝑧𝑠 · 𝑧 𝑗 − 𝑧2
𝑗

𝑤𝑧

z/r 𝑤 𝑗 = 𝑤𝑧, 𝑗/𝑟 𝑗 𝑤𝑧/𝑟

Table 2.1 Weighted number counts considered in this work

results. Instead of summing the value of weights for all objects in the field, we instead compute the

weight for a given field as 𝑤𝑖,meds = 𝑛𝑖𝑤 𝑗 where 𝑛𝑖 is the number of galaxies in the given reference

field and 𝑤 𝑗 is the median value of the weight for all galaxies in the reference field. Doing this

helps avoid situations where single objects dominate the sum in a particular line of sight. This is

especially important for weights involving stellar mass and the inverse separation. In this scheme,

the value of the weight for the given reference field is therefore

𝑊𝑖,meds ≡
𝑛lens𝑤 𝑗 ,lens

𝑛𝑖𝑤 𝑗 ,𝑖

(2.11)

There has been discussion in the literature about which are the best weights to consider for the

most robust determination of 𝜅ext (Greene et al., 2013; Rusu et al., 2017, 2019). In this work, we

only consider a subset of the weights considered in previous works (see Table 2.1).

2.3.5 Weighted Number Counts in Simulated Data

In order to determine the posterior distribution of 𝜅ext for the given system, it is necessary to

compare the weighted number counts to similar counts obtained from a reference field for which

𝜅ext is known. We use a simulated dataset for this purpose. The simulation must contain several

components in order to be suitable for this analysis. First, it must contain catalogs of galaxies with

known luminosity and redshift. Second, values of the external convergence must be measured at

a suitably large number of points to be representative of the universe at large. Rusu et al. (2017)

examined possible biases from inferring 𝜅ext using the number counts method in the Millennium

Simulation, and found these methods produced a good estimate of 𝜅ext. We discuss our choice of

simulation further in section 2.5.3. Because this technique involves ratios, much of the dependence
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on the simulation’s underlying cosmological parameters should cancel out. However, ensuring

this would require a second simulation with the attributes described. An exciting development in

this space are the initial results from the MillenniumTNG (Hernández-Aguayo et al., 2022). Full

weak-lensing convergence maps are planned, but not yet available.

2.3.6 From Weighted Number Counts to 𝜅ext

We now have weighted number counts for the lens field itself and for a large number of fields in a

simulated dataset, each of which is associated with a value of 𝜅ext. We seek to compute 𝑝(𝜅ext |d):

the probability distribution of 𝜅ext given the data. We can replace this with the joint probability

distribution of 𝜅ext and the data as follows:

𝑝(𝜅ext |d) =
𝑝(𝜅ext, d)
𝑝(d) =

∫
𝑑𝑊𝑞

𝑝(𝜅ext,𝑊𝑞, d)
𝑝(d) (2.12)

After some work it can be shown (see Rusu et al., 2017)

𝑝(𝜅ext |d) =
∫

𝑝sim(𝜅ext |𝑊)𝑝(𝑊 |d)
∏
𝑖

𝑑𝑊𝑖 (2.13)

Where 𝑝(𝑊 |d) is the probability distribution of the given weighting scheme given the data, and

𝑝sim(𝜅ext |𝑊) is the probability distribution of 𝜅ext in the simulated dataset, given a particular value

of the weight. Here, it is implicitly assumed that the simulated dataset is the correct prior for the

observable universe. In particular, we assume that it accurately maps values of weights to values

of 𝜅ext

Additionally, a constraint on 𝜅ext based on 𝛾ext can be included, which accounts for the expected

correlation between these two values. In general, 𝛾 is a two-dimensional vector on the plane of the

sky, but we use only the overall magnitude in our analysis. 𝛾ext is a parameter that can be fitted

in the primary mass model of the lens. We use 𝛾ext just as we would a weighted number count

distribution. For any range of values of 𝛾ext, we can construct a histogram of the value of 𝜅ext for all

lines of sight with values of 𝛾ext that fall in this range. We then weight the contribution from these

lines of sight by 𝑝(𝛾 |d), which is the posterior on 𝛾 inferred from the mass model.This provides

a prior on 𝜅ext that can meaningfully affect the final result. In section 2.6, we present results both

with and without using 𝛾ext as a constraint.

In previous work (e.g. Rusu et al., 2017), this full probability distribution for each weight 𝑝(𝑊 |d)
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was replaced by a normal distribution centered on the median of the full weight distribution, with

a width determined by examining measurement uncertainties. In practice, this width was much

smaller than the width of the actual distribution. This is cheaper computationally, but ignores

covariance between the various types of the weights. While the increase in computation time

is significant, the majority of the important decisions in the analysis are made when we compute

weighted number count ratios, and doing an integration of the full distribution does not meaningfully

increase our time-to-result.

Since all the individual weights are measured at the same sequence of randomly-drawn fields,

we can construct a full m-dimensional probability distribution 𝑝(𝑊𝑠 |d) = 𝑝(𝑊𝑛,𝑊1/𝑟 , ...|d) where

m is the number of weights being considered. We then explore this probability distribution when

implementing the formalism described above. Formally, the posterior on 𝜅ext becomes:

𝑝(𝜅ext |d) =
∫

𝑝sim(𝜅ext |𝑊𝑠)𝑝(𝑊𝑠 |d)𝑑𝑚𝑊𝑠𝑝 (2.14)

When computing this quantity, we split the m-dimensional probability distribution into 200𝑚

m-dimensional bins. We have also tested this procedure 100𝑚 bins and see consistent results for

the J0924 field. With significantly more bins, the computational time balloons and the number of

fields in each bin drops significantly, even near the center of the distribution. The value of 𝑝(𝑊𝑠 |d)

is simply the number of lines of sight in the reference survey that fall in this bin divided by the

total number of lines of sight being considered. Given the large numbers of lines of sight we

consider, the distributions are smooth and it may be possible to model them explicitly and explore

the distribution with an MCMC, but we save this for a future analysis. The exception to this is the

pure unweighted number counts in a 45′′ aperture, due to the fact that the “weight” is integer valued

and the number of galaxies in the aperture is relatively modest.

For 𝑝sim(𝜅ext |𝑊𝑠) we construct a histogram of the measured values of 𝜅ext for all lines of sight

from the simulated dataset that fall within the given bin, normalized by the number of lines of sight

in the bin. Without this normalization, 𝜅ext values near the mean of the simulation will always be

weighted more heavily because there are comparatively more of them. Our choice of simulation is

discussed in section 2.5.3

The inputs to our analysis code include the full weight distributions for the lens field, the weights

computed from the simulated dataset, and the 𝜅ext maps for the simulated dataset for the source
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redshift. We iterate over the probability distribution discussed above, computing a histogram of

the values of 𝜅ext in each m-dimensional bin. The overall histogram is the sum of these histograms,

weighted by the value of the weight distribution in that bin.

2.3.7 Comparison to Other Methods

There are other methods for estimating 𝜅ext which have been explored as discussed below. Ultimately

many of these techniques involve a trade-off between speed of analysis and precision of the final

result. Our goal is explicitly to design and implement techniques that allow us to analyze hundreds

or even thousands of lens systems in a reasonable amount of time, with the goal of combining full

results (including lens modeling, and time delay measurements) from many lenses to make some

final statement about the value of 𝐻0. Because of this, a technique with slightly less constraining

power for a single lens is tolerable if it can be performed and iterated on rapidly. A few other

techniques for estimating 𝜅ext are discussed below. While all show promise, and are interesting

for their own sake, none show a significant enough improvement to justify the increased time and

complexity of analysis, at least in the context of our stated large-scale goals.

2.3.7.1 Weak Lensing Analysis

While the value of 𝜅 at any given point on the sky is not observable, 𝛾 can be measured by looking

a distortions in the shapes of galaxies in the line of sight. Assuming 𝛾 can be measured, techniques

such as those presented in Kaiser et al. (1995) can be employed to reconstruct the underlying mass

distribution. However this analysis requires extremely high quality data about the morphology of

galaxies in the line of sight, as 𝛾 is measured from the extremely small distortions that are present in

the images of the galaxies. Obtaining such high quality data, as well as the overhead of analyzing it,

represents a significant bottleneck. This analysis was performed in Tihhonova et al. (2018) on the

same line of sight analyzed in Rusu et al. (2017). Results between the two methods are consistent,

with only modest improvement to precision for the weak lensing analysis.

2.3.7.2 Explicit Modeling

Building an explicit mass model of all perturbers (or at least, some larger sample) is attractive

from a pure astrophysics perspective. This approach was explored in McCully et al. (2017)

and demonstrated some success. However, the analysis assumed lines of sight with extensive

spectroscopic coverage. While this may be true for some lines of sight, spectroscopy is expensive
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in time and resources and it is not obvious that the improvement is significant enough to justify

this. Furthermore, explicitly modeling a line of sight requires making assumptions about the host

halos of the galaxies, a potential source of additional bias.

2.3.7.3 Machine Learning Methods

An additional interesting approach using Bayesian graph neural networks (BGNNs) is presented

in Park et al. (2023). This approach was compared to a toy version of the analysis discussed here,

using only a single summary statistic instead of a combination of several. The BGNN technique

demonstrated greater precision and accuracy over using a single summary statistic on simulated

data, however we estimate the difference would be much less significant if the comparison was done

against the full line of sight analysis discussed in this work. That said, a more detailed comparison

between these techniques would be welcome in the future. Park et al. (2023) also demonstrated a

meaningful bias for both techniques in more extreme fields (𝜅 < −0.05 and 𝜅 > 0.06) due to a lack

of similarly extreme fields in simulated datasets to compare to. This is worth examining further,

but does not immediately suggest significant improvements from using the BGNN techniques,

especially for extreme fields.

2.4 Datasets, automation, and lenskappa
As with many areas of astronomy, time-delay cosmography is grappling with datasets that are

growing at unprecedented rates. There are dozens of known quad lenses which may be suitable for

cosmographic analysis, but a full analysis has only been completed on a small fraction of them.

Techniques for increasing the rate of analysis are therefore crucial to the continued success of the

technique.

While there are many open science questions in Time Delay Cosmography, much of the solution

to the rate problem lies in software engineering rather than astronomy. When building for this kind

of of analysis, we keep three key questions in mind:

• What is the minimum amount of data required to complete a particular analysis step with

sufficient precision?

• How much of the analysis can realistically be automated?

• Do we expect the analysis techniques to change significantly in the future?
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The answer to these questions may not be independent. For example, a pipeline that uses

less data at the expense of increasing uncertainties on individual systems may be tolerable if it

significantly increases the rate at which these systems can be analyzed. The third question is also

important. Writing flexible software packages that can easily be updated as analysis techniques

evolve usually increase the time to first result, but substantially decrease average time to result in

the long run.

Among the various steps required to fully analyze a lens system, the number counts technique

discussed in this paper is likely the most straightforward to automate. It is mostly statistical,

and the most difficult computational challenge is efficiently filtering a large dataset by location.

Furthermore the survey datasets used in this analysis are quite robust, and many of the lens systems

fall within one or more survey footprints. This makes the first question a non-issue, at least for a

significant fraction of the lenses.

To that end, we introduce lenskappa1 and heinlein2. The goal of lenskappa is to build a

tool capable of automating environment analysis to the greatest extent possible, while still providing

sufficient flexibility to allow us to iterate on our current methods. lenskappa is in turn built on top

of heinlein, which serves as a high-level interface to locally stored astronomical datasets. When

computing weighted number counts in lenskappa, the core weighting loop consists of:

1. Select a region of interest from a large survey.

2. Retrieve object catalog and auxiliary data for the region.

3. Compute interesting quantities, using the data retrieved for the region.

A single iteration of this loop is represented in Figure 2.1

heinlein handles the middle step of this loop. It provides high-level routines for storage,

retrieval, and filtering of large survey datasets, as well as intuitive interfaces for interaction between

data types (for example, applying a bright star mask to a catalog). heinlein can perform a 120”

cone search in the HSC dataset in around 1.5 seconds, without requiring the data be pre-loaded

into memory. For later queries of nearby locations, the speed is improved by more than an order
1https://github.com/PatrickRWells/lenskappa
2https://github.com/PatrickRWells/heinlein
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Figure 2.1 Flowchart representing the process of computing a weighted count ratio given a location
in a reference survey. Work done in heinlein is contained within the dotted box.

of magnitude through caching. This makes heinlein suitable both for interactive use and for the

kind of analysis done in lenskappa.

With data retrieval optimized, lenskappa focuses on allowing users to design and implement

analyses that operate on large swathes of the sky. The techniques described in this paper, for

example, could easily be adapted to build mass maps of the universe as seen in these surveys.

However the goal is to work towards a tool which allows for much more flexibility, enabling any

analysis that involves calculations done on many small regions within a large astronomical survey.

Other applications could include lens finding, though we note that image data is not yet supported

in heinlein.

lenskappa includes several features to facilitate this including:

• High-level API for defining analyses

• Plugin architecture for adding new capabilities without modifying the core code.
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• Automatic support for any dataset supported by heinlein

2.4.1 Analyzing modern astronomical survey datasets at scale

One of the big challenges in doing analyses on these kinds of datasets is the need for the computing

environments to be close to the data whenever possible. Querying over the internet is useful for

assembling datasets, but is not a particularly good solution when analyzing a dataset at scale. Many

researchers will not have access to sufficient storage to store these datsets, and it is impractical to

expect individual survey teams to provide computing resource for general use. The size of these

datasets will enable next-generation analyses, but only with the development of next-generation

tools running at scale, which will require computing infrastructure that may not be readily available

to many researcher.

We support using cloud computing services to fill this gap. Commercial providers have

expanded and matured by a significant margin over the last decade, and routinely handle storage

and analysis tasks on datasets orders of magnitude larger than the ones being discussed here.

Additionally, cloud computing technologies are significantly more accessible than on-premise

technology: they require far lower startup costs and can be quickly scaled (to accommodate

more users, or bigger jobs) without the bottlenecks that slow down the expansion of on-premise

infrastructure. It is also possible to use cloud solutions as a supplement to already-existing on

premise solutions. Holzman et al. (2017) demonstrated this by analyzing data from the Compact

Muon Solenoid experiment at massive scale.

In the future, we plan to develop lenskappa and heinlein tools that could be easily deployed

onto services like these, providing quick and easy access to large survey datasets in addition to

techniques for processing and analyzing that data. The datasets would be stored in the cloud,

allowing users to deploy their analyses without worrying about the connection to the underlying

dataset. Such an approach has been demonstrated by Kusnierz et al. (2022), which enabled

serverless access to ROOT for quick analysis tasks on high energy datasets without the user having to

manually retrieve the data. With some work, heinlein will enable this type of analysis by serving

as a bridge between computing infrastructure (which could be managed by individual researchers)

and the underlying data lake (which could be managed by the survey team). Abstracting away data

retrieval will allow researchers to focus on what matters most: designing the analyses they wish to

perform and interpreting results.
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2.5 Analysis of SDSS J0924+0219
In this section, we discuss the analysis of the J0924 system, as performed by lenskappa.

2.5.1 The Lens Field

SDSS J0924+0219 is a quadruply lensed quasar first reported in Inada et al. (2003). The quasar

itself is at redshift 𝑧 = 1.523, while the lensing galaxy is located at 𝑧 = 0.384 (Eigenbrod, A. et al.,

2006). Quadruply lensed quasars are particularly valuable for cosmographic analysis because it is

in principle possible to measure 12 different time delays, though only three of these are independent.

An image of the field can be seen in Figure 2.2. This system was modeled in Chen et al. (2022)

One particularly important feature of the lens field is the bright star located in the lower left.

The star covers a reasonably large fraction of the overall area in the 120” aperture, undoubtedly

covering several background objects and making photometry for objects very near it unreliable.

We apply techniques that have previously been used in this kind of analysis to correct for this. This

technique is discussed in more detail in section 2.5.2.

The lens field falls within the Subaru Hyper Surpime-Cam Strategic Survey Program footprint,

and full color information is available for all objects in the relevant catalogs. We use these catalogs,

including photometric redshifts, for all objects inside the field. Additionally we use the bright star

masks and photometric redshift PDFs provided by the HSC team.

Our analysis follows the same outline discussed in section 2.3. We discuss the details particular

to this lens field below.

2.5.2 The HSC Survey and Weighted Number Count Ratios

The Hyper Suprime-Cam Subaru Strategic Survey is a large survey program, aiming to cover

roughly 1400 deg2 of sky in five photometric bands (grizy) down to 𝑖 ∼ 26, with deeper coverage

expected in smaller regions of the sky (Aihara et al., 2017). We base our analysis on the roughly

400 deg2 that had coverage in all five bands as of the second data release (Aihara et al., 2019). Data

release 3 was made available while this paper was in preparation, but we do not consider it here.

The HSC Survey is a natural choice for a comparison dataset for this system because the

J0924 field itself falls within the survey footprint. We therefore have both robust and comparable

photometry. When computing weighted number count ratios, the basic approach is identical to the

one outlined in the section 2.3.4, with some specific adjustments:

38



Figure 2.2 Field around SDSS J0924, shown in HSC i-band. The red rings represent 5”, 45” and
120” apertures respectively. Bottom right: 10” cutout of the lens system from HST imaging.
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We use objects with r extendness value = 1.0, which selects galaxies. Bosch et al. (2017)

demonstrates that their algorithm for computing this quantity does a reasonably good job of selecting

galaxies, though it may incorrectly classify some galaxies as stars, and vice-versa. However we

note that the HSC-wide survey was intentionally selected to enable cosmological analyses by being

in regions that are away from the galactic plane and low on dust extinction (Aihara et al., 2017).

This, combined with robust bright-star masks and our large sample size ensures unmasked stars do

not significantly impact the final weighted number count ratios.

The full photometric redshift PDFs for all objects in the data release have been made available

by the HSC team (Nishizawa et al., 2020). They use two separate fitting algorithms, and results

from both algorithms are included in the catalog. We compute weighted number count ratios using

both sets of redshifts, and do not find a meaningful difference between the resultant distributions.

As such, we use the “DEmP” redshift and stellar masses for our analysis (Hsieh & Yee, 2014;

Tanaka et al., 2017).

When computing weighted number counts, we remove all objects closer than 5 arcseconds from

the center of the field following Rusu et al. (2017). Objects this close to the center of the field are

typically explicitly included in the mass model of the lens, and so we also remove them from the

comparison fields to avoid biasing results.

The HSC survey team makes available masks that represent areas of the sky where photometry

may be unreliable or lacking due to the presence of bright stars (Coupon et al., 2017). This is

particularly important in our field due to the presence of the bright star that can be seen in Figure

2.2 When iterating over the reference survey, we retrieve the bright star masks for each region being

considered. We apply both these masks and the masks for the lens field itself to both catalogs at

each weighting step. Doing this ensures that results are not biased if a given field in the reference

survey has significantly more or less of its area covered by bright star masks. This procedure was

first used in Rusu et al. (2017)

The 400 deg2 of sky we consider here is separated into seven disconnected regions. Initially,

we computed weighted number count ratios in five of these regions. This produces nearly-identical

distributions, with the difference between the lowest and highest median being 0.1𝜎 the standard

deviation of the distribution, suggesting our fields are large enough to to avoid sampling bias.

Based on this, we restrict our subsequent analysis to 135 deg2 of sky located in the region 332◦ <
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Figure 2.3 Location and relative weights of all galaxies with 𝑧 < 𝑧s. The black circles represent the
45” and 120” apertures respectively. Blue objects are those with 𝑖 < 23, while red objects are those
with 23 < 𝑖 < 24. Relative object weights of the object are represented by the size of the dot.

RA < 359◦ and −1.5◦ < Dec < 6◦. For each combination of aperture and limiting magnitude, we

compute weighted count ratios at 100,000 randomly selected fields.

2.5.3 Millennium Simulation

The Millennium Simulation (Springel et al., 2005) is a dark matter only simulation split into 64

4 × 4 deg2 fields. After the original run was completed, synthetic galaxy catalogs were painted

into the resultant halos by several teams. Following (Rusu et al., 2017) we use the semi-analytic

catalogues of De Lucia & Blaizot (2007). Additionally, Hilbert et al. (2009) split each 4 × 4 deg2

field into a grid of 4096x4096 points and used ray tracing to compute convergence and shear at

each of these points in 63 redshift planes. These, combined with its large size, makes it an excellent
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choice for our analysis. In our analysis, we use redshift plane 36 with 𝑧 = 1.504.

First, we compute the weighted number counts at a large number (order 106) of equally spaced

grid points in the Millennium simulation. For the 45” aperture, we place the fields 90” apart

(snapped to the nearest grid point), while for the 120” aperture we place fields 60” apart. Both

cases result in over 1.5 million lines of sight across the simulation, each of which has an associated

value of 𝜅ext and 𝛾ext This differs from the same calculation for the lens field itself in a key way:

the values reported are the total value of the weights at every point considered, rather than a ratio

of values. To normalize, we divide weighted number count in each field by the median value for

all lines of sight in our sample. The median value of the resultant distribution is therefore unity.

A key difference between the synthetic catalogs and the real data from the HSC survey is

that in the Millennium Simulation catalog redshifts are exact. In previous work (eg. Rusu et al.,

2017) this difference was accounted for by computing photometric redshifts for all objects in the

Millennium Simulation, using the same pipeline that was used to compute the photometric redshifts

in the comparison dataset. We are unable to use this technique in this case because the HSC survey

photo-z pipelines are not publicly available as of the preparation of this paper. Instead, we download

the full catalog of training data used by the HSC. These are galaxies for which spectroscopic redshifts

are available. We divide the objects in the test dataset into redshift and magnitude bins. For each

galaxy in a bin, we compute the offset in the central value of the redshift (𝑧𝑝ℎ𝑜𝑡 − 𝑧𝑠𝑝𝑒𝑐), and take

the median of these as our estimate of the redshift bias in that bin. Additionally we take the median

value of 𝜎𝑧 (as reported by the HSC photometric redshift pipeline) for all photometric redshifts in

that bin. We take the the median value of 𝜎𝑧 as our estimate of photometric redshift uncertainty. For

each object in the Millennium Simulation catalog, we construct an artificial photemetric redshift

PDF. The center of the distribution is the “actual” redshift of the object, offset by the the amount

computed previously for the appropriate bin. The width of the distribution is the value of 𝜎𝑧

computed for the same bin.

At each weighing step in the Millennium Simulation, we then sample from these “photometric

redshift” PDFs when computing weighted number counts. For each line of sight, we sample from

each of these PDFs 50 times. This produces 50 separate catalogs (all with slightly different values

for object “redshifts”), and we compute weighted number counts for each one. We find that this

process produces no meaningful change to our final inference for 𝜅ext, even when a weight that
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depends on the redshift is taken into account. However this process massively increases the amount

of data output by our code, and therefore significantly increases the amount of time required to do

the final inference on 𝜅ext. This does suggest that photometric redshift uncertainties do not have a

significant impact on the inferred value of 𝜅ext, but we plan to explore this more completely in the

future.

2.6 Results and Discussion
Our weighted number counts for the lens field include a total of five weights (𝑤𝑛, 𝑤1/𝑟 , 𝑤𝑝, 𝑤𝑧,

𝑤𝑧/𝑟 , see Table 2.1), two apertures (45” and 120”), two limiting magnitudes (23 and 24), and two

summing techniques (pure sum and medians). For brevity, we report only the medians of these

distributions in Table 2.2. The full distributions, along with the analysis code used to produce the

posterior distributions for 𝜅ext are available on github. 3. A visual catalog of the objects in the field

and their relative weights can be seen in Figure 2.3.

The weighted number count ratios suggest the SDSS J0924 field is mildly overdense as compared

to the universe as a whole. This overdensity is significantly more obvious when considering the

45” aperture. This is quite reasonable; as the size of the aperture increases, the density of field

will approach the density of the universe as a whole. Figure 2.4 shows the distributions of of the

weights considered in this work.

It is however less obvious why the value of the weights seem to depend on the limiting magnitude,

with the median values for 𝑖 < 23 being significantly higher than for 𝑖 < 24. This may suggest that

the quality of the lens field catalog is poor below magnitude 23. We remind the reader that the 5”

region around the lens itself is masked when computing weighted number counts.

Based on the values of our summary statistics, we would expect our final value of 𝜅ext to be

somewhat positive. However the strength of the external shear of the field, reported in (Chen et al.,

2022) is 0.017+0.001
−0.003. This places it significantly below the median (and, in fact, mean) for all lines

of sight in the Millennium Simulation. For each combination of limiting magnitude and aperture

we compute 𝜅ext for a number of different combinations of weights:

• Pure (unweighted) number counts, combined with each of the remaining weights individually.
3https://github.com/PatrickRWells/J0924-analysis

43



Figure 2.4 2D histograms of for each possible pair of the weight number count ratios considered
in this work, computed with a 45” aperture and limiting magnitude 𝑖 < 24. The inner and outer
contours represent 68 and 95% confidence intervals, respectively.
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Weight 𝑖 < 23, 120” 𝑖 < 24, 120” 𝑖 < 23, 45” 𝑖 < 24, 45”

𝑤𝑛 1.04 1.04 1.42 1.35

𝑤1/𝑟 1.17 1.09 1.57 1.35

𝑤𝑝 1.19 1.10 1.56 1.36

𝑤𝑧 1.03 0.99 1.56 1.37

𝑤𝑧/𝑟 1.21 1.07 1.74 1.37

𝑤1/𝑟,𝑚𝑒𝑑𝑠 1.08 1.01 1.59 1.45

𝑤𝑝,𝑚𝑒𝑑𝑠 1.12 1.01 1.50 1.47

𝑤𝑧,𝑚𝑒𝑑𝑠 1.03 1.00 1.50 1.36

𝑤𝑧/𝑟,𝑚𝑒𝑑𝑠 1.10 1.04 1.63 1.40

Table 2.2 Median of weighted number counts for SDSS J0924 Field. ”med” represents the second
weighting scheme discussed, where 𝑊𝑖 = 𝑛𝑖𝑤 𝑗 See Table 2.1 for definitions of the various weights.

• Pure number counts and inverse distance weights, combined with each of the remaining

weights individually.

• For each of the above cases, we run the kappa inference both with and without the constraint

from 𝛾.

The number count ratios used for this analysis are listed in Table 2.2. We do not mix distributions

obtained using our two different weighting techniques.

We also repeat this for each combination listed above while using the median weighting scheme

rather than the sum scheme. All together, this leaves us with 112 individual histograms for the

value of kappa.

We find that the choice of specific weights is less important than the number of weights being

considered. In all cases, inferring 𝜅ext with three weights instead of two tightens the resultant

distribution, but does not significantly affect the central value. Rusu et al. (2017) found best results

when combining 𝑤𝑛 and 𝑤𝑟 with one additional weight and the constraint from 𝛾ext. We find the

same here. Specifically, the central value of the distribution does not change meaningfully based

on the choice of the third weight, but we find slightly tighter constraints when using 𝑤𝑝.

We also find that results are consistent between apertures, but find that a brighter value of the
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Figure 2.5 Comparison of smoothed posterior on 𝜅ext for 𝑤𝑛 + 𝑤𝑟 + 𝑤𝑝 without 𝛾ext, 𝑤𝑛 + 𝑤𝑟 + 𝑤𝑝

with 𝛾ext, and 𝛾ext alone.

limiting magnitude results in a noisier posterior on 𝜅ext. Because so many objects fall between

magnitude 23 and 24, removing these objects results in significantly noisier weighted number

counts which translate to the final inference on 𝜅. Considering only 𝛾 as a constraint leads to a

median value on 𝜅ext of -0.015. As a result, including 𝛾ext as a constraint significantly lowers the

central value of our distributions, though it also tightens the distribution. However we note this
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shift is fairly modest as compared to the width of the distribution. This is similar to the result seen

in Rusu et al. (2017), though in that case the inferred value of the shear was significantly closer

to the median in the Milennium Simulation of 0.028, and the shift of the central value was not

as significant. We find our tightest constraints on 𝜅ext through a combination of 𝑤𝑛, 𝑤1/𝑟 and 𝑤𝑝

combined with constraints from 𝛾ext. This leads us to a final value of 𝜅ext of -0.012 with a width

𝜎𝜅 = 0.028. Without the constraint from 𝛾ext, we obtain a median value of 0.012 with 𝜎𝜅 = 0.053.

Full posteriors for these combinations can be found in Figure 2.5. We use a 45” aperture and

limiting magnitude of 𝑖 < 24 for these results.

2.7 Conclusions and Future Work
In this paper, we have discussed the current state of the line of sight number counts technique for

environment analyses in time delay cosmography. We have introduced two main improvements to

previous iterations of the analysis. First, our packages lenskappa and heinlein make designing

and running these analyses much quicker than before, in addition to making it much simpler to add

additional survey datasets. This will accelerate the pace of future analyses, and enable population-

level analyses of lens environments. Additionally, we have made use of the entire distributions of

weighted number counts, which accounts for covariance between weights and is generally more

robust than just exploring a small region around the medians. We have applied these techniques

to the J0924 field, and found that this field is a fairly typical line of sight, with a slightly negative

median value of 𝜅ext.

2.7.1 Future Development of lenskappa

Our primary goal for this project has been to build a software tool that can quickly and reliably

analyze weak perturbers along lines of sight to strong gravitational lenses. We have accomplished

this goal, but we plan to extend the capabilities of lenskappa to include tools for analyzing

strong perturbers and coherent structures (such as galaxy groups). These objects must be handled

individually, and require very different analysis tools. However we see a significant advantages to

being able to do full environment analyses within a single software package.
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2.7.2 Future Analyses

Leveraging the capabilities of lenskappa, we hope to better understand lines of sight to gravi-

tational lenses on a population level. Fassnacht et al. (2010) and Wong et al. (2018) have shown

that lenses seem to fall in preferentially overdense lines of sight, but that this overdensity seems

to be confined to the immediate surroundings of the lens itself. Lenskappa gives us the tools to

perform these population-level analyses quickly, with the freedom to adjust and re-run the analysis

as needed. As a first step, we hope to complete an analysis with 4-5 new lens systems, as well as

2-3 systems that have previously been analyzed to check our results.

As an additional check, we would like to analyze a large number of non-lens lines of sight.

This would ensure there are no biases introduced by comparing distributions based on real galaxy

catalogs to those obtained from the synthetic catalogs in the Millennium Simulation.

Recently, Park et al. (2023) demonstrated the use of Bayesian Graph Neural Network to estimate

the value of 𝜅ext in a simulated dataset. Their method out-performs a simplified version of the

analysis performed here that uses only a single weight. Further work may demonstrate the ability

of the technique to match or even outperform the weighted number counts technique, but a more

complete comparision will need to be performed to assess this.
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Chapter 3

Population Analysis of Lines of Sight of 25
Strong Galaxy-Galaxy Lenses with Extreme
Value Statistics

This chapter has been accepted for publication in Astronomy & Astrophysics as a TDCOSMO

Collaboration paper.

3.1 Abstract
Time-delay cosmography is a technique for measuring 𝐻0 with strong gravitational lensing. It

requires a correction for line of sight perturbations, and it is necessary to build tools to assess

populations of these lines of sight efficiently. We aim to demonstrate the techniques necessary

to analyze line of sight effects at a population level, and investigate whether strong lenses fall in

preferably overdense environments. We analyze a set of 25 galaxy-galaxy lens lines of sight in

the Strong Lensing Legacy Survey sample using standard techniques, then perform a hierarchical

analysis to constrain the population-level parameters. We introduce a new statistical model for

these posteriors that may provide insight into the underlying physics of the system. We find the

median value of 𝜅ext in the population model to be 0.033 ± 0.010. The median value of 𝜅ext for

the individual lens posteriors is 0.008 ± 0.015. Both approaches demonstrate that our systems

are drawn from an overdense sample. The different results from these two approaches show the

importance of population models that do not multiply the effect of our priors.
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3.2 Introduction
Time-delay cosmography is a technique for inferring the value of the Hubble constant and other

cosmological parameters based on multiply imaged time-variable sources. Its independence from

standard early and late Universe probes make it an essential tool in resolving the ongoing tension

between those techniques. Time-delay cosmography relies on four primary ingredients. The first is

time delays, which are obtained by monitoring the system over many months or years. The second

is a mass model based on high-quality imaging data. The third is stellar kinematics of the lensing

galaxy, which is used to break the well-known mass sheet degeneracy. The fourth, and the subject

of this paper, is the external convergence (denoted 𝜅ext), which can be thought of as the cumulative

effect of all additional perturbers along the line of sight.

As with many domains of astronomy and cosmology, time-delay cosmography is increasingly

big data focused. The number of known time-delay lenses has increased dramatically with surveys

such as the Dark Energy Survey (Dark Energy Survey Collaboration, 2005, hereafter DES) and the

Subaru Hyper-Suprime Cam Strategic Survey program (Aihara et al., 2017, hereafter HSC), and

is expected to increase by orders of magnitude with the Vera Rubin Observatory Legacy Survey

of Space and Time (Ivezić et al., 2019, hereafter LSST). Not only does this present unprecedented

opportunities to do interesting astronomy, but it also introduces new and unique technical challenges.

In particular, population modeling is an increasingly important tool for deriving constraints on

interesting quantities by leveraging the statistical power of many systems. However utilizing this

approach effectively is not possible without building high-quality tools that can ingest, process, and

track the large amount of data required to perform the inference.

Each of the ingredients discussed above involves its own set of challenges. The 𝜅ext measurement

is different in that the challenge is largely a problem of data management. The relative density of

a given field around some lens of interest is determined by comparing the field to a large number

of fields randomly drawn from some large reference survey. The data for this procedure is readily

available from the various survey teams. The challenge then is building tools that are capable

of doing this comparison for dozens or even hundreds of lens fields at once, while being flexible

enough to allow us to evolve our techniques forward without starting from scratch. However, if this

challenge is solved, this analysis serves as an excellent testing ground for building systems that do

astronomy at scale.
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The long term goal of the cosmography community is to provide constraints on 𝐻0 with a

precision comparable to that of more mature probes such as the distance ladder (e.g., Riess et al.,

2022) or the cosmic microwave background (e.g., Aghanim et al., 2020a). Being independent

of these probes, cosmography is well positioned to provide an insight into the Hubble Tension

(Di Valentino et al., 2021) once this higher level of precision is realized. The combined statistical

power of the population of lenses that will become available in the next decade should be sufficient

to provide such a constraint, but only if we have the analysis tools to match it. In this work, we

analyze a population of 25 strong galaxy-galaxy lenses from the Strong Lensing Legacy Survey

(SL2S) sample. We use the number counts techniques described in Wells et al. (2023) to estimate

𝜅ext along the line of sight to each individual lens, and then use the hierarchical techniques discussed

in Park et al. (2023) to infer population parameters. We introduce a new statistical model for the

resultant distributions, which provides a potential insight into the primary source of signal in 𝜅𝑒𝑥𝑡 .

This process additionally serves as a test of the ability of our techniques and software to work at

scale.

In section 3.3, we present the essentials of time-delay cosmography and the techniques used to

estimate 𝜅ext along a given line of sight. In section 3.4, we discuss the challenges of operationalizing

this analysis to run at scale, and the tools used in the analysis presented in this work. In section

3.5, we introduce the lens sample used in this work and discuss the choices made to estimate 𝜅𝑒𝑥𝑡

for the individual lines of sight. In section 3.6, we introduce a novel statistical model that provides

insight into the source of signal in 𝜅ext, while in section 3.7 we leverage these statistics to produce a

population model of 𝜅ext for our systems. Finally, in section 3.8 we present and discuss the results

of our hierarchical analysis, and look forward to future work on this topic.

3.3 Time-delay cosmography and line-of-sight analysis
In this section, we present the essentials of time-delay cosmography and the associated line-of-sight

analysis. For a more complete overview of time-delay cosmography and its current status, we refer

the reader to Treu & Marshall (2016), Birrer et al. (2022), and references therein, while for a more

complete discussion of the line-of-sight analysis we refer the reader to Wells et al. (2023) and Rusu

et al. (2017).
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3.3.1 𝜅ext and its application to time-delay cosmography

Time-delay cosmography relies on the strong gravitational lensing of a time-variable source to place

constraints on the distance scales of the combined observer-lens-source system and, ultimately, use

these constraints to derive a constraint on 𝐻0. In a strongly lensed system in which multiple

images are visible, the light from the various images will take different paths from the source to the

observer. This difference will be directly visible when the luminosity of the source varies, as the

brightness of the various images will change at different times. These techniques have been applied

to strongly lensed quasars for a number of years (e.g., Kundić et al., 1997; Fassnacht et al., 2002;

Vuissoz et al., 2008; Bonvin et al., 2016) More recently, time-delay techniques have been applied

to the supernova Refsdal (Kelly et al., 2023), as well as cluster-scale lenses (Liu et al., 2023).

This time delay between two images at angular positions 𝜃𝐴 and 𝜃𝐵 of a source at (unobservable)

angular position 𝜎 can be directly related to the gravitational potential of the lens by

Δ𝑡𝐴𝐵 =
𝐷Δ𝑇

𝑐
[𝜏(𝜃𝐴, 𝜎) − 𝜏(𝜃𝐵, 𝜎)], (3.1)

where 𝜏 is the Fermat potential of the lens given by

𝜏(𝜃, 𝜎) = (−→𝜃 − −→𝜎 )
2

− 𝜓(−→𝜃 ), (3.2)

and 𝜓(−→𝜃 ) is the scaled lensing potential.

The cause of the time delay is the difference in the path length taken by the light of the various

images plus the difference in the Shapiro delay. The quantity 𝐷Δ𝑡 from Eq. 3.1 is known as the

time-delay distance and is given by

𝐷Δ𝑡 = (1 + 𝑧𝑑)
𝐷d𝐷s
𝐷ds

∝ 1
𝐻0

, (3.3)

where 𝐷d, 𝐷s, and 𝐷ds are the angular diameter distances to the deflector, source, and from the

deflector to the source, respectively. Given an accurate lens model and a measurement of a given

time delay, it is therefore possible to measure 𝐻0.

However this analysis is complicated by the fact that lenses are embedded in the Universe,

and therefore surrounded by mass structures that also have an impact on the lensing observables.

This effect is parameterized with the external convergence (𝜅ext). The result of these perturbations
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is difficult to pin down, both because the mass distribution along the line of sight cannot be

directly observed, and because the effect is much less significant than the effect of the primary lens.

However, correcting for the effect is essential in cosmography because it propagates directly to the

inferred value of 𝐷Δ𝑡 by

𝐷Δ𝑡 =
𝐷′

Δ𝑡

1 − 𝜅ext
, (3.4)

where 𝐷′
Δ𝑡

denotes the uncorrected value of the time-delay distance. The relationship to the inferred

value of the Hubble constant is similarly straightforward:

𝐻0 = (1 − 𝜅ext)𝐻′
0, (3.5)

where 𝐻′
0 represents the uncorrected value. In general, 𝜅ext is of order 10−2, and so failing to

correct for this effect introduces bias of a few percent in the average case, up to around 10% in the

most extreme cases. It is worth noting that the total convergence is the combination of 𝜅ext and the

convergence from the primary lens. In that sense, 𝜅ext can be thought of as the residual convergence

that would be present if the primary lens were removed.

Because the underlying mass distribution in a given line of sight cannot be directly observed,

we must infer it based on available data about the luminous matter in the field. The standard

tools for doing this inference involve weighted number counts of galaxies within some distance

of the lens. This technique has been used extensively by the TDCOSMO collaboration and its

predecessors (see for example Fassnacht et al., 2010; Rusu et al., 2017; Wells et al., 2023) to

provide an estimate of 𝜅ext along a given line of sight. 𝜅ext can be thought of as the density of mass

sheet which, if placed coplanar to the lensing galaxy, would produce the same cumulative effect as

all the perturbers along the line of sight. We note that this is distinct from the internal mass sheet

transformation (see Chen et al., 2021; Gomer & Williams, 2020). The combination of these two

effects leads to the well-known mass sheet degeneracy, which is usually broken with measurements

of stellar kinematics (Shajib et al., 2023; Schneider & Sluse, 2013). Generically, 𝜅ext results in the

magnification or de-magnification of the images of the background source, but this effect is not

directly measurable.
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3.3.2 Essentials of the technique

In the context of lensing, 𝜅 is a dimensionless measurement of the underlying matter distribution

in units of the lensing critical density, Σ𝑐𝑟 .

Σ𝑐𝑟 =
𝑐2𝐷𝑠

4𝜋𝐺𝐷𝑠𝐷𝑑𝑠

(3.6)

In strong lensing, 𝜅 > 1 and an appropriately-placed source will be lensed into multiple images

and/or an Einstein ring. For lower mass concentrations (𝜅 ≪ 1) lensing is instead evident by

distortions in the shape of background sources, such as galaxies. Typical weak lensing techniques

involve statistics based on distortions to the apparent shape of large numbers of galaxies. As a

result, weak lensing analyses are typically done on much larger angular scales than is useful for

the 𝜅ext measurement. While weak lensing analyses of 𝜅ext have been done (e.g., Tihhonova et al.,

2018, 2020), these rely on high resolution imaging (typically space-based) of the field of interest.

It is unrealistic to expect such imaging for the vast majority of lens fields in future surveys, and the

techniques used to do this analysis must reflect this.

On larger scales, 𝜅 can be thought of a measurement of the relative density of a region of space

as compared to the entire Universe. An “average” field will be assigned a value of 𝜅 near zero,

while a slightly overdense field should receive a slightly positive value. For a given line of sight,

we first make an empirical estimate of the density of the field. While we cannot directly observe

the majority of the mass in a given field, we can use visible matter as a tracer of the underlying dark

matter. In particular, a field with more galaxies is likely to have more dark matter than an identically

shaped field with fewer galaxies. The relationship between luminous matter and dark matter is

noisy, but we can readily estimate the amount of luminous matter in a given field with galaxy

surveys. We measured the absolute density of a given field with summary statistics computed

based on the galaxies in the region. Natural examples of summary statistics include an inverse

distance summary statistic, where galaxies closer to the center of the line of sight are weighted

more heavily, and a weighting based on redshift, where sources are weighted more heavily where

the lensing efficiency is higher. The value of the summary statistic for a given line of sight is just

the sum of the weights of the individual galaxies:
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𝑊𝑖 =
∑︁
𝑗∈𝑔𝑎𝑙

𝑤 𝑗 , (3.7)

where 𝑤 𝑗 denotes the weight for a single galaxy along the line of sight. In this context, the full

posterior in 𝜅ext can be written as

𝑝(𝜅ext |d) ∝ 𝑝(𝜅ext |𝑊)𝑝(𝑊 |d) ∝ 𝑝(𝑊 |d)𝑝(𝑊 |𝜅ext)𝑝(𝜅ext), (3.8)

where the relationship between the second and third form follows from Bayes’ theorem. In general,

we use constraints for several summary statistics when estimating 𝜅ext. The likelihood 𝑝(𝑊 |𝜅ext)

cannot be written down in closed form, and we must turn to Approximate Bayesian Computation

to estimate it. We seek to compare our line of sight to similar lines of sight in a simulated dataset,

where values of 𝜅ext have already been calculated.

Usage of simulations in this context may introduce bias into the inference based on the underlying

cosmology of the simulation. To control this bias, we wish to estimate the relative density of a

given line of sight compared to all lines of sight in the Universe, and then find lines of sight in the

simulated dataset with the same relative density to estimate 𝜅ext.

To estimate the relative density of a given line of sight, we compute the same set of summary

statistics in a large number of randomly selected fields in an appropriately large sky survey. For each

random field, we compute the ratio of the summary statistic in the field of interest to the summary

statistic of the given random field. The resultant distribution of ratios gives an empirical estimate of

the relative density of the field compared to the Universe as a whole, so long as the reference survey

is large enough to avoid sampling bias. This caveat is increasingly less of a concern. Modern

surveys such as HSC and DES have hundreds to thousands of square degrees of contiguous, high

quality sky coverage. In the near future LSST will image nearly all of the southern sky with many

thousands of strongly lensed objects expected to be discovered. Of these thousands of systems,

several hundred are expected to be suitable for time-delay cosmography (Verma et al., 2019).

We then compute the same set of summary statistics in a simulated dataset with values of 𝜅ext

computed. We normalize the resultant distribution by its median. This allows us to more directly

compare these lines of sight to lines of sight of interest. More concretely, if the median of a

distribution for a summary statistic in the real data is 1.2, this implies that the value of the summary
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statistic for our line of sight is 20% higher than the median line of sight in our comparison survey.

A line of sight from the simulated dataset with a normalized summary statistic of 1.2 is also 20%

greater than the median value (for a further discussion of the summary statistics we use, and our

techniques for matching to the simulated dataset, see Wells et al. (2023)).

3.4 Line-of-sight analysis at scale
A crucial aspect of the work presented here is developing and validating the tools needed to perform

line-of-sight studies at scale. In Wells et al. (2023), we presented heinlein, a data management

tool for survey datasets, and lenskappa, which utilized the capabilities of heinlein to perform

a line-of-sight analysis. lenskappa was quite limited in that it was only capable of performing

a single lens analysis at a time, and had minimal flexibility to evolve our techniques forward. In

particular, lenskappa required weighted number count analysis for each lens to be performed

individually, even if all the analyses were using the same region of the sky for comparison. This

problem was magnified when performing weighted number counts in the Millennium simulation,

as many more samples are required to produce a reasonable posterior.

The core philosophy of the 𝜅ext analysis is that simpler statistics can produce meaningful results

when evaluated over very large datasets. In the context of this work, the correlation between the

summary statistics and the quantity of interest (𝜅ext) is fairly weak. However, the advantage of

these statistics is ease of computation. The true computational challenges of this style of analysis

derive from the need to efficiently manage and query large survey datasets. This challenge is not

unique to our analysis, and building tools to efficiently solve it will be useful for a wide variety

of analyses over the coming decade. We call this style of analysis “cosmological data sampling,”

because it requires repeatedly drawing samples from a large survey dataset. We seek to build a tool

that is capable of doing this style of analysis efficiently, and allows the user to iterate and build new

analyses quickly.

To this end, we introduce cosmap1, a Python package for defining and running ”cosmological

data sampling” analyses like those discussed in this work. In practice, cosmap can be used to

apply any computation across a large survey dataset quickly and reliably. cosmap is an evolution

of the lenskappa package first presented in Wells et al. (2023), and has been written from the
1availabile from pip or https://github.com/PatrickRWells/cosmap
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ground up to provide an easy-to-use tool for doing analysis with big data astronomy. cosmap

makes use of pydantic2 for parameter validation and Dask3 to distribute work across available

computing resources. Data management and result outputs can be handled by the library without

user involvement, but a plugin architecture is included to modify default behavior if the user finds

it insufficient for their analysis.

Crucially, all user-defined behavior in cosmap is written outside of the core library. Analyses

are defined as a series of transformations on the data organized as a Directed Acyclic Graph (DAG),

a structure in common use in pipeline orchestration and task scheduling. Analysis parameters must

be declared, and their runtime values parsed by pydantic to ensure correctness. These decisions

ensure that failures occur early in the runtime of the program, to avoid situations where processor

(and astronomer) time is wasted.

While lenskappa was only capable of analyzing a single lens at a time, cosmap allows us to

write an analysis that handles all the lenses in our sample in a single run. This saves a large amount

of computation time over the previous model. The fundamentally modular nature of individual

analysis definitions makes it simple to iterate on an existing analysis or define a new analysis

entirely. We estimate cosmap saves over 95% of the computational time that would be required if

this analysis was done with lenskappa.

3.5 Data and procedures for individual 𝜅 measurements
In this section, we discuss the dataset we use in this analysis and our procedures for performing

𝜅ext measurements on our individual lens lines of sight. The basic procedure used to analyze the

individual lenses is identical to the procedure discussed in section 3.3. One key difference is our

ability to analyze many lenses at once, as we discussed in section 3.4. However, we note this is a

computational optimization, and does not impact the results for individual lenses.

3.5.1 The CFHT Legacy Survey and the Strong Lensing Legacy Survey

The Canada-France-Hawaii Telescope Legacy survey (hereafter CFHTLS) is a 155 deg2 multiband

imaging survey completed in 2012 (Gwyn, 2012). After the completion of the survey, the data were

re-processed with the goal of discovering strong lenses, resulting in the so-called Strong Lensing
2https://pydantic.dev
3https://www.dask.org
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Figure 3.1 Image showing the field around SL2SJ1405+5243. The inner and outer red circles mark
the inner and outer cutoff radius we use when computing weighted number counts.
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Legacy Survey (Cabanac et al., 2006, hereafter SL2S). CFHTLS has been used previously to to

analyze other lens lines of sight (see, for example, Rusu et al., 2017). It is useful due to its depth

(𝑖 ∼ 24.5) and relatively large size (at least historically) of its wide fields.

Our sample includes 28 lenses from this survey. The sample was selected to be analogues of

the kinds of systems analyzed by TDCOSMO, with the original goal of obtaining population-level

constraints on the mass distribution of the lensing galaxies in the sample. The choice of lenses is

discussed in more detail in TDCOSMO Collaboration (2024, in prep). The lensing galaxies have

redshifts between 0.238 and 0.884, while the source galaxies have redshifts between 1.19 and 3.39.

Because our analysis relies on a high-quality galaxy catalog of the line of sight, we remove three

lenses where a nearby bright star has corrupted the resultant catalog such that more than half of

the field is missing galaxy photometry. Table 3.1 summarizes the essential information about each

lens system included in this work, while Figure 3.1 illustrates the typical quality of imaging data

used to derive catalog products. However, we do not re-derive any catalog products, instead using

the fiducial measurements performed by the survey team.

3.5.2 Individual 𝜅ext measurements

We used the techniques discussed in Section 3.3 and in Wells et al. (2023) to infer the posterior on

𝜅ext for each individual line of sight. At this stage, there is no information about the population-level

statistics. Each line of sight is analyzed on its own, with a prior set by the Millennium simulation.

3.5.2.1 Comparison field and cuts

To compute weighted number counts for the individual lenses, we used 50 deg2 from the CFHTLS

W1 field, bound by 31◦ < 𝑅𝐴 < 38.5◦ and −11◦ < 𝐷𝑒𝑐 < 4◦ as a control field. We computed

weighted number counts in a 120′′ aperture, and limited our counts to objects brighter than 24th

magnitude in i-band. These choices were consistent with choices made in previous work (see for

example Wells et al., 2023; Rusu et al., 2017). In particular, the magnitude limit is sufficiently

bright as to be meaningfully above the survey’s detection limit, while being sufficiently faint to

catch all structures that are likely to contribute meaningfully to 𝜅ext (Collett et al., 2013). For each

lens, we also ignored objects beyond the redshift of the source quasar, and performed the same cut

when comparing to the reference survey. Additionally, we removed all objects from the underlying

catalog within 5” of the center of the field. For time-delay lenses, objects near the center of the
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field are typically included in the mass model explicitly, and removed during the 𝜅ext measurement

accordingly.

3.5.2.2 Selecting Summary Statistics

Selecting appropriate summary statistics is an important step in the analysis described here. This

has been explored extensively in previous TDCOSMO and H0licow papers (e.g., Rusu et al., 2017;

Wells et al., 2023). We based our result in this work on the following summary statistics:

1. Pure number counts (𝑤 𝑗 = 1)

2. Inverse Distance Weighting (𝑤 𝑗 = 1/𝑟 𝑗 )

3. Redshift-Distance Combination (𝑤 𝑗 = (𝑧𝑠 ∗ 𝑧 𝑗 − 𝑧2
𝑗
)/𝑟 𝑗 ))

A primary challenge of this techniques is the fairly limited data that are available on individual

objects in wide-field galaxy surveys. These summary statistics provide information on how much

mass is clustered near the center of the line of sight, and how much mass is clustered where the

lensing efficiency is high. Importantly, these summary statistics depend on quantities which are

reasonably robust in modern galaxy surveys. However in general these summary statistics are poor

tracers of the underlying mass distribution, as evidenced by the width of the posteriors on indiviual

lines of sight. This challenge is one of the primary motivations behind combining information

behind many systems into a population-level inference. More sophisticated and/or higher order

summary statistics (such as two-point galaxy clustering) may provide additional useful information

but are left for a future analysis.

3.5.2.3 Uncertainty and comparison to the Millennium simulation

After computing these weighted number counts, we treated the median value of the distribution

as the estimate of the overdensity or underdensity. To estimate an uncertainty in this quantity, we

utilized the photometric redshift uncertainties present in the underlying catalogs. We produced

1000 copies of the original line-of-sight catalog, with redshifts for each object randomly sampled

from that object’s photo-z PDF. We computed weighted number counts for each of the resultant

catalog and treated the fractional width of the resultant distribution as the fractional uncertainty in

our measurement of the median.
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When computing weighted number counts in the Millennium simulation, we used the same

limits described above. We used the semi-analytic galaxy catalogs of De Lucia & Blaizot (2007),

which were shown in Rusu et al. (2017) to provide the best results for this analysis.

To match summary statistics, we selected lines of sight from the Millennium simulation that

were similar in density to the lens lines of sight based on the value of the summary statistics. The

values of 𝜅ext for each line of sight were drawn from the maps produced in Hilbert et al. (2009),

which cover the simulation in a grid with spacing between points ≈ 3.5′′. The contribution from

a given line of sight was weighted by a multidimensional Gaussian centered on the distribution

medians with widths set by the uncertainties discussed above. We took into account correlations

between the weights when constructing this Gaussian. This is, in essence, an Approximate Bayesian

Computation computation, with one key limitation. We were limited by the lines of sight available

to us in the Millennium simulation, and by the computational time required to search for lines of

sight matching a given lens. For the majority of lenses this is not an issue, as there were more than

enough similar lines of sight in the simulation to produce posteriors that are well fit by a smooth

Generalized Extreme Value (GEV) distribution. For very overdense lenses where the posterior is

noisy due to a small number of matching sightlines, we widened the search Gaussian. The majority

of lenses in our sample do not require this intervention, or require only a modest widening to

achieve acceptable results. We note that this procedure may bias more extreme lenses towards more

moderate values of 𝜅ext, as widening the search region will naturally include more lines of sight

from the central peak of the distribution.

For each lens posterior, we determined a best-fit Generalized Extreme Value distribution with

a least-squares optimizer. Using these distributions allowed us to quickly and easily draw from our

priors and posteriors when sampling the population posterior. We discuss the GEV distribution

and its interpretations in the following section.

3.6 Extreme-value statistics and applications in astronomy
Extreme-value statistics describe the expected distribution of extreme values (maxima or minima) of

samples drawn from a single underlying distribution. Despite relatively minimal use in astronomy,

they have numerous applications in many applied disciplines. For example, extreme value statistics

can be used to model the maximum daily rainfall expected over some number of consecutive days at
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some location. This model is crucial for engineers working to design flood-resistant infrastructure

(e.g., Papalexiou & Koutsoyiannis, 2013).

3.6.1 The generalized extreme-value distribution and subtypes

The generalized extreme value distribution is a continuous, unimodal distribution with location

parameter 𝜇, scale parameter 𝜎, and shape parameter 𝜉. Its probability distribution is given by

1
𝜎
𝑡 (𝑥)𝜉+1𝑒−𝑡 (𝑥) (3.9)

where

𝑡 (𝑥) =


[
1 + 𝜉

( 𝑥−𝜇
𝜎
)]

1
𝜉 , 𝜉 ≠ 0

exp
(
− 𝑥−𝜇

𝜎

)
, 𝜉 = 0

 (3.10)

This generalized distribution is broken down into three subtypes based on the value of 𝜉. Type

I (or ”Gumbel”) when 𝜉 = 0, type II (or ”Fréchet”) when 𝜉 > 0, and type III (or ”Weibull”) when

𝜉 < 0.4

The Gumbel distribution typically arises when the underlying sample is normally or exponen-

tially distributed. However for cases where the underlying distribution is bounded, the Fréchet and

Weibull distributions are more appropriate. For an example of this distribution and an application

to our work, see Figure 3.2. We do not restrict our GEV fits to any of these sub-distributions at any

point within this work. The corresponds to allowing the shape parameter to take on both positive

and negative values, or zero as dictated by the data.

3.6.2 Extreme-value statistics in astronomy

While extreme-value statistics have found limited use in astronomy, previous work has been done

showing applications in cosmic structure problems. Davis et al. (2011) showed analytically that

the most massive halo in a given region of the Universe should follow Gumbel statistics (that is, the

resultant distribution should be a GEV distribution with 𝜉 = 0). Antal et al. (2009) demonstrated

that the number of galaxies within some physical distance of a given location on the sky also

followed Gumbel statistics at a wide range of scales. This second result is of particular interest,

because it is nearly identical to some of the techniques discussed in section 3.3 of this work.
4Throughout this work, we report values with the standard sign convention used here. The scipy implementation

of the GEV distribution which we use for our computational work uses the opposite convention.
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Figure 3.2 Comparison of best-fit GEV distribution (left) and best-fit log-normal distribution(right)
to the 𝜅ext distribution of lines of sight in the Millennium simulation at redshift z = 2.34 from Hilbert
et al. (2009). The best-fit GEV parameters are 𝜉 = 0.145, 𝜇 = −0.0235, and log(𝜎) = −3.46, while
the best-fit log-normal parameters are 𝜇 = −0.098 and log(𝜎) = −0.78.

The Gumbel distribution has additionally found use in areas such as modeling the weak lensing

(Capranico et al., 2013) and modeling anomalies in the Cosmic Microwave Background (Mikelsons

et al., 2009). Crucially, all these analyses have implications about cosmic structure which would

have a direct impact on the measured mass density in a given region of space.

3.6.3 Application to Millennium simulation and individual lens lines of sight

The values of 𝜅 measured in the Millennium simulation by Hilbert et al. (2009) clearly follow

extreme value statistics, as can be seen in Figure 3.2. Our posteriors on individual lenses are

effectively this distribution convolved with the gaussian we use to select matching lines of sight

(see Section 3.5.2), so it is sensible they too would follow these statistics. We emphasize this choice

is empirical, but the excellent fit does suggest interesting interpretations.

The distribution of 𝜅 in the Millennium simulation and in our posteriors suggests that its value

along a given line of sight may be dominated by contribution from a small number of mass structures

which themselves follow extreme value statistics. The result presented in Davis et al. (2011) is

of particular interest, because it demonstrates that the largest halo measured in a given region

63



of the Universe should also follow extreme value statistics. This relationship suggests several

interpretations that may be worth investigating in the future.

3.6.3.1 𝜅ext may be dominated by a single mass structure

The appearance of extreme-value statistics in our model suggests 𝜅 may be dominated by a single

massive structure along the line of sight. This structure is not necessarily the most massive halo

in the field, but may be a more moderately sized halo situated near the center of the field. In

this context, the posterior on 𝜅ext could be interpreted as the range of mass structures (or more

accurately their relative density) that are possible given some set of observables (i.e. luminous

galaxies). Placing better constraints on this particular mass structure may allow us to improve the

precision of the 𝜅ext measurement.

3.6.3.2 Number counts may be able to distinguish between different halo mass models

The appearance of extreme-value statistics both in galaxy number counts and and the underlying

halo mass function suggests an interesting relationship. Number count statistics are nothing new in

cosmology. Many analyses have used cluster number counts within surveys to place constraints on

cosmological parameters (e.g., Costanzi et al., 2021). A primary limiting factor of these techniques

is the measurement of the cluster masses themselves. The power of the number counts techniques

is its ease of applicability. Given some set of statistics, we can use cosmap to evaluate its behavior

over a large region of the sky quickly and reliably. Given a set of dark matter models which make

quantitatively different statements about ”clustering” on small angular scales, it may be possible

to quickly assess which of these models is consistent with the data available in some large galaxy

survey. In this case, the constraining power of a well-measured mass structure is traded for the

constraining power that derives from the scale of the dataset.

3.6.4 Comparison to log-normal distribution

A general rule of thumb in statistics is to use models with the fewest number of parameters that fit

the data well. As the GEV distribution is a three parameter distribution, it is reasonable to question

whether it is necessary in this context when two parameter distributions with similar shape exist.

In particular, log-normal distributions have found frequent use in cosmic structure problems (e.g.,

Coles & Jones, 1991; Xavier et al., 2016) and generally provide good fits to large scale convergence

and shear data (e.g., Taruya et al., 2002; Clerkin et al., 2016).
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Our work here differs in several key ways. In particular, we are working on very small angular

scales (2′) and only measuring out to 𝑧 ≈ 2. Nonlinear structure becomes a significant concern in

this regime and it is reasonable to suggest that this may introduce complications to the standard

log-normal picture.

The best-fit log-normal distribution is included in figure 3.2 in addition to the GEV fit. The

log-normal fit meaningfully underestimates the peak, overestimates the decay, and slightly under-

estimates the tail of the emperical distribution. Both best-fit models were determined using the

stats.fit function of scipy on unbinned values of 𝜅. The best-fit log-normal distribution results

in a Bayesian Information Criteria (BIC) of 219.5, while the GEV best-fit distribution yields a BIC

of 174.8. This clearly favors the GEV over log-normal.

3.7 Population-level environment studies in time-delay cosmog-
raphy

Astronomy is increasingly a big data field, and time-delay cosmography is no exception. The

LSST is expected to uncover many thousands of lenses in its full footprint, with many hundreds

of time-delay lenses that will be suitable for cosmographic analysis (Verma et al., 2019). Time-

delay cosmography is still in a regime where its errors are dominated by the random variance

that is to be expected from a small sample of systems. Increasingly, the community is turning to

population analyses to estimate cosmological parameters as well as to more informed priors on

other ingredients of the analysis such as lensing galaxy mass profiles (see for example Birrer et al.,

2020).

The measurement of 𝜅ext for a single lens is very much prior dominated. While easy to compute,

the summary statistics we use are fairly weak tracers of the underlying matter distribution. This

results in wide posteriors that often deviate only modestly from the prior except in particularly

extreme cases. By combining statistical information from many lines of sight at the likelihood

level, deviations of the population from the prior become more apparent.

There is a general expectation from previous studies that lenses lie in preferably overdense lines

of sight (e.g., Wong et al., 2018; Fassnacht et al., 2010). This is consistent with well-known work

from Dressler (1980) which showed that massive elliptical galaxies are more likely to be found in

overdense regions. This suggests that the primary contributor to 𝜅ext in many lines of sight may be
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this group or cluster, as is suggested in Fassnacht et al. (2010). As will be demonstrated shortly, the

analysis presented here confirms this previous work while allowing us to quantify this overdensity

in a way that can be directly useful in time-delay cosmography.

3.7.1 Procedures for population analysis

To estimate the population-level parameters of the lines of sight in our sample, we used the

framework developed in Wagner-Carena et al. (2021) and applied in Park et al. (2023) to mock lines

of sight. We used results from individual lines of sight to fit a distribution for the entire population.

For a given value of location parameter 𝜇, scale parameter 𝜎, and shape parameter 𝜉 the posterior

takes the form:

𝑝(𝜇, 𝜎, 𝜉 |d) ∝ 𝑝(𝜇, 𝜎, 𝜉)
𝑁∏
𝑖=1

1
𝑀

∑︁
𝜅∈𝑝(𝜅𝑖 |d)

𝑝(𝜅 |𝜇, 𝜎, 𝜉)
𝑝(𝜅 |Ωsim)

(3.11)

where 𝑝(𝜇, 𝜎, 𝜉) is our hyperprior on the population-level parameters, and 𝑝(𝜅 |Ω𝑠𝑖𝑚) is the proba-

bility of a given value of 𝜅 in the prior imposed by the simulation. The sum was done over 20,000

samples taken from the individual posteriors for each line of sight. We use 𝜎 as the scale parameter

in the equation above to emphasize that our target distribution is not necessarily Gaussian. We

discuss our choice of target distribution in the following section.

Each value of the product term can be thought of as a likelihood for a given lens. By dividing

out the prior, we avoid multiplying its effects across the population. As a result, it is reasonable to

expect the population constraints to favor a more significant overdensity than a naive average of the

individual posteriors. This is a statistical effect. Bayes theorem is designed as a tool for updating

posteriors as new information comes in. In our case the ”new information” in our analysis is that

our lines of sight, looked at as a population, show significant signs of being biased when compared

to the population of all lines of sight in the Universe.

3.7.2 Hierarchical analysis with SL2S lenses

Once we have posteriors for each line of sight, we move on to a hierarchical analysis of the

population. We use the emcee Python package (Foreman-Mackey et al., 2013) to sample from the

posterior given in Section 3.7.1.

We emphasize that the value of the prior in the Millennium simulation is not unique to a particular

value of the hyperparameters, as it also depends on the redshift of the lens. It is reasonable to
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suggest that the redshift of sources in our sample should be included as a population parameter,

but given the tight constraints on individual redshifts our sample is too small to determine this

distribution. When drawing from individual posteriors, we use the best-fit GEV distribution as

provided by scipy.

We use a flat hyperprior with −0.5 < 𝜉 < 0.5, −0.1 < 𝜇 < 0.3 and −5.0 < log(𝜎) < −2.0.

These ranges include the values of the best-fit parameters for the full population of lines of sight in

the Millennium simulation.

3.7.3 Interpretation of population posteriors

When interpreting our results, it is crucial to appreciate the difference between the posterior on 𝜅ext

produced for a single lens and the posterior on the population parameters. For a single lens, the

value of 𝜅ext is (presumably) nearly constant across the surface of the primary lens. The posterior

therefore is largely a statement about our uncertainty based on the incomplete information that goes

into our analysis. With better information or a more sophisticated model, it may in principle be

possible to shrink the width of the posterior. However this is a posterior on only a single parameter:

𝜅ext.

However when doing a population analyses, the location, width, and shape of the population

distribution are themselves parameters with associated uncertainties. These parameters are making

a statement about the distribution of lines of sight in which we find strong lenses, while the issue

of ”incomplete information” appears in the uncertainty on the individual parameters. For the sake

of intuition, it is helpful to compare the distribution produced by the parameter point estimates to

the prior from the simulated dataset. However unlike the distribution for individual lines of sight,

the width of this distribution has an astrophysical interpretation and may be fundamental to the

population. Additionally, individual lens posteriors are prior dominated, as the data available is a

fairly weak tracer of the underlying mass distribution in the field. By combining the constraining

power of many lenses, it may be possible to constrain this population better than we could constrain

any single lens system.

3.8 Results
Our results provides strong evidence that the lines of sight in our sample are drawn from a population

that is more dense than the population of all lines of sight in the Universe.
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Figure 3.3 Measured median values of 𝜅ext for the lenses in our sample as a function of deflector
and source redshift, respectively. Error bars denote the 68% confidence interval. The red dotted
line represents the trend of the median value of 𝜅ext

.

3.8.1 Individual lines of sight

A summary of the best-fit parameters for individual lines of sight can be found in Table 3.1, and

a plot of our measured value of 𝜅ext with respect to redshift in Figure 3.3. From the individual

results alone, it is reasonable to suggest that our lines of sight are drawn from a population that is

more dense on average than the population of all lines of sight in the Universe. Our results also

demonstrate a modest trend towards greater density for longer lines of sight, but this is inconclusive.

Figure 3.3 also demonstrates the necessity of population studies. The posteriors on individual

lines of sight are quite wide, and most lines of sight individually are consistent with 𝜅ext = 0. This

is a result of the fact that the summary statistics we use are fairly weak tracers of the underlying

mass distribution. This amount of scatter for individual 𝜅ext is consistent with previous analyses on

other systems.

3.8.2 Population constraints

Although individual sightlines provide limited information, our population model demonstrates

clearly that our lines of sight are drawn from a biased sample. A corner plot of our 𝑀𝐶𝑀𝐶

samples and a comparison of best-fit distributions can be found in Figure 3.4. The median value

of the population distribution on 𝜅ext inferred by our model 𝜅𝑚𝑒𝑑 = 0.033 ± 0.010. This result

demonstrates that our lines of sight are drawn from a sample that is more dense than the general
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Figure 3.4 Corner plot showing results of our MCMC, with the median value of each sample
distribution included as a derived parameter. The red mark indicates the best-fit values for the
entire population of lines of sight in the Millennium simulation.

population at this redshift under the assumption the Millennium simulation provides a reasonable

prior for the distribution of 𝜅 on small scales in the Universe. However for the purposes of time-

delay cosmography, the important factor is whether the median value of 𝜅ext is above or below

zero. If our population median was exactly zero, we would anticipate that no real population-level

correction from 𝜅ext would be necessary. Our model does not show this conclusively, but does

provide evidence for this conclusion at ≈ 3𝜎 confidence. Our sample is not large enough to provide

strong constraints on the shape and scale parameters of the distribution, but this may change in the
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future with larger samples. In our tests, our posterior on log(𝜎) remains nearly constant in the range

−8 < log(𝜎) < −5, indicating the inability of our data to constrain these quantities cleanly. Such a

narrow posterior would indicate an extremely specific selection function, in clear contention with

our knowledge of these systems. We therefore choose to cut off our hyperprior at log(𝜎) = −5.

It is interesting to compare the population median to the median of the individual results (the

”median of medians”). Simply averaging the individual lens posteriors results in a ”population”

median of 0.008±0.015. We emphasize that this approach implicitly includes the effect of the prior

once for each lens posterior, whereas the population model divides out this prior before averaging.

The overdensity from our population model is not excessive, but is more significant than would be

expected by a naive averaging of the results for the individual sightlines. This demonstrates that

correcting for line of sight effects on a population level is necessary when performing time-delay

cosmography on large samples of lenses. We remind the reader that 𝜅𝑒𝑥𝑡 measures the residual

overdensity that remains after removing the lens and any immediate neighbors from the line of

sight. The actual value of the total convergence 𝜅 at the location of the lens itself will be quite

different.

3.9 Conclusions and future work
In this paper, we have demonstrated a technique for estimating 𝜅ext along strong lens lines of sight

at a population level and applied it to a sample of 25 lenses in the Strong Lensing Legacy Survey.

This work has been built on previous work that allows us to perform 𝜅ext inferences on individual

lenses much faster than was previously possible. We have demonstrated the infrastructure and

statistical frameworks necessary to apply this technique at massive scale and provide constraints

on populations of lines of sight. We have shown that the populations of lines of sight that are

used in this analysis are likely drawn from a biased sample that is overdense when compared to the

population of a lines of sight in the Universe, with median 𝜅ext = 0.033 ± 0.010.

3.9.1 Future improvements to 𝜅ext measurement

The primary goal of this work is to develop and demonstrate the tools and frameworks necessary to

provide constraints on large populations of lens lines of sight. While we have made much progress

in this direction, there are still a number of improvements that should be made:
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3.9.1.1 Upgrade our simulation

While of significant historical significance, the Millennium simulation has been surpassed in recent

years by larger and more sophisticated simulations, which take the last two decades of improved

understanding into account. We continue to use Millennium because of the high-resolution weak

lensing maps that are available. However the MillenniumTNG team has produced high-resolution

weak lensing maps that include the effects of baryons (Ferlito et al., 2023) which would be suitable

for our analysis once the data products are released publicly. In particular MillenniumTNG has a

mass resolution around one order of magnitude better than the original Millennium simulation,

which may allow us to more cleanly map small-scale real-Universe sightlines onto equivalent

simulated sightlines.

3.9.1.2 More efficient summary statistic mapping with machine learning

Additionally, finding matching lines of sight in the simulated dataset is quite slow, as we must

iterate through the entire dataset. Training a neural network to reproduce the relationship between

summary statistics and 𝜅ext at a single redshift should be straightforward. However expanding this

to encompass the entire volume of the dataset would be a much more significant challenge. Taking

on this challenge may be unavoidable given the number of lenses that will discovered in LSST.

3.9.1.3 Summary statistics that better target the primary mass structure

Our work here has suggested that the primary contribution to 𝜅ext may be a single mass structure.

Placing further constraints on this mass structure may be a way to improve the precision of the

measurement. As always, a primary challenge is finding techniques that can easily be applied to a

large number of systems.

3.9.2 Further work on population modeling

This work has demonstrated the techniques necessary for placing constraints on the distribution

of 𝜅ext populations of strong lens lines of sight. While our work demonstrates with a high degree

of confidence that this population of lenses fall in overdense environments, we cannot place clear

constraints on the width or scale of that distribution. Additionally, we cannot say with confidence

that the result derived from the SL2S sample is applicable to strong gravitational lenses as a

whole. A much larger set of lenses (on the order of a few hundred) is needed to better constrain

this population and boost confidence that our conclusions can be generalized. The strong lenses
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expected to be discovered in LSST will be an ideal sample for this type of work, and we look

forward to working with these data when they become available.
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Chapter 4

Software Engineering for Big Data
Astronomy and Applications to 𝜅ext
Measurement

The focus of my scientific work has been discussed at length in the previous chapters of this

dissertation. When I started my first line of sight project, the basic techniques discussed in Chapter

2 were generally well-specified and significant work had been done to quantify sources of systematic

uncertainty (see for example Rusu et al., 2017). A focus of mine for the past few years has been

building next-generation software tools that could perform this analysis on hundreds of lenses in

a reliable and consistent way, and using that capability to model lines of sight at the population

level. This has led to a significant amount of time spent learning design patterns, best practices,

and technologies for producing high-quality software.

The core scientific philosophy behind much of the software work I have done is a belief in

sustainability. In this context, “sustainability” means an explicit focus on the ability of the tools I

build to reliably perform scientific analyses that have not yet been designed. In the beginning, this

requires a significant investment of time and resources into building high-quality software. In the

long term, this initial investment pays off in the form of sustainable long-term productivity.

This overarching scientific philosophy breaks down into three core design philosophies that

make their way into the resultant software: reliability, ease-of-use, and flexibility. In this chapter,

I examine the software design principles I have applied to build my analysis tools. I demonstrate

how I have used these tools to perform the analyses presented in the previous chapter, and discuss
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how these tools will enable me to continue to do original scientific work in the future.

The practical examples in this chapter will focus mainly on the data management and analysis

orchestration tools I have developed and used to produce weighted number counts as discussed in

the previous two chapters. The process of combining weighted number counts into a posterior and

posteriors into a population model are effectively a numerical integration followed by Monte-Carlo

sampling. While scientifically important, they are straightforward from a software perspective.

4.1 Principles for Enabling Good Science with Good Software
A primary motivation for my software work has been an intrinsic interest in computing and software

design for their own sake. As my understanding of these disciplines and skills has developed, my

understanding of their relationship to good science has developed in parallel.

4.1.1 Scientific Advantages of Good Software Design

Good software does not automatically produce good science. However it does make certain aspects

of doing good science meaningfully easier. Examples include:

• Management of Systematic Errors: Well-engineered software allows scientists to perform an

analysis in a reliable and consistent way. This makes it easier to manage systematic errors.

For example in the context of the work presented in Chapter 3, I can guarantee each system

in the sample was compared to the same set of lines of sight in the reference survey. If there

was a systematic bias in the reference data, it would appear consistently across the sample

and would be easy to mitigate.

• Accessibility and Speed of Onboarding: In the long term, it is inevitable that working groups

will lose people and gain new ones. Easy-to-use software makes it much easier for new

scientists to pick up where someone else left off and minimizes the potential disruption of

losing an expert. This is especially important when working with junior scientists who may

have minimal background in software and/or are still learning the relevant science details.

• Speed of iteration: As our scientific understanding of a problem matures, the techniques we

use inevitably evolve. Good software is able to accommodate these changes in methodology

without significant extra work. Reducing the cognitive load around defining an analysis in
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software gives the scientist more time to focus on designing the analysis and interpreting the

results.

• Reproducibility: Good software makes it easier to reproduce the results of another group or

individual. This reproducibility is a core principle of the scientific method. However it also

a contributing factor in the principles discussed above. For example, reproducing a previous

result can be a good first-step for a junior scientist working on a problem for the first time.

These principles are largely in line with the core philosophy discussed previously. Designing a

piece of software with these goals in mind will generally take longer than writing code that gets to

a result as soon as possible, but dramatically increases long-term output.

4.1.2 Design Principles

Throughout my work, I have identified three core design principles that guide the process of building

new scientific software. These principles should not be taken as prescriptive. There will always

be cases where one or more should be relaxed or ignored entirely, but I believe they apply to most

scientific software most of the time. These are:

• Reliability: The software should not error except when the user supplies invalid information

or its execution environment cannot support its operation. Assuming no such problem arises,

the software should perform consistently. In practice, this means efficient and reliable error

handling should be a significant concern.

• Ease-of-use: The software should hide as many low-level details as possible from the user.

Any configuration or behavior that is the responsibility of the user should be completely

separated from the software’s core routines to avoid confusion.

• Flexibility: The software should be flexible enough to allow the user to perform novel

scientific work without modifying the software’s core routines. However it should also be

clear what the software’s limits are, such that the user can look elsewhere when appropriate.

The implementation of these principles will always depend on the particular piece of software

being built. However they should be front of mind from the moment the first line of code is written.
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4.2 Software Considered in this Chapter
Over the past several years, I have written several packages that have been essential in the production

of the science results presented in the other chapters in this dissertation. Some of these packages

have eventually been replaced by newer, more sophisticated packages. In this chapter, I focus on

three which represent the current “state of the art” of my implementation of solutions to three

specific problems:

• heinlein1 is a pure-python data management package for survey astronomy. It is designed

to provide a high-level query interface to any underlying survey dataset. It works with catalog

data, bright star masks, and imaging, and includes caching routines for accelerating repeated

queries in a given region of the sky. It is the oldest of the software considered in this chapter.

• cosmap2 is a pure-python analysis orchestration tool designed to provide a high-level declar-

ative interface for performing analyses similar to the ones discussed in the other chapters of

this dissertation. It handles data management (via heinlein), parameter validation, result

collection, and distribution of work to all available computing resources. Its core user-facing

construct is an analysis template, where a user defines a set of transformations to be performed

on data samples drawn from from a given region of the sky.

• godata3 is a data management tool designed to simplify the process of tracking data produced

by scripts or long-running processes. It handles reading and writing data to and from disk in

a consistent manner, regardless of the working directory of the Python script or notebook. It

is capable of operating exclusively on Python objects, such that the implementation details of

data storage are completely hidden from the user. Its user-facing interfaces and I/O routines

are written in Python, while its file system and data tracking algorithms are implemented in

Rust. It is the newest piece of software in this list.

All three of these pieces of software have been built with the intention of enabling analyses

beyond those that are useful for my work, while still maintaining a sufficiently narrow scope to
1https://github.com/AstroPatty/heinlein
2https://github.com/AstroPatty/cosmap
3https://github.com/AstroPatty/godata
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avoid becoming bloated. I will present examples involving all three of these pieces of software to

demonstrate the principles I believe to be important for data engineering in an astronomy context.

4.2.1 Definitions

Throughout this chapter, I will discuss a number of concepts that are commonly used in a software

engineering context. Below, I provide several definitions of these concepts as they will be used in

this chapter.

• Domain: The specific set of problems a piece of software intends to solve.

• Paradigm: The set of principles guiding how a particular problem in the domain will be

solved. Examples of programming paradigms include imperative, declarative, functional,

and object-oriented. This can be heavily influenced by language selection.

• Design Pattern: A set of standard approaches for solving a particular type of problem that

occurs frequently when designing and building software. Design patterns are often (though

not always) agnostic to the domain of the software. However the paradigm an engineer is

working in will often have significant impacts on which design patterns are available.

• Interface: A specification for how two pieces of a program interact, typically in the form of

functions or methods. In the context of interactive computing, the interface is often directly

used by the programmer.

• Abstraction: A part of a piece of software that hides a complex behavior behind a simpler

interface. Although almost all abstractions include an interface, this is only the outward

facing layer of the abstraction. Many times, abstractions will be composed to create even

larger abstractions.

• Coupling: How closely related two pieces of a larger software system are, and how reliant

one piece is on the implementation details of another. It is widely considered good practice

to reduce coupling when possible, such that two modules with identical interfaces can be

swapped without requiring changes to the remainder of the program.

• Big Data: A dataset that cannot be managed on a single machine.
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• Data-Driven Astronomy and Data Science: In this chapter, I use to the term data-driven

astronomy to refer to astronomical work that is built on top of large datasets, such as

galaxy surveys. Data science refers to techniques that are often leveraged to analyze large

datasets regardless of the problem domain. Although good data science relies on strong

domain knowledge, many data-science techniques (such as machine learning and even specific

machine learning architectures) can be shared across many different domains.

4.3 heinlein and Data Management
Data management is the foundational problem in any analysis system designed to work in a big-data

context. This problem exists entirely outside the context of any actual analysis. The dataset in

question must be stored across many machines, which must coordinate to respond to incoming

queries. The data may also be heterogeneous, involving several different file formats even if

the actual data is structurally identical4. The management system may cache information that is

frequently accessed, and must track the state of many different user sessions at once.

This type of problem is ubiquitous in the private sector. The technologies needed to build such

a system are mature and largely open-source. But this does not mean the process of building such a

system is trivial. The architect must appreciate the way the system will be used and the constraints

of resources it will be deployed on. The process of building a system that will help scientists

do original work looks very different from a system that allows the public to browse images of

interesting systems, even if the underlying dataset is the same.

This complexity should be hidden from the user whenever possible. Individual scientists

should not be writing raw SQL or deciding what library should be used to read in a particular

data type. Data-driven astronomers should be allowed to focus on what they do best (and likely

prefer): designing new analyses and interpreting their results. Any system that promotes this kind

of focused work must first solve this problem of data management.

4.3.1 Separating Software from Astronomy

This problem is largely a software and systems design problem. It involves tracking data on disk,

database connections, caching, and low-level interfaces to various formats, all of which should

be hidden behind a unified query interface with high-level operations that will be familiar to
4e.g. CSV files and SQL databases
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astronomers. Although much of the details of such a system will look quite similar to analogous

systems built for different kinds of data, there are several aspects unique to galaxy surveys that

require astronomy expertise to handle correctly including:

• Relationships between data types (such as catalogs and bright star masks)

• Spherical geometry and coordinates

• Interpretation of database columns

• Underlying format of some of the data, such as FITS images

It is crucial to understand where these “bits of astronomy” are relevant and where they are not.

For example, the routines that track the location of data on disk (or on the network) do not need

to be aware of any of the above concerns. A client-side routine that handles data caching similarly

only needs to be aware that it will be receiving and serving Python objects.

4.3.2 Principles of the User-Facing Interface

heinlein seeks to provide an easy-to-use interface for querying astronomical surveys. Currently,

it is only capable of working with data on a single, local machine.5 It is written such that routines

for network access would be easy to add, but these have not been necessary for the work presented

in this dissertation. However despite its limited scope6, I still approached the process of building

heinlein as an opportunity to learn how to build a data system that understands astronomy and

astronomers.

The interface of heinlein was built with ease of use as a core tenent. In particular, the goal

was to build something that could be described in the following ways:

• Accessible: The interface should be readily available from any part of the program.

• Declarative: The interface should allow users to simply state the data they want.

• Domain-Aware: The interface should provide high-level operations that are familiar to its

users, and return data in familiar formats.
5It should also work with data shared via a NFS
6And a user count which currently rounds up to one.
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• Consistent: The interface should behave reliably. Identical input should produce identical

output, even if the underlying tool handles the request in a different way. Backend details

should not affect the way the interface is used.

Consider the following example usage of heinlein.

from heinlein import load_dataset

import astropy.units as u

des = load_dataset("des")

data = des.cone_search((62.0905, -53.8999), radius = 120*u.arcsec,

dtypes=["catalog", "mask"])

masked_catalog = data["mask"].mask(data["catalog"])

This code demonstrates the principles described above, though this is not necessarily obvious

from a first glance. The dataset can be loaded quickly and easily from any part of the program

with the load dataset command. The user simply states the dataset they want to load, what

spatial location they wish to draw from, and which types of data they wish to be included. The

cone search operation is a very natural way to interact with a catalog. However it is simply a

convenience method that wraps a more general “search in region” method.

The consistency of the interface is best illustrated by a second example:

from heinlein import load_dataset

import astropy.units as u

hsc = load_dataset("hsc")

data = hsc.cone_search((141.23246, 2.32358), radius = 120*u.arcsec,

dtypes=["catalog", "mask"])

masked_catalog = data["mask"].mask(data["catalog"])

This code performs the exact same operation as the one above, but with a different dataset.

The backend logic is meaningfully different between the two datasets. The columns in the two
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catalogs have different names, including the names for the RA and Dec of the objects. The Hyper

Suprime-Cam Subaru Strategic Program dataset (“hsc” in the above listing) uses bright star masks

stored as DS9 Regions files, whereas the Dark Energy Survey (“des”) uses FITS files. The software

must understand these differences and behave accordingly. This complexity appears at several

stages throughout the above example. When working with DES, heinlein must know in advance

which FITS extension contains the mask data. While working with HSC, it must know how to

parse regions files and filter them based on location. The business logic for removing objects from

the catalog that fall behind the mask is entirely different between these two cases. The user on the

other hand, need not know any of this. In fact they benefit from not having to worry about these

details because they can focus on their science.

4.3.3 Principles of Backend Design

The simple interface discussed above hides a significant amount of backend complexity. When a

cone search is performed, the system must ask a series of questions before it can respond to the

user such as:

• Does the requested region of the sky fall within the survey footprint?

• If so, are the data from the surrounding region already in the cache?

• If the data must be loaded, does the system currently have access to all the requested data

types?

• Is there any relevant configuration information that must be loaded in order to read the data

from disk?

The backend must be designed to answer as many of these questions as possible without

reference to any configuration that is specific to a given dataset. Any configuration that is required

for individual datasets should be hidden behind an interface that is consistent across datasets. In

particular, there are three pieces of configuration that are relevant for individual galaxy surveys as

used from heinlein.

• The regions on the sky which the data is spread across. In many surveys, these regions

correspond to individual pointings of the telescope.
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• The data format particular data is in (particularly star masks)

• Any metadata that may be needed to use the given data (e.g. catalog column names)

In heinlein, the dataset is a high-level abstraction over these complexities that provides

a common interface. The dataset object itself does not contain any logic that is dependent on

the exact survey being used. It is simply an orchestrator which delegates work to the appropriate

sub-systems. These subsysystems in turn delegate work to their own subsystems as needed, some

of which must be custom built to interface with a single kind of data.

Understandably, the consistency in result does not derive from consistency in process. The

standard definition of declarative programming is a style of programming where the programmer

tells what should be accomplished but not how it should be done. If we write a python script that

runs the same query twice, we would notice that the second run is considerably faster than the first.

The load dataset performs initial setup when it is first called, returning an object that is capable

of executing queries. If load dataset is called a second time, the initial setup is skipped and a

cached version of the object is returned.

But the more significant speedup is in the cone search method. While this method only

returns the data in the specified region, it loads a significantly larger region from disk and stores it

in a cache. On the second cone search call the data can be returned from the cache, significantly

speeding up the response. By loading a larger region into cache, we are indicating that we believe

that a user making a request in a given region on the sky is likely to eventually make a similar

request from a nearby region on the sky (or perhaps a larger region centered on the same location).

These details are transparent to the user, as they should be. The user will appreciate the speedup,

but is not required to know anything about how it is implemented to make full use of it. It is worth

noting that these caching routines were built with my particular line-of-sight analysis in mind.

heinlein was built because I recognized that solving the problem of data management effectively

would allow me to build more sophisticated analysis tools that did not have to be worried with

these details. But it was still built with a particular analysis in mind, and these lead to some design

decisions that I have regretted in the long term.

Most of these decisions were made when the analysis I wanted to perform was front of mind,

rather than the general design principles I was aiming to implement. For example, data caching is
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a very natural feature to add when repeatedly drawing samples from one region of the sky. Instead

of making many small database queries, heinlein instead performs one large database query and

then filters the resultant data as further requests in the same general area of sky are made by the

user. This is very useful in certain contexts, but meaningfully slows down the response time and

results in unnecessary memory usage in cases where a user is only making one or two queries.

4.4 cosmap: Analysis Orchestration
With data management handled, we now turn to the problem of analysis orchestration. In this

context “orchestration” describes the set of tools responsible for actually performing an analysis

based on a set of parameters provided by the user. Crucially it must also provide an interface for a

user to define an analysis they wish to perform. As with the original data management code, the

orchestration tools built into lenskappa were limited in scope. lenskappa, as the name suggests,

was built to perform the number counts analysis discussed in previous chapters. It was in large part

a piece of software that resulted from a direct translation of the physical ideas in the analysis into

code.

As the analyses I wished to perform grew more sophisticated, lenskappa quickly proved

ineffective. For example, it was only capable of performing an analysis on a single lens at a time

and could only handle a single set of parameters (such as limiting magnitude and aperture radius)

per run. In the past this would have been acceptable, as the rate at which results were needed was

quite low. However in the future this will no longer be tenable. The work presented in Chapter 3 is

already demonstrating the limits of this approach.

The solutions to these shortcomings became apparent by re-framing the analysis from an

engineering perspective. From this angle, the core loop of the weighted number counts analysis

can be described as follows:

1. Retrieve data within a set distance of a given point in a large two-dimensional space

2. Compute quantities of interest using the returned data

3. Save the results of the computation

4. Repeat

84



Many of the engineering problems associated with the above procedure are well understood.

There are challenges particular to working with galaxy surveys, but many of those challenges are

not relevant to the large-scale design of the software. Furthermore, much of the complexity of

working with galaxy surveys is in data management, and this complexity has already been handled

by heinlein.

4.4.1 Design Principles

cosmap is designed to enable large, long-running analyses of similar to those presented in the

previous chapters of this dissertation. The design principles presented in Section 4.1.2 therefore

translate into several specific design goals that were identified before cosmap was written:

1. The system should enable the user to define and perform any analysis that fits the general

pattern described above, without modifying the system’s core code directly.

2. The system should provide sensible defaults for “bookkeeping” behavior (such as saving

results) but allow the user to override them if needed

3. The system should scale to a large number of computing resources without additional work

by the user and

4. When provided with invalid input, the system should fail quickly and provide a understandable

reason for the failure.

These principles, with the exception of the first, are not related to astronomy in any way. They

are a set of core philosophies about how the system should behave. These principles are derived

from the overarching idea discussed earlier in this chapter. Astronomers should be able to focus on

astronomy. The software system they use should not burden them with computational details when

it can be avoided.

As with heinlein, cosmap is a work in progress. These design principles are not perfectly

executed by the software in its current state. However, it is mature enough to perform sophisticated

analyses like the one described in the previous chapter.
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4.4.2 Configuration Management with Pydantic

A core requirement of the above design principles is the ability to define and provide a set of

configuration options that are needed to perform the analysis. For example, the weighted number

counts analysis removes objects beyond the redshift of the source quasar. This redshift should be

provided when the analysis is initialized. If this parameter is missing or invalid (e.g. by being

negative) the system should quickly fail.

Configuration management in cosmap is provided by pydantic. Consider the following

simplified example from the weighted number counts analysis:

# file config.py

from cosmap.config.models.sky import SkyCoord

from pydantic import Field, BaseModel

class LensParameters(BaseModel):

lens_coordinate: SkyCoord

source_redshift: Field(1.0, ge=0.01)

The above class defines a set of parameters that are expected to be provided for any given lens.

In particular, the lens must have an associated coordinate and a redshift, the latter of which must

be greater than or equal to 0.01. These parameters can be provided to cosmap at runtime within a

TOML file:

[lens_parameters.DES0029]

source_redshift = 2.815

[lens_parameters.DES0029.lens_coordinate]

coordinate = [7.419268,-38.240602]

units = "degree"

The custom SkyCoord object defined in cosmap7 provides routines for parsing and validat-

ing sky coordinates passed to the library as shown. The result of this process is a standard
7I generally like to avoid long module paths. This will eventually be moved to cosmap.models
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astropy.coordinates.SkyCoord that will be familiar to anyone who has used Python for astro-

nomical analysis. This parsing and validation is among the first things performed by cosmap when

an analysis is performed. If a problem is discovered with the provided parameters, the process

immediately exits.

These parameter blocks can be nested to create structured configuration that is available to

the system while it is running. For an example of a more complete configuration definition, see

Appendix A.

4.4.3 Transformations and the Analysis Pipeline

During runtime, a given analysis involves passing a set of data through a series of transformations,

with the final transformation providing the output. By modeling the pipeline as a series of successive

transformations, we allow the user to break down the calculation into a series of logical steps.

# File transformations.py

class Main:

@staticmethod

def apply_mask(catalog, mask):

# Remove objects that are close to bright stars

masked_catalog = mask.mask(catalog)

return masked_catalog

@staticmethod

def count(masked_catalog, lens_redshifts):

outputs = {}

for lens_name, lens_configuration in lens_parameters.items():

mask = catalog["redshift"] < lens_configuration["source_redshift"]

n_objs = len(catalog[mask])

outputs[lens_name] = {"count": n_objs}

return outputs

This definition is accompanied by a second file, which defines the relationships between the
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transformations and their expected inputs and outputs.

{

"Main": {

"apply_mask" : {

"needed-data": ["catalog", "mask"]

},

"count" : {

"dependencies": {

"apply_mask": "masked_catalogs"

},

"needed-parameters": ["lens_parameters"],

"is-output": true

}

}

}

The “apply mask” transformation takes in the sampled survey data provided by heinlein.

It removes objects from the catalog that are covered by a bright star mask, and returns a new

catalog. This catalog is defined as a dependency to the count transformation, which aliases it to

masked catalog when it is passed into the function. It also takes in the parameters for each of the

lens, and uses it to count the number of objects in the line of sight up to the source redshift.

The flow of data through these transformations is handled entirely by cosmap, allowing the

user to simply focus on defining the series of operations that should be performed on the data.

At runtime, these transformations are analyzed as a Directed Acyclic Graph (DAG), which is a

common structure in pipeline orchestration. If the transformations can be represented as a DAG,

it is mathematically guaranteed that they can be scheduled such that each transformation is only

performed once, and dependency transformations can always be evaluated before the dependent

transformation. This evaluation must only be performed once, and occurs at the beginning of the

runtime. As with invalid configuration, the program will almost immediately exit if the provided

transformations cannot be evaluated properly.
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The output of the “count” transformation is collected by cosmap and stored after a set number

of iterations.

4.4.4 Default Behavior, Plugins, and Compute Scaling

One of the core design principles presented in this chapter is “configurability with sensible defaults.”

In other words, analysis systems should provide default behavior that is acceptable for the largest

number of analyses possible, but provide easy-to-use configurability for edge cases.

A good example of this need arises when producing weighted number counts in the Millennium

Simulation. heinlein treats the Millennium Simulation (or more accurately, the semi-analytic

catalogs) as it would any other sky survey. But when 𝜅 was measured in Hilbert et al. (2009) was

performed on a pre-defined grid. The samples used to produce weighted number counts must be

drawn from this grid, rather than being sampled randomly from the sky. cosmap contains built-in

routines for grid sampling, but does not know anything about the geometry of the Millennium

Simulation.

cosmap includes a plugin system that allows the user to overwrite specific pieces of internal

behavior at runtime. For example, the Millennium Simulation weighted number counts includes

the following file:

# file plugins.py

from cosmap.plugins import register

@register

def generate_samples(sampler, *args, **kwargs):

x_grid, y_grid = ms_sampler._generate_grid(sampler)

coordinate_tuples = [ms_sampler.get_position_from_index(*index)

for index in product(x_grid, y_grid)]

coordinate_inputs = list(zip(*coordinate_tuples))

ras = list(coordinate_inputs[0])

decs = list(coordinate_inputs[1])

coordinates = SkyCoord(ras, decs)
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return coordinates

The functionality in the ms sampler class is not included in this listing, but it contains all the

logic necessary to produce samples that fall on the grid points. The generate samples function

contains a default implementation within cosmap that randomly samples over the provided region.

By using the register function, we overwrite this default behavior.

However there is an additional piece of behavior which must be overwritten. In a multi-core

environment with n cores, heinlein splits the sampling region into n sub-regions of equal area.

Each core is then responsible for computing the weighted number counts for its given subregion.

However the Millennium Simulation is divided into 64 independent fields, each of the same size.

It therefore makes significantly more sense to give one field to each core, and only subdivide fields

if there are more cores available than the number of fields. As with the sample generator, cosmap

contains a routine called generate tasks which is responsible for producing task information

that will be consumed by the various worker threads. This routine may be overwritten using with

the same register function used previously.8

cosmap uses the Dask9 framework to handle distribution of work. Daskworkers consume tasks,

which consist of a series of samples (represented by sky coordinates and apertures) to evaluate.

Each worker receives a full copy of all configuration and transformation definitions, allowing it to

operate completely independently of other workers. Each worker contains an independent copy of

the appropriate heinlein dataset object, which requests and manages data for a given worker.10

Individual samples are sent to workers as chunks. After completing a chunk, the worker sends its

results to the main thread and requests a new chunk. The main thread is responsible for collecting

and writing outputs.

This decentralized approach has advantages. If a worker fails, it does not necessarily bring down

the entire analysis. A failed worker can simply be restarted and provided a new chunk from the

queue. However it also has disadvantages. Independent workers mean that heinlein’s caching

routines will inevitable cache multiple copies of the same data across multiple workers. This can
8The documentation recommends you don’t overwrite this unless you really know what you’re doing. But there’s a

clear use case for it and marking a given function as “overwriteable” is very straightforward.
9https://www.dask.org

10I’d really like to change this, as it is inefficient from a memory perspective.
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be mitigated by ordering samples in a way that is aware of data layout and the way data will be

cached. heinlein provides built-in routines for this purpose.

4.5 Handling Outputs at Scale with godata
One of the core motivations behind cosmapwas the desire to perform an analysis on several lenses,

and with several sets of parameters, on a single run. This necessarily produces a large number of

output files11, which must be handled effectively.

The core challenge in the context of cosmap is that many processes will be producing output

simultaneously. A single process may also produce output that must be spread across multiple files,

depending on how the analysis is designed. Sending all this data to a single process responsible

for handling output is the most obvious approach, but this can cause memory issues if all worker

processes are sending output to a single process at roughly the same time.

godata solves this problem by using a central server to track the location of data on disk, while

delegating the actual writing of data to the individual worker processes producing the output. In

keeping with the design principles discussed in this chapter, the interface of godata is designed to

be easy to use and to hide as many details as possible from the user:

from godata import create_project

import numpy as np

project = create_project("my-project", collection="my-collection")

my_cool_data = np.random.rand((100,100))

project.store(my_cool_data, "outputs/my-cool-data")

Once the data has been written to disk, it is instantly available in any python interpreter on the

system:

from godata import load_project

project = load_project("my-project", collection="my-collection")

my_cool_data = project.get("outputs/my-cool-data")

11The largest test I’ve done involved around 1200 individual CSV files.
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Having a single, centralized authority tracking the status of the project sidesteps many of the

challenges of working with Python in a multi-core environment. It ensures that large numbers of

processes producing output will not conflict, and hides the details of reading and writing data from

the user. Although the examples here demonstrate storing and loading Python objects directly,

godata is also capable of tracking and loading data that already exists on disk. The project

interface makes no distinctions between data handled with these two methods. Everything appears

to the user as part of a unified virtual file tree.

As with heinlein, godata is designed to handle a particular menial task very well. By

building it to work at large scale, it is also guaranteed to work on small scales. A scientist can

use godata to track the location of data on their local machine and retrieve it instantly from any

Python process, no matter where it is executing. After processing results from a large analysis on

an external machine, godata can export the project into a single file which can be imported on a

second machine, greatly simplifying the process of doing follow-up analysis.

4.6 Putting it all Together
The guiding principle of the packages presented above is simple: well designed software makes

doing science easier and more enjoyable. Consistent context switching between a scientific ob-

jective and the details of implementing it is a drain on mental resources that hurts the quality of

both efforts. We can never eliminate this context switching entirely, but we can build software that

minimizes it.

cosmap represents an attempt to build a system that implements this principle for a particular

style of cosmological analysis. While it was used in this dissertation for a particular science goal,

it could be applied in a variety of scientific contexts. For example, it could easily be adapted to

calculate galaxy two-point statistics across a wide survey region. It could be used to systematically

produce cutouts of galaxies that meet a specific criteria, or search for galaxy clusters using a

pre-trained machine learning algorithm. It was not designed to perform any of these analyses

individually. Instead, I sought to identify the set of problems that were common to many possible

analyses that could be performed with a galaxy survey, and built a system to handle those problems

systematically.

It is also worth pointing out that there are plenty of cosmological analyses to which cosmap
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would not be well suited. Identifying these is crucial in building any orchestration tool. A tool that

tries to do too many things risks doing none of them well. However even those analyses that are not

well suited to cosmap will benefit from using heinlein if they rely on an underlying astronomical

survey dataset. And even those analyses that do not rely on survey data will benefit from using

godata to manage the outputs they produce. Originally, all three of these functionality were mixed

in together in a single software package. By recognizing the set of common problems that must

be solved across many different use cases and building software to solve them well, we can create

an ecosystem of high-quality tools that eliminate much of the computational busy work of doing

science and make the process more enjoyable.

As we look forward to science at LSST scale and beyond, these principles will need to be

generalized to much bigger systems. At the scale of the work presented in this thesis, good software

design is enough to realize most of the benefits discussed in the chapter. However in the future,

there will be a need to build and maintain large computing systems that coordinate many pieces of

software across many machines to provide high-quality tools to working astronomers. In large part

this will be a practical necessity. Modern survey datasets are simply too large to readily move over

the internet, and we should seek to allow as much of the community as possible to access these data

and perform original scientific work. Building these kinds of systems will be a significant portion

of my postdoctoral work.

None of the software presented in this chapter could be deployed as part of a large, centralized

computing system without significant modification. But the principles behind their design gener-

alize well. Reliability is even more important when building large systems that must coordinate

with each other and serve the needs of many users simultaneously. Flexibility and ease-of-use

enable more people to do more science, a clear win for our community and the world we serve.

Good software and systems design is not a silver bullet, but provides a solid foundation for the

transformative science 21st century datasets will enable.
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Chapter 5

Summary and Conclusions

In this dissertation, I have discussed the current state of environment studies in time-delay cos-

mography and the contributions I have made over the last several years. In particular, I have

presented the software I have developed that allows us to begin to understand these lines of sight at

a population level. I have applied these techniques to a sample of lenses from the Strong Lensing

Legacy Survey and demonstrated that these lines of sight are drawn from a biased population.

Although this result is consistent with previous expectations, my work represents the first time this

overedensity has been quantified in terms of 𝜅ext with real data.

A consistent throughline in my work is the development of next-generation software tools to

compliment the next-generation data sets that will become available to the astronomy community

over the coming decades. I have discussed my approach to building software to work with these

data sets, and demonstrated the ways it allows me to produce original scientific results that would

otherwise be much more challenging.

5.1 Future Work
There are in practice three separate aspects of the work presented in this thesis, each of which

requires its own discussion about the future.

5.1.1 Improving Individual 𝜅ext Measurements

My work has not introduced significant change in the underlying methods we use to model individual

lines of sight. Although the process is significantly more streamlined than when I began my work,

it is still fundamentally the same process presented in Rusu et al. (2017).
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However one important change is the introduction of extreme-value statistics to model lines of

sight. This statistical model suggests that the 𝜅ext is dominated by a single mass structure along the

line of sight. Given that most galaxy clusters contain massive elliptical galaxies near their center,

it is reasonable to suggest that this structure is such a group or cluster. If this is the case, than the

posterior on 𝜅ext could be interpreted as a quantification of the range of possible cluster halos that

could produce galaxy distributions consistent with the available photometric data.

Quantifying this relationship more precisely may allow us to produce tighter constraints on

individual lines of sight. This likely requires more sophisticated summary statistics, including

possibly two-point statistics. It should also be possible to test the “most significant structure”

hypothesis in simulations, which may provide insight into the best methods for constraining them

in real data.

However improved constraints on individual lines of sight may be less important in the context

of population modeling. Ultimately, TDCOSMO is moving in the direction of making inferences

based on populations of lenses, and the line-of-sight analysis should follow suit.

5.1.2 Continued Work on Population Modeling

A centerpiece of this dissertation was my work modeling populations of lines of sight. While

the information available was sufficient to provide evidence that our lenses were drawn from an

over dense sample, it was not sufficient to constrain the other population parameters meaningfully.

At this stage, the best next step for population modeling of 𝜅ext is ”same analysis, more data.”

Evaluating it with a much larger sample should provide an exciting opportunity to further constrain

the population and evaluate the efficacy of the model.

One big advantage of using lenses from the Strong Lensing Legacy survey is the homogeneity

of the data. Once models of individual lenses have been constructed, we do not make use of the

underlying survey data when building a population modeling. Ultimately this should allow us to

combine lenses from different surveys. However we should ensure that individual surveys produce

consistent results. A good next step would be to analyze a sample of lenses against multiple surveys,

and quantify any differences between the results. The software tools presented in this work should

make this analysis straightforward.
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5.1.3 Next Steps for Cosmological Software

The software presented in this work is capable of significantly more than it has produced. However

in the long term, it suffers from a number of shortcomings that will prevent it from truly scaling

into LSST-sized analyses.

5.1.3.1 heinlein and Data Management

Because of the way heinlein is built, it must be replicated inside of every individual core of a

machine. This results in significant redundancies in memory usage. A shared-memory backend

which serves data to client processes should significantly improve our ability to scale work across

extremely large computing environments. However Python is not a good language for this type of

problem. In practice, heinlein should remain as a front-end client which queries data served by

a back-end server process written in a language like Rust or Go. Such a server would likely require

only a few cores to serve an entire node worth of worker processes.

Because of the design decisions, these changes could be made and immediately implemented

into heinlein without changing anything about its interface to cosmap. However cosmap will

also need updates if it is to be used to sample across huge regions of sky.

5.1.3.2 cosmap and Analysis Orchestration

cosmap is a powerful tool for performing analyses across large survey datasets. However it was

built to work within the constraints of a single node on a computing cluster. While it should in

principle scale beyond this, it should be thought of as more of a testing ground for the concepts that

will go into a much larger system designed to truly operate at the scale of an entire survey.

This system will be much too big to build as a single Python package. It will involve coordination

between many machines and certainly cannot be built by a single person. My postdoctoral work at

Argonne National Lab will give me the opportunity to start to work on this vision with some of the

most knowledgeable and skilled computational scientists in the world.

5.2 Conclusion
In this dissertation, I have demonstrated the ability to estimate 𝜅ext for strong gravitational lenses

at scale. I have used this ability to produce the first constraints on the distribution of 𝜅ext across a

large population of strong lenses, and demonstrated that these lenses fall in preferentially overdense

lines of sight. This is in line with previous expectations.
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This ability will prove critical to the future of time-delay cosmography. The field is working

hard to adapt to an environment with a much greater volume of data. My work has produced the

tools necessary to quickly and reliably estimate the value of 𝜅ext for large numbers of individual

systems, and a framework for combining those results into an estimate of the properties of the

population the lenses are drawn from.

Unfortunately, it is not clear how much I will continue to be involved in TDCOSMO and the

greater strong-lensing community in the near term. I plan to use the skills I have learned over the

last several years to build tools to accelerate science for the whole astronomy community, which

will likely come at the expense of my personal science output. I am content with this trade off, as

I believe I can ultimately have a much greater impact by building high-quality tools than I would

have focusing most of my time on science. But the ultimate goal is still to understand our universe,

and I cannot wait to see what our community will produce in the coming decades.
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Appendix A

Details of Weighted Number Counts
Implementation in cosmap

This appendix includes a more complete example of the cosmap analysis that is used to perform

the weighted number counts for the lens systems. We begin with the definition of the runtime

configuration:

# file config.py

from cosmap.config.models.sky import SkyCoord, Quantity

from cosmap.config.analysis import CosmapAnalysisParameters

from pydantic import Field, BaseModel

class LensParameters(BaseModel):

lens_coordinate: SkyCoord

source_redshift: Field(1.0, ge=0.01)

class Filters(BaseModel):

limiting_magnitude: float | list[float]

filters: dict = {}

class GeometryParameters(BaseModel):

radius: Quantity

98



inner_radius: Quantity

class Main(CosmapAnalysisParameters):

n_samples: int = Field(

1000, description="Number of samples to draw from the sky")

lens_parameters: dict[str, LensParameters]

geometry_parameters: GeometryParameters

to_remove: dict[str, any]

filters: Filters

This is an example of nested configuration. cosmap searches for the Main configuration block

at runtime, but that configuration block may itself be composed of other configuration blocks.

Any needed runtime configuration must be stored inside one of these blocks. But the content of

the blocks does not necessarily need to be directly provided in the runtime configuration provided

by the user. cosmap allows for the creation of setup transformations, which allow the analysis to

perform additional setup based on user input

# file transformations.py

class Setup:

@staticmethod

def build_filter_sets(lens_parameters, inner_radius, radius,

limiting_magnitude, dataset_name) -> dict:

if dataset_name not in columns.keys():

raise ValueError(

f"Dataset {dataset_name} not found in columns.json")

column_aliases = columns[dataset_name]

#make sure radius is a list

if radius.isscalar:

radius = [radius]
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#make sure limiting_magnitude is a list

if isinstance(limiting_magnitude, float):

limiting_magnitude = [limiting_magnitude]

filters = {}

# Create keys for the filter sets by combining the

# radius and limiting magnitude

for lens_name, lens_data in lens_parameters.items():

for r in radius:

for m in limiting_magnitude:

#get limiting magnitude without any a period

mag_key = str(m).replace(".", "")

#drop any trailing zeros

mag_key = mag_key.rstrip("0")

#make a key by combing the radius and limiting magnitude

key = f"{lens_name}_{int(r.value)}_{mag_key}"

filter = build_filter(lens_data.source_redshift,

inner_radius, r, m, column_aliases)

filters[key] = filter

return filters

As with standard transformations, this setup transformation is accompanied by an associated

entry in the transformations.json file:

"Setup": {

"build_filter_sets": {

"needed-parameters": ["geometry_parameters.inner_radius",

"geometry_parameters.radius", "filters.limiting_magnitude",

"lens_parameters", "Main.dataset_parameters.dataset_name"],

"output": true,

"output-name": "filters.filters"
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}

}

This transformations produces a series of functions that may be called on the catalogs of the

randomly-drawn fields. These functions filter the catalogs based on parameters such as the limiting

magnitude and maximum radius. These filters are then stored in the filters parameter of the

filters configuration block, which is accessible to the standard transformations as needed.

We will not include details of all the individual transformations performed during a standard

run here. However, it is worth mentioning the way outputs are handled. Any set of transformations

must define one output transformation. The return values of this transformation are considered to

be the output of the block and are passed to cosmap’s output routines. In the case of the analysis

discussed here, the output transformation looks like the following:

class Main

# additional transformations not included...

@staticmethod

def count(catalogs, sample_region, dataset_name, lens_parameters, *args,

**kwargs):

outputs = {}

column_aliases = columns[dataset_name]

redshift_alias = column_aliases["redshift"]

for lens_name, lens_catalogs_ in catalogs.items():

z_source = lens_parameters[lens_name]["source_redshift"]

lens_catalogs = lens_catalogs_["lens_catalogs"]

field_catalogs = lens_catalogs_["field_catalogs"]

for name, catalog in lens_catalogs.items():

# compute_weightfns function not included

lens_weights = compute_weightfns(catalog, redshift_alias,

z_source)

field_weights = compute_weightfns(field_catalogs[name],
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redshift_alias, z_source)

final_weights = {

name: lens_weights[name] / field_weights[name]

for name in lens_weights.keys()

}

outputs[name] = {

"ra": sample_region.coordinate.ra.deg,

"dec": sample_region.coordinate.dec.deg,

**final_weights

}

return outputs

and its associated configuration looks like the following. Note that the configuration for the

preceding transformations is left out of this listing.

"Main": {

"count": {

"dependencies": {

"apply_filters": "catalogs"

},

"needed-parameters": ["Main.dataset_parameters.dataset_name",

"lens_parameters"],

"is-output": true

}

}

The apply filters transformation listed as a dependency performs the final filtering using the

filters produced during setup. There may be multiple filters for each lens, involving a combination

of limiting magnitudes and apertures. Each is identified with a unique key, and each unique key is

associated with a single output file. In this way, cosmap allows the user to perform the analysis not
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only on several lenses at once, but also on several combinations of parameters per lens. cosmap’s

output systems are robust. In the largest test, cosmap successfully manged over 1000 output files

for a single run with no signs of instability.1

The beauty of this approach is that all the code presented in this appendix may be re-written

or swapped out at any time. Tweaking the analysis is as simple as updating a transformation or

parameter block.

1It’s generally bad to produce so many individual files, especially on shared resources. A better approach to output
may be in order.
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