Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title

The IceCube Data Acquisition Software: Lessons Learned during Distributed, Collaborative,
Multi-Disciplined Software Development.

Permalink

https://escholarship.org/uc/item/0c28z7zn

Author
Beattie, Keith

Publication Date
2008-08-12

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0c28z7zn
https://escholarship.org
http://www.cdlib.org/

The Icecube Data Acquisition Software: Lessons
Learned During Distributed, Collaborative,
Multi-Disciplined Software Development

K S Beattie!, C T Day!, D Glowacki?, K D Hanson?, J E Jacobsen?,
C P McParland! and S J Patton'!

! Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2 Department of Physics, University of Wisconsin, Madison, WI 53706, USA
3 NPX Designs, Inc. Chicago, IL 60615, USA

E-mail: KSBeattie@lbl.gov, CTDay@lbl.gov, dave.glowacki@icecube.wisc.edu,
kael.hanson@icecube.wisc.edu, john@mail.npxdesigns.com, CPMcParland@lbl.gov,
SJPatton@lbl.gov

Abstract. In this experiential paper we report on lessons learned during the development of
the data acquisition software for the IceCube project - specifically, how to effectively address the
unique challenges presented by a distributed, collaborative, multi-institutional, multi-disciplined
project such as this. While development progress in software projects is often described solely
in terms of technical issues, our experience indicates that non- and quasi-technical interactions
play a substantial role in the effectiveness of large software development efforts. These include:
selection and management of multiple software development methodologies, the effective use
of various collaborative communication tools, project management structure and roles, and
the impact and apparent importance of these elements when viewed through the differing
perspectives of hardware, software, scientific and project office roles. Even in areas clearly
technical in nature, success is still influenced by non-technical issues that can escape close
attention. In particular we describe our experiences on software requirements specification,
development methodologies and communication tools. We make observations on what tools
and techniques have and have not been effective in this geographically disperse (including the
South Pole) collaboration and offer suggestions on how similarly structured future projects may
build upon our experiences.

1. Background

1.1. Project overview

The IceCube project is an international collaboration of scientists and engineers constructing a
neutrino observatory in the deep clear ice beneath the South Pole at the US Amundsen-Scott
station. Upon completion in 2010, IceCube will consist of approximately 5000 digital optical
modules (DOMs) located in a volume of roughly one cubic kilometer of highly transparent ice
situated between 1450 and 2540 meters below the surface. These sensors will detect Cherenkov
light emitted by charged particles moving as a result of collisions in the ice from high-energy
neutrinos penetrating the earth moving upward from the northern hemisphere. After initially
collecting data about such events, off-line analysis will determine the directions from which these
neutrinos came to us and how much energy each carried. One of the goals of this detector is

to discover the origin of these extremely high-energy cosmic rays and identify the sites in the
distant universe where these cosmic rays are produced - in effect creating a neutrino map of the
northern hemisphere.

As of 2007, the detector is a little over 25% complete with 22 strings in the ice taking data.
This is up from 9 strings last year and 1 string in 2005. For a more detailed description of the
detector that was is required here, see [1].

1.2. Detector architecture

The construction of the detector consists, in part, of and array of 80 electronic cables or ”strings”,
each containing 60 Digital Optical Modules (DOM), deployed into deep ice holes. Each DOM
communicates what it "sees” to a cluster of systems running our Surface Data Acquisition (DAQ)
software. The IceCube project consists of considerably more software than this (Monte Carlo
Simulation, Processing and Filtering, Satellite transport, Data Warehousing, Off-line analysis,
etc.), but in this paper we focus primarily on the experiences of developing the DAQ software.

Though not a complete description of its functionality, for the purposes of this paper, each
DOM consists of a transparent pressure sphere housing a photomultiplier tube, a custom-built
integrated circuit main board with a waveform digitizer and LED flasher lights. The main
board captures the output of the photomultiplier tube, digitizes it, timestamps it and buffers
it for delivery to the surface via the string on which the DOM is attached. The main board
comprises an embedded processor whose firmware can be reprogrammed from the surface. DOMs
are synchronized via a GPS clock to achieve, at worst, 4 nanosecond timing precision across the
entire array. Moreover, calibration runs for neighboring DOMSs can be taken using the integrated
LEDs.

Cables from all strings converge at the surface into the IceCube Laboratory (ICL), a two-
story elevated building housing all the electronic resources needed for data-taking, archiving and
filtering data, including the compute cluster running the DAQ software. A team of ”winter-over”
scientists maintain the systems during the austral winter (from February to October).

1.3. DAQ Architecture

What follows here is but a brief description of the current DAQ architecture. The design’s
evolution over time is discussed in following sections. While, this description leaves out many
details, it should suffice for the purposes of this experiential paper. The data acquisition
software’s primary task is to initiate and control collection of data from all elements of the
detector array. This includes collecting data from the DOMSs, processing that data stream
through one or more triggering algorithms and assembling those triggered hits and sensor data
into an event stream. The data acquisition process is divided into "runs” of several hours and,
during normal data-taking operations, the system cycles through sequential runs indefinitely.
The event stream output is handed off, at run-time, to the Processing and Filtering component
(PnF) where it is written to tape with a filtered subset put on the satellite queue for transport
to the northern hemisphere for further off-line analysis.

The core DAQ architecture (see Figure 1) consists of 4 levels: components, detector
configuration, component control and run control.

At the component level, the StringHub controls a single string, including the initialization
and state management of the DOMs for that string, collection and time-sorting data from the
DOMs and in the event of a DOM becoming unresponsive, dropping individual DOMs from the
current run. As such, there are as many StringHub components running as there are Strings in
the current run’s configuration. The trigger components read the time-calibrated data from all
the strings and other sources and, using one or more triggering algorithms, produce descriptions
of events which span the detector. The EventBuilder, based on the event description from the
trigger then collects all the data from the StringHubs, and produces an event stream. The

pDAQ System

Logs,' moni Events SN, tcail, moni
ke <@ - - 1 global trigger
S
= e event . . 2ndary
Z builder builders
©
g g in-ice || icetop
5 [trigger || trigger
o 179} >
€ 2
£ ©
8 A A A A
i ; Do ;
¥ : : :
T StringHub
x25
X 60
Control | Readout

Figure 1. Current high-level pDAQ Architecture: on the right, data flows from the bottom up,
control components are on the left.

Secondary Builders components collect 3 ”secondary” streams of data from each DOM, as
harvested by the StringHubs: time calibration data (used for accurate path reconstruction);
monitoring data reflecting the state of each DOM; and PMT scalar readouts which form the
basis of supernova detection for IceCube.

Detector configuration stores the various sensor, software and compute cluster configurations,
referenced at both deployment time and run initialization. These identify the number of strings
to be included in a given run set, the configuration parameters for each individual DOM, the
trigger algorithms and the distribution of which components are running on which physical
machines in the compute cluster. This flexibility allows for sets of cluster configurations for
running simulations or against real DOMs on our test cluster in the North.

The component control server (CnCServer) manages the individual components and packages
them into run sets which are manipulated at the run control level. To build a run set, CnCServer
connects the input and output streams of the StringHubs, trigger and builders and starts,
configures and stops the components according to instructions from the run controller.

The run controller (DAQRun) provides an abstract interface of the DAQ to Experiment
Control. (Experiment Control, not part of the DAQ, also controls other subsystems in the
detector in addition to the IceCube DAQ.) DAQRun uses CnCServer to control the DAQ, but
can also kill and restart components at any of the lower levels. This level could conceivably be
combined with the component control level, but has been kept separate in case there is a need to
someday partition the instrument into separate pieces in order to do verification or calibration
runs in one section while data-taking runs continue using the rest of the instrument. If that
were to happen, there would be multiple instances of DAQRun talking to a single CnCServer
instance.

2. Experiences & Observations

2.1. Distributed, Multi-Institutional Collaboration

The IceCube project is a large one, with collaborators from all around the world. Originally, the
DAQ development team had participants from both the United States and Europe. However,
by the time of the first string deployment at the South Pole, the software development group
consisted solely of contributors working at 4 locations (and 3 time zones) within the US.

We scheduled frequent, mandatory phone conferences at times that would allow maximum
attendance. At roughly three month intervals, we held face-to-face meetings at participating
institutions. Furthermore, all team members shared cell phone numbers, subscribed to dedicated
development discussion email lists, common IM chat rooms, etc. All these tools enabled
communication to take place as easily and often as necessary. As a result, the development
team developed a remarkable level of integration and cohesion which would prove to be critical
during both integration & system testing as well as during deployment.

It is worth noting that, while the project would have benefited from having the entire
implementation team co-located for the duration of system design and implementation, this
was not deemed practical. It proved equally effective to promote, among team members, regular
and frequent communications and regular face-to-face meetings. In other words, frequent (i.e.
daily) communication mitigates many of the problems stemming from geographic dispersion.
This level of communication proved problematic for collaborators working at large time deltas
from central US, meaning that those who could not easily and frequently communicate (e.g.
those in European time zones) moved on to other IceCube software activities.

Beyond the added communication complexity inherent in a distributed collaboration, the
impact of working within a multi-institutional collaboration also had an effect on the software
development process. Having multiple institutions in a project introduces a project structure
where a separation frequently exists between project hierarchical management and individual
institutional supervision. This separation significantly increases the likelihood that a strong
project management approach will not be realistically possible and a more consensus based
strategy will need to be employed at times. This doesn’t mean that it is impossible for strong
leadership, just that where project management crosses institutional boundaries, this creates
a situation where authority and responsibility are not tied together. We’ve seen that having
flexibility on when and how to take a top-down vs. a bottom-up management approach to be
very effective depending on the particulars of the situation at hand and the people involved.

For example, a task which exists entirely within a single institution where contributors work
side-by-side in daily contact can work in a more traditional top-down management structure - e.g.
working through the interface, implementation and testing details of a specific sub-component.
Whereas tasks requiring coordination of multiple teams across several institutions with the with
less daily contact and greater potential for differences of opinion on requirements, design details
or even tool selection, will benefit from a bottom-up consensus-based approach.

2.2. Project Management

Software development in industry, generally, has a very top-down management structure where
responsibility is directly tied to authority. In research, as described above, this may not always
be possible and in those situations, calls for a different project management approach. In our
experience there are two primary reasons for this separation: projects can include individuals
from multiple institutions on a single development task and the collaboration consists of experts
from multiple disciplinary backgrounds with different views and interpretations of system
requirements. These two reasons are related in that they are born out of the inherent size
and complexity of an undertaking like the IceCube project. But given that funding agencies
often encourage (and at times require) institutional diversity in smaller projects, insight on how
to navigate these (at times very challenging) collaborative waters, we hope will additionally
prove helpful in smaller projects.

One dramatic experience drawn from our work here is the realization of how differently
people from different disciplines approach the development of software. For example, those from
a hardware engineering background have a different approach than software engineers, clearly
due to the difference in materials. Software, being infinitely malleable unlike hardware, allows a
greater degree of freedom in design and revisions. Physicists, who generally learn to program as
a means to another end (producing meaningful physics results) approach software engineering
differently than those with a formal computer science background.

The combination of these varied (and at times fiercely defended) approaches towards the
relative importance of software implementation design and detector performance created a
project management challenge. Considerable flexibility is required on how to proceed, based
on the nature of the specific task, people and institutions involved. This realistic and honest
assessment of what is achievable, despite “widely understood best practices’ and how it might be
possible to achieve it, within a given project is one of the central lessons learned from working
on the IceCube DAQ.

A successful example of a bottom-up managerial approach was the creation of a regular
“Change Control Board” (CCB) meeting. During this weekly phone call we culled through the
current queue in our issue tracking system, organizing both features and bug-fixes into releases of
the DAQ. These could range from simple milestone snapshots through fully certified DAQ system
releases for deployment to the South Pole. These conference calls, though at times tedious -
with detailed discussions of issue after issue, were extremely beneficial in establishing an overall
development structure and developing a solid group understanding of how future development
would proceed. A consensus based approach was taken in guiding the CCB meetings, with
detailed design discussions discouraged in favor of deciding on what was next. For some issues
deadlines were very important and those releases followed a more date-driven schedule. Although
in practice the majority of releases were feature driven with each weekly release milestone picking
up for integration and system testing the issues resolved from the previous week. An additional
benefit was the popular adoption of the Mantis issue tracking system (despite some initial
preferences expressed for Bugzilla).

2.3. Team Management

One challenge faced by the team was how to assign tasks and responsibilities. It is often desirable
to partition a large effort into well defined chunks which are assigned to specific individuals. But
software developers vary greatly in their skills and weaknesses, which are not always apparent
from the outset. This fact, combined with the fact that the components varied in complexity,
meant that some components took quite a bit longer than others to finish, thereby holding
up the whole effort. A more fluid approach was used later in the project where developers
readily crossed boundaries between components (a necessity due in part to shrinking manpower),
leveraging that person’s abilities (and availability) wherever appropriate. This was also made

more tenable because of the established integration and unit test frameworks, which reduced
the risk of inadvertently breaking something due to a contributor’s relative unfamiliarity with
a piece of code.

A contributing factor to the differing times taken to develop the various components was the
use of graduate students for software development. This ultimately became problematic not
because of a lack of ability or skill on the part of the students but due to the part-time and
temporary nature of their participation. In some situations the use of students for development
worked out well but those were situations where they were supervised by a full-time participant
on the project.

2.4. Collaborative and Development Tools

The most effective way we’ve found to navigate the complexity of a project structure like this
is through effective communication. In a sense, each contributor needs to over-communicate to
compensate for the “loss” which is inherent in distributed collaborations. We employed many of
the now common collaboration tools to this effect. These ranged in their technical sophistication
from direct telephone calls, regular weekly conference calls, email lists, instant message chats
and chat rooms, to VoIP applications such as Skype. Periodically we would travel for meetings
where we could meet face-to-face for discussions and working sessions. These proved to be
essential in establishing good working relationships supported subsequently via the above tools.

In addition to these, application development tools also serve as communication tools. A
version control system and a bug tracking system with good logging features and email or RSS
feed notifications, goes a long way towards keeping developers abreast of current development
activities. Initially we were using the set of tools described by Patton and Glowacki [2]. As
developer preferences and other tools emerged this set of tools were replaced in preference to
a combination of Subversion (svn) for version control combined, Mantis for issue tracking &
simple project management and Maven as a build, unit test framework, dependency tracking
and release assembly tool.

One lesson learned in using in-house development tools is the importance of understanding
the effort required in supporting these tools. This support takes two forms: fixing bugs & adding
required features and, of great importance in a large distributed collaboration, having an expert
available as an advocate and instructor for the selected tool set. Inevitably there will be times
when a tool is not serving the needs of an individual or group of users. This can be because the
tool simply lacks the functionality desired, the functionality exists but in a way undiscovered by
the users, or users are trying to accomplish something counter to the development philosophy
upon which the tool is intended. If the tool simply lacks the functionality, is broken in some way
or requires updated documentation, having reasonable response from the author is needed. If
the users are trying to apply the tool in a way it was not designed to be used, then a discussion
needs to take place.

The presence of this tool advocate (which does not have to be the author) to document,
educate and at times mitigate on the proper use of the tool and what can be expected of it, is
necessary. In the absence of this advocate adoption of the tool will either evaporate as users
will move to use their tools of preference or use of the tool will become contorted and confusing
when the underlying concepts on the use of the tool have been lost. Both of these situations can
then lead to a fracturing of tool sets used within the project, which in itself increases complexity
in managing the project.

2.5. The Importance of Communication

When working within a group, communication is of paramount importance. This is especially
true when working remotely from others as the possibility for misunderstandings, or assumptions
to creep in increases with the number of remote parties. Requirement specification is a form

of this communication, and so are all the collaborative tools mentioned above. In short, our
experience is that it is difficult to over-communicate in distributed efforts such as this.

An interesting example of this is that some of our best work was done during the austral
summers at the South Pole, when many of us spent more time working together in the same
room than at other times of the year. The austral summer at the pole is the only time when the
actual drilling and construction of the detector can take place, and hence when not part of the
physical deployment crew, we would have unique access to actual strings in the ice, if not the
full detector, for scale testing of the DAQ. These, often marathon working sessions, proved to
be essential in solving scalability issues which are impossible to simulate with our test systems
- especially when the detector is in the process of increasing in size. Sitting in the same room,
working closely together proved to be very productive.

2.6. The Role of Requirements Specification

Nearly all development methodologies stress the importance of specifying requirements. Because
software revisioning is so easy, as compared to hardware development or experimental science,
software development can easily be seen as an infinitely mutable process and therefore has a
corresponding effect on the effort put into specifying requirements.

The DAQ system requirements were derived from early statements of overall detector
performance goals. Descriptive requirements of the detector’s physics performance were
developed as part of the initial design documentation and were refined through a series of
pre-construction project reviews. As the project entered the construction phase, individual
engineering groups, both hardware and software, started developing requirements to govern
design and performance of their particular subsystem. While some project subsystems carried
this process through to the lowest layers of design, there were inconsistencies across project
subsystems.

In retrospect, more attention should have been given to the very different ways in which
physics and engineering requirements are expressed and interpreted. While the former are
primarily descriptive in nature, engineering requirements tend to be expressed more formally
and often prescribe testing techniques and organizational structures for allowing exceptions (e.g.
change control boards). Within the project, there was, and continues to be, a clear and pervasive
understanding of overall system performance goals. But, when resolving individual subsystem
implementation issues or weighing required features against slipping implementation schedules,
it was difficult to navigate between the overall descriptive project goals and the proscriptive
subsystem requirements with their formal change control processes.

A more flexible project management approach may have avoided the situation where
decreased importance was placed on specifying formal requirements to help resolve everyday
implementation issues. As a result, this had a substantial effect on the effective software
development methodology which was used.

2.7. Development Methodologies

Initially an Agile[3] or Extreme approach was taken, which in a nutshell, starts with the
assumption that system requirements are clearly understood; but, as time passes, even during
the implementation process itself, these requirements will change and evolve. These changes
are managed by advocating rapid, small well-scoped development cycles, between which
requirements are re-evaluated. Support for this in the development tool set is vital, for
example having an effective unit-test framework easily running regression tests. And, given
the rate at which implementation must respond to changing requirements, effective code release
management and discipline are essential. Early in the project, we assembled a tool set that
supported this development methodology and it was applied on an individual, or small working-
session group level. As a result of the changing role of formal requirements within the project,

the task of creating requirements at the lower levels was never fully realized. This, in turn, had
an effect on our development practices.

What materialized in its place was a method of deploying, typically into a developer’s sandbox
and on our test cluster, software implementing a particular set of functionality for integration
testing with the current DAQ baseline. Working up from there, more full system testing evolved
and higher-level integration issues with other IceCube software components (both ”above” and
"below” the DAQ) were addressed. This somewhat ad-hoc development method often exposed
differences in participant’s understanding of the architecture, which led to discussions and at
times difficult decisions, but generally working code won over unimplemented designs.

2.8. Testing

Unit testing is another method taken from the toolbox of Agile methodologies. The idea is that
as code for the project is developed, a suite of automated tests is written in parallel by the
programmer to verify that the code is working correctly. These tests can then be run after each
change to the code, to ensure that no functionality has been changed. When a change causes
an error in the test suite, both the test code and the change are examined to determine if the
problem was caused by the change or if the test suite was in error, and the appropriate fix is
made.

Building up a set of unit tests which exercise the code, while initially difficult, becomes
essential in a project with a long development period. Broad changes across many code modules
or changes deep within some vital algorithm — changes which might normally be avoided because
of the likely hood that things would break — can be made quickly and with assurance because
the unit tests can verify with a high degree of certainty that nothing unexpected has changed.

A separate but crucial class of tests consists of integration testing, where all the components
are brought together. For the IceCube DAQ), a test stand located in Wisconsin, consisting of
ten or so nodes, was created, attached to a small number of sensors. This allowed for a basic
sanity check of the system as a whole. The additional ability to run simulated DOMs allowed a
user to run the system on a standalone node (such as a laptop), or on the test system simulating
40 or even 80 strings (in this case, multiple StringHub instances were deployed per physical
processor). While still lacking in the ultimate realism of the production system, the simulation
was used to study the scaling properties of the system before the complete production array was
deployed.

Unfortunately, there were not adequate resources to duplicate the entire production system
in the North, so there have often been surprises when deploying new software to South Pole.
This makes release management and the ability to quickly roll back to previous releases all the
more crucial.

2.9. Off-the-Shelf vs. ”Roll your Own”
A fundamental question which arises repeatedly in software development is whether to reinvent
something or to re-use an existing infrastructure. There are pros and cons on either side. Using
an existing system may be employed quickly after an educational investment and potentially
modifying your design to fit the model assumed by the system. It may also be required to invest
developer time to customize or extend an existing system. Rolling your own solution has the
advantage that it will be exactly what you need with familiarity and expertise on the system
in-house. This though comes at a potential cost if documentation is insufficient and there is
turn-over in your personnel. Unfortunately it is often difficult to determine the costs and benefits
associated with a given path in advance or even in hindsight.

Our example here is how JBoss was initially chosen as the application and clustering
framework for all the DAQ components, as well as for other IceCube software components. As
development matured the selection of JBoss and our specific use of it was called into question.

While the original proponents attempted to answer these questions, it became clear that the
trend of the group was against continuing the use of JBoss. Ultimately the functionality we
used it for was replaced by significantly more light-weight components of our own.

This was a very contentious decision within the group. In fact, the merit of this decision
(though now in the past) continues to be a point of disagreement between some of the authors of
this paper. On one side the argument is made that the newer system is much more lightweight,
faster, easier to understand & modify and therefore was worth the investment in the course
correction. On the other side, the point is made that expertise has just moved from one
group to the authors of the new system and the the same reduced complexity, scaling &
performance improvements could have been achieved through a similar or even smaller re-
factoring investment.

What can be drawn from this experience are at least two points covered in general above:
the importance of near constant communication, and advocacy for and against decisions made
by the group. Similar to the need for an advocate for the use of in-house development tools,
an advocate for design and technology selection decisions can help a group confront conflicts in
opinions earlier and potentially save the group significant effort and time.

2.10. Benefits of Rapid Prototyping and Rewriting

A basic principle of Agile Development is to favor working code over written requirements and
specifications. This implies that as requirements change and ones understanding of the problem
improves, code must be quickly adapted or rewritten to match the shifting domain. The rewrite
of the control architecture described above took place initially as a rapid prototyping effort by
two of the developers over a few days. After the prototype was seen to work successfully, it
was simply expanded to cover all the required use cases. The use of Python for this relatively
high-level problem domain made the development very fast. Other important DAQ components
were rewritten and a significant reduction in the size of the code base was achieved. Though
rewriting takes time, it often allows for a much cleaner and more maintainable implementation,
as the developers learn from previous efforts.

3. Conclusions

Ultimately, the outcome of this effort has been a successfully working DAQ, which is the “proof
of the pudding”. What we can draw from our experiences and observations here is that at
times, technical considerations need to take a back seat to the realities of the project and it’s
participants.

Communication is a top priority for development in distributed teams like this. Any and all
communications tools should be employed with developers receiving constant encouragement to
evaluate and focus on those tools that are most effective. Face to face meetings are irreplaceable
in creating the rapport needed for effective development when most time is spent working
remotely.

Finally, management style, tool selection & ownership, and implementation decisions must
take into account both the individuals and the institutions involved and how they will be most
effective in helping the project achieve its goals, despite what might be considered in other
contexts a more correct approach.

Acknowledgments

This work was supported by National Science Foundation - Physics Division and by the Office
of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

References

[1] A. Achterberg et. al., “First year performance of the IceCube neutrino telescope”, Astropart.Phys. 26 (2006)
155-173. [doi:10.1016 /j.astropartphys.2006.06.007].

[2] S. Patton and D. Glowacki, “IceCube’s Development Environment”, In the Proc. of 2008 Conf. for Computing

in High-Energy and Nuclear Physics (CHEP 03), La Jolla, California, 24-28 Mar 2008, pp MONT001
[arXiv:cs/0306057].

[3] K. Beck et. al., “Manifesto for Agile Software Development” http://agilemanifesto.org/

