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o ABSTRAC&‘ -

Operaﬁors are obtained which can be evaluated with respeét to
.nonre.lativistic wave functions to produce the same'result as obtained by
evaluating the Breit equation with respect to rélativistic; \%Jé.ve functions.
This greatly simplifies caiculati’ons involving the Breit eqﬁation by al-
léwing the calculations to be made within the more familiar frémework
of nonrelativistic theory'.‘ The operatofé are classified a.ccAordivng to
their angular dependence; a .comparison with the angular dependence of
each fine-structure operator leads to the relativistic equivalents of the
fine-structure interactions. .The operators are expanded-'in a power

series in (v/c)z, and the lowest nonvanishing terms are shown to be the

fine-structure interactions.
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We have'obtained equivalent operators for the tez;ms in the Breit
- . equation (Sec. III); these oper_é.tors are then broke_an up into groups which | -
éorrespond to fine-structure inte‘ractvions (Sgc." IV). Finally, these groups .
are \reduced to the nonrelativistic limit in order to obtain the fine-structure

interactions. This last step is important because it reveals new operators

of the same magnitude as the fine-structure interactions.’

3
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1. THE HAMILT ONIAN
The ana1y51s is based on the solutlon by flrst-order perturbation

theory of the Breit equatmn for two electrons (cha.rge —e) 45

o o 2 2 2 a,a,
- Yoyl A 2 Ze e el 2
SC\I,-‘{ Z {&i-(c&-}'eéi)'{*ﬁimc - rf ]+r -2 77T

i=4, 2 S o

o2 oy xyoMa,e 1)) \I,
T2 3 b
12 |

=E¥,

We assume that the potential terms in Eq. (1) can be approximately re-

placed by a central field term X U(ri).' The approximate Hamiltonian is

then

| 3(:0 = Z [ii; (c?;i-i-eéi) + ﬁir'nc2 + U(ri)\J. . ) (2) |
i=1,2 :

and the difference, 361 = ZC ;—-’{3(}(30,_ can be treated a,'s a perturbation.'"‘ For

~ the special case in which 1}1 = 0, the wave function satisfying -

oy = Eg¥, = (E + Eo)w (3)

where E' is the energy of electron i, can be v&ritte_n as a product of wave

- functions of the férzﬁ , o . '
‘F/r lﬁjm> .
lgm) = - .o B (4)
iG/r Mjm) ‘
where 2.= £ £ 1-as j= £ & 1/2,

and o ' R S
lfsm) D it R M2 2, [2m£>x3r{2. ()
- . . s 4 o s .
gmg | | o
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. The term "x 1/2 is the usual two-component spinor."‘- ‘Here and in what fol-

- lows, relativistic wave functions: are written in t'he-:genera.l.form [ij)‘ and
- nonrelativistic functions as- ]ij> . Terms written [a,b,+*+] stand for

~ (22 + 1)(2b + 1). .+ ." We shall restrict our discussion to the configuration
2%
The radial functions F and G, which can be taken to be real, can

- be related through Egs.” (2), (3), and (4):

(aér__ - }—J;')Fi= % 'rnc2+E8 -U(ri)] Gi ’

1 1 L
| | (6)
d . MY L .1 2 i ' '
(a;; * 'f'1“> Gi = e |™me “EO+U(ri):} Fio»

| i#e-1/2 1

The energy, to the first order in the perturbation, is then given by

(q e, + 3¢, | ) = (B, + E )%, |2 o) = E(¥, |2

| | | (7)
- o 2 o
= (‘I’o!,‘i‘.' p+pme” + 06, + 3Gy + F + 30 ]\go),_
where “
- i
%, E:JCQ |
: 2
i _ ..Ze .
3o = Fr— s
< o .1
SC = ’ ‘
S Y
s - o2 24 %
| Y 2 T2
and '

[

3
Tya
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The first two terms on the extreme right-hand side of Eq. (7) are the
kinetic enérgy and mass-effect termé, ‘respectively. In tixe following
svections, we shall not be directly concerned with these two terms, but

rather with the remaining terms in 3C.
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IIL EQUIVALENT OPERATORS
,‘ We wish to obtain the operator O defined by the equation B 4
(wolzc +:;c‘3 3¢+ 3¢ |¥g) = <\1/|0E]\1f> (8)
- where ]\I’> is the nonrelativistic wave functmn which | O) approaches

in the nonrelativistic limit, The operator O is the "equivalent oiperator'? ’

E
for the interactions GCG through 3(36, and will be obtained below by con=.

| sidering the interactions Z}Ca through 3(:6 separately.':- _

A. Equivalent Operator for 3,

Evaluation of Z}C; between relativistic wave functions is straighf;_-é.'_f

forward, and yields
L gz | EErEDN
,(lam»bcalme)--Ze —— dr; 9

Ty

- The equivalent operator for 3(’,2 s namely Oci:. » can be written in,i:he
‘gener.al form : - _
o= ). el WK g

are. defined

(nk)K

3 where the a are constants to be detefminéd; and the w
by the relation _

?
m

(Hf—“ll) Hi/z o ey
KLY = oy w12

~ Because SCQ is a scalar, K = 0 in Eq. (10) above, and therefore « = k.

Taking matrix elements, we obtain
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(tim] O} [aimye= ) oo < 2 /2 f1f2 2 k]

~ Equating the right-hand sides of Egs, (9) and (12), and multiplying both

sides by

> {%2 .1/£2 | 11} Li] _(‘)j’

J

al(kk) = [K] 1/2 (_)k+z-1/z Ze? Z[J] .
" i

we obtain

(13)

» (® (o2, 2

e e AT (),

(-)3{1-/2122: i} | ("“—‘—-J 1=
L /2 o T

We postpone a discussion of this and subsequent results until Sec. IV,

: _B.l Equivalent Operator for {}(:£3

- Because (}Cﬁ is a two-body operator, we must consider matrix

~ elements between relativistic states composed of two electrons.  The final
- form obtained for OE does not depend on the type of coupling used for the

- wave function. However, in order to demonstrate more fully the method

to be used, we use below wave functions of the form EZSLJM).

As is apparent from Eq. (4), in relativistic theory j, and not £, is
a good quantum number. The state _lEZSLJM) must then be decomposed
into states ljijZJM), .which in turn are decomposed in the usual way into

a sum of products of lﬁjifni) and 1Zj2m2). Then



Q

U‘

,.(j1llc' HJ3)~<£_)1HC H233>jF Fj x dr+<231HC 1]233>f r dr.
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: ' ' : : 1/2
(z s L JM[.’}C [2 s, L JM) Z | [31' +S,s LZ.31,32,33.,J4] :

igd
EEREY I L
| . 5 ._ (14) -
/2 1/2 s, (1/2 1/2 s, | |
X 44 2L, 28 Lk (5,3, 7M[5G [i3i,TM)-
8 s g Y |

-"I“he term JCB can be expanded a's

K.
K+ ' EZ ‘ -
- The symbol C" is defined by ‘ o L
C:If{ = (4q /2K+1)1/2 K

where YK is the usual spherical harmonic._ In eva.luatmg the matrlx

element on the right side of Eq. (14), one obtains reduced matrix elements

such as

(15)

- This simplifies to

RN 1/2 ( | K j3> X
= (-) , | (F. F, +G. G, )rid
‘. ). Uy 331 \-1/2 0 1/2 g ds o iyt o

for K “even, .0r Zero vfor K odd. We finally obtain, for E_q." (14),

&

e e s e an
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31+J3+J.

2 2 x a2 Lo L1/2
(4 SiLiJMlﬁcﬁ[k S,L,IM) = e”} [51’32’ L,»L,] [31.32,33, 34]
) 1/2_ 1/2 S, 1/2 1/'2,32 53 iy 7 i, K i,
X £ £ L £ 2 L, - 2
L R i ~4/2:0 1/2
g da I iz I P2t Y /
, K (16)
: <
X (F1F3 + G,G3), (F,F, +G G4) dr,dr,,
| K1
>

" where the sum is over ji’ jZ’ j3, j4, and K, and F'1 has been written for

'Fj , etc. Particle assignndentsjare subscripfed to the pareritheses. ‘
1 , M . B -

_ _b_T}}e equivalent operator is written in this case as
S (k 1)k_ 4 (szz)k :
Zﬁ(k1K1k2K2k) w, - w, ,  (17)
where the sum is. over ki’ Ki’ k KZ’ and k., This is the most general

form for a scalar two-body interaction. Proceeding as in Sec. IIIA, we

evaluate

<z s,L JM[Op[Z s, JM>

and equate the r,esults with Eq. (16). The constant B is obtamed by utilizing

. the orthogonality conditions for 6-j and 9-3 symbols.’ One obtains
1/2
Z ) _]4+J3+1 [k'l’K k, KZ] /

3132 ) _
12 1f2 k 1/2 1/2 k, X

| ﬂ(kiK k,K,K) =

172772 [j'l’.JZ" Jg» 34]

jy ki3 N\ (] g

X £ K, L 2 K, | ) y
. .. .. 1/2 0 -1/2 1/2- 0 -41/2
‘ Ji. J3 ,k_ 32 34 k / ’ / . ) '
rk :
X fj(F F + G G3) (F F + G (:‘14)2 k+1 dridrz,l-.

TS
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R '-‘.,':v'fwhere k s even. By 1nterchang1ng Ji and 33, _]2 and 34, we .see that ﬁ

”""i-_;',W111 be-zero for either (or both) Ky * K1 or k, KZ odd;" L

E C EquiValent Op‘e_ratdr‘ vfor»ﬁC

The derlvatlon of the equtvalent operator for SCY is. carried out in. ",‘

- _'i"'?.vessent1a.11y the same manner as for the equ1va1ent operator for GCﬁ We . PR

sy »“:f1rst, however, rewr1te {}CY .
= SC = _ezi g;'l 2'.2 . Z 2)(C1 Cﬁ) ‘r< ‘ )
o 7 {3 | £

1+k+ 5 4;,!"¥
?_._ Zﬁ (0. Ci) (o. Cﬁ) ( ) [3 ;;Fi

. u’. :

S AR | o2 - j +J +J+k
1/2, J2 3
(,e s L, JM{sc |z S,L JM)--——Z—— R [31,32,33,34, Li,LZ,Si:Szl / (=) -

- 1/2 e ”S-i | -'1,-/2‘ 4/2 'SZ s g 3 . |
X { L. L __'Li I S { 'LZ = I . 20)
. . B - R :" . , : ik . » . A
{91 33 7 S PR I I J'i_-

jf(ain(ac ) HJ3)(JZH(aC) 1134) ____{; " ar dr

:v ;The sum is over 31, Jz, j3. 34, {3, and k; the. reduced matrlx elements are _'

- o “glven by
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k‘e\ . . k :
1/2 + AT J :
<J1H<GC Y[135 )—1[k 31.33] / N7 (- 1( )( LB ) (R,GatG,F)
| _ -1 0 1/\-1/2 -1/2 1
' : (21)'
»j3+'1/2(1 B k)( iy 33 k> oy
+ (-) . ' (F,G,-G,F,) '
| - \o oo 0/\/z4/2 0/ 173 13};
for p odd, zero for B even,” The equivalent operator is defined as*
(&, K k (K k :
Zy(kKkKk)w 1™ Cwy a2, 2y

where the sum is over k'l’ K1, kz, K X and k., Solving for y, we find

1/ 2. [epKpki] /2 k

1/2 1/2 k, 1/2 1/2 k,
X L 2 K, L £ K, (23)
| iy i k Jp iy Kk |

e
[[(s Il ey €4 By ”J3)(JZH( a,C,P) 1134) —gﬁ dr,dr, .
> ;

By interchanging ji and j3, j2 and j4, we see that v is zero if either (or

~both) k, + K1 or k, + K, is even,

Sor
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’ D. Eqﬁi_valent Operatér for ¥y "

The term 366 can be rewritten in the .form ,

e? [1 21°% 1/2 ,((‘11.»2) (z4or 12) °1
NotSeitu B (5) 3 : . (24)-
3 T2 - |

= - . T12

: _,Thq,ﬁrst term on the right above hés the same form as 'Z(iy; the s‘econd'

term can be evaluated by using the rela_,tio_nship7

oo,

(242542 12
E1zzaz) Z‘ )p +1 (PGB [(smmm(zpm ]

S (15)(2p- 1)(2ﬁ+3)_|

R SR [(ﬁ)(ﬁ-i)(ZB-3)(ZB+1) 1z ey
C C . 5(25-1) . o :

o 1/2
¢ (BB [(ﬁ+1)(5+2)(2ﬁ+1)(26+5)] .
5(2p+43) [

The terms in this expansion can be rewritten

FENE-P {@1;9;2)%959;)2}" =Y ot 2{1‘1 2}(@ A (a (2,69 > F(By), "
o | : | | (26)

“where y= p,"p + 2, and F(ﬂ_y)»ivs,the term multiplyifxg the _angularf vfacbtor‘ :

' ,_ (éﬁéY)zv in Eq. (25). Upon ihserting Eq. (26) into Eq. (24), one sees that

-Jchs has the same form as Z}Cy. We write the equivalent operator for 3(’,5 as

o ~ (k,K)k . (kK )k
'05 :Z{So(ki 1k2K2k)+52(k1K1k2K2k)} (mi * 1' ) 22 )

(27)



ol :

No analogous simplifications _ai'e possible for 622 or §
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where the sum 1is oVer ki’ Ki’ k KZ’ and k. The expressmn 50

‘corresponds to the flrst term on the right of Eq. (24), 62 to the second
‘These two expressions are easily evaluated by compariSon with Eqs. (19)

and (23). One obtains

620, K, kK k) =%'y(k1K1k2K2k) R - (28)
and /
. [J »J -J 2k ,K k K,] '
5z(kKkK 2e 1232032040 %y 2. ()®
(k]
1/2.1/2 k 1/2 1/2 k , -
1 21 11 2 -

X <& 2 K, L £ K, . F(yB) (29)
jy 33 K Jp g K Ve | .

cHk(l rg S
‘/ﬁJill(a ) HJ3)(32H(Q 2) HJ4) —'B-?,l dridrz,
T .
>

The sum is'over j,, Jps j3, j4, B, and y. Both 60 and 62» are zero if B

is even, and if either (or both) k, + K, or k, *+ K, is even.

1 2 2
Further simplification can be obtained for particular cases: let
52 = 1521 + 622 + 623, where '5?"1 stands for thé case in which y = B, 622

2 22 23

fory=§ +'2, and 623 for vy = g - 2, For k odd, 621 = 3y, 6 and§

are zero. In this case 50 + 62 =Y. Forkevenand k=8 -+ 1,

L 2(k+1)
FASEY

for k even and k = g -1,

0, .21 _ 2k
8748 Y= 5y v

23 .
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o IV.‘__: II\‘ITERPRIET'ATIONOF THE Cl)PER_AT‘OR.S o
.The t‘ezn;msv injOE: having the sa;ne- angular bdependence as‘ the fine -
'Sfruefure interactions can b.e ident-:iﬁed as rela.tivietic fine-structure _
| v‘intex.'a..ctiovns.' 'I.'hese‘ relativistic intera'ctions_ can be expended in a power
',‘series in. o;ﬁders of (v/_c)z; the lolwest‘nonvanishing terms will,v in m'est
instances, be just the usual fine-structure interactions. | We'censvider"ﬂ

now the terms 'a.ccording to their angular dependence.' :

A.. Terms With No Angular Dependence

The only term of interest here is a(00); §(00000), the only other
nonzero term having no angular dependence, will be _seen to be the first

~term in the expansion of the operator ez/rizz

oi(00yw (000 _

2, 2. - 2 .2
2 . (F, +G)). (F™+G7).
- 2 [ (e4tfe | Lt dr, +[£-1/2] | ———2)dr,

“i

2[12] ) T, o T,

‘where F stands for ¥, 2*1/2 » etc, |
The expans1on of Eq. (30) in orders of (v/c) is based on Eq. (6).

We define EO W + mcz, and wr1te Eq. (6) as |

o S owiou(y) - 3'1' |
6% 7me VY Sz . (31)
mc” ‘
e . ' o y weu
The expansion of the expression in braces in powers of - is
2mc

- roughly equivalent to an expansion in orders (v/c)z.‘ We will need to

consider only the first term in the expansion

P (a4 - 4
G = - '<a?.‘—r7> Fio - G2

1 1

(30)
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~where .P‘O =
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eh i ' ‘

2 mc

To this'.order, F satisfies the ‘equation

2 s 2 . | o .
- (d - ALY )+U(r) F, = WF, (33)

em _ dr2 r

for both j = £+1/2 and j = £ - 1/2 states; Eq. (33) is just the radial -
'Schrddinger wave equation for a particle in a central field. The normal-
~ization used in this limit is fFZdr =4,

In this order of approximation, the term containing FZ in Eq. (30)

becomes 2
2 | .
—'Ze -1—.-2-—-- dri . . A - (34)

i

- The term in G can be obta.lned by use of a genera.l relationship obtained

from Eq. (32),

o ' 2
- dV dF xk 4dV d 2L+ 1)
[GVGdr‘ -'z-f e [r a—'V<dr-z e >}F dr,

(35) -
where V is any function of r.’ fI‘-he term containing G2 then becomes
g 12 ’:b";.i:ez - ze? [ a? '.z(z+1) |
- Fls 9" (- - )+ s (driz - rf ) .Fidr;i. (36)

This term is discussed fp.rther in the next section,

B. Coulémb Repulsion Terms

The Coulomb repulsion Hamiltonian, ez/riz, can be written as

q 2 r :
z £ K 1\ [z < (. (KK _ (0K)K |
Z (o 0 o) 2L <“X1, "W ) (37)

[K] ry
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i Only O‘3 has terms w1th this angula.r dependence, the equivalent operator E i

for thls 1nteract1,on,. OCR’ c}an therefore bevwrltten

Z ﬁ(OKOKK)( (OK)K, “Z(OK)K) e

‘.

The first nonvanishing term in the expansion of OCR

is exactly Eq. '. (37). -

- The second nonvanishing term is

mg [[[2.2 1 _2 Z 2. {a% g€ R

Mo |

;Tlein 7 ViU - u - oEEy (S -2 e,
| j

:i%j=1,2 . dr. .rj
(39)
. 2 _ 2 2 )
where‘.U' -e/r12 and VvV V1+V2. |
When evaluated in this 1imit,' the matrix element of- the term
Z (E - [3 mc ) contams, in addltlon to the nonrelativistic energy, a
3 ' ,
component of the order po/e .': Thls component is given by
2, 2 i, i d‘2 2(2+1) : | 40 |
(po/e W + EY) | — - = - (40)
;o dri . r. . A

Combining this expreséion with Egs.. (36) (summed over i) and (39), one

obtains
.ffFZFZ 1 VZV _ P4 1 d,r o (41) _
Z T T3 2’ ' ‘
| : - m7c™/ T T |
where - . , _
| 2 2 2 )
pt=(py4py) ana V= B 2o 2

To obtain Eq. (41), we ha.ve made the approximation that .

2 P

Ze e _
W+E+ ——-1:1 -.—f-;j~ Wi
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The first term in Eq. (41) is the Darw1n 1:erm8 for two electrons the .

. second, the mass correction term,

- C.  Spin Orbit Terms .

The spin orbit Hamiltonian can be written as R .

' Tee+1y2e+1))4/2 (14 J N
Ko - asg [ £+ 1)1 )] (11 (a2)
Whe_r'e _ : = o .
' . = ‘hz 1 dU(r)
SO 22 1 dr °
‘ 2m ¢
Because

w0 31000 = a2y,

(11)0

“both O and OB contain_ terms having the angular dependence w The

.relat1v1st1c spin orbit constant is then g1ven by ,

'

: A 1/2 . -
rel _ 2 . i -1/2 .
250 0 - [2(2+1)(2£+1)} A[a(1‘10)+(2[£]) .‘3(_1_1900?] '
., \_ | B | _
= -[—z—]- [(F+Vr 1F+ + G, V G+)dr _l//(Ff-vrelF—‘ + G-YrelG'-!tdri .
. ‘ : L ' R (43)
rel is a “'relativistic pofential enefgy” given by |
Vrel(r‘i) N
2 2. o B : . : .
_oZe qo 7 le+2) (FE+GE), + 20 (®2+6H, | L oar,,
: r, . A Rt A - -2 r 2
12 g, | - R e |

- where rg is the larger of Ty rz.' In the limit discussed above, the second
v ‘terrvn on the right of (44) becomes the integral over r, of the potential
enefgy of a charge at T, due to a spherlcally averaged charged shell at Toe

The relativistic spin orbit term reduces to 250 in the nonrelat1v1st1c 11m1t. “
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D. Orbit-Orbit Terms

9

: The drbit orbit interactién can Be'written as . ‘ e
KK+1121
- 2 Z (ZK+1) >2 —
‘"’cp'o : <zHc [z (z)(z+1)(zz+1) PEES ST
L | (45)"
' K o o
X . 2,2 2 (0K+'1)K+1 O (OKH)KH, -
o Lo B2 mEs dridra v o
Y rz ri T
' :,"I:‘he équivalent operator for this interaction, Oob, is give.n By the terms
in OY and 06 with the same angular dependence as (}COO:
vooo Z {y(o KH4 0 K+ K446 (0 K+ 0 K+1 K+1)} ( (OK“)K“ w, © K“)K“D. |

(46)
Only the.terms in this sum with K even will be nonzero. In expanding OOO’

one finds that the first nonvanishing term is just GCO(S.

~ E. Spin-Other-Orbit Terms

The spin-other-orbit interaction can be wri_.ttenio

¥soo ~

" 2 z[(KH)(ZMKfZ)(Zﬂ _'K,)] 1/2E(')KH[KH]-1/-2 (‘:‘,.(O,KH).K-!-i_"iv;(i K>K+1)

X {MK || cFM 1) T e (o 15 ]2) }+('—)K[K] 12, (0R)K, (KK,

(47)

.’,

where the I_\/IK are the angﬁlar integrals of Marvin, 11 The sum over K falls

. into two parts, the sum over K. even and the sum over K.odd." For K even,
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terms in the equivé‘féﬁf‘operafor, OSOO’ Wlth the angular dependence
( C(OKH1)KH (:l K)K-H

), . Wlll arise from O and 06 with

‘(\z(ox)x (1K+1)K)’ from O..

B* For K odd the situation is' i'evexjsed.

‘The equivalent operator is given by .

O500 = Z {{p(ox 1 K+ K) + y(0K 1 K+1 K)

+8(0 K 4K+ K] (y (w (OK)K , (i'KH)K)

4 [B(0 K+1 1 K K+1) + y(0K+1 1 K K+1)

w (48)

+ 6(0 K1 1KK+1)] (v 1(0K+1)K+1 - (1K)K+1)}

The first nonvanishing term in the expansion of Eq. (48) is ',K"SOO '




-20- ©  UCRL-16670

_F. >Spin.—Spin T e-rvrnsv

N Thvev- spin'-spiri Hamiltonian is given byiof ‘

o 1/ | 12 f 1.1 2 ‘-
GCSS _ 2(5) » 0 Z [(2K+4) (2K+ 3)(2K+ 2)] / lK+Z K K+1} -
S ' _ K ‘ - : - (49)

X <£HC ]£> <2”ch2 ’ll£>ff R% %{3‘? dr drz (1{,1(1 K+2) Xz(i K)K—}-'j_) ‘,

- The equivalent operator for this Hamﬂtoman, O

55’ comevs from QY and

05, and is given by.

= Z { (1K42 1 K K#1) + 5(1 K+2'1 K K+1)>< (4 KH2)KH+
K A

| (1 K)K+1
Ogg bk) )

(50)
The only nonzero terms in this sum will occur for K even,
Upon expanding the expression for O g we find that the first non-

S
vanishing term is given by Eq. (49) plus the additional term

o WSO TE 1Ry (111072 1)

(2K + 3)
F4 ' : o .
1 (1 KA2)K+1 ~ (A K)K+1 ) .
r : l
1 -
'_I‘hé radial part of this additional expression is of the form of a delta o,

* function between r:l -and ;1;2; this term is discussed further in the next

.section.
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' G. Spin-Spin Contact Terms

o -The'VSPinQépin'conta'ct Hamiltonian®? is given by

| 2 | o T (52)
K o -

Where we have used1v3‘

»6(".:-3';.1 - rz) = 0{r,

e L (o).

Again, the equivalent operator for this interaction O

SSC comes from O

R and Op, o |
OSSC = Z YK 1K B) +6(1K 1 K@,‘Qéﬁ/“ K)p, 2,“ K)B)
Kp ' |
-~ The oniy nonzero ter.mé in this expansion occur for K even,
Upon expanding Oééc, we ‘fi.nd that the first nonvanishing term is |
given by "}CSSS plus some additional te;‘ms whose vglués depend on B. | The VI
additional terms are; | | |
for B=K + 1,
’ ' . 4 . ‘_ .
m <£ ”CK”1> / e, (11 K)pi okt K)K+1) ,
T4 - . : (532)

3 'for,'B=K - 1,

. 4 | P |
2(K+1)u : 1, 1 K)K-1 (1 K)K-1 .
° <zuc‘<nz>f bar, (0 )

ry oo o (53b)
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'and for p K

22 <||CK|[1> _.._;_d (1K)K (1K)K>' BN

‘The additional contnbutlons to the spin- sp1n Hamiltonian found by - -

v_expahding the equivalent operators in powers of (v/c) (Eqs. 54 and 53)

" can be included.i'n the Hamiltonian by adding the term

16w | L 3, is,t ]
' - : ]
ssc T T T3 “05(". ...2) [ 1" 52 - == '"‘2“‘2 b (54)
r o
' This operator has not been obtained in previous treatments > 14 of the |

-

spin-spin 1nteract10n because earher results have depended on the assumed

shape of the 1nf1n1te51ma.1 regmn in which the electrons overlap. The

.situation is highly analogous to that which ex1sts with respect to the Fermi

contact ter.mis in hyperfine structure, C.Tudd7 has found that JC'SSC can

be obtained by use of classical electromagnetic theory if the electron

16

If one uses this method, the result does not depend on the shape of the

infinitesimal volume surrounding one of the electrons, Judd.7 has also

obta1ned Je! by the method of Bethe and Salpeter, 5 assuming that

SsC

: electron 1is excluded from, and electron 2 confined between, two con-

_centri¢ spheres which collapse,. in the limit, to a common radius,

Unfortunately, %éf'SC’ which can be written as

\ 4‘5)/2“3 K46 112. Kb 2 K8,2)0
Hgse = 73— Z (-7, 8] ooo)(o oo)éuz) (C C,)
Ko , (55)

- can be shown to always give zero total contribution to the energy.v That
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is, when the matrix.element'of SC'SSC' is’ takenib'etween the states »lsL>
and. IS'L'>,' the sum over K and 0 can be performed, producing a

result which depends on the product

/2 4/2 1) f10 4 4\ [L 2 ¢ o
1/2 1/2 1 - i .
s s 2] \0 00/ oo

' For this productnot to be trivially zero, S=S'=1, and L, L' must be
- even’; such a state, however, would violate the Pauli principle. It can
also be shown that JCéSC makes zero contribution when evaluated between

wave functions arising from mixed configurations,

H. Other Terms

There are three more distinct operators in OE which have not

-been discussed. These are

Oy = Z B(1K+1 1 K+1 K) (...(11 Kj‘-;i)K ] '2(21 K+'1)K> )

/

K

o, = Z ‘3.(1 K41 4 K'T_1 K) <Y"V(11 KH)K,’ y(21 K-1)_K) -
<

and » | ‘ v :
0, = Z B(1K-1 1K-1K) @(11 Ko1K, ygi K-UK) )
| K | |

' Upon expanding these expressions, we find that none has any nonvanishing

terms to order. pg/e4.
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V. DISCUSSION |
"Table VI 1>':'evv‘iqew's .some of the fesults of the preéeding section, In
.,it, t}vle'te.rms 1nOE are classified according to the type ofrfine-struc_ture k o
interaction produced. In the.pa.rts of the spin-spin, spin-other-orbit,
and orbitl-orbit interactions arising from OY and 06’ the angular depend-

(ap)K

ence of each electron is given by W , where K is odd, As was shbwn
.‘in' Sec, IIIC and D, in this case OY = 06‘ in the nonrelativistic limit, the-
contributions from OY and O(5 to the spin—spip contact"terms are also
equal; this is not the case in the relativistic limit, however.
As‘mentioned in Sep. II1C, the values of OE do not depend on the
~particular type of coupling aésuméd; this implies that the equations for
OE

are valid for any two electrons in a configuration 2P, This in turn
. implies that the equivalent operatér for the configuration Ay cé.n be ob-
tained ‘gy replacing the indices 1, 2 in OE by i, j and performing the
sums § O and L (0g +0_ +0p).
i=14 i>j s
Using the operators obtained above and relativistic Hartree~Fock
wave function.s, then, one cah calculate in a straightforward 4manne1'- the
value of a particular fine-structure interaction in the configuration 27,
- The evaluation of the angular terms is carried out in the nonrelativistic’ |
scheme, where the powerful tensor techniques of Ra,ca.h17 can be easil.y

utilized, The methods used to obtain these operators can also be used B

to obtain operators valid for application to mixed configurations,

“
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‘columns are k

v}

Table I, Terms in OE classified according to corresponding fine-structure interaction.:

Numbers in first column are KK as defined in Sec, III A, Numbers in second and' thiri‘d‘

K

, K,, k as defined in Sec. 1IB, C, and D,

LY LYY
0(1 . O‘5 : OY and 06 : Iﬁtefactién
- 0 0 - Zez/r .
11 1100 0. spin orbit .

1)

0K 0K 0 (K even)

0 K 1 K+1 K (K even)

0 K+1 1 K K+1 (K odd)

1 K+t 1 K+ K (K even)

1 K+1 1 K-1 K (K even)

1 K-4 1 K-1 K (K even)

1 K 1 K+2 K+l (K even)
0 K+1 0 K+1 K41 (K even)
0 K+1 1 K K+1 (K even)

A

0K 1 K1 K (K odd)

i

1 K 41 K K1 (K even) ,

1 K 1 K K (K even)

1 K 1 K K-1 (K even)

2
e"/ry,
spin-spin
orbit-orbit
spin-other -orbit

spin-other -orbit

~ spin-other-orbit

spin—o’thgzr -orbit

spin-spin contact

~ spin-spin contact

spin-spin contact

‘*82f
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