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" ABSTRACT

Starting with partial wave amplitudes for TN > N7 and TN - several .
isobar model states of Nmm, we are able to apply the constraint of-
unitarity (using the K-matrix). This permits the removal of the overall

phase ambiguity.of the isobar amplitudes at each energy. The K-matrix

fits generated a smooth prescription for the T-matrix amplitudes,

énabling us to search the complex energy plame for poles. The

uniqueness of these poles was demonstrated by doing Breit-Wigner
refits to the fitted T-matrix amplitudes. The success of the refits
and the obvious interpretation justified a simple determination of

coupling signs for which there can be checks with theory.
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I. INTRODUCTION

The various aspects of our partial-wave analysis of the reaction

X

m > Nﬂﬂ’in the 130042000 MeV regioﬁ was recently presentéd'in a series
of publ:i.catiorlx_s.l'-5 The purpose of this report is to discuss in detail
yet another aspect; the K-matrix formalism and the procedure of
paraméterization for»the partiai—waﬁe amplitudes. To see how this
topic fits into the whble scheme, it will be useful to réview briefly
the salient features of our analysis.

It is assumed that the reaction TN > N7 procegds through several
intermediate quasi-two-particle states. For the intermediate. states, we
specifically consider the isobars.A, p, and € with their mass—IJ?
quantum numbers as 1236-3/2 3/27, 760-11" and 650-007. Restricting
ourselves to orbital L < 3 and totél J < 7/2, we construct the total

amplitﬁde T,, for "N -+ N7TT as a linear sum of the amplitudes for

23

production of each isobar. Or, schematically, -

Ty3 = alpy +bT o+ ...

where the coefficients contain the ﬁecessary_kinematical factors,
angular functions, Clebsch-Gordan coefficients, etc. Details of this>
isobar model, partial-wave expansions and ‘related topics are given -
in Ref. 1 which forms the basis of our analysis.
Equipped with this formalism and 200,000 events in the energy
range 1,3 to 2.0 GeV for the three charge-channels ﬂ+ﬂ-n, ﬂ_ﬂop, and
ﬂ+w0p, we performed maximum likelihood fits and found two sdlutions;

the 1972 solution (A) containing 24 partial waves, and the 1973
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solution (B) containing 28 partial waves. These were reported in

Ref. 2 and the ambiguity between the two was resolved in Refs. 2 and 3.
For details of the fittiﬁg progfam, tests, and quality‘of the solutions,'
etc. refer to Ref. 4.

From a group-theoretic point of Vieﬁ, one would like to think of
the process TN > N7T as taking place through a single-particle
metastable state or resonance. The complete picture then becomes
TN - Resonances - Quési—two—pa;ticle states - Nﬂﬂ.v An immediate point
of_interest in doing the entire partial-wave analysis is to find
these resonant states, obtain their chéracteristic parameters and
make comparisons with predictions from symmetry groups and other
theoretical models, pérticuiarly SU(6)W. Such comparisons are made
in Ref. 5. |

The subject matter of the present paper which meets the three
definite needs of the‘analysis are:

First, the Argand amplitudes reported in Refs. 2-4 were obtained
from an energy-independent analysis. This means that they were
defined at discrete energies and lacked continuity from one energy
to another. The methods to express them as smooth complex functions
of the total energy W are now presented.

Secondly, the Argand amplitudes presented so far also have an

~arbitrary phase at each energy. In this paper we show how the

constraints of unitarity and konowledge of elastic amplitudes can be
utilized to remove this arbitrariness in phase.
Thirdly, three possible ways are discussed to obtain the much

desired resonance parameters.



The present paper is more detailed than the letter published
earlier.6 K-matrix is first introduced which is free from branch cuts
in the total energy and is related to the T-matrix in such a way as
to satisfy the unitarity comnstraint imposed on'the S-matrix. This
relation, an iﬁtegral equation, is then reduced to a matrix equation
by making éimplifyihgjassumptions concerﬁing the subenergy dependence
of the T- and K-matrix amplitudes. We élso relate thg new reduced
émplitudés appearing in the matrix equation to the cross section.

In Secg IITI we discuss how the K-matrix can be used to scale statisticél
errors and show how the overall arbitrary phase of the isobar modelj
amplitudes can be removed by the K-matrix. The K-matrix, suitébly
parameterized with real poles and background terms, is then fitted to
the energy independent Argand amplitudes by using the minimizing
method due to Rosenbrbck.7 As a result of this fit, we obtain the
resonance parameters for the K-matrix, determine the arbitrary pﬁase
at eaéh energy (all Argand diagrams are now determined to within an
ovefall sign wﬁich is chosen.coﬁventionally; see Sec, IV),'and obtain
a swmooth prescripﬁion for each amplitudefv Thevre8u1ts on X2 are given
in Tables iI and III and the Argand diagrams are displayed in Fig. 3.
In Sec. V,>our matfix equation is extended analytically into the
complex W-plane to determine thé_complex poles, their residues, and
the partial widths for the T-amplitudes. This constitutes énother
approach to extracting resonaﬁce parameters. A third approach

(Sec. VI) is to do a refit of the smooth amplitudes from the K-matrix

fit using a unitary background plus a Breit-Wigner term. Results

A
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from these three methods are summarized in Table V. In Sec. VIL,
we give a presgription for fixing coupling signs for a resonance
coupled to different channels. These signs are useful for comparison
with theory. Finally, tﬁo other channels, Nn and Nnwm, are predicted

from our analysis and their evidence is discussed in Sec; VIII.



II. K-MATRIX FORMALISM

In this sectién we discuss how three-particle cross sections can be
described in terms‘of the isobar model amplitudes. We also discuss v -
how an integral K-matrix equation can be‘reducéd to an algebratic |
equation. Furthermore we introduce the parametrization of our K-matrix
which is used to describe simulténeously Nm > Nm and Nm - Nn7 partial
wave amplitudes.

The cross section for 2 + 3 particle processes in our normalization
isl

3> . 3 3—)

6 : : d'q dq dq .

(2m) f 2 4 1 1 2 3

o =221 |t 1%6%®-2q.) . , (2.1)
._4F 23 1 (2W)4 2el 2e2 2e3

where P is the overall four-momentum and 9 is the four-momentum of

the ith particle in the final state:

q. = (e, q,) . ' (2.2)
F is the Méller invariant flux factor:

F=lolvs . | | (2.3)

Here Ql is the center of maés (c.m.) momentum of the beam particle and . N
Vs is the c.m. energy of the system. Finally T23 is the invariant
matrix element for the 2 - 3 particle process,

Now, in the context of the isobar model, we assume that the

reaction proceeds through three quasi-two-body channels
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TN . > wA(1236)
- 'Np(760) ' : (2.4)
-+ Ne
where € represents strong s-wave TT final state interaction at around

650 MeV. Appendix F extends the formalism of Ref. 1 to give the total

cross section in terms of the partial-wave amplitudes.

1 | l JP | 2 thndsn
o= . z (3+1/2) | Y lTln-(s ,8) | ————
o hQYs n n 4's 4/3:

P
J

it £ P -
+§:zm: Tlm (sm,s) q)mn Tlm(sm,s)dsn dsm . (2.5)

Here subscript 1 indicates the incoming partial-wave; m and n denoﬁé'
thé discfete set of quantum numberé necessary to describe the'quasi-
two—particle state in the anular momentum representation; Qn is the
momentum of the n-type isobar in the overall c.m.; a, and s are the
breakup moﬁentum and the ehergy squared of the n-type isobar in its own

. P .
rest frame. Finally, the functionms @in arevthe recoupling coefficients
as given in Ref. 8. Notice that we have not yet integrated over the
Dalitz plot variables s, and s, in the second term on the right-hand
side (r.h.s.).

We have given the total cross section for two-particles scattering

into three particles via quasi-two-particle amplitudes of the isobar

model. Using the K-matrix representation of T. Graves Morr139 and
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Jacobson, we can write an integral K-matrix equation for two-particle
scattering. We extend this integral equation to quasi-two-particle : .

systems by defining Tif(pi > 4 ), where i is the incoming state of
B _ -~

up to three particles (a < 3), f is the outgoing state of up to three
particles (B < 3), and p, q are the four-moments of the particles.

This extension is accomplished by defining a K-matrix Kif(Pi > 4 )
a B

which is related to the above T,. by an integral equation analogous

if

to that for 22 scattering.

i o d3.—§k‘
T, .(p. ,9. ) - K, _(p. ,q.) = = fF T. (p, ,P_,)
}f i, fB if i, _fB z;nﬂ k=1 2€k im' i m
o : 4 g ,
XK (P, ,q9.)8 (P-Z P,). - (2.6)
m'f m o fB R .

If Kif(pi P ) is Hermitian then Tif(Pi »d¢ ) is unitary. This is

o
shown in ippeﬁdix A after we make a partial Save expansion via the
isobar model.
If ﬁe expand‘Tif in terms of the partial waves and use the isobar
model decomposition as we did above for the cross section, we obtain

(Y = two-particle; j,k = three-particle states; i »> several n isobars;

. , P
f » several m isobars for a given J state)

gt JP_i F Y JP
T - K ———ZT
nm nm 2 ny 4/— Ym
(2.7)
P .
i fn_‘] QJ qj jrl:; i fJP JP JP
+-Z ds, + ZE T, ®, ds.ds, .
> 5w we PR 3 g en 205

jFk



P
In Eq. (2.7) Kim has direct two-particle channel cuts removed,
’ P ' o
while ij has quasi-two-particle cuts of the three-particle channel

removed (which in our model describes the three~particle system). It
P
J . ' .

should be noted that ij still has two-particle subenergy cuts present.

If we include the stable two-body states and also the diagonal elements
P
of the three-body states in Qik’ we may rewrite Eq. (2.7) as

P P : P P P
RS L | 53 g
o) -] %‘ anY 0y Ky d5ydsy @

P .
Now the functions @ix have the significance

P Q
87 A

. 1275 SYX d(sy—s) G(S—SA) _ : (2.9)

for the stable two-body states |y) and |A), and

3t Q) 9y

= — (2.10)
/s« als)

S 8(s_-s

© YA YA)

for the quasi—twé—body states |Y) and |X) which belong to the same
three-body angular momentum repfesentatiOn. (We call this the "diagonal
element" of the three—Body states and is simply a statement of our
normalization conventidn.) Henceforth we shall discuss a single partial
wave, so the superséript JP can be dropped.

As it stands, Eq. (2.8) is an integral equation. We shall now
make certain factorization aséumptions that will reduce Eq. (2.8) to

a matrix equation. It is clear that a matrix equation will be easier
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for practical calculations (i.e., fitting the isobar amplitudes). Indeed
the factorization assumptions we make are already inherent in the isobar
model,
We assume iasltobfactor,
: *
TaB = TGB fa fB , (2.11).‘
where fa accounts for fhe barrier factors and final state factors of the
isobar decay and TaB is pnly a function.of S.

In addition we assume'KOLB can be factored in the same way:

* .
Ky = kog £y g (2.12)

.where k depends only on the total energy W and is free from branch points
in the energy plane. We shall take it to be a real function of‘s=W2.
If the several final-state resonance bands did not overlap, then a real
K-matrix would imply_a symmetric T-matrix. |

We can now reduce the integral Eq. (2.8) to a matrix equation by

the substitution of K and T ,.
af of

i
Tag ~ kaB 2 % Tay “yA kyB_ > (.2v.13) :
‘ &
For stable two-body states
2
Q8. 1£ |
by, = - A YAy (2.14)
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i.e., diagonal with value proportional to Q times the barrier factor,

and for three-body states
AYA = QYA f_YfA dsY dsy . (2.15)

The fact that the integrals over the subenergy variables can be
performed separaiely to calculate AYK imparts the dgsired matrix
character to Eq.»(2.13)-which_now connects a finite number of elements
that depend on the total energy only. In Appeﬁdix A we deﬁonstrate that
Eq. (2.13) is consistent with the usual uﬁitarity relation T—T+ = iT+AT.

Next we discuss the barrier factor f. In generél, we write
= B L . '
£,= W, a(Qa’ a) o (2.16)

where'Ba-is the square root of the Blatt-Weisskopf barrier'! which
depends upon the orbital angular momentum in the center of mass. Our
confidence in this choice for Ba has recently been increased by .
von Hippel and Qui_ggl2 who showed that their validity is not restricted
to square-well potentials and derived them from-the general.proberties
of spheriéal harmonics. |

We have intfoduced a weight factor Wa'in Eq. (2.16) to take into
account the essential characteristics of the isobar a. Thus, wa=1

for the stable two-body state and is given by

W= & (2.17)
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for a quasi-two-body state involving the o isobar. Here Ta’ not to be

confused with the previous TaB’ is defined as ' ' : -
Y, B (q_ , %) .
TOL _ o oo’ O(, : (2.18)
Era =8y~ 14y Boc(qoa ) '

In Fig. 1 we show the Vafious elements that enter into the transition

amplitude for B-isobar - a-isobar. The quantities Er and Ya for the.
a

A, p and € isobars are listed in Table I. Substitution of Eqs. (2.17)

and (2.18) into Eq. (2.16) yields

Yo - (2.19)

where Eq. (2.15) for the diagonal element Aau representing the o-isobar

becomes

oo = 2 L ° | (2.20)

We see that the normalization in Eq. (2.17) was chosen so that Aaa is
essentially an average of QaBé/(4/§), which is a dimensionless quantity.

Therefore k , in Eq. (2.13) is a dimensionless number, and in fact the

aB

whole Eq. (2.13) is dimensionless.
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We assume that kaB is real with no brénch'points and can be des-
cribed by simple factorizable poles (which represent the formation of
N* resonances) plus nonfactorizable background terms which are poly-
nomials in»/g. The K-matrix program Kanal which was written to do

the fits had the bossibility for three regular poles and a background

“lipear in W. That is,

3 .
Z —YB +C +WB (2.21)
] aB aB ST

OL

Turning our attention back to the cross sectibn, we note that it
can be expressed in terms of the reduced amplitudes_Tln. Starting with

. (2.5) and taking only one partial wave and isobar, we obtain

OREN
Q q_dE : .

- 1 2 "n'n n
0, (W = ZQl—w (J+~2—)f]Tln(w,En)| —g B (2.22)

By substitution of Eqs. (2.11) and (2.19) into Eq. (2.22), we get

. 1 ﬁ (w>|2 “ 'n 232 |T (E )|2dE . ,

o, (W) = ——— (J+3) e (2.23)

1n 2 2 .
16Q, W

- , , IT (E )| - dE

Noting that Tln(W) and Bi are independent of En’ this becomes

_T gl 2 |
o, = ] 5 (J+3) |rln(W)| Ay B - (2.24)
L _ _ _
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If the partial-wave S-matrix is defined by

S ,=26

o = Sop * ZiAgg (2.25)

the cross section is given by

Cam@ + Ha, |? ,
o, = 2 1o | ©(2.26)
In Q2 - ' :
7 1
Comparing Eqs. (2.24) and (2.26), we have
1 s Tin
A, = nan . (2.27)

1n 2_

The Aln amplitudes are the results of the isobar-model fit to

™ -+ ﬂWN2_4 and the A . amplitudes come from the elastic phase shift

11
13,14 . . '
The program Kanal was written to fit the A's by

analysis EPSA.
a X2 method, using the K-matrix parametrization of Eq. (2.21).
.Before leaving the K-matrix formalism, we indicate how we dealt
with the factlthat there.ére two deltavisobars iﬁ the Nﬂﬁ final state
(Nﬂl'rr2 = A1n2‘+ Azﬂi). We treated them as separate channels with the
same coupling. This coupling was'YA//fthere YA ié the total delta

coupling. Once we calculated the T's for the individual deltas, we

added the amplitudes together as

3
=]

A A

A 1.2 (2.28)
V2 V2
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An explanation of this equation and the last paragraph is found in

Appendix G,
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III. DETERMINATION OF THE OVERALL PHASE AND
SCALING OF ERRORS
In this section we discuss how we use the K-matrix to scale our
statistical errors to more reasonable values. We also show how the
intrinsic overall arbitrary phase of our isobar model amplitudes at a

given energy can be removed by the K-matrix.

A. Scaling of Errors

In order to use the K-matrix, we neéded to supplement our NTT
amplitudes Alﬁ with the elastic amplitudes.All. Tﬁd sets of A11 were
available, one from CERN13 and another from Saclay.14 Using theée, we
made two separate fits. However, it is well known that the deviations
between the two solutions are greater than the statistical errors;
this situation resulted in our use of larger errors in these fité.
The errors, G(All), were calculated by taking the rms (root meén squére)
'deviation between the tﬁo All solutions. For a few waves at some
energies this external error was too small, so the statistical error
claimed by Saclay analysis was used [no statistical error is quoted by
CERN] . For the inelastic waves it would be nice to use external errors.
However, usiné our statistical efrors which we felt were too small, : A
we decided to scale our errors so that the inelastic and elastic data
would contribute equally to the overall multichannel Xz. For the
bufpose of scaling errofs, we wanted to select a wave (or waves) that

had one clear resonance in the elastic phase shift and where our

inelastic fit would be in good agreement with the elastic phase shift
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frediction, Resonances in the 1500-MeV region were not good candidates,
because we were missing inelastic data from 1540-1650 MeV.20 Resonances
near 1900 MeV were also poor candidates, since we had limited ouréelves
to F waves in our analysis. This meant we were unable to describe-
satisfactorily the peripheral production of pions that becomes important
in fhis energy region.4 For these reasons, the 1700 MeV resonance
region seemed ideal. 1In this region there are four resonances that are
clearly seen in the EPSA: the S31, D33, D15, and F15. Since S§31 and
D33 resonate near 1650, they could not be used because of the energy
gap. The D15 is not in as good an agreement with the EPSA as the F15.
Therefore, we only took the FlS wave to scale xz—elaétic with
xz—inelastic in our K-matrix fits.

The procedure was to adjust the errors on the inelastic amplitudes
for the F15 until the X2 per energy bin was equal for the elastic and
the iﬁelastic contributions, We used only one pole and a constant
background as parameters in the K-matrix fit for the Fl5 partial wave
in the energy region 1585-1810 MeV with the inelastic amplitudes having
one free phase at each energy. Notige that at this point we are.using
the‘K-matrix to describe only the moduli of the inelastic amplitudes.

When we first fitted with external errors on the elastic and raw
statistical errors on the iﬁelasfic, by far the greatest contribution
to X2 came from the inelastic channels. As we scaled up the statistical
errors on the inelastic~amp1itudes; the X2 began to shift to the
elastic channel. At a scaiing of three on the inelastic errors, the

Xz per bin of energy became equal for the elastic and inelastic
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contributions. Three seems like a large factor. However, if one looks
. . , 14

at the statistical errors quoted by Bareyre at Batavia and compares

them with the external errors, one also finds a factor of from 2 to 4.

So for the rest of the partial wave fits, we used three times the

statistical errors for the inelastic and the external errors for the

elastic amplitudes.

B. Overall Phase

At each energy all the inelastic amplitudes are well determined
with respect to each other but have an overall arbifrary phase. With
the unitary constraint relating the elastic amplitudes to the
inelastic amplitudes, we are now in a ﬁosition to determiﬁe this phase
at each energy. For this purpose we.only consider dominant partial
waves shown in Fig. 2. In particular, the D15 and the F15 which
dominate partial waves in the energy range 1585-1810 MeV show good
resonant motion in the elastic channel; so we expect to see this behavior
in the inelastic channel as well. This was our starting point.for deter-
mination of the overall arbitrary phases in this energy region.

Our fitting program (Kanal) was designed to fit with an unknown
overall phase ¢i at the ith energy bin for the inelastic data. First
we obtained a solution for F15 and D15 from 1585-1810 MeV (8 elastic +
5 inelastic bins). Here we used a single pole and a constant back-
ground as parameters with an overall undetermined phase at each
energy. This fit was performed separately for both the CERN ana Saclay

EPSA solutions for the elastic channnel and resulted in four sets of
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overall phaées, one set of five phases each for D15 and F15 waves.,

Our aim was to reduce these four different sets to only one set thaf
would equally well describe the data for different inputs: DI15(CERN),
DlS(Sacléy), FlS(CﬁRN) and F15(Saclay). We accomplished this goal
through an iterative process. The values of ¢i were essentially
adjusted by hand until we obtained the best overall’)(2 for the four
solutions. For minimizing the total X2 for solutioﬁ A, hpwever, a more
compiicated procedure given in Ref. 15 was used.

Next we loocked at the F35 and F37 waves which went from 1730 - 1970

MeV in enmergy. In the overlap region (1730 - 1810 MeV), we minimized

all four waves, each with two combinations, leaving the 1850 - 1970 MeV

_phasés free for the F35 and F37. However, this procedure did not change

the overlap phases very much from the values obtained by just considering

D15 and FiS.

After finally arriving at a set of phases from 1650 - 1810 MeV,
we determined the éhases from 1850 - 1970 MeV just using F35 and F37,

where one pole and constant background were again used in the K-matrix.

Thus, we were gble to arrive at nine phases for our nine upper energies.

We then turned to the léwer energies from 1310 - 1540 MeV. In this
region the D13 and P11 are dominant waves and are ideal for determining
the phases. The problem here, however, waé to find a solution thét
would continue across the energy gap. The D13 at 1540 MeV is Qery
inelastic, but at around 1650 MeV this is no longer the case, On the
other hand, the P11l stays very inelastic all the way.through the energy

region. For this reason the Pll was the only partial wave that could
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be used to make the connection across the gap. Once we continue acroés
the gap we may use, as above,‘both D13 and P11 to detérmine phases -
below the gap.

With the upper energy phases fixed on the values determined above,
we pafametrized the K-matrix by two poles and a constant plus linear
background.- The pole positions in the K-matrix were initially set and
held at 1415 and 1730 MeV (nominal positions of P11 resondncesl4), and
the lower phases where left free to vary. We fitted over the entire
energy'range from 1370 - 2010 MeV in ordér to continue across the gap.
This gave the P11 given in this papef. We later let the pole poéitions
in the K-matrix vary. |

Having provided a coﬁtinuation acfoss the gap, we turned to the
D13 solution which was also fitted in the same range (13i0 - 2010 MeV)
as the P11. For the D13 we used two poles and a constant and linear
background. At this point the lower phases were determined'with

essenttially the same procedure as was used for the upper energies.

A
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IV. K-~MATRIX FITS

in this section'we give the results of the K—ﬁatrix fits. Thgse
fits were performed usiﬁg the minimizing method due to Rosenbrock.
In Table II we give the xz, degree of freedom and X2 per degree.of
freedom for each wave appearingvin solutions A and B. Since the fits
for the two solutions were done with different séts of waves and energy
range, we present in Table IIT the_)(2 Calcuiated over the same energy
range and same number of waves., In Fig. 3 we display the Argand diagrams
for solution B (Saclay) for the inelastic asvwell as the elastic
channels. For solution A see Longacre's thesis.lS The K-matrix pole
poéitioﬁs and partial widths are shown in Table IV which also lists the
"~ T-matrix resonance parameters discussed in the next section. For an.
explanatién of the signs attributed totthe Argand diagrams (Fig. 3)

“and couplings (Table IV) see Sec. VII.
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V. POLES IN THE T-MATRIX

Now we discuss how Egs. (2.13) and (2.20) are analytically con-
tinued into the complex energy plane. This continuation naturally
leads to an analytic T-matrix except for complex branch points associated

with the isobars and poles due to S-channel resonances.
. A. Kinematics

Once the K-matrix fits were completed, we searched in the complex
energy plane for poles identified with the different resonance states.
Be&ause the K-matrix generates simple poles in the'T-matrix, the
residue of the pole is factorizable. A simple proof of,thig is given -
in Appendix B. The fesidue matrix of the T—matrix pole is identified
with the coupling of the resonant state to the different channels.

One would like to relate this coupling matrix with the uéual ?artial
widths I' of the reéonance. The partial width is equal to the coupling
times a kinematic factor. The qﬁeétion‘is, should this kinematic fagtorw
be evaluated at the pole or on the real axis? We decided to take the
kinematics calculated on the real axis because for a simple Breit-Wigner
with narrow width, the partial width will be more real and the sum of .

the partial widths will be closer to the total width. See Appendix C;

B. Analytic Continuation

In order to search the complex energy plane for poles, we had to
continue analytically the Amn matrix into the complex plane. The off-

diagonal terms of Amn matrix turn out to be from 5 to 20% of the
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diagonal elements, In view of the fact that these terms add little
to the analytic sheet structure and a lot to the computer time, Qe
set the fo—diagonal terms of the Amﬁ matrix to zero when we searched
for complex poles.

Now to continue theAmn matrix to complex enérgy W, we have to do
a contour integration in the complex diparticle mass Ea—plane related
to a given isobar, Let us rewrite Eq. (2.20) making the energy
dependence explicit. (In the remainder of this paper we shall sometimes

set Ea = E for brevity.)

W—m3-

— T(E) 2Q(w,E) g—(E—)B?’(W',E)dE
2 .

+m :
A = 1 . , (5.1)

When we are on the real axis, all tefms in the integral are real. Since
we want all terms to‘be analytic in Ea’ we must be able to expand them
in a Taylor series with real coefficients as a function of Ea' Every
term in the integral is obviously analytic except lTa|2. However, we
know that Tu“is analytie. In fact, Ta gan be related to a function m, s

which is ffee from cuts, by

T = —— . (5.2)



iy

Recall that Ta is essentially the 2 > 2 scattering amplitude,; so that ma

. . 2. .
is an inverse K-matrix. Therefore, ITal can be written as
- — (5.3)

which is obviously analytic.

. ) ) . 2
1. The Pole in [T |®

A}

Next we derive Eq. (5.6) to show tﬁat ITaIZ has a pole, and that it
occurs exactly where the sheet II polg occurs for the amplitude Té of |
Eq. (5.2). We use the standard definition of sheets; the imaginary
part of q, > 0[{< 0] corresponds to sheet I[II]. Therefore, dropping
the o index, we have the usual relationships:

_ 1

o
A O E TR I S

* * * % - * *_ _
m (B) =m(E), q;(E) =-q (E), q;(E) =-q ;(B), q;;(B) =-q (E). (5.4)
From Eqs. (5.3) and (5.4), we have_

IT|? = L = L L (5.5)

W E)+EE) w4 (B)

This can be written in a symmetric form using both sheets:

71” - By F o T T® T ()
mis) =19y m (E )+inI(E )
1 1

- m(E)-iq ; (E)

* %
T _(E)T_(E ) . (5.6).
m*(E*)+iq;I(E*) IT I _
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Since T(E) is the two-body elastic scattering amplitude of the particles
that make up the isobar, it will have a pole on sheet II that is

properly identified with the isobar, as we set out to show.

2. Contours of Integration

Notice that both integrals in Eq. (5.1) are path dependent because
of the pole in ITQIZ. We can choose from among many paths of integration.
We are, howevgr, énly interested in the paths that go most directly
to the end pointsvdf integration because they lie near the physical
region, which is just the real axis.

In Fig. 4 we have drawn three different paths 6f integration and
labelled them with the symbols A, A', A" as used for the integrals
themselves, and in_Fig. 5 we have deformed the three contours to
show that they differ only by circles around the pole. Also in Fig. 5
we show a brénch'cut coming to the end-point of integration which isb
due to the factor Q in the integral in the numerator of Eq. (5.1). |
Along A' we want Q to be continuous; but this means that Q is on a
different sheet when the integration passes near the pole."So in order
to define on which sheet Aad is evaluated, we must specify both the
sign of the imaginary part of Q at the lower limit of integration and
also the path (A, A', or A") of the integration., Summarizing Figs. 4
and 5, we find six sheets generated by three contours (A, A', A") and
two possible signs for ImQ. However, we only expect to find poles on

the sheets with ImQ < 0 for reasons of causality.
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3. Sheets in W-plane

Next we point out that all values of A, A', and A" approach ZeTo
if the end point of integration (W—m3) approaches Eﬁole' To see this,
consider Eq. (5.1), which we write as A = I/D. . Then D diverges as the
end—point approaches the pole (in ITalz), but the iﬁtegrand_of I
contains a factor Q which always goes to zero af the end-point and
cancels the divergence of ITQIZ. Thus at the end-point, A equals a
finite number divided by infinity, which is zero. Hence, for A as a
function of W, we have shown that its values A, A', A" all become
equal at W =_Epole + m, SO that'Epole + my is the beginning of a branch

cut (see Fig. 6). There is, of course, also a conjugate branch cut at

*
Epole + T3

Soon we shall discuss hunting in W, looking for a pole in T.

also drawn on Fig. 6.

Suppose we find a pole at W on the A sheet; in general there wiil be
"shadow poles" at W' on the A' sheet and at W" on A", where W, W', W"
may be close. Hence we must understand the W—sheeﬁ-structure_of Fig. é
to decide which of the polés is mosf influential at the real axis.

To understand Fig. 8, it>is.hé1pful to consider Fig. 7, a sketch

of contours in the E-piane. In Fig. 7, a dashed line starting at Epole

corresponds to the branch cut starting at Epole + my in Figs. 6 and 8.

This line is no barrier to the contours A, A’', A", but we cannot move

the end point W-m, across this line without changing the names of the

3

contour (changing sheets in the W-plane):

Note that if W-m, is near the real axis the only short contour

3

is A. Consequently the W-sheet connecting to the physical region in

Fig. 8 is. labelled A.
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To go further we need Figs. 7a through 7d. 1In Fig. 7a, the.end
‘pointbof the integral is beléw the dashed line. As Qe deform the
contour from Fig. 7a to Fig; 7d, the end-point of the integral moves
around the pole in the E-plane. 1In Fig. 7d we are above the dahsed
line. If we consider point 3 in Fig. 8a and move it continuously up.
through the branch cut, webwill change sheets. We see that the A
contouf in Fig. 75 deforms continuously into A' contour in Fig. 7d.v'
Thus point 3 of Fig. 8a would move from the A sheet to the A' sheet,
e.g.,_point 2 of Fig. 8b.

In Figs. 8a through 8c we show three points on each of the A, A',
and A" sheets. TFor each point ﬁe have drawn continuous paths leéding
to' the physical region. In Figs. 8b and 8c, when we pass onto the A
sheet (the only sheet connected to the physical region) the lines are
dashed. The length of the lines in Figs. 8a through 8c aré a measure
of how close a point is to thg physical region. Therefore if we find
a péle on A, A", or A", we can use Fig. 8 to tell us how close it is
to the physical region.

In practicé it is necessary to calculate only one contour integral.

To show how this is done, let us define
-1 Co
A= D - (5.7)

where I is the main integral and D is the denominator of Eq. (5.1).
Call the denominator residue RD; then, by using Cauchy's integral

formula for contours A and A", we obtain
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. R ' 2 q(E)
D' = = - ——
D-D" = 2miR 2n1]§i2: (Epole E)IT(E)I 5 (5.8)
pole
2
— " = 1 .
I-1 27T1Q(W,Epole) B (w,Epole}RD . (5.9

We must be sure that we evaluate Q(W,Epole) on the correct sheet. If

‘we know A, Rb, and D, we can evaluate A" by

. 2
- 2"'TlQ(w’Epole)B (W’Epole)RD

v I = .
A" = 5w ITIR (5.10)
| D(1 - D )
Or,
2 v
A - 2miQ(W,E ) B°(W,E D : :
= Qw, pole ( pole)RD/ (5.11)
1 - ZﬁiRD/D '
In the case of A' the spiral around Epole is counterclockwise.(see
Figs. 4 and 5), so 2mi > -2mi, and that is the only change in the
denominator D. In the main-integfal I, however, Q changes the sign
because it is on the other sheet (see Fig. 5). Taking these into
acéount, we get
A - 2miQ(W,E__. ) BE(W,E_ . YR /D |
Al = pole’ pole . (5.12)

1+ 21T1'.RD/D t
Another property which may be demonstrated is that.

AW) = - AGT) - (5.13)

x
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for all three contours A, A', A" and both signs of Q. Furthermore,
ok k%
Q(W,E) = - Q (W ,E ) (5.14)
for a given imaginary part of Q. This follows from
2 2 k% : .
Q"(W,E) = Q"(W ,E) . (5.15)

All other terms that appear in Eq. (5.1) are Hermitian. Thus they

- are the complex conjugate of the value above the real axis when they

aré integrated below the real axis. With this in mind, we have

‘ W- -m,
,i_f lnm]mwmqm)BwEmE

AN +m2 | ]
W—m3 =
f reey | LB g
b )
%
W —m2 .
-_l? j[ IT(E)I Q(W ,E) Q(E) B2 (w" ,E)dE
LW
m, +m,
- L2 . (5.16)

3
jr |T(E)[2 g%?l-dE N

Therefore Eq. (5.14) is true by the way we constructed our integfals.

C. Poles

To illustrate sheets and poles in our model, we will take the F15
amplitude as an example. The F15 resonance lies near the PN threshold

which is Vs = (1700 - i54) MeV as shown in Fig. 9. When we did the
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T pole search, we found F15 poles on each (A, A", A", for ImQ < 0)
sheet. The pole on the sheet generatéd byvthe-A contour is closéstvto
the physical region. Figure 9 shows the sheet structure and continuous
paths going to the different poles on the different sheets. The poles
and corfesponding sheets are 1668-i66(A), 1681-i61(A'), and 1665-i72(A").
The path from the physical region to the pole on the A" sheet is drawn
in such a way as to reveal where it crosses the branch cut. All poles
reported in this paper are those closest to the physical region.

Table IV gives a summary of fhe K-matrix and the T-matrix poles
for solution B using both,the CERN and the Saclay EPSA. Further |
discussion of these paramefers is described in Sec. VI. ‘The coupling

signs and other sign conventions are explained in Sec. VII.
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VI. BREIT-WIGNER REFIT

This section discusses how we refiﬁted the smooth T-matrix obtained
from the K-matrix fit with an amplitude which is a sum of a unitary
background and a Breit-Wigner, rofated in such a way as to insure
unitarity for the total amplitude. Once the refits are pefformed;
the resonance parameters obtained from'ﬁhe K-matrix, the T;matrix poies,
and the Breit-Wigner refit can bebcompared. The motivation for these
coﬁparisonsvwas to find out how sensitive the resonance paraméteré are

to the prescription from which they are obtained.

A. U(UB + BW) Amplitude

In the past, resonances were parametrized.by the Breit-Wigner.
form. The Breit-Wigner by itself is unitary; Since there is always
a background present due to other singularities, the T-matrix is in
general a sum of Breit;Wigner plus background. Because this is not
evidently a unitary prescription, we have turned to the K-matrix. .Now
that we have made the K-matrix fits and obtained a smooth description
of the data, we would like to know what the Breit-Wigner ﬁarameters
are for comparison with theoretical predictions. For this purpose
we used a unitary amplitude consisting of a Breit-Wigner and a unitary
background with novlocal poles denoted by U(UB + BW). Since we believe
that the backgrouﬁd should not be affected locally by the presence
of the résonance, we assumed that it is unitary with no local poles.
In order to construct U(ﬂB + BW), the Breit-Wigner was permitted to

rotate by energy dependent phases (we believe that the Breit-Wigner,
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and not the background, must accommodate itself to unitarity). These
phases are calculated by the Davies—Barangerl6 constraint equation;
also, see Geobel and McVoy.16 Once we have made a K-matrix fit, we
then refit using U(UB + BW) to the smooth T-matrix in the region of
the pole, in order to extract the Breit-Wigner parameters.

Let us assume we have a unitary background S matrix Bij’ gnd a
Breit-Wigner given by

ST, r, 10,

] 5 , where Pj = Q§/2 Yje I (6.1)
>, Y. Q '
m k “k ‘

R;. =
3 (ER-E) -

N e f

where all terms are real except Fj.

The Davies-Baranger constraint equation is
*
>, B, T, =T, . (6.2)
3 ij 73 i -

Let us relate Bij to the background T-matrix T:

B.. =86,. + 2iQ].'/2 Q%/z T (6.3)

ij ij i J ij

Now if we substitute Egqs. (6.1) and (6.3) into Eq. (6.2), we obtain

.~1/2 1/2 1/2 i :
?(éijwzlqi Q"% Ty v, e : O (6.8)

which can be shown to équal to

if,

. _ - 3 ]
Y;sind, = %: ijj Tije . (6.5)
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The right-hand side of Eq. (6.5) seems at first to be a complex number,

but the left-hand side is real.

the right-hand side equal to zero; i.e.,

%:Qij Imag(Tij)cosej

At this point we assume that Qj is real. This means we must

restrict ourselves to energies such that the jth channel is open

(Q? > 0). We now define the vectors

(Sin) =

" and the matrices

(Real).=

(Imag) =

sin 61

sin 62

QlYiReal(Tll)
QlYlREal(le)

QlYlImag(Tll)
QlYllmag(le)

énd

and

- ZQijReal(T-ij)sinej .

J

(Cos) =

Q2Y2Real(T12)
Q2Y2Real(T22)

Q,Y,Imag(T,,)

So we can set the imaginary part of .

(6.6)

(6.7)

. (6.8)



34—

_Equation (6.6) then becomes

(Imag) (Cos) - (Real)(Sin) = 0 (6.9)
or |

(Cos) = (Imag)™" (Real)(Sin) . o (6.10)

In addition we have the added constraints between the sine and the

cosine.

Cos?0. + Sin%6, =1 . (6.11)
im0

Unfortunately we were, in general, unable to solve these transcendental
equations. Therefore we imposed upon Eqs. (6.10) and (6.11) a X2
constraint and parametrized Oi as a polynomial in W.

We were also inﬁerested in looking for the pole in T = U(UB + BW),
{(which is just the pole in the Breit-Wigner term) in the comple# o
. W-plane. Since the U(UB + BW) amplitude must be Hermitian, Gi must
" have the same real axis cut struéture»as Qi[or Aii (see Eq. 5.13)].

Therefore a natural parametrization for Gi would be

m’ .
0 () = Q; (D n{%) a W (6.12)

B. D15, F35, and F15 Refit (Solution A)

Having established this system, a series of K-matrix fits and
Breit-Wigner refits were performed on three well-established resonances
which were coupled to two, three, or four channels. We used the D15,

F35, and F15 resonances. The results of these fits and refits are
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given in Table V. In line one of Table V we have identified the pole
term of the K-matrix with Breit-Wigner-like resonance parameters: the
ﬁass is the location of the polé, Er’ the ith partial width is just
(kinematics)><yi, and the total width is.the sum of the partial widths.
From this K-matrix fit we looked at the T-matrix pole where the real
part of the pole position is identified with a mass; twice the

- imaginary part. is identified with the total width (pole position is
récorded in the mass column of Table V); From the residue of the
T-matrix pole we defined the partial width as discussed in the first
part of Sec.vV. We record. the real part, the imaginary part, and the
modulus of partial width in Table V. For the total width we record
the sum of the real parts, the imaginary parts, and the moduli of each
partial width. For this T-matrix we do a U(UB + BW) refit from one-half
width before the ﬁole (in the T-matrix) to one-half width after the

. pole. We then obtain Breit-Wigner parameters (mass, partial widths,
and total width) which are recorded in Table V. For the Breit—Wigner
term of the refit, we look at the pole in the complex W plane thus
recording the pole positionnand residue-related partial widths as we
did for the T-matrix., Next we refit the T—ﬁatrix again, but this time
‘relaxing the Davies-Baranger constraint, thus performing a UB + BW
refit where the ei's are now constant with energy. From this Breit-
Wigner refit.we record the fitted parameters and the pole paraﬁeters.
Finally_we went back to the K-matrix fit and took out all the ‘
inelastic amplitudes, thus performing a fit only to the elastic data.lB’la

In order to absorb the inelastic part, we added an unconstrained Am
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channel. We then went through the saﬁe series of refits and pole
searches except for leaving out the U(UB +.Bw), sincenwe only wa;ted_
to fit the elastic channel.

Figure 10 shows the Argand diag?ams obtained from the U(UB + BW)
refit to the F35 wave. Thé solid line is the total amplitude from
1740 - 1900 MeV (one-half width below TFmétrix pole to onefhalf width
above). The dashed line is the background for the same, energy range.-
Arrows show the airection of increésing energy. Let us define Aei as
the change of rotation’angle 6i of the Breit-Wigner over the range of-

refit. Then

A, = 0. (W = |w h - 0, W = lwpolel-zlm(wpole)] (6.;3_)

i pole

is the pole position in the T-matrix. Aei'is plotted next

where W
7 pole

to the elastic Argand diagrams of Fig. 10.

The resulﬁs for the three resonances for both CERN and Saclay
EPSA input are listed in Table V. Note that the pole position and
residues for the T-matrix from both the K-matrix and U(UB + BW) are
very close to each othér. This is similarbto the observation of Eall,.
and Shaw17 for the P33 reéonance of the N7 system. A word of warningv
is necessary. These U(UB + BW) refits exactly réproduced the K-métrix '
solution with a smooth parameterization in the region of the pole.
This would not be the case if we refitted our daté. Appendix D shows
how small fluctuatioﬁs cause rapidvshift in the pole position. The
K-matrix parameters for the F35 have very little to do with the actual

resonance parameters. This is because the background term in the
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K-matrix is very large, and we have shown in Appendix D of Ref. 15

that the background term couples directly into the pole position of the’
T-matrix. Also one can easily show that the K-matrix pole is not
stable under change of dimensionality (see Appendix E). For these
reasons the'resonance parameters obtainedvfrom T—matriﬁ poles and

U(UB + BW) refits are the best candidateé for checking theoretical
predictions., Since they aisagree by factors of 2 with each other,

we would not expect theory to do any better.
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VII. SIGN OF COUPLINGS

One possible prescription for extracting the signs of resonance
cduplings (for the different channels) from the total T-matrix near a
resonance energy is discussed in this section. These signs are
important for comparison with theory. The following is a summary of
our procedure and conventions.

® When the analysis was begun the set of partial waves had an

arbitrary overall phése at each energy. This arbitrariness was

. reso%ved by the K-matrix fit. The resulting complete set of

diagrams, however, was still determined only to within an over-
all arbitrary sign.21 We chose PP11l (Am) to be "up", thus fixing

the orientation of the other diagrams relative to this amplitude.

_‘A (+) or (-) sign appears in the upper left-hand corner of the
inelastic diagrams in Fig. 3. Its origin is as follows.l-lnside
our programs a certain-arbitrary convention was usedI to constfuét
the three-particle final states in the angular momentum repre-
sentations. We tﬁen had fo switch to the "baryon first"
convention. This switch, in general, affects the Clebsch~Gordan -
coefficients and giveé rise to the upper-left sign indicated in
the diagrams. An Argand amplitude shown in our "internal"
diagram must therefore be multiplied by its_corresponding upper—
left sign to convert it to the baryon first convention.

® ve now comé to the cougliﬁg signs. For the K-matrix, the sign
in the upper right-hand corner of the box in Table IV (where the

partial width is shown) comes from the real K-matrix coupling of
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Eq. (2.21) and has already been changed to the baryon first
convention., These parameters and the signs are so meaningless
that’they wefe not even tabulated in Ref. 6. |
® The T-matrix coupling signs, indicated in the upper right-hand
édrner of the box in Table IV, come from the off-diagonal terms
of the residue matrix and again have been changed to the baryon
first convention. These signs correspond to the Method 1II of
Ref, 6. . |
@ One can also réad the sign direétly off the Argand diagrams of
Fig. 3 and multiply tﬁis coupling sign by the sign to change
to the baryon first convention given in the upper left hénd
corner.

However, the resonance is not always necessarily pointing up
or down. In these cases one could do a unitary Breit-Wigner
refit to determine the sign of the resonance éoupling. But this
is really not necessary because if we can see the resonance
shape we should be able to guess the resonance rotation angles
eie We see, from Eq. (6.1) that the angles should be measureable
by comparing the elastic and the inelastic channels. In the
elastic channel (All) the resonance is rotated by 261, and in
the inelastic channels (Ali) the resonancé_is rotated by 61+Gi,
It is clear that Si has a range from -90° to 90°. Thus by
determining these angles we will fix the sign of the couplings.

We have seen that once we made the unitary Breit-Wigner refit,

the total T-matrix produced by this method was very close to the
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T-matrix produced by‘the K-matrix.

Thus we shall employ the simple interpretation of U(UB + BW)
but determine the coupling sign directly from the T-matrix
elements produced by the original K-matrix fits., In fact, for
all the resonant waves which have been fitted, we have looked
at the T-matrix for all the elastic (including, e.g., Am > Am)
.and inelastic channeis and determined by eye what the nominal
values of the 8's are. This procedure is essentiaily the one
given in Methods I and II of Ref. 6. Table VI gives a list of
the signs of the couplingsvand the anglesbfrom this eyeball;fit.
If the nominal value of 6 is within #30°, we think we are safe
in determining the sign. But if the value of 6 is greater than

+60°, the sign is questionable.
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VIII., PREDICTED CHANNELS -

In this section we discuss two K-matrix fits in which we introduced
an extra channel in order to make up for the lack of cross sectiqn
obsérved in the N7m system. In the S11 wave we knowlg there must be
a component of Nn. In the F37 wave we assumed that the additional
éhannel was N7mm,

The Pél has no evidence for résonanée structure and such a small
cross section of it was observed in the isobar amplitudes that we did
not do a K-matrix fit.

Around 1520 MeV a sizeable amount of cross section goes into
Nn(about‘4 mb). In our K—métrix fit to S11 we included the Nn channel18
as a predicted channel (i.e., no input amplitude to constrain the xz).
Our results are consistent around 1520 MeV with all the Nn cross
section going into the S11 wave. The S11 amplitude for the Nn predicted
from the K-matrix is seen in Fig. 3. |

" In the 1900 MeV region we do not saturate the inelasticity of the
F37 wave by 3 mb, so we introduced a predicted channel. In this energy
region, 1900 - 2000 MeV, the N®WITW cross section grows from 4 to 6 mb,19
S0 we.madé the predicted channel an F37 decaying by Ap with ahgular
momentum in a P wave. Thus our analysis forces a prediction of the
amplitude for F37 decaying into the Nmmw via a Ap decay in a P wave.

The predicted Argand amplitude is shown in Fig. 3.
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IX. CONCLUSIONS

We were able to apply the constraints of unitarity (using-the
K-matrix) to isobar-model-generated amplitudes. We obtained a good
representation of the Argand diagrams in almost all channels. These
permitted us to remove the overall phase uncertainty of the inelastic.
amplitudes at each energy.

With a good representation of the T-matrix we then could extract
the pole parémeters associated with resonant behavior in the Argand
diagrams. The uniqueness of the pole parémeters was demonstrated
by doing Breit-Wigner refits to the fitted T-matrix amplitudes. Thus
we found the same pole parameters in this alternative ptescription.
However, these refits showed, in general, it was not possible to relate
pole parameters unambiguously to the parameters of the Breit—Wigner;
Furthermore, the success of the refits and the obvious interpretation
of the amplitude U(UB + BW) (of Sec. VI) justified a simple de;er—
mination of coupling signs from the'fitted‘T—matrix (K-matrix—generated)

amplitudes.
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APPENDIX A: UNITARITY OF THE T-MATRIX
We wish to show that the T-matrix as defined in the text satisfies
+
T - T+ =it At ‘ (A1)

It was related to the K-matrix by (see Eq. 2.13)
Thk (A2).

By definition the K-matrix is real. The A-matrix introduced in

Now, it was shown in Ref. 8 that the recoupling coefficient ¢ is

* . ' _ :
Hermitian, i.e., & , = & ,. From this it follows that A is also

YA YA

Hermitian, A = A+. If we solve Eq. (A2) for the T-matrix, we obtain

‘T = k(1-1/2 Ak)"1 . | (AA)_

Let us substitute Eq. (A4) into the left-hand side of Eq. (Al); we get

.

. : : -1, » '
k(l—% S R G % kAT) k= iTiAT . (A5)

The next step is to introduce the unit matrices within [ ], in the

appropriate places in the left-hand side of Eq. (A5):
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i 4.7t i+ i -1 i o+t i i -1
[(1 +=kA) (1+7kA ):I k(1 -=Ak) ~(1+ZkA) k[(l——Ak)(l———Ak) ]
2 2 2 2 T2 2
R .
= iT_+AT . o (A6)
or,
i+ T 1+ i ity 4
(1 +7 kA ) [:(l +‘2-' kA )k - k(l—-i- Ak):l (1 -&E Ak) = it AT. (A7)
. -1, k. .
1+ b lkg k4 lszk 1-f a0 Lt (A8)
Since A is a Hermitian matrix, we have
i, .+ -1 i -1 + ' ' ‘
i(l + E—kA ) kAk(1 - E-Ak) = it ATt. . (A9)

Finally, from Eq. (A4) we note that the matrices following A are
\

just T and the matrices preceding A are T+. Indeed Eq. (Al) is

satisfied.
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APPENDIX B: FACTORIZABLE RESIDUES

In this appendix we show that simple poles in the T—matrix have
factorizable_residues.

The first step is to demonstrgte that a factorizable matrix has
only one non-zero eigenvalue. Consider a matrix B which has only one
non-zero term Bll' Let Ui' be a unitéry matrix. Consider the métrix B'

such that

3' = U'BU . , (B1)

Using the condition that only the B

11 term is non-zero, we obtain

* ‘ .
B!, = U, B U, _ - (B2)
or, rewritten another way,

o , .
Bij = (Uli /Bll) (/B11 Ulj) . (B3)

It follows from Eq. (B3) that

_ ) o
' ' - ' .
B, Bjj (Bij) . N (B4)

We shall use this result shortly.
It is clear that when we have a pole in the T—matrix, the deter-
minant of T-l will be zero. We may diagonalize T—1 with a unitary

matrix U.
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T = : : (B5)

The determinant Det(TBl) becomes

R (B6)

-1, _
Det(T 7) = Alkzk

If we have a simple zero at complex total center-of-mass energy
E = EO’ then only one éigenvalue is equal to zero. By contrast a
dipole (higher order pole) would have two (many) zero eigenvalues.

Therefore we may assume that one eigenvalue is given by

A, = C(E - E) B (B7).

. -1 .
and the others are non-zero. Therefore the diagonal T “-matrix can

be written
T. = v )\ - (38)

and the inverse is

T. = 1 - (B9
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The diagonél residue matrix is defined as

= 1im (E-E) T. .  (810)
By £ B, ‘0’ D \

- From Eqs. (B9) and (B10), we get

¢ O
Ry = lim — = o (B11)

ol
O

Notice that the non-diagonal residue matrix is just

R = U+R.DU i (B12)

From Eq. (C4) we know that it factorizes.
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APPENDIX C: POLE AND RESIDUE FOR
A STMPLE BREIT-WIGNER
In this appendix we discuss the shift of the'pole parameters from
the mass and width parameters of the Breit-Wigner. Also we discuss
possible definitions of the width and how it is related to the residue.
For simplicity we take a single—channel T-matrix which is generated

byva K-matrix:

T = — v SR - (c1)

where A is the kinematic factor. If we want a simple S-wave Breit-
Wigner, we need a simple pole in the K-matrix without any barrier factors.

Therefore we have

K = E—E%gﬁ' 5 - (C2)
R . v

where E is the total center-of-mass energy and ER is the K-matrix pole

l

position. TFor A let us take a form that has a square root behavior

and is equal to one at E = ER:

A= Y~ . 1 (c3)

T = —— - (c4)
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We know that we will have a pole in T when we have a zero in D(E),

the denominator of T. Let EP be the value of E where D(E) is equal to

Zero:
D(EP) =0 . (c5) |
Therefore
T/2 ER : v

Squaring both sides of Eq. (C6), we obtain

2 . .
2 r 2
E, - 2<ER —'ﬁ> E, +E; =0, (c7)

which can be solved by the binomial theorem

2 , 2 »
EP=ER1—L2 i}2£ 1——r'—-2— . o (c8)
SER : » 16E '

"If we make the narrow width approximation (ER >>T), Eq. (C8)

becomes

2 I,2

- 2N\ |
E3 S gel | 2 Lo s ) e
) R R

Taking the root with the minus sign because we want the pole to be on

the correct sheet, we see that E_ is given by

P
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[ 2 . 2
EP_=ER1--T—2— -171" .1-~F——2— . ~(C10)
8E- : 328

The real part of the pole position has been shifted by —F2/8ER from

the K-matrix pole position. Also the width has been reduced in size by

3 2
r /32ER. |
Next we expand D(E) in a Taylor series about Ep,
3D | |
D(E) = - ~ (E,-E) + ..., (c11)
oE P .
EP

recalling that D(EP)'= 0. Differentiation of D(E) and Eq. (Cll) vyields

D(E) ~ <% + —_—iiz———>(EP-E,) : | (c12)
Ep Bg

If we substitute into Eq. (C12), the expression EP[Eq. (€10)] and

. assume ER >> T we obtain

“D(E) = <%— + ——ﬂ-z—————> (E,-E) . ' _ (c13)
' /ER(ER—il"/Z) ‘

Simplifying, we get

\2 . . ' .
D(E) = —l——z— (EP—E) - T (clb)
o \r-iE2 »
4ER

The residue at the pole is defined by

(Ep-E)

G (€15)

R = 1lim
E ~ EP
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Therefore we see that

r oL _ il ' '
R—2— . ‘.(Clv6‘)

The residue of the T-matrix is related to the coupling of the

total = ZAX(coupllng)..

resonance. We may define the coupling such that T
Now the question is: what momentum should we use in calculating the
total width? For the coﬁpling we used the residUe.of the pole, so one
might think that the momentum at the pole should be used. On the
othér hand the momentum on the real axis tells us how much of the
coupling is physicaily seen.

We also know that the total width is associated with twice the

imaginary part of the pole position, which is equal to

3‘
= 2xImag(Ep) =T - —— (c17)

32E

I1total
' R

Using the A on the real axis evaluated at Real(EP) and the residue

Eq. (Cl6), we obtain

I‘tot:al = (c18)
Using ER >> T, we get
.2 3 ,
T T .
T =T - - —— (C19)
total AER‘ 16E2
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Next, we use A at the pole position:

. _I% _ar oar
2| R 8Bp 2 g2 2
total ER 2 8ER
where'ER >>T'. Thus
2 3
r T
T = = (c21)
total ZER 8E§ .

It is clear that A on the real axis gives a total width with smaller

imaginary part and magnitude closer to twice the imaginary part of E

p*
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APPENDIX D: FLUCTUATIONS AND
THE T-MATRIX POLES
In this appendix we show that the poles in the T-matrix depend
on how smdothly one parameterizes the T-matrix. For example, let us
take the well known N7 resonance P33. The simplest form for the P33

resonance amplitude is

60 (1)

T = 123-£-160
For simplicity we have suppressed the kinematic dependence in the
total width. This amplitude can be parameterized by an M-matrix
(see main text, Eq. 5.2)
1 : . oy
T= m-i - (02)
Again, for simplicity, q has been set to the value of 1. Therefore
We>have
_1236-E '
M= _60——— . - (D3)
It is clear that we have a pole in the T-matrix at (1236-160).
For the demonstration, we will add a small fluctuation to the
M-matrix. We can.then write the M-matrix as
M = lggg:g-i £ sin(n(E-1236)) . . (D4)

The T-matrix will now have a pole at E = Epole’ where
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= R i . i - - .
Epole 1236 £ 60 ¢ 31n(n(Epole 1236))-160 (Ds)
If the fluctuations are small, we expect
‘E ~ 1236-160 (D6)

pole

Substituting Eq. (D6) into the right hand side of Eq. (D5), we find for

)

the change in Epole (AEpole

AEpole ~ iv60 £ sin(n(-160)) . | (D7)

Using the properties of the sine function, we have

e60n_e—60n E 60n
BB ore ® F 008 \ T | ~ i 30een . (p8)

We see from Eq. (D8) -that it is possible to have a large shift in
the pole position due to small fluctuations in the M-matrix if n is a
large number. Why pas this happened? An analytic function is_
determined by Laplaces equation. This means it has to have a boundary
condition in order to be well determined. We have only defined the
function on a short interval on the real axis. Because of this fact,
we need an added assumption thatvthe fluctuations in the M-matrix
nust have a period equal to or gféater than twice the particle energy
spacing (smoothnéss assumption). Stated another way, fluctuations
must arise only from particle structure. Ifbone describes the

experimental fluctuations in the real data too well, thus having a
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very small period, one will find poles which differ by a large amount

in the complex plane,
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APPENDIX E: THE K-MATRIX POLE AND
ITS DEPENDENCY ON THE.DIMENSIONALITY
In this appendix we show that the pole in the K-matrix depends on
the dimensionality of the K-matrix. To demonstrate this simply,
assume that we have an elastic scattering amplitude (Tll) which is

generated by a two-channel factorizable K-matrix

AL _ _
Kis 5% - (E1)
Therefore
q Y2
_ 11
T = 5 (£2)

NV
Ep-B-ia;v; - 19,7,

Let us also assume that we are below the threshold of the second

"channel., This can be expressed by letting

q, = ;qul (E3)
Substituting Eq, (E3) into Eq. (E2), we get
‘ q Y2
T = 11 | (E4)
N TN e - |
R Ypid91 =19
If we now describe the amplitude by a single-channel K-matrix,
1

Tll = , ~ (E5)
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we would obtain equally good fit to the data if

2
Y1

K = (E6)

‘ 2
ER+ 'qzle - E

It is clear that the two-chamnel K-matrix has a pole at ER while

the single-channel K-matrix has a polé at ER + ]qzlyg.

The usual parameterization for a single-channel K-matrix is

__A : N
K = E—:E-+ B . : (E7) v
P : v ,
For our case we have
E =E_+|q (E)|Y2 : (E8)
P R 27p 2 .
We want.
Y2
e L . (E9)
B E,+|a, |y, - E
P S SRR )

where B does not have a pole at Ep‘ -Solving Eq. (E9) for B, we get

2 o2
R S

B . 1 (E10)

2 .
(Eg+ la, v, -E) (E -E)

where B has a pole at E = Ep! Using L'Hospital's theorem, we can

remove the pole from B by setting



el

2
Yl _ .
A = ;
dlq, EDT (E11)
1 - _..__.__._p_._. Y
: dE 2
Thus we can describe the amplitude with a single-channel K-matrix,
by letting
2
N1
L dla, EDL
. dE Yy ' | -
K = : +B . (E12)
‘ ' E - E : '
p

Therefore; both pole position and residue are dependent on the

dimensionality we use.
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APPENDIX F: DERIVATION OF EQUATION (2.5)
OF THE MAIN TEXT

Starting with Eq. (60) of Ref. 1

do = g‘lf |“ dp , ' _ (F1) -

and Eq. (43) of Ref. 1

f
u

S : :
L gh(3) T (hu) (F2)
we obtain by 5ubstit‘utio'n and integration

2
m

. v .
S LT VI I ID iDL - ' ;
9 Wp m j E nm ®n B Tn(w’wi) Tm(w’wk)dp (F3),
We note that although the indices n and m include ‘the indices j and
k (see Eq. (1) of Ref. 1), we will let them be separate for now.

If we take the sum over j and k and divide the double sum into

a single sum over j and a double sum over j and k (j#k), we obtain »

2 *
v = u U *
0=2 J— Z Z T (W,w,)T (W, w,)d
vj.pr unmgngm n( J m( J)p
(F4)
ﬂz _ * * . o
- [SEY
+ = | = = T (W,w,)T (W,w )d
i#kJ WP u om By & Tol J) n(Ws¥ ) dp

The first term of the above equation has already been worked out.

in Appendix C of Ref., 1. The result is (for ca = 1/2 and Ob = O)
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first i _ 1 J 2 '
= L 3 = . ‘
term pz z (J +2 ) fITn (W,wj) | dwj (F5)

We have suppressed the sum over j because j index is now included in n.

For the second term we have

2
second m u
= z
term Wp % f u g Em T , W )T (W,wk)dp ' (F6)
hEa :

If we now pick for phase space dp Eq. (31lc) of Ref. 1, we have

term Wp nm Y *n Tm

2 ®
~second _ T~ 2: ./”2 gu gU T W, w )T (W,Wk)
3%k : v ‘ (F7)

2

L dw? dwi dcos8d¢do. .
320 J

Since all the dependence of u, cos8, d, and o are contained in gs,

we can sum and integrate over these variables. Thus we can write

*

s MW |
second _ o o Eu &, &n d(cosB)dpda
" Wo ) (W,W )
cem P g% mok 320
ue (F9)
T (W,w,) dvdu
n ] j

The brace inside the clerical can only be non-zero for the states
that have the same initial JP gquantum numbers. The reason is the
same as that given in connection with the first term in Appendix C

of Ref. 1. Thus we can redefine our normalization of Tn and gs and
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obtain Eq. (2.5) of the main text. It is also necessary to break up the
single index n and m into an index that runs over the initial JP state

and the isobar channel,

P 2 Q q dw
. 1 J nn ““n
O w2 ) [ﬁf”n O T
5P n .
(F9)

J P P

* J
+EEHT (W,w )@J T (W,w )dw2 dw2
nom m m mn n n m n
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‘APPENDIX G: DERIVATION OF EQUATION (2.28)
' OF MAIN TEXT
- In order to show why Eq. (2.28) is of the form it is, let us
consider four channels N, AI 1, AZW, and Np, where Nm(n=1), Alﬂ(nEZ),
. -
Azn(n=3), and Np(n=4) for a certain J state.

From Eq. (2.5) of the main text, we have

24 ds
oJ (J+ ) [f]T 22 2
4vs 4F
f] JPIZ Qua5ds, ! JPlz 9,48,
+ . —==— + {|T
“13t W/ 475, 141 4/s 4Ys,
P P P ' P P P :
A r oy T
+f] 12 %23 Tp3 dspdss ¥ flez ®g4 T14 dsyds,.
P P '
RIS O o
T3 034 Trg 45948, + [ [ T3 &1, dsqds,
P P P P
o NI Pl '
) T %2n Tap 98498yt Tyy 054 Tyg dsgdsy |- (CD)
" For simplicity let us ignore the A m. and A,m, interference term

1" 1 272

in the cross section, because it is real and does not add anything more

to the derivation than the combination of the Alﬂl and Azﬂz interference

with the Np system,
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Using Eqs. (2.11), (2.14), (2.19), and (2.20) of the main text

and substituting them into Eq. (Gl), we obtain

2 2

m 1
= EE'(J +3) [[lel Dby, + [Tygl 8185,
1

Q
|

2

* %
Tyl B384 + T 14811854 + T1aT14by 185,

+

* % * * -
* T T1al 8 * T14T13A11A34] : @

Taking advantage of the fact that in the isospin space the two
delta contributions are equal and that we have built into our definition

, . 8 ‘ _ A
of the A-matrix the base-symmetry, we kgow Fhat A22 = A33 and A24 = A34f

Therefore, we can write

P
R P

2
Ql

2 2

a + %) »[Ilel + T

A

9 131 295

%

* *
13 T14los + T14(Typ T30,

*
+ (le + T T13

2 | |
+ 1Ty, A44] : | -

This can be further reduced .to

P A,.m 2 ' 2
A 1
¢ = U3 [(Ilel + T30 08y, :
1 (G4)

2
* *
+ 2 Real {(T12+T13)T14A24} + ITMI AM]
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Again bose-symmetry implies that T = T... This means that T.

12 13 12
and Tl3 must add to give the interference term.
We can form a total delta amplitude by adding le and T13. However,

we want to define a TlA such that

P AT 2 ‘
AT U+ [TlAI Ayy - ‘(GS).
Q
"It is cleér that
2 2 2
lTlAI Ilel + IT13I (G6)
‘This implies that
T T o
T, = L2, 713 , (G7)
V2 V2

which is Eq. (2.28) of the main text.

Finally, the coupling of the K-matrix forvthe two delta states has
been reduced by 1/v2 . This can Be most simply shown, if we consider
just a three—channe; K-matrix, where channel -1 is Nm and channelé 2
and 3 are Al My and Aznz. If we only have one single pole in thé

K-matrix and no delta-delta interference, the T-matrix can be written

as
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Yi¥1 YiYp Y1Y3
3 5 2

Y1Yo YoYp Yo¥j
5 5 7]

Y1Y3 YpY3 Y3Y3
2 5 2 o
T = - . : ‘(G8)

. i 2
ER'W—f(AHYl"’A +A )

2 2
22Y2 T 833Y3

We want to replace this by a two-channel T-matrix with just an

N1 and a single AT channels.

Yi¥1 YiYp
2 2
, Y18 YaYA | |
T = 2 2 (69)

i 2 7
ER-W-7 (A7) +8557))

If we now consider Eq. (2.28) of the main text, we see that

Y.Y Y, Y.
Y)Y, 12, 1’3
ER - W i(A222+A 2y 7 mRe-w iizi 2+§5;2+ 2y (G
W=y W819Y1 TR0 , 7 B11Y1 TR Y T Y,

This equation implies that
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Table I. Parameters of Breit-Wigner used in Watson final state factors
"equation (2.18).

isobar, o Mass, Eru . Width, ya' Orbital angular
(pion masses) (dimensionless) momentum, Qa

Delta 8.83 ) 0.40 1

Rho 5.464 ' 0.20 1

Epsilon 6.0 . 0.8 0




Table TII.

Results of K-matrix for solutions A and B.

1.797

Solution A Solution B

Degree CEEN Sacéay Degree CEEN Sacéay
Wave xz CERN x2 Saclay Frzzdom Ez?f' : Exf— XZ CERN X2 Saclay FrZZdom d%f. &%f.
S11 89 57 62 1;435 0.99 203 157 106 1.915 1.481
S3l 136 142 ‘73 1.863 1.945 114. 125 82 1.390 1.524
P11l 153 161 98 1.561 1.643 190 187 119 1.597 1.571
P13 118. 89 47 2.511 1.894 197 - 172 55 3.582 3.127
P33 110 104 52 2.115 2.000
ﬁlB 202 225 142 1.423 1.585 221 210 148 1.493  1.419
D33 110 119 52 2.115 2.288 168 166 124 1.355 1.339
D15 59 70 20 2.950 3.500 65 81 20 3.250  4.050
F15 44 31 31 1.419 1.000 78 59 35 2.229 1.686
"F35 27 21 7 34 0.79% 0.618 40 34 34 1.176  1.000
F37 23 10 23 1.000 0.435 52 39 25 72,080 1.560
Total 961 925 582 1.651 1.589 1438 1334 800 1.667
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Table TII. K-matrix x2 solution 72-A and 72-B over same energy range
and same number of waves.

72-A  73-B 72-A 73-B
Wave XZ‘CERN X2 CERN XZ Saclay X2 Saclay
s11 89 114 57 o 86
531 13 , 78 142 o 88
P11 : 153 152 161 | 148
P13 118 197 89 172
D13 202 201 225 210
D33 110 68 119 65
D15 59 65 70 81
F15 ' 44 71 51 54
¥35 27 40 21 34
F37 23 52 10 39

Total 961 1058 925 977
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TABLE 1V. K-matrix and T-matrix poles and partial widths I', in MeV for both CERN and Saclay EPSA. The [' are calculated from both the K-matrix samplings
(real) and the T-matrix residues (complex) times the kinematics on the real axis at the pole. The sign superscripted to the partial width is explained
in Sec. VTE, and the T-matrix entries correspond to Method II1 of our Physics Letter (Ref. 6). The K-matrix parameters are so unphysical that they
were not even tabulated in Ref.

Origin __ Mass I'(total) T(NT) I'(Am) I'(Np) I‘(Nf..) ['(other)
CERN Saclay CERN Saclay CERN Saclay CERN Saclay CERN Saclay CERN Saclay CERN Saclay CERN Saclay
Vv o su 11 SD11 11 11 n) sst1
N - _ i
K-Matelx  Keal 1502 1501 61.8 60.1 136 12.3 .t 0.0t 19" 187 1.0 1.5 4525 an®
Pole ' - -
Real 1499 1496 48.4 46.4  31.0 27,9 .g" ot 1.6 2,00 17 3.2 13.9% 12.8%
TMatrix { fmag. A2 ‘“’2" 61.31 45,01 -19.61 -26.41 .31 .11 6.33 5.00  2.54 2.51 . 71.8 6005
Pole Mod. f120.0]  |113.5] [36.7] [38.4] l.91  |.4] 6.5} is.4]  |3.0] |40 |73.0]  [65.2]
K-Matrix Real 1684 1684 210.4 213.9  166.5 168.5 10.5  11.7 3.17 2,97 24.17 24.4~ 6.2" b5
Pole .
Real 1651 1648 44,7 36.4  38.9 32.4 2.1 2.3 -2.0" -1.6% 152 15.47 —9.68  _ppa®
T-Matrix 1m.,‘.‘-”9' 'L;l ~75.41  -84.2i <-50.1i -52.3i 1.2  1.0d 7.04 678 0,00 =3.31 <33.50 =343
Pale Mod. 1123.1]  [121.2] |e3.4]  |61.5) |2.4] |2.5] 17.31 . |s.0] {15.2] |15.8]  [34.8]  |36.4]
K-Matrix  Real 1973 1964  628.7 616.9 1.8 1.9 368.2% 1257 . 156.1% w9t 25T 2.7 102.%  is0.7E
Pole .
. + ;
Jumu 1949 1937 13.2 8.0 8.9 R L -10.60 -39t -3t a0 17.7% 2.6
temacrix {tmag PR oh 4g 0 20065 2088 -25.21 10.51  10.21 -41.51  -41.61  31.6 34,41 -2.28 LS
Pole In.,d. [127.4]  }134.5] J24.5]  |25.2{{10.5| . {10.4] l42.80  [43.7] {31.8] [3&.5]  [17.8]  |20.7]
Wave ru : P11 pP1l Pr1l  psiL
R N . - .
KMatrix  Real 1429 1431 597.7 583.9  90.5 90.7 74.67  73.0 301.2 288.97 131.4%  131.3
Pule . .
- - - - + S+
II\H-:II 1379 1381 65.3 70.0  45.0 49.8 11.67 1l1.4 12.0 1217 -3.4 -3.3
PoMately Jhmag. 2 ‘2" ‘»Z—‘lgl “115.74 -115.7i -127.61 -126.8i -7.51 =-7.41 10.41 . 9.51  9.04 9.2i
Pote Mod .. |174.6] |175.01 [135.3] {136.2]]13.9] |13.6] 115.9] 115.3)  [9.8] |9.8}
K-Matrix  Real 1697 1693 283.9 235.7 9.2 12.5 53.37  39.8" 437" 30.27 177.77 15327
Pole .
. - - + + - -
Real 1712 1708 -3.0 -1.0 -3.7 ~2.7 3.1 3.7 2.3 2.6% a7 ~4.6
NeMarix S fmag. 2AL 5 N 2.31 =461 -1.94 -4.91 -2.7i 1.2i 1,10 7.6 5.81
Pote Mod . 23.2 [18.0] 5.9 3.3] |5.8 4.51 |2.6] j2.8] |8.9] |7.4]
I
Wave P13 : _r13 ' ___PP13
K=Matrix Real 1766 1764 227.6 -  227.6 46.4 47.5 . 181.5 180.1°
Pole
Real 1716 1716  49.7 49.6 1.8 2.2 ) 47.9 7.4
—126i =124 .
TeMatrix | Tmag. T LE2SE ’—22;‘ -65.91 —64.13  -15.41  -15.74 -50.51  -4B.41
fote Mod. [85.1] f83.6] [15.5] |15.8] T les.s]  167.7]
Wave DL3 D13 DS13 DD13 DS13 DP13
- + + + + - -~ - -
K-Matrix  Real 1526 1530 258.5 264.2 78.9 81.0 104.6° 90.7% 62.37 76.7 .7 0.0" 12.0 15.8
Pole + + + + + +
Pole ll{oul 1501 1514 111.3 121.4 81.3 88.1 7.6" 10.27 20.9% 21.8 -2 -2 1.8 1.5
Pt rix Imug._ﬂz—j— ‘% -12.0i ~13.61 474 3.1i 12,74 14.0i -11.31 -8.61 -18.1i -22.2i  0.01 0.01
Pole IM()d. |139.9] {152.7]  |81.4] |88.1| |14.8| [17.4] |23.8| [23.41 ]18.1] |22.2] |1.8] |1.5]
+ - o - - + +
K-Matrix  Real 1743 1759 1551.8 1407.7 34.8 31,5 394.7" 384.1%1052.97 933.7 41.6 23.47 27.8 35.0
Pole
. . - - . - _ -
Real 1678 1710 87.7 167.1 -5 -10.3 3177 so.st 47T 212 -7 -6.07 59.07 122.7
—Sh7i - i ’ i i i
TeMatrix ) lmag. ’—"—;i --(’—(%i S139.9i  -455.1i  -11.6i - 9.31 -9.41 -58.21 -B.31 -49.81 2.74 1.5i 413,41 -339.41
Pole Mod. j189.6| jso8.6| {1i.6] [13.9] {33.0] [77.1] [9.5] |s4.1] }7.6] 6.2 |127.9] [357.3]

. (continued)



=73~

N
TABLE IV. (cont.)
orivi Mass I'(rotal) I'(Nm) : T (Am) T (Np) o I'(Ne) _lother)
rigin CERN Saclay CERN Saclay CERN Saclay CERN Saclay CERN Saclay CERN Saclay CERN Saclay : iy
Wave n1s D15 DD1S
K-Matrix  Real 1677 1676  156.3  [42.3 64.2 59.4  92.17 82.97
Pole T - -
Real 1668 1663  193.3  152.6 76.4 0.0 117.0  92.7
TeMatri 1m;.g‘.‘U—;i 'i‘%i- 15.2i  -9.610 “11.2i -17.61  26.5i 8.0
Pole Mod . [197.1] {155.5] [77.2]  162.5| |119.9] [93.0]
Wave ¥15 F15 FP15 FF15 - FP15 Fpls
; N N N
K-Matrix  Real 1687 1685 153.6  147.3 80.3 81.0 277 78" 0t 1t et s 25.7 3.6
Pote
+ + + - -
Real 1674 1668  132.3  121.7 79.6 72,7 10.97 15t <16 IS AR W 25.9 23.6
teMatrix { lmag. %'1—353 S35.41 <42.94 S9.11  -19.54  1.1i .23 -3.81 -1.0i -10.3i  -8.0i -13.3i —14.6i
Pale Mod. [144.6] |132.0] /0.1 |75.3] [11.0] j1s.1] 4.1i {10 (20.2] jiz.8]  [29.1]  |27.8]
Wave 531 $31 SD31 . s$31
. . + + +
K-Matrix  Real 1446 1439 2558.1 2490.3 6.0 8.1  61.0° 49.2 2491.17  2433.0
Pote Real 1583 1583 2.6 21.9 —27.6  -26.6  73.67 71.3% -24.37  -22.8
T-Matrix lnmg."—z‘% —L{%i_ -67.0i -b6.1 -26.61 -26.11 -29.6i -28.7i - ~10.81  -11.81.
Poly Mod. [146.3] [139.8]  {38.3]  37.3] [79.3] {769} [26.6] 125.6]
K=Matrix Real 1685 1677 542.9 492.5 175.1  158.9 387 gt 364.0°  324.5
Pale _ _ + 4
Real 2025 2029 =157.3  -158.6 -18.4  <17.9 -102.4 -96.8 -36.5 =440
ToMatrix lmag.-163i -1641  =9.9i -11.64 = 9.7i - 9.2i 16.3 14.9i 16,51 -17.31
Pole 1 2 2 .
Mad. |164.6] |165.3] |20.8] |20.1] [103.7] }97.9] . ls0.1)  147.3]
Wive P33 . P33 PP33
K-Matriz  Real 1232 1232 112.8  113.9 112.8  113.9 0.0 0.0
Pole
Real ~ 1212 1212 88.1 88.4 88.1 88.4 0.0 0.0
P-Mat rix nnug.'l‘l‘z’—’? -_1% -38.71  -39.5i -38.74  -39.5i 0.0i 0.04
Pole . '
Mod . 196.3]  }96.8] |96.31  |96.8] |o.0] |o.0]
K-Matrix Real 1999 1998 3585.8  3593.9 245.3  264.5 3340.5 3349.47
Pole .
Real 1610 1609 8.6 5.9 19.8 17.4  -11.27 -11.5°
T-Matrix 1 [mng,—Lgi _&? -233.14i -231.81 -76.01 =74.9i -157.1i -157.041
role Mod . |236.0] |234.3] |78.5]  |76.9] 1157.5] [157.4]
Wave D33 . D33 D33 DD33 DS$33
K-Matvix Real 1567 1S6A 427.5 4794 0.3 1.0 57.97 6217 s9.0b s34t s1003t 3s2.9%
ole
- ~ - - +
: Real 1672 1681  85.8 89.6 33.6 34.5  93.47 98.97 -24.27 -22.87 -12.1" -20.9
ili 25
T-Matrix Tmag. -4'—;—?— ﬁ‘—gl 133.54 130, 5.61 9.51  54.7i 55.04 -12.11 -15.91 85.4i 81.5i
Pole Mod. |256.4] |260.9]  |34.0{ [35.8] [108.3] 113.1] |27.0] |27.8] |87.0] |84.z]
K-Matrix Real 1969 1969 235.1 267.8 24.2 23.8 16117 188,77 757 15.87  42.37 3957
Pole - - - -
0l Real 1926 1915 132.2 105.9 A a0 usst sr0t <97 —137 w27 2000
FoMatrix Imag . 186 -'59—21 C147.3i -176.94 -6.71  -4.71 -154.14-182.2i  1.4i 1.84 12.14 8.2
Pole =
ohe Mod. {222.5] |230.5| |6.7] 4.7} {191.3]|201.9] {1.7] [2.3] f{22.7] |21.6}

PO - {cont Ty
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TABLE IV. (cont.)

~ Mass T'(total T (NT) I (o) i (N0) r(Ne) I'(other)
Origin CERN Saclay CERN Saclay CERN Saclay CERN Saclay CERN Saclay CERN Saclay CERN Saclay ' CERN Saclay
Wave ¥35 F35 FF35 ¥P35
+ + - -
K-Matrix Real 1888 1894  459.5  471.0 58.8  59.1 0.0 0.1 400.7"  411.8
Pole
Reat 1808 1813 103.5  108.6 20.9 .21.7 36.5  -38.07 46.0° 48.9”
PeMatrix x.n;.,;_‘.l*izl'.. “’% ~91.14 -93.0i -22.8 -23.2i- 1.3 12.8i ~79.51  -82.6i
Pole Mod. l161.1] |167.9] 130.9] |31.7]  |38.2] |40.1] l91.91  196.0]
Wave . Y F37 FF37 F¥37
R-Matrix Real 1900 1900. 550.7  550.8 102.3 102.0  203.2°  201.6° 64.4" 65.17 180.8%  182.0%
Pole R
Real 1924 1924  232.5 232.6 83.5 81.1 73.37 75.97 21.8" 23.77 53.9% 5198
T-Matrix lmug."g%‘r 'égzi -29.61 ~30.41 -24.41 -24.81  -9.9i -11.9i 29.74 31.1i -24.91 —24.910
Pole Mod. |257.2] "|258.4] 187.0] |84.8] {75.0] |76.9] 136.8]  ]39.1] [59.4]  {57.6]
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TABLE V. Comparison of parameters of K-matrix, T-Matrix, and Breit-Wigner refit, all in MeV.

Mass

~I(totan)

F(n

RO

CERN Saclay

CERN Saclay

CERN Saclay

) (
CERN Saclay - CERN Saclay

CERN Sac Ly

2 channel, small background, D15(EPSA) + Nru

Wave D15 pls DD1S
K-matrix Real 1684 1683 161 153 66 64 95~ 89"
poled
K-Matrix
Fit
Real 1666 1662 159 127 68 56 91" 717
T-Matrix -159i 140i ) . . . :
boleb Imag. —2‘ A—zi -241 -39i -14i -18i ~10L -21i
Mod. |161] f133f |69l 59| 92| |74]
U (UB+BW) Unitarized Real 1692 1684 176 153 7 64 105 89~
Fit BW parameters
Real 1666 1663 156 130 68 56 88 74"
Unitarized -158i -1401 . . < . :
B poleb Imag. e - -241 =361 -12i -18i -1I1i -181
Mod. {158} 113s] 169 59 89] 76|
UB+BW BW parameters Real 1683 1684 167 153 68 64 99~ 89~
Fiv - ) - -
Real 1659 1662 134 127 57 55 77 71
B pore” Imag. 1301 'l{ig—"- -45i ~401 -224 -18i -23i -22i
Mod. fratd [v33] |e1} s8] lso}  |7s]
Wave Bi5 nls bD1YS D15 (KPSA) only
K-Matrix Real 1682 1682 156 154 64 64 92 90
Pole
K-Matrix
Fit
Real 1660 1660 125 122 54 53 71 69
T-Matrix -14041 -138i . e . s P
Pole Imag. 2 3 =431 441 201 204 23i 244
Mod. |133] f129] s8] |sel 751 |73]
BW parameters Real 1682 1684 153 150 63 62 90 88
UB+BUW Real 1661 1663 ’ 55 56
Fic BW Pole’ Imag. '33(2)—‘ "yi;i -18i  -15i
Mod . |58] |58]

a. K-matrix parameters from Solution A which are reported in Longacre's thesis.

15

b. T-matrix pole has complex position and partial width (Fi). Modulus of ["(total) is sum of the moduli
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TABLE V. (cont.)
ey ey s bmtime s - . ot arn 1 s
Origin Mass I'(total) IGE) __I(am I (Np) I'(NE)
CERN Saclay CERN Saclay  CERN Saclay CERN Saclay CERN Saclay  CERN Saclny
3 channet, large background, F35 (EPSA) + N
Wave F35 Fas FF35 FP35
K-Matrix Real 2169 2136 3401 2545 178 165 47t 135t 1777 2206”
Yoled
K=Matrix
It .
Real 1824 1832 33 35 3% - 36 19% 16t -200 -1
ToMaLix Imag. t2h -218L S1481  ~1524 =264 251 -174 =194 -105¢ -1081
Mod ., |177} {178] 44! |as) |26 |25 [107) |109]
Ot i) Unitarized Rea) 1907 1911 325 320 51 so 55t sot 29 2207
it BW parameters
Real 1824 1833 53 50 43 e 160 15t -6T 11"
U ardeed 1mag. ML CBBZL Lygnp eauet ~274 <25t 12 <16t 994 -1064
Mod . | 173] {180] |51 s3] |23 || 199] |106}
BW paramotars  Read 1957 1942 391 5 15 1w owt w2t wgT
U tiW
it . + " - -
Real 1783 13 -1 38 18 155 a2 64
W Poied Inag. ~3884 =3041 =200 -621  ~524 =361 =361  -2061 -202
Mod. | 323} l316| |72] |e5] |al]  |39] |210] |212]
Wave — B35, LIS ks £35 (EPSA) only
KeMatrix Real 2042 2062 1746 1808 . 154 156 1392 1652 !
bele .
Keperix Real 1810 1822 »
et et 1nag, 2 -8 -2 -264
Pole Mod. |42] |63
BW parameters Real 1891 1901 300 201 36 35 264 256
UR+8W
it
Real 1815 1833 20 2
B Pole® tmag. L AL -3 =11
Mod. [24] |24]

d, K=mateix paramoters from Selutien A which are reported in Longaere's thesis.ls

b T=matrix pule has complex position and partial widteh (Fi). Modulus of ['({total) is the pum of the moduli Yi.
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TABLE V.
Origin : Mass . I'(total) ' I (i) I (fn)
CERN Saclay CERN_Saclay CERN Saclay CERN Saclay ¢

4 channel, medium background, F15 (EPSA) + N7

Wave ‘ F15 F15 . FP1S FP15
; _ N
K-Matrix Real 1684 1682 156 152 83 81 5 7 53% 50t
- Pole? '
K-Matrix i .
Fit : : " " .+ P
Jkeal 1672 1669 152 138 99 89 5 7 337 30 15t
T-Matrix Imag. ']5%' '»15—;—1 -49i -51i =174 ~20i 114 9i =274 =25i ~16i =150
b 2 ;
Pole ] Mod . i176] 6t 11o1] Jor] 12| [12] la2| |39} |21] |19]
Unitarized Real 1681 1678 149 142 86 81 16t 16" CTAE T TS

BW parameters
U(UR+BW)

Fit . .
o Real 1672 1669 148 137 92 . 84 AN 37t a5t T
Unitarized i -148i ~1401 294 e 113 194 M : - 16 TR
BW Polob - Imag. R 5 5 331 351 124 121 81 7i ~141 -151 14 151
Mod. . 1162] 151 92| 18s] [11] [11] [40] |28] F19l v/
BW parameters Real 1679 1679 148 141 84 go 127 12t 36t a4t TS
UB+BW ’ ’
Fit . . ) + + + + + ‘4
[ Real 1672 1672 152 144 93 87 10 107, - 377 35 TN Vi
b / -1471 ~1401 . N . . - ; P P . : i
BW Pole G Imag. . T3 -301 -25i  ~10i  -7i -9i -9 -18i -161 AR IR
[ Mod . 1165] 1154) 193] {87] {1al |14} fa1| [38] et el
Wave ] F15 F15 ) FP15 - FIS (KPSA) only
K-Matrix . Real 1693 1692 183 179 107 104 77 75
Pole .
K-Matrix
Fit
Real 1659 1658 70 64
T-Matgix Imag. _-12—21 _Lél . To-241 =261
Pole Mod. - . [74] 69|
BW parameters Real 1678 1677 135 128 82 77 53 50
UB+BW |
Fit
Real 1664 1665 75 71
BW Pole? Imag. ’32—21 '-12# -154  -13i
Mod. |771 173

a. K-matrix parameters from Solution A which are reported in Longacre's Thesis.!3
b. T-matrix pole has complex position and partial width (I'i). Modulus of ['(total) is sum of the moduli Ii.



~78-

Table VI. List of partial width times sign of coupling and the angle of rotation of the Breit-
Wigner from eyeball fit. i )

N7 Am PN EN Other
MASS rtotal an ¢N‘n’ rAn ¢Ap FA'n ¢A‘n rpN ¢pN eN ¢eN IPOther ¢Other
WAVE s11 SD11 ss11 SP11 Nn SS11
1510 100 20 0° | -2 -80° +4 0° -4 0° £70 55°
1660 130 58 | -22° | -6 0° +8 65° ~18 0° 40 | -55°
WAVE P11 PP11 PP11 PS11
1390 200 110 | -30° | -50 -40° -20 10° +20 70°
1710 75 15 | -70° | -15 0° +15 40° | +30 { 70°
WAVE ~ P13 PP13
1720 150 30 | -45° -120 | -25°
WAVE D13 DS13 DD13" DS13 DP13
1520 150 .| 90 0° | +15 0° 423 | -45° | +15 -40° +7 0°
1710 | 300 | 30 | -45° | 475 | -45° | -60 | -45° | -15 | -45° |-120 | -45°
WAVE D15 DD15
1660 150 67 | -10° | -83 -10°
WAVE F15 FP15 FF15 FP15 FD15
1670 130 78 -5° | 413 0° -1 0° | +19 0° -19 0°
WAVE s31 sp31 $531
1600 150 60 | -60° 60 -10° -30 -60°
WAVE P33 PP33
1640 300 30 | -45° | -270 | -45° |
WAVE D33 DS33 'DD33 DS33
1680 240 48 | -15° | -72 15° -12 | -75° | +108 55°
WAVE F35 FF35 FP35
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Table VI. Continued.
NT A pN eN Other
MASS rtotal N7 ¢N1r rAn ¢An I‘A'Tr I‘A'TTA oN %N I‘eN eN 'FOther rOther
1830 220 40 | -15° -48 0° -132 | -35°
WAVE F37 FF37 FF37 Ap FP37
1925 240 96 -5° -60 60° -36 | -70° 48 0°
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FIGURE CAPTIONS

Fig. 1. S-channel diagram for isobar 0 outgoing andAisobar B incoming,
where B(q,%) is square root of Blatt—Weisskopfll barrier factor
for momentum Q in an angular momentum state L. Wa is the Watson
final state factor for the o isobar. For WE and Wa, see Eq. 2.17
in text.

Fig. 2. Diagram of l-n2 for the six different resonances used in
determining the overall phase. |

Fig. 3. »Argand diagrams for the elastic and inelastic channels. The
smooth curve on the Argand diagrams is the amplitude obfained
from tﬁe K-matrix when the description was possible. Cross-
hatched marks on the curve correspond ﬁo the energies D, E, F,~
etc. The arrows indicate the known resonances of Ref. 14.
The sign in the upper left-hand corner of each Argand plot
converts amplitude to '"Baryon-first" conventioﬁ.

Fig. 4. Three different‘paths A, A", A" in the E-plane. E is the
diparticle mass that makes up the isobar. W is the compiex

‘ Vs (three~body) where one searches for ﬁoles in the three-

body T-matrix.

Fig. 5. The paths of.Fig. 4. are deformed so that they differ only by
integration around the pole. |

Fig. 6. The branch cuts in the Vs or W—pléne (total c.m. energf)
generated by the pole in the final state interaction of the
isobar.

Fig. 7. Three different paths of integration in the E-plane at.fdur‘
different values of W. The dashed line is the projection of
the branch cut from the W-plane which is not crossed by W-—m3

as it moves from (a) to (d).
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Fig. 8. Three points on the'A, A', and A" sheets and how one has to
travel frém them to the physical region in a coﬁtinuoﬁsvway.

Fig. 9. The poles of the F15 T-matrix which lie near pN threshold.
Each sheet is generated by the pN cut. |

Fig. 10. Argand diagrams from the U(UB+ BW) refit to F35 wave. Solid
line is the U(UB + BW) amplitude; while dashed line is the
unitary background UB. Energy range is from 1740 to 1900 MeV,'
where arrows point direction of increasing energy. AGi is the
change of rotation angle of Breit—Wigner in this energy range

[Eq. (65)].
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Fig. 3c.
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