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ABSTRACT Deep learning-based Computer-Aided Diagnosis has gained immense attention in recent years
due to its capability to enhance diagnostic performance and elucidate complex clinical tasks. However,
conventional supervised deep learning models are incapable of recognizing novel diseases that do not
exist in the training dataset. Automated early-stage detection of novel infectious diseases can be vital in
controlling their rapid spread. Moreover, the development of a conventional CAD model is only possible
after disease outbreaks and datasets become available for training (viz. COVID-19 outbreak). Since novel
diseases are unknown and cannot be included in training data, it is challenging to recognize them through
existing supervised deep learning models. Even after data becomes available, recognizing new classes with
conventional models requires a complete extensive re-training. The present study is the first to report this
problem and propose a novel solution to it. In this study, we propose a new class of CAD models, i.e.,
Deep-Precognitive Diagnosis, wherein artificial agents are enabled to identify unknown diseases that have
the potential to cause a pandemic in the future. A de novo biologically-inspired Conv-Fuzzy network is
developed. Experimental results show that the model trained to classify Chest X-Ray (CXR) scans into
normal and bacterial pneumonia detected a novel disease during testing, unseen by it in the training sample
and confirmed to be COVID-19 later. The model is also tested on SARS-CoV-1 and MERS-CoV samples as
unseen diseases and achieved state-of-the-art accuracy. The proposed model eliminates the need for model
re-training by creating a new class in real-time for the detected novel disease, thus classifying it on all
subsequent occurrences. Second, themodel addresses the challenge of limited labeled data availability, which
renders most supervised learning techniques ineffective and establishes that modified fuzzy classifiers can
achieve high accuracy on image classification tasks.

INDEX TERMS Deep learning, COVID-19, medical imaging, computer-aided diagnosis, pandemics.

I. INTRODUCTION
Throughout human history, there have been several pan-
demics, the most recent and ongoing being the SARS-CoV-2.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jinhua Sheng .

The first case of the disease was reported in late
December 2019 in Wuhan, China [1], [2]. Ever since
the first case of COVID-19 was reported, the world has
seen over 219 million cases and 4.547 million deaths
due to the virus [3]. Despite tremendous improvements in
our understanding of microbial hazards over the last two
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TABLE 1. Increased rate of spread of numerous novel Zoonotic viruses in recent disease outbreaks, suggestive of the approaching ‘Pandemic era’. Data
taken from [5]–[7].

decades, humans remain as vulnerable as ever to unexpected
attacks by unknown viruses. The World Health Organi-
zation (WHO) has adopted ‘Disease X’ as a placeholder
name for hypothetical, unknown diseases that might trig-
ger a future epidemic. This list is periodically updated and
includes diseases such as Middle East-respiratory syndrome
coronavirus (MERS-CoV) and Severe Acute Respiratory
Syndrome (SARS), among others. Past studies [4] suggest
that the increasing scale of anthropogenic destruction of
biodiversity is paving the way to a ‘pandemic era’. In such a
situation, it is projected that roughly 850,000 distinct viruses
might spread from animals to people, with SARS-CoV-2
being just one of them [4]. The study has been strength-
ened by the increased frequency with which novel disease
outbreaks have occurred in the last two decades. This has
prompted an urgent need for reconsideration, as well as a need
for substantial actions to be implemented to address a health
catastrophe of such magnitude. Table 1 enlists various recent
novel zoonotic virus outbreaks [5]–[7].

A. BACKGROUND
Presently, numerous researchers are involved in develop-
ing new methods for rapid disease detection to increase
the rate of daily tests. Real-time Reverse-transcription poly-
merase chain reaction (rRT-PCR) [8] is the most widely
used test for diagnosing COVID-19. However, many times,
the test fails to detect the disease in case of a newly
evolved coronavirus strain before extracting the new virus’s
DNA sequence, potentially delaying testing [9]. Today, deep
learning (DL) has been used in a wide range of areas
which includes developing solutions for aiding the visually
impaired [10], solving a 50-year-old grand protein fold-
ing challenge [11], analyzing macromolecules from cellular
electron Cryo-tomography [12], [13], developing com-
plex intrusion-based detection systems [14]–[18], enabling
IoT-based systems [19], [20], etc. DL-based computer-aided
diagnosis (CAD) has drawn immense attention in recent
years for its capability to enhance diagnosis performance and
elucidate complex clinical tasks.

During the pandemic, researchers have focused on devel-
oping various computational models for the rapid detection
of SARS-CoV-2 on CXR scans with high accuracy and sensi-
tivity [21]–[26]. Initial analysis of patients with severe symp-
toms showed signs of pneumonia [27]. Others have attempted

to predict disease severity from X-rays. Figure 1 shows
CXR scans of patients infected with various respiratory
diseases- bacterial pneumonia, SARS-CoV-1, MERS-CoV,
and SARS-CoV-2 (or COVID-19). The use of computed
tomography (CT) is another way for detecting COVID-19
infection. However, the high radiation doses (also compara-
tively higher costs) makes it unsuitable for usage, particularly
for pregnant women and children [28].

B. MOTIVATION
Although these methods help and provide the radiologist
with assistance, they act only after a pandemic outbreak has
occurred. Presently, little/ no study exists on developing a
model that can detect novel diseases that have the potential to
cause a future pandemic at their preliminary stage of spread
itself. Such a model acts before a pandemic outbreak. This
task, nevertheless, remains challenging.

Other questions that remain unaddressed and hinders the
development of next-generation CAD models [29] include,
first, all supervised learning models rely heavily on the
availability of labeled medical datasets. Since highly skilled
experts perform their collection, it requires considerable time
and resources.Moreover, it is difficult to gather a large dataset
of positive disease samples in an early stage of dissemina-
tion [29]. Therefore, an accurately labeled dataset can be
available only after the disease outbreak has taken place,
its multiple incidences have been reported, researched upon,
and its pathological tests are available. A future disease out-
break may be a highly infectious one (viz. SARS-CoV-2)
and spread at an even faster rate. Such an outbreak may
not provide time to re-develop and deploy CAD models.
Second, the task of detecting novel diseases is hard to visu-
alize as a supervised learning problem in the absence of
labeled training cases. Third, each time a novel disease
outbreak ensues, new models need to be developed and
updated throughout the medical system, following a simi-
lar pipeline. Fourth, many DL X-ray/ CT-scan models have
low accuracy over cross-validation datasets [30], possibly
since these were trained on a single dataset. Fifth, the emer-
gence of newly mutated viruses results in a major change
in the dataset, severely restricting the performance of con-
ventional classification-based approaches. These complex-
ities pose significant challenges in the development of a
next-generation CAD model (one which aims to detect a
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FIGURE 1. Representative images from the dataset [48], [49] showing
Anteroposterior CXR scans of patients diagnosed with (a) Bacterial
Pneumonia (b) SARS-CoV-1 (c) MERS-CoV (d) SARS-CoV-2 caused by the
novel coronavirus (n-CoV).

novel disease before its outbreak) and motivates the research
community towards this problem.

C. CONTRIBUTIONS
In the present study, we highlight the utility of the proposed
model with the hypothetical outbreak of three pathogens
(SARS-CoV-1, MERS-CoV, and COVID-19) that are unseen
by the model, i.e., ‘Disease X’ as suggested by the WHO to
be a potential cause of a future major epidemic. Along with
COVID-19 as the unseen disease, the efficacy of the proposed
model is demonstrated experimentally on SARS-CoV-1 and
MERS-CoV, present inWHO’s list. Here it has been assumed
that a future pandemic might be caused by a novel coro-
navirus on the similar lines of previous disease outbreaks,
impacting lungs, and could be captured through CXR scans.
The significant contributions of this paper include-
• The concept of ‘Deep-Precognitive diagnosis’ is intro-
duced as a new class of CAD having broad applicability
in developing future diagnosis models capable of detect-
ing novel diseases at preliminary stage of spread.

• A novel solution is proposed for the introduced problem.
The task is formulated as a class membership lookup
problem using a biologically-inspired Conv-fuzzy net-
work. The model’s ability to detect occurrences of novel
diseases on CXR scans with state-of-the-art (SOTA)
accuracy, is shown on three coronaviruses, as unseen
diseases.

• The proposed algorithm eliminates the need for
re-training for each new disease outbreak. Real-time
architecture update enables new class creation for the
detected novel disease, classifying it on all further
occurrences.

• The challenge of limited labeled data availability is
addressed. The proposed model has the ability to learn
complex feature space on small datasets, unlike DL
models. Further, as the architecture is semi-supervised,

a labeled dataset is not needed for every sample,
reducing heavy dependence on labeled datasets. Unlike
conventional models, the proposed model requires
single-pass training. Thus, there is a massive reduction
in training time is observed.

• According to our knowledge, the present work is the first
to adapt Fuzzy reflex classifiers for image classification
tasks and quantitatively establish that they achieve com-
parable performance to SOTA ML classifiers.

The remaining paper is organized as follows. Section II
introduces the relevant related works. Section III describes
the proposed model, its architecture design, and algorithm.
The experimental settings, experiments performed, and the
results are elaborated in Section IV. This is followed by the
discussion in Section V. Section VI discusses the limitations
and the future work of the study. Finally, the conclusion is
presented in Section VII.

II. RELATED WORK
A. MANUAL DETECTION OF NOVEL DISEASES
Presently, computed tomography (CT) scans offering 3D
anatomy are examined by expert radiologists to find abnormal
features in the thoracic region suggestive of novel diseases,
based on the type, and extent of lesions [31]. These are further
sent for clinical tests to confirm new disease presence. Even
for detection of COVID-19, firstly most common manifesta-
tion and patterns of lung abnormality were used for manual
classification [32]. The initial screening is mainly dependent
on expert radiologists that may not be present in all diagnostic
centers. Presently, as per our knowledge, there exists no end-
to-end model that has been proposed to address the problem.
If compared with CT-scans, CXR scans do not provide three-
dimensional anatomy, but pneumonia andmost other diseases
can be differentiated, though many Radiologists consider
CXR scans as ‘‘the most challenging plain film to interpret
correctly’’ [33]. However, due to its fast imaging speed, low
radiation, and low cost, X-rays are the most widely used CAD
imaging modality. Thus, X-rays have been used in this study
to demonstrate the effectiveness of the proposed model.

B. DEEP LEARNING BREAKTHROUGH IN CAD
Today, DL-based CAD has been extensively used to improve
the accuracy of prediction for screening both infectious and
non-infectious diseases [34]. The development of the first
CAD model traces back to 1976 when the first CAD model
called MYCIN was developed. It used 450 rules designed for
bacterial infection and suggested antibiotics to patients [35].
The recent development of DL has triggered a new era in
CAD, including breakthroughs in detection, delineation of
pathological abnormalities, disease progression monitoring,
and therapy response. Many such models have been devel-
oped by researchers for classification of various communica-
ble diseases including SARS, EBOLA [36], HIV [37], [38],
COVID-19 [23], [39] among others.
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FIGURE 2. (a) Traditional CAD models are based on a ‘‘closed world’’ assumption, where no new classes are present in the test set. This is hardly
the case for real-world medical applications. These models are limited to classify input test sample ah which may belong to a new class of disease
as one amongst the previously learnt classes Ci=1...k having the highest probability. This leads to wrong diagnosis which may cause disease
spread/ patient’s death. Even after clinical tests establish existence of a new disease, to classify it, complete model retraining is required
(b) Deep-Precognitive diagnosis detects this novel disease, creates new class Ck+1 in real time and classifies the novel disease to this class. The
model’s accuracy tend to increase with time over this new class as it sees its more samples. Therefore, the need for model re-training is eliminated.

C. CHALLENGES IN NEXT-GENERATION DIAGNOSIS
Nearly all CAD models involve three sub-steps: data feature
extraction (in medical image analysis), their classification,
and the diagnosis. However, presently, many challenges are
faced in CAD development that inhibits the progress in
this field of research [29]. The first major challenge is the
availability of adequately labeled medical datasets for novel
disease outbreaks. While the quantity of Electronic health
records (EHRs) has increased by multiple folds due to proper
data collection; data records are frequently missing, recorded
incorrectly, or improperly disposed of [40]. Second, it is
difficult to get positive samples in an early stage of novel
disease outbreak. Annotating such samples further requires
great expertise. Studies by [41], [42] shows that general intu-
ition of better classifier performance for large training dataset
is misleading and models can attain good accuracy on limited
datasets. But the development of CAD models that can work
on limited dataset still remains a challenging task. Third, the
emergence of newly mutated viruses results in a significant
change in the dataset, severely restricting the performance of
classification-based approaches.

D. FUZZY LOGIC IN COMPUTER-AIDED DIAGNOSIS
Even though the study and application of fuzzy logic has
received immense attention in recent years [43]–[45], the
use of fuzzy logic for classification in CAD models is an
open research area [29]. Fuzzy min-max neural networks,
first introduced by [46], have been used in many applications.
Various improvements have been proposed [47] in the origi-
nal network to improve the model’s overall accuracy. One of
the areas of past work includes fuzzy reflex classifiers [48],
where a self-supervised network learns on data and classi-
fies it. However, this network has not been investigated for
tasks involving high-dimensional data like image classifica-
tion, including medical image classification in CAD models.
We demonstrate how the recent rise of DL-based supervised
feature extraction bridges the gap between fuzzy reflex clas-
sifiers and their machine learning (ML) counterparts.

E. DEEP LEARNING FOR NOVEL DISEASE DETECTION
Today, very few works focus on developing CAD models
capable of detecting unseen novel diseases. This problem
has the potential for future pandemic prevention and control.
Recent attempts have been made by [49] on how to learn clas-
sifiers to predict or choose to defer the classification decision
to a downstream expert.Work by [50] has investigated unseen
disease detection using DL on CXR scans, but the study is
limited to an internal validation set without an external test set
including different unseen diseases. Moreover, the proposed
model architecture cannot be updated in real-time and has
to be re-developed for adding new classes each time a novel
disease is detected.

III. PROPOSED METHODOLOGY
A. PROBLEM FORMULATION
In traditional models, an input test sample ah, is classified
amongst the previously learnt classes Ci=1...k . These clas-
sification models are based on a ‘closed world’ assump-
tion [50], where no new classes are present in the test set,
which hardly is the case for real-world medical applications.
Therefore, suchmodels suffer from amajor disadvantage, i.e.,
samples belonging to a new class (i.e., high probability of
a novel disease), which the model has not seen or not been
trained on previously, get wrongly classified in one of the
existing classes, leading to diagnostic failure. Moreover, for
every introduction of a new disease, these models need to be
re-trained and developed.

Unlike conventional models, Deep-Precognitive diagno-
sis (DPD) refers to developing intelligent CAD models that
can detect the occurrences of new diseases at their prelimi-
nary stage of spread. The proposed model (refer Figure 2(b))
has the ability to detect new disease classes and create a
new class Ck+1 for them in real-time. Such a model will
have the capability to control the spread of novel diseases
with an early warning of a future pandemic. Figure 2 shows
the conventional CAD models in contrast with the proposed
Deep-Precognitive diagnosis model.
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FIGURE 3. Architecture of the proposed Biologically-Inspired Conv-Fuzzy network. Here, Deep-Precognitive diagnosis is formulated as a
class membership lookup problem.

DPD is difficult to be thought of as a supervised learning
problem. Since the dataset of the novel disease, which the
model is trying to detect, cannot be available previously.
Instead of a supervised learning problem, we frame the task
as a class membership lookup problem to solve it. For each
input, the model learns both contrasting and similar visual
features between different classes Ci=1...k . The input feature
vector ah is mapped in a high dimensional feature space (here,
n = 512 dimensional) where its classification becomes feasi-
ble. This is particularly different from Convolutional Neural
Network (CNN) [51] based classification, which focuses
mainly on learning those image features which can poten-
tially be useful in distinguishing between two classes.

B. DISEASE FEATURE EXTRACTION AND MAPPING
The proposed model architecture (refer Figure 3) combines
CNN-based CXR feature extraction with a fuzzy classifica-
tion network for real-time image classification. From each
sample, the image feature vector ah ∈ In containing promi-
nent disease characteristics like ground-glass opacities, crazy
paving pattern, etc., are extracted.

Deep transfer learning is used on modified VGG-16 [52]
CNN architecture. A Global Max Pooling (GMP) layer is
introduced after the fifth ‘MaxPooling2D’ layer of the orig-
inal network, as shown in Table 2. Subsequent layers, i.e.,
the flatten, fc1, fc2, predictions, and dense_1 layers, are
removed from the original network, which were primarily
trained for classifying ImageNet [53] into 1000 different

TABLE 2. Architecture of the modified VGG-16 CNN for extracting 512-
dimensional CXR feature vector. Here, S represents Stage, L is the number
of stacked layers in the Operator, W /H/C represents the weight/ height/
channel and GMP is the global max pooling layer.

classes. Recent studies [54] have confirmed the effectiveness
of transfer learning, which surprisingly offers higher accuracy
in medical imaging tasks. Unlike standard dense (layer) in
conventional CNNs, using fuzzy classification enables online
learning and allows single-pass training compared to CNNs,
which require multiple epochs to obtain high accuracy.
Figure 5 shows the layer-specific feature representation maps
generated by the feature extraction network.

C. FUZZY CLASSIFICATION
The fuzzy classification network [46] learns by forming
hyperbox fuzzy sets. A hyperbox H [55] is a simple
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FIGURE 4. The three categories of Neuron (a) Classifying Neuron (CLN) with its activation function bj (b) OCN node and its activation
function djp (c) CCN node and its activation function ej , used in the proposed model architecture; f (x, y ) and T (x) represents the
threshold functions.

FIGURE 5. Layer-specific feature representation maps generated by the
modified VGG-16 CXR feature extraction network.

geometrical-shape defined in the n-dimensional feature
space. The size ofH is controlled by the hyperbox expansion
coefficient (θ), which lies between 0 and 1. Figure 6 shows a
hyperboxH for n = 3.

1) POINT HYPERBOX (H) CREATION
During training, the extracted feature vector ah for each
training sample is passed to the input nodes (a1, . . . , ah) of
the fuzzy classifier after normalization. The classifier creates
hyperboxes with min co-ordinate Vj = (vj1, vj2, . . . , vjn)
and max co-ordinate Wj = (wj1,wj2, . . . ,wjn) in the
512-dimensional feature space. Assuming {ah,Ci} is the
training sample, {bj,Cj} is a hyperbox for class Ci; we ini-
tialize {b1} having V1 = W1 = ah and class label Ci, i.e.,
during training, for the first sample, a point hyperbox H is
created.

2) CLASS MEMBERSHIP COMPUTATION
For each sample, the extracted feature vector is passed to
the Classifying Neurons (CLN ), for the classification of the

FIGURE 6. A Hyperbox H in 3-dimensional feature space i.e., n = 3. Here,
‘V ’ represents min coordinate and ‘W ’ the max coordinate of H.

learned data using min-max hyperboxes [46]. A membership
function [46] is defined with respect to the min and max co-
ordinates ofH. InCLN s, neuron bj represents hyperbox fuzzy
set Bj(= Ah,Vj,Wj, f (Ah,Vj,Wj) ∀ (Ah ∈ In)).

In classifying section nodes, to compute the class mem-
berships, the activation function proposed by [56] is used to
assign membership value equal to 1 when the test sample falls
within H. In other cases, when the test sample lies outside
H, the model calculates membership value based on its dis-
tance from extreme coordinates of H. Figure 4(a) enlists the
activation functions of the classifying neuron. Here, f (x, y)
represents a 2-parameter ramp threshold function and ‘γ ’
represents the fuzziness control parameter. It is to be noted
that as the limit of the maximum allowed size of hyperbox
(θ ) increases, number of hyperboxes created during training
reduces and vice-versa. This is confirmed experimentally
in Section VI.

3) SIGNIFICANCE OF INTER-NODE CONNECTIONS
In the middle layer of the classifier, the input nodes and
the hyperbox nodes are connected together. These con-
nections represents the min-max coordinates V and W
of the 512-dimensional hyperbox fuzzy set [48]. During
training, the middle layer neurons are created dynamically.
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Connection between the hyperbox node bj to a class node
Cj, is represented by matrix U , where, uij = 1 if bj ∈ Cj,
else uij = 0.

4) TRAINING LEARNING CLASSIFIER
Whenever a training sample is encountered by the model that
does not belong to the classes it has learned so far, a hyperbox
node is created in the CLN section. During training, the
model tries to accommodate subsequent samples {ah,Ci} in
the previous hyperboxes belonging to the same class using the
conditions discussed below, provided the hyperbox size does
not exceeds a specified maximum limit (given by expansion
coefficient θ ) [46]. If the expansion of any of the existing
hyperboxes (H) which belongs to that class is not feasible,
a new hyperbox is added to the model; i.e., for a new training
sample {ah,Ci}, a hyperbox {bj,Cj} is found such that Cj =
Ci or Cj = C0 which has the highest membership value and
satisfies following conditions-

(1) θmax ≥
1
n

n∑
i=1

(max(wji, ahi)−min(vji, ahi)) (1)

(2) bj is not associated with any OCN/CCN (2)

(3) if Ci = C0 or Cj = C0 then µj > 0, where µj
is membership with hyperbox bj, (3)

Adjust min-max coordinates of bj, as, V new
ji =

min(V old
ji , ahi), W new

ji = max(W old
ji , ahi), where i =

1, 2, . . . , n and if Cj = C0 and Ci 6= C0 then Cj = Ci.
If no suitable bj is present then a novel hyperbox H for

class Ci is created with Vj = Wj = ah; i.e., a point hyperbox
is created. Since the high dimensional feature space contains
all the learned visual features of the image, a possible case
of hyperbox overlap can occur. This can be explained as
a common visual feature between two different diseases.
Table 3 enlists both the common and distinguishing visual
features on CXR scans for various diseases.

D. BIOLOGICALLY-INSPIRED REFLEX SECTION
The Reflex section contains the Overlap Compensation
Neurons (OCN ) and Containment Compensation Neurons
(CCN ) [48]. These neurons become active only when a case
of hyperbox overlap and containment is encountered, respec-
tively. The reflex mechanism is biologically inspired from
that of the human brain, which unconsciously gains control
of the human body in hazardous conditions.

1) REFLEX SECTION ARCHITECTURE
OCN represents H of size equal to the overlapped space
between two H of different classes. The OCN section is
active only if the test data lies within the overlap space.
It generates two compensation outputs, one each for the two
overlapping classes. The CCN section, which overcomes the
hyperbox containment case, representsH of size equal to the
overlapping space between the two classes. CCN activates
when a test sample falls inside the overlapped space. Figure 4

represents these nodes with their respective activation func-
tions used in the model architecture.

2) INTER-NODE CONNECTIONS AND TRAINING
The connection between the hyperbox nodes and class nodes
in the reflex section is represented by matrix Y and Z ,
respectively (refer Figure 3).Whenever a situation of overlap/
partial or full containment ofH is encountered, the hyperbox
node is created dynamically in the reflex section’s middle
layer. Overlap or containment between a labeled hyperbox
(Bj ∈ Ci,∀ i > 0) and unlabeled hyperbox (Bk ∈ Ci,∀ i = 0)
is allowed and does not create any OCN or CCN nodes. This
is used to label the unlabeled hyperboxes. The number of
output layer nodes, present in the CLN section, represents the
total number of classes learned by the model.

3) FINAL MEMBERSHIP COMPUTATION
The final membership value [48] for the ith class node is
computated as µi ← Ci + Oi, where Ci is the member-
ship of the ith class in classifying layer (CLN ) section; i.e.,
Ci = max

m=1...j
(bmumi) and Oi is the compensation Oi =

min( min
j=1...p

(djyji), min
j=1...q

(ejzji)) for the ith class.

4) DISEASE VISUAL FEATURE OVERLAP AND CONTAINMENT
The introduction of this biologically-inspired section helps
in obtaining more explainable class memberships. This is
discussed in detail in the Ablation Study in Section IV. In the
case of two diseases having similar visual features, a condi-
tion of hyperbox overlap may occur. Suppose a hyperbox bj,
which is expanded in any previous step, is compared with all
other hyperboxes bk . If Cj and Ck = C0, the overlap and con-
traction test are performed as explained in Test 2 [48]. They
follow the principle of minimum disturbance by computing
the dimension with minimum overlap ‘d’ and contracting it.
Otherwise, Test 1 is performed [48]. Figure 7 illustrates the
algorithm as a flowchart.

5) HYPERBOX ISOLATION CONDITION
If (Vki < Wki < Vji < Wji) or (Vji < Wji < Vki < Wki)
holds for any i ∈ 1, . . . , n, then, (bk , bj) are isolated. If the
condition does not hold, containment test is performed.

6) HYPERBOX CONTAINMENT CONDITION
If (Vki < Vji < Wji < Wji) or (Vji < Vki < Wki < Wji)
holds for any i ∈ 1, . . . , n, then Hyperboxes are contained
and a CCN node is formed dynamically. If hyperboxes are
not contained, an OCN node is created.

7) HYPERBOX OVERLAP TEST
Initial value of δold is set as 1.
Case 1:
vji < vki < wji < wki
δnew = min(wji − vki, δold )

Case 2:
vki < vji < wki < wji
δnew = min(wki − vji, δold )
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TABLE 3. Comparative analysis of visually similar and distinguishing features of COVID-19, SARS-CoV-1 and MERS respiratory diseases on CXR scans. Data
taken from [57]–[62].

FIGURE 7. Algorithm Flowchart, I. Training Algorithm, II. Online learning
for dynamically created class, III. Novel disease detection.

Case 3:
vji < vki ≤ wki < wji
δnew = min(min(wki − vji,wji − vki), δold )

Case 4:
vki < vji ≤ wji < wki
δnew = min(min(wki − vji,wji − vki), δold )

If overlaps exist and (δnew − δold ) > 0, then, 1 = i
else 1 = −1.

8) HYPERBOX CONTRACTION TEST
If overlap exists and is minimum along 1 dimension,
the hyperboxes are contracted using the following given
conditions:
Case 1:
vj1 < vk1 < wj1 < wk1

vnewk1 = wnewj1 =
woldj1 +v

old
k1

2
Case 2:
vk1 < vj1 < wk1 < wj1

vnewk1 = wnewj1 =
woldk1+v

old
j1

2
Case 3:
vk1 < vj1 ≤ wj1 < wk1 and wk1 − vj1 < wj1 − vk1

then vnewj1 = woldk1 else wnewj1 = voldk1
Case 4:
vj1 < vk1 ≤ wk1 < wj1 and wk1 − vj1 < wj1 − vk1

then wnewj1 = voldk1 else vnewj1 = woldk1

E. NOVEL DISEASE DETECTION SYSTEM
This section describes how the model detects and classifies
novel diseases, without explicit training.

1) DE NOVO DISEASE DETECTION
For a particular disease, hyperboxes occupy a large extent of
space in an n-dimensional feature space. For many diseases,
since the type and extent of lesions tend to be either slightly
or considerably similar, a portion of visual features is mapped
to an n-dimensional feature space, which is common for more
than one disease category. Most techniques tend to distin-
guish different disease classes on the basis of their differen-
tiating visual features [51]. In the case of fuzzy classifiers,
both common and differentiating features of the disease are
mapped in the n-dimensional feature space using hyperboxes.
Even though transfer learning is used to obtain feature vec-
tors, since these are of high dimension, they encode a large
amount of visual information of the disease [54]. Exploiting
this property, we classify those diseases as novel which tend
to occupy an overlapping space less than a set threshold T ,
where T ∈ (0, 1), in this n-dimensional feature space.
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Algorithm 1 Detecting and Classifying Novel Disease
Occurrences
Input and initialization:
Model Pre-trained on labeled Train Set
ah← Input test sample
θ , γ , T ←Model Parameters
k← Current classes learnt
DX ,DY ← empty lists for feature vector, class index
P ← User-input value for Online Learning
Computing maximum class membership (M):
M = max

i=1...k
(µi(ah)), M ∈ (0, 1)

Novel disease detection:
if (M < Threshold T ) then

ah /∈ Ci=1...k , i.e., Novel Disease Detected
DX .append(ah), DY .append(k + 1)

else
ah ∈ Ci=1...k , for which µi(ah) is max

Online Learning update for dynamically created
class:
if (elements in DX equals P) then

for (j← 1 to len(DX )) do
if (DY [j] /∈ classes learned) then

Add CCN HyperboxH
Classes learnt← (k + 1), i.e.,
C1,C2, . . . ,Ck → C1,C2, . . . ,Ck ,Ck+1

else
Calculate expanded index
Follow standard algorithm

DX , DY = [], []
Go to next test sample.
Midway introduction of labeled dataset:
Train (ah,Ci), i = 1 . . . (k + 1)

2) NEGATION OPERATION ON INTUITIONISTIC
MEMBERSHIP GRADES
The regular membership function µ(x) denotes the value of
an input sample belonging to a particular class of disease
that CAD model has previously learned. The fundamental
property, µ(x) + v(x) = 1 and µ(x), v(x) ∈ [0, 1], where
v(x) denotes the value by which the entity does not belong to
classCi. Using the negation operation, for intuitionistic mem-
bership grades, we tend to compute the input samples where
v(x) is above-set threshold T , i.e, samples for which M <

T , where M = max
i=1...k

(µi(ah)). Widely used Pythagorean

membership grade [63] defined by ((µ(x))2 + (v(x))2)
1/2
≤

1 is not employed since it allows for representation on a larger
body of non-standard membership grades.

3) ONLINE ARCHITECTURE UPDATE FOR Ck+1 CLASS
Upon identifying a novel disease, the model adds a new class
Ck+1 to the classification network, which is similar to class
addition during model training. Further, when samples of this
novel disease are detected in the future, the model constructs

TABLE 4. Details of the CXR radiograph dataset used to assess the
proposed method. The proposed model is trained on limited dataset.

hyperboxes using the same principle discussed. This enables
online architecture update and increases the model’s ability
to classify the samples of the novel disease.

4) MIDWAY LABELED DATA (ah,Ci ) INTRODUCTION
Furthermore, since the architecture is semi-supervised,
labeled training samples of the novel disease can also be
introduced at any point to improve the accuracy for this class
without the need for complete re-training. Algorithm 1 is used
for the detection of novel disease samples, online learning,
and midway introduction of a labeled dataset. In detecting
novel diseases, one of the challenges faced is determin-
ing accurate model parameters best suited for classification.
Increasing the fuzziness control parameter (γ ) leads to more
fuzzy classification while decreasing it leads to a crisp clas-
sification. Algorithm 1 discusses the implementation of the
methodology in detail.

IV. EXPERIMENTS AND RESULTS
A set of experiments are performed to demonstrate the effec-
tiveness of the proposed approach. In this section, firstly,
we discuss the experiments and the results of the model’s
ability to detect novel diseases on three unseen novel dis-
ease datasets: SARS-CoV-1, MERS-CoV, and COVID-19
to demonstrate the strong generalizability of the approach.
In additional experiments, the model’s classification ability is
evaluated on two tasks: binary classification and multi-class
classification of CXR diseases. We also discuss the hyperpa-
rameters chosen during these experiments. Lastly, we provide
an ablation study to evaluate the contribution of key compo-
nents of the proposed model.

A. EXPERIMENTAL SETTINGS
This section describes in detail the experimental setting.

1) DATASET
To assess the proposed method, dataset from two popu-
lar open-source repositories- COVID-Chestxray set [64],
and kaggle-chest-xray-dataset [65], extensively used in the
research literature for training and testing of CAD models
for COVID-19 CXR classification were employed. Table 4
contains the statistical details of posterior-anterior (PA) CXR
scans used in the experiments. Initially, all inputs are pre-
processed, which includes resizing (224×224×3) and format
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FIGURE 8. Graph between max membership to predefined class M and number of input test samples for (a) SARS-CoV-1, (b) MERS-CoV and
(c) SARS-CoV-2 datasets. Unseen novel disease samples detected by the proposed model and classified separately in a newly created class. Here, max
memberships to predefined class, i.e., M for the novel disease samples are in red and to classes learned previously are in blue.

conversion. Pre-processed high-quality images are selected
and divided into two subsets: the training set (80%) and the
test set (20%). The images are evenly distributed in different
classes for classification experiments.

2) IMPLEMENTATION
The work is implemented using Keras [66] with Tensor-
flow [67] as backend. Nvidia K80 GPU with 12GB RAM
workbenchwas used for conducting the experiments. ‘zscore’
was used as the normalization method which is calculated
as z = (x − u)/s. ‘yeo-johnson’ transformation was applied
while training the ML classifiers for comparison.

3) COMPARED METHODS
Various SOTA ML classifiers are implemented on the same
dataset to compare the classification results. 15-fold cross-
validation was used for implementing the classifiers to
distinguish between COVID-19 and non-COVID-19 CXR
scans compared to the proposed model on the same dataset.
Similarly, the models were implemented for performance
comparison on the multi-class classification task. ‘Accuracy’
was used as the metric for optimizing the hyperparameters
used for training.

4) EVALUATION METRICS
Confusion matrix-based metrics is used assess the classifi-
cation performance of the proposed model. This includes
accuracy, precision, recall, and F1-score as described below.

1) Accuracy: It estimates the ratio of correctly classified
diseases to the entire test dataset. If accuracy is higher,
a model has better performance. It lies between [0, 1]
and is generally reported as percentage (%).

Accuracy =
NTN + NTP

NTN + NFN + NTP + NFP
(4)

2) Precision: It estimates the ratio of a particular disease
that has been correctly classified over CXR scan to the
total number of that particular disease identified by the
model. Like accuracy, precision also lies between [0, 1]

and is generally reported as a percentage (%).

Precision =
NTP

NTP + NFP
(5)

3) Recall: The recall is the measure of a model correctly
identifying true positives. Thus, for all the patients who
actually have a particular disease over CXR scan, recall
tells how many were correctly identified having that
particular disease.

Recall =
NTP

NTP + NFN
(6)

4) F1-Score: It is defined as the harmonic mean of Pre-
cision and Recall. If the F1-Score is higher, a model is
better. F1-Score ∈ [0, 1] and is generally reported as
percentage (%).

F1− Score = 2×
(
Precision× Recall
Precision+ Recall

)
(7)

where, NTP, NTN , NFP, NFN are the number of true positives,
true negatives, false positives and false negatives respectively.
For multi-class classification task, the discussed metrics is
used as class-wise and macro-average.

B. EXP 1: EVALUATION OF NOVEL DISEASE
DETECTION ABILITY
In this experiment, the model is trained to classify normal
X-ray scans from bacterial pneumonia X-rays. To evaluate the
ability of the model to detect novel diseases, CXR samples of
diseases, like SARS-CoV-1, MERS-CoV, and SARS-CoV-2
(COVID-19), not seen by themodel before, are inputted along
with the original test set images.

Severe acute respiratory syndrome (SARS-CoV-1) is
a viral respiratory disease reported around the end of
February 2003. SARS-CoV-1 samples are used as novel dis-
ease sample inputs to the proposed model along with the test
set. Figure 8(a) shows the graph obtained (at θ = 0.75 and
γ = 1) between the max-memberships value to the pre-
defined class; i.e., M for different input test samples {ah}.
It can be inferred from the graph that samples belonging to
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FIGURE 9. Visual illustration of t − SNE feature visualization. (a) Normal
vs Bacterial Pneumonia classification. Here yellow represents normal
samples whereas Violet shows the Bacterial Pneumonia samples.
(b) COVID-19 (in green) is input as novel disease, previously unseen by
the model. (c) MERS (in yellow) and (d) SARS (in yellow) is input as novel
disease, previously unseen by the model. In both (c) and (d) green
represents the normal CXR scans whereas Violet shows the Bacterial
Pneumonia samples.

the classes that the model was pre-trained for, i.e., normal and
bacterial pneumonia, have a higher range of membership val-
ues over predefined classes. However, the input test samples
of novel disease are found to have max class memberships
below a certain set threshold. This is due to different visual
features than those of the previously learned diseases. CXR
scans of SARS-CoV-1 patients show bilateral airspace con-
solidation (observed in 66.7%-70.6% patients), demonstrated
by multi-focal opacity [68]. Focal opacity is also detected
predominantly in the middle, lower and peripheral zones of
the lungs. This is significantly different from COVID-19
and MERS-CoV, where consolidation is 26.64% and 50%
respectively, as compared to 65.65% in SARS-CoV-1 (refer
Table 3). The SARS-CoV-1 input samples are classified into a
new dynamically created class during testing with θ = 0.75,
γ = 1 and threshold T = 0.50. Moreover, each time this
new disease is further encountered in the future, the model
classifies it to the newly created class.

Similarly, to demonstrate the model’s generalization abil-
ity, MERS-CoV and COVID-19 CXR scans are used with

FIGURE 10. Visual illustration of t − SNE feature visualization for
(a) Normal vs COVID-19 binary classification task. Here yellow represents
COVID-19 samples, whereas normal samples are shown in Violet
(b) Normal vs COVID-19 vs Bacterial Pneumonia multi-class classification
task. Here green shows the Bacterial Pneumonia class.

FIGURE 11. The obtained Confusion matrix for the (a) Binary
classification and (b) multi-class classification task.

the proposed model as novel disease samples. Note that
the model has not seen these images before and has
never been trained on them. The model detects them
as novel diseases, classifying them to a newly created
class. Figures 8(b) and 8(c) show the graph obtained
between max-memberships value M to pre-defined class
for MERS-CoV and COVID-19. Further, Figure 9 shows
the results obtained from t-Distributed Stochastic Neighbor
Embedding (t-SNE) feature visualization for the Normal vs
Bacterial Pneumonia classification and the de novo disease
detection experiments with CXR of COVID-19, MERS-CoV
and SARS-CoV-1 input as novel disease. The performance
of the model, along with the hyperparameters used, are dis-
cussed in Table 5.

C. EXP 2: EVALUATION OF CLASSIFICATION ABILITY
In this experiment, the proposed model is tested to assess
its performance on binary and multi-class classification
tasks to demonstrate that the model is not only capable of
detecting de novo diseases but also classifying test samples
belonging to other pre-trained classes Ci=1...n. Binary clas-
sification is performed on non-COVID-19 and COVID-19
CXR scans, whereas multi-class classification is performed
between normal, bacterial pneumonia and COVID-19 CXR
samples.

The obtained results are compared with the various ML
classifiers implemented on the same dataset. Table 6 shows
the 15-fold cross-validation performance of SOTA ML clas-
sifiers to distinguish between COVID-19 and non-COVID-19
CXR scans compared to the proposed model. Table 7 com-
pares the performance of the proposed model with various
ML classifiers on the multi-class classification task. The
results demonstrate that the performance of the proposed
model is at par with other SOTAmodels in both classification
tasks. Figure 11 illustrates the obtained confusion matrix for
both the classification tasks. Further, Figure 10 shows the
results obtained from the t-SNE feature visualization for both
the classification tasks.

D. ABLATION STUDIES
The proposed model contains four key components: The
modified VGG-16 based CXR feature extractor, fuzzy classi-
fier, biologically-inspired reflex section for class membership
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TABLE 5. Performance of the proposed model on COVID-19, SARS-CoV-1 and MERS-CoV datasets for novel disease detection experiment along with
hyperparameters θ, γ,T used. The model was pre-trained to classify normal and bacterial pneumonia classes.

TABLE 6. Comparison of Binary classification results on CXR scans with various ML classifiers. Here, θ = 0.85, γ = 2 for proposed method. Feature
Vectors are obtained from CXR feature extraction network.

TABLE 7. Comparison of Multi-class classification results on CXR scans with various ML classifiers. Here, θ = 0.60, γ = 1 for proposed method.
Feature Vectors are obtained from CXR feature extraction network.

generation, and the novel disease detection framework. Here,
we provide an ablation study to explore the contribution of
the key components of the proposed model.

1) GLOBAL MAX-POOLING vs. GLOBAL AVERAGE POOLING
Although pneumonia and most other diseases can be differ-
entiated, X-rays are still considered as the ‘‘most challenging
plain film to interpret correctly’’ [33]. Therefore, extracting
discriminating features on CXR scans is a challenging task.
Instead of using the standard global average pooling (GAP)
layer in the feature extraction network, the global max-
pooling layer (GMP) is preferred. During the ablation study,
the GMP layer was replaced with the GAP layer to study
its contribution. Unlike conventional models, in which GAP
outperforms GMP, in the present model, GMP is found to
generate more representable features from the input image
and shows significant performance over GAP. This mainly
occurs when visual features of two image classes are very
near to each other with very minute differences. There-
fore, in such cases averaging the features, i.e., using GAP
fails.

2) VARYING CNN MODELS AND CURSE OF
DIMENSIONALITY
The model is found to perform optimally when CXR feature
vector dimensionality n = 512. As the dimensionality is
increased above 512, the model accuracy decreases, and the
sample testing time is also found to increase significantly.
This is due to multi-fold increase in the volume of the high
dimensional space, such that the available data becomes
sparse. Further, modified VGG-16 [52] CNN pre-trained on
ImageNet [53] performs optimally over other feature extrac-
tion networks like ResNet [69], MobileNet [70], etc.

3) EXPLAINABILITY OF CLASS MEMBERSHIPS
Introduction of biologically-inspired section helps in obtain-
ing more explainable class memberships. Unlike fuzzy
min-max neural networks [46], which contracts an hyperbox
in case of overlaps, the reflex mechanism produces compen-
sation outputs using OCN and CCN neurons. This brings the
model near reality since most diseases have some visually
similar features on CXR scans lost in FMNN due to hyperbox
contraction.
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FIGURE 12. Graph between the obtained accuracy, fuzziness control parameter (γ ) and expansion
coefficient (θ) to find the best fit model for (a) Binary Classification (b) Multi-class Classification
tasks.

FIGURE 13. Graph obtained between accuracy and set threshold (T ). The
intersection point represents the best fit point.

V. DISCUSSION
A. PARAMETRIC STUDY & HYPERPARAMETER TUNING
An in-depth parametric study was performed to evaluate the
effects of variousmodel parameters and propose a strategy for
hyperparameter tuning. Figure 14 shows plots obtained from
the parametric study; i.e., the effect of various parameters
including the hyperbox expansion coefficient (θ) and fuzzi-
ness control parameter (γ ) on the model accuracy, number of
hyperboxes (H) created during model training, total model
training time (sec) and the sample testing time (sec) for both
the classification tasks performed to evaluate the model’s
classification ability. The obtained results are:

1) At higher values of hyperbox expansion coefficient
(θ ≥ 0.6), the model shows better performance
on image classification tasks (refer Figure 14(a-b)).
In classification tasks where the feature vectors are
mapped to low-dimensional space, i.e., n < 512, low
values of expansion coefficient (θ) produces optimal
results.

2) Further, it can be inferred from Figure 14(a-b) that
decreasing the fuzziness control parameter (γ ) gener-
ally shows better model performance.

3) As hyperbox expansion coefficient (θ) increases, the
number of hyperboxes created during training shows
an ‘exponential’ increase rather than ‘linear’ (refer

Figure 14(g)). On the other hand, the model training
time first shows a sharp rise until θ ≈ 0.2, after which
its value decreases ‘exponentially’ in both the binary
andmulti-class classification tasks (refer Figure 14(h)).

The results obtained from the study quantifies the
model hyperparameters for image classification tasks and
are helpful in hyperparameter tuning. Figure 12 shows a
three-dimensional plot between the obtained classification
accuracy, hyperbox expansion coefficient (θ), and the fuzzi-
ness control parameter (γ ) for both the classification tasks,
carried out to find the best fit model.

The set threshold (T ) plays a significant role in the
detection of de novo diseases. Figure 13 compares the
accuracy vs. set threshold in this regard. For class member-
ships, the threshold (T ) is determined experimentally. For
SARS-CoV-1, a threshold (T ) is set at 0.5, MERS-CoV at
0.45, and 0.70 for COVID-19. The best fit values of the
thresholds, obtained from the graph shown in Figure 13,
are the point of intersection between the classification accu-
racy and class memberships for the novel disease. It can be
inferred from the plot that when the threshold (T ) for the
novel disease is kept very low, novel disease samples are
classified as one of the previously trained classes. However,
when the threshold is kept very high, input samples belonging
to the pre-trained classes are incorrectly classified as novel
disease samples.

B. TIME COMPLEXITY ANALYSIS
Along with the parametric study, a time complexity analysis
is performed. In this study, the sample testing time (sec) is
calculated by varying the hyperparameters θ and γ for both
the binary and multi-class classification tasks. The experi-
ment is repeated to analyze the total model training time (refer
Figure 14(c-f)). The obtained results quantified that though
the total training time of the model is extremely less (i.e.,
≈ 5 to 20 sec), the sample test time is relatively high and
varies from ≈ 50 to 300 sec. The same is observed for both
the binary and multi-class image classification tasks. In the
case of low-dimensional data classification tasks, such a large
difference is not observed.
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FIGURE 14. Plots obtained from parametric study. Graph between (a) Accuracy (%) and expansion coefficient (θ)
for γ = 1,2,3,4 for binary classification (b) Accuracy (%) and expansion coefficient (θ) for γ = 1,2,3,4 for
multi-class classification (c) Sample testing time (sec) and expansion coefficient (θ) for binary classification
(d) Sample testing time (sec) and expansion coefficient (θ) for multi-class classification (e) Total training time (sec)
and expansion coefficient (θ) for binary classification (f) Total training time (sec) and expansion coefficient (θ) for
multi-class classification (g) Number of hyperboxes formed and expansion coefficient (θ) (h) Training time sec) and
expansion coefficient (θ).
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TABLE 8. Performance Comparison with SOTA techniques in literature developed using CXR images. The present work is first to identify the challenging
task of novel disease detection and propose a novel solution to it.

C. ROBUSTNESS TO ADVERSARIAL ATTACKS
Adversarial attacks [84] involves generating modified image
by making subtle imperceptible changes in the original
image. To boost robustness, existing defensive measures
include: leveraging network distillation to extract informa-
tion from the trained feature extractor [85], and using inno-
vative training methods (such as IMA) that can expand
the margins of training samples in the input space [86].
Since the feature extraction network was pre-trained on
ImageNet [53], adversarial noise may not significantly affect
the performance of the network. The model performance
establishes strong generalizability of the approach through
tests for a set of three novel diseases (taken from two different
open-source datasets [64], [65]): COVID-19, SARS-CoV-1
and MERS-CoV. The main adversarial attack algorithms
identified to target the proposed model include the L-BFGS
algorithm and Fast gradient signmethod (FGSM) [82]. More-
over, quantitatively analysing the vulnerability of the model
to possible adversarial attacks w.r.t. existing defense method
suitability, along with demonstrating robustness on various
adversarial attacks can be an interesting extension for this
research.

D. STATE-OF-THE-ART PERFORMANCE COMPARISON
To compare the performance of the proposed model with
unsupervised clustering approaches, K-means clustering was
performed on the dataset with normal, bacterial pneumonia,

FIGURE 15. Results of the k-means clustering showing 04 identified
clusters, depicting the failure of conventional clustering approaches.

and COVID-19 X-ray feature vectors. The feature vectors
are extracted using the same feature extraction network
as used in the proposed model. K-means clustering was
found to incorrectly detect 4 clusters as shown in t-SNE
plot [83] in Figure 15. It illustrates the failure of con-
ventional clustering approaches and how semi-supervised
fuzzy classifiers are effective. For hyperbox expansion coef-
ficient θ = 0, the fuzzy classifier is the k-nearest neighbor
classifier.

A comparative analysis of the proposed model was per-
formed with existing SOTA techniques developed employing
CXR images. Table 8 summarizes the study’s find-
ings. It shows both quantitatively and qualitatively the
out-performance of the proposed model over other models
in present literature. Moreover, the present work is the first to
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identify the challenging task of deep-precognitive diagnosis
and propose a novel solution to it.

VI. LIMITATIONS AND FUTURE WORK
One of the limitations of the proposedmodel is that its sample
testing time (i.e., ≈50 to 300 sec) is comparatively higher
than the total model training time (i.e., ≈5 to 20 sec). Future
work may look into ways to reduce the high sample testing
time of the model. Second, an algorithm can be developed to
avoid manual interventions for updating the hyperbox expan-
sion coefficient (θ) and fuzziness coefficient (γ ). Moreover,
we aim to increase the model sensitivity to novel diseases
and improve classification accuracy by modifying the model
architecture in future work. Future research directions also
include expanding the proposed model over other diseases
that are detectable through CXR features in high-dimensional
vector spaces. Although in the future, there may be disease
outbreaks that might impact some other human organ that
can only be caught by scanning a particular organ or through
blood chemistry, physiological analysis, CT-Scans, MRI, etc.
Nevertheless, the proposed model can be further extended by
changing or augmenting this kind of data. Future research in
such areas will slowly help us move towards a universal DPD
model that can take different kinds of data and predict new
disease existence.

VII. CONCLUSION
Currently, most works on DL-based CAD models are lim-
ited to increasing classification accuracy and sensitivity.
In this paper, the concept of Deep-Precognitive diagnosis is
proposed, which has immense potential for future research
and can be helpful in the development of next-generation
CAD models. The challenges posed by the formulated
Deep-Precognitive diagnosis task are difficult to be addressed
using supervised learningmodels, as they require labeled data
for learning to classify new data into one of the trained classes
only. Since it is not possible to get the novel disease dataset
prior to its outbreak, most supervised learning models would
fail to detect the new disease class.

The present work is the first to address these challenges by
proposing a biologically-inspired convolutional fuzzy classi-
fication model, wherein we visualize the proposed task as a
classmembership lookup problem. Unlike conventionalmod-
els, the proposed DPD model can detect occurrences of new
diseases at their preliminary stage of spread. Such a model
has the capability to control the spread of novel diseases with
an early warning of a future pandemic. The proposed model
creates a new class for them in real-time. Experimental results
on three CXR disease data- SARS-CoV-1, MERS-CoV, and
COVID-19 demonstrate the feasibility and remarkable per-
formance in identifying a new disease class. Further, the
model’s classification ability is demonstrated in the binary
and multi-class classification tasks. An ablation study is also
performed to quantify the contributions of critical compo-
nents of the model. Thus, the proposed model can be used
as a baseline for future works. Besides, two other vital issues

that obstruct the development of future diagnosis models are
also addressed in this work: firstly, the requirement of a large
labeled training medical dataset and, secondly, the need for
model re-training when novel disease needs to be added to the
CAD model for classification. The model learns on limited
datasets and reduces heavy dependence on labeled dataset
availability. The results also establish that modified fuzzy
classifiers achieve accuracy comparable with SOTA models.

Deep-Precognitive diagnosis has immense potential appli-
cations in developing future-CAD models that will be pow-
erful enough to detect new disease occurrences and learn and
improve their novel disease classification ability to expand on
several such new diseases in real-time.
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