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ABSTRACT OF THE DISSERTATION 

 

Performance Characterization, Image Processing, and Multimodality Coregistration of Small 

Animal Positron Emission Tomography Systems 

 

by 

 

Freddie Rohinton Daver 

Doctor of Philosophy in Biomedical Physics 

University of California, Los Angeles, 2012 

Professor Magnus Dahlbom, Chair 

 

Positron Emission Tomography (PET) systems designed specifically for small animal 

imaging have a unique set of requirements for successful operation. This work investigates a 

limited angle tomography microPET system, in contrast to conventional cylindrical systems. 

Initial studies included measurements of spatial resolution, uniformity, contrast-to-noise ratios, 

resolution recovery coefficients, and detector deadtime.  

A subsequent investigation was performed to ascertain the use of Factor Analysis in 

mitigating artifacts caused by the limited angle tomography. Three separate studies were 



 

 

iii 

 

conducted: a dual-isotope experiment, a semi quantitative study, and mouse models. The results 

indicate potential use of Factor Analysis with possible limitations due to noise or uptake. 

A more rigorous investigation into the limits of Factor Analysis was performed using 

Principal Component Analysis. Using the definitions of correlation and covariance matrices, the 

results of uniform phantom studies were used to measure uniformity, signal-to-noise ratio, and 

noise distribution. This analysis was applied to the limited angle tomographic system and a 

conventional cylindrical system. The results were insightful and in strong agreement with 

Poisson statistics. 

Multimodality coregistration between systems was also performed using a rigid body 

least-squares transformation (“Horn’s method”). Spherical phantoms were imaged to obtain 

calibration data within each system. In addition to deriving the transformation between a pair of 

systems, a metric was computed to estimate the error associated with the coregistration. Once 

computed, the transformation was applied to independently acquired mice studies from each pair 

of systems. The method proved fairly successful, and a number of improvements are suggested. 

The rigid body nature of the transformation also allowed for a convenient method of 

measuring spatial linearity. Coregistration between synthetic grid-like images, and actual images 

of grid-like phantoms, were performed. The least-squares metric produced is used to determine 

spatial linearity. Grid-like phantoms were created using activity-infused ink in conjunction with 

a conventional inkjet printer. Each phantom was scanned on the limited angle tomography 

system. The results indicated a very high degree of spatial linearity. 

Although motivated by limited angle PET, most of the methods employed may be used 

for other imaging modalities as well. These methods are statistical in nature, and may be 
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similarly interpreted within various modalities. While the purpose of each study was different, 

the underlying mathematical concepts are common amongst most of them.  
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1 Introduction 

 

 The following work consists of five separate studies. Although varied in topic, the 

motivation for each study is based on the limitations or conceptual similarities with the previous 

study. The first study consists of performance measurements taken with a limited angle 

tomography preclinical scanner for positron emission tomography (PET). These measurements 

include spatial resolution, uniformity, contrast-to-noise ratio (CNR), resolution recovery, and 

deadtime. Due to the geometrical configuration of the system, the resulting images suffer from 

artifacts that severely limit the sagittal and transaxial images both visually and quantitatively. 

 Factor Analysis (FA) was proposed in order to mitigate the detrimental effects of the 

limited angle tomography. Qualitatively, FA attempts to segment an image not by using spatial 

relationship between structures. Instead, FA attempts to group together voxels which exhibit 

similar kinetic properties over time. In other words, voxels which resemble each other, as 

measured temporally, are assumed to belong to the same structure. Using this technique, 

dynamically reconstructed images can be separated into factor images. Ideally, each factor image 

contains only one of the structures of interest. In order to study the applicability of FA on a 

limited tomography PET system, separate studies were performed. The first consisted of a dual-

isotope measurement in order to determine how well FA could separate voxels from each of the 

two isotopes. The second study investigated the use of semi quantitative model in order to test 

the separation of overlapping simulated structures. The third study applied FA to a mouse scan in 

order to visually assess how successfully adjacent structures could be separated. 
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 Only moderate success was achieved with FA. This motivated a simpler, more direct 

approach to quantifying how well FA might perform. This approach involved the use of 

Principal Component Analysis (PCA) which, qualitatively, may be thought of as a more 

restricted form of FA. For these studies, PCA was not used conventionally as a compression or 

image processing technique; instead, PCA was used on a set of uniform cylinder studies, of 

various duration and activity, in order to compute a number of performance metrics. These 

metrics include uniformity, a time-dependent signal-to-noise (SNR) ratio, noise distribution, as 

well as an upper bound limit for FA. Due to the novelty of this use of PCA, these methods were 

tested on the limited angle tomography system as well as a conventional cylindrical microPET 

system. In addition, due to the computational limitations of a conventional PCA calculation, an 

alternative method of computing the principal components was mathematically derived without 

the use of approximations, additional assumptions, or intermediate processing. 

 Aside from performance measurements and image processing techniques, multimodality 

coregistration between small animal imaging systems was investigated. Using methods adapted 

from PET brain motion correction, a coregistration method based on rigid body transformations 

was developed. The method is completely independent of modality, statistical properties, noise, 

or anatomical models. No approximations or iterative methods are used. Instead, the method 

relies almost entirely on how closely the assumption of rigid body is observed. In other words, 

motion of the subject relative to the fields-of-view (FOVs) is detrimental to the accuracy of this 

method. Measurements were performed in order to assess the positioning precision with which 

subjects could be placed within each FOV. Transformations between systems consisted of a 

rotation and translation. These transformations were computed using an analytic least-squares 

algorithm relying on previously acquired calibration data. A residual metric, indicating the 
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quality of these transformations, was also computed. Transformations were then used to 

coregister pairs of mice images acquired from pairs of modalities. Visual investigation of these 

mice images were then performed to give a qualitative evaluation of the coregistration. 

 The least-squares nature of the coregistration then motivated a test for spatial linearity. 

The discrepancies between a physical subject and its image may be described by a 

transformation. If this transformation is rigid, no spatial distortions are present. However, if 

spatial distortions are present, the relative location between any given points within the subject 

will differ from that in the image. Testing this spatial linearity was performed on the limited 

angle tomography system by coregistering a synthetic grid-like image with a physically acquired 

grid-like image. For both images, the grid spacing was identical. The coregistration was 

performed using the same rigid body transformation as that used for the multimodality 

coregistration. The resulting metric, provided by the transformation algorithm, is an absolute 

measure of the total mean squared error between grid points and their corresponding image, and, 

therefore, a measure of spatial linearity. The physical grids themselves were created by printing 

activity-infused ink onto high quality photographic paper. Coordinates of the synthetic grid 

points were computationally generated, while the imaged grid points were computed via centroid 

calculations. Both sets of coordinates were fed into the coregistration method in order to produce 

the spatial linearity metric. 

 In summary, drawbacks present in the limited angle tomographic system motivated a 

number of other investigations. Each investigation chronologically spawned subsequent 

investigations with unforeseen, but sometimes favorable, interpretations and consequences. 

Although seemingly disparate, the studies are strongly linked conceptually. Factor analysis and 

PCA are both methods of statistical separation. Furthermore, Principal Component Analysis, 
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rigid body coregistration, and spatial linearity all rely on the same fundamental least-squares 

concept. In fact, much of the work discussed in not specific only to PET, but other imaging 

modalities as well. As a result, a fairly comprehensive set of studies has been assembled. 
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2 Genisys System Characterization 

 

2.1 Introduction 

 

 The Genisys system (Sofie Biosciences, Culver City, CA) is a Positron Emission 

Tomography (PET) system designed for preclinical studies [1, 2]. The low-cost Genisys system 

uses bismuth germanate (BGO) detectors arranged in a fixed dual head configuration, while most 

conventional microPET systems utilize lutetium oxyorthosilicate (LSO) detectors arranged in a 

cylindrical configuration. The dual head configuration of the Genisys is illustrated in Figure 2.1.  

 

Figure 2.1: Dual head configuration of the Genisys microPET system. The lack of detectors in 

the sagittal direction gives rise to the image artifacts (i.e. “bowtie” artifact) which severely limits 

image quality. Due to the isotropic nature of radiation, detection must be performed with a full 

tomographic system in order to obtain statistically complete information. 

 

The dual-head configuration of the Genisys reduces its geometrical efficiency and causes image 

reconstruction to be performed using limited angle tomography. Due to the strong dependence of 

PET images on geometrical factors, as well as on detector configurations, a comprehensive 

characterization of the Genisys system is needed in order to fully understand its characteristics 

and limitations. 
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2.2 Spatial Resolution Measurements 

 

 

Spatial resolution can be defined as the minimum distance between two points at which 

they can be visually separated. The full-width at half-maximum (FWHM) is the most common 

method of quantifying spatial resolution. Due to geometrical effects, spatial resolution may be 

strongly dependent on position within the scanner field-of-view (FOV). Using a 50 µCi 
22

Na 

point source, a 5-minute static scan was acquired at each location. The point source was 

repositioned from location to location with the aid of a high-precision translational stage. The 

locations of the point source were designed to fall on a grid within the central coronal plane of 

the Genisys. Distances between grid points were approximately 5 mm in the superior-inferior 

(SI) direction and approximately 1 mm in the left-right (LR) direction. Each image was 

reconstructed with the use of the Expectation Maximization (EM) algorithm with either 30 or 

100 iterations. A Gaussian smoothing filter with a 0.35 mm standard deviation was also applied 

post-reconstruction. The raw images obtained from the system were composed of 80 x 80 x 176 

voxels, each with dimensions of 0.55 mm x 0.55 mm x 0.55 mm. Figure 2.2 illustrates the 

complete set of all locations that were used. 
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Figure 2.2: Coronal superposition of all images used in the spatial resolution measurements. The 

image show is 80 x 176 voxels (0.55 mm x 0.55 mm). Each individual image was obtained with 

the use of a 50 µCi 
22

Na point source mounted on a translation stage. Each acquisition was five 

minutes in duration. The default 3D histogramming was used. Separate data sets used the default 

EM algorithm with 30 and 100 iterations. Spatial resolution was then found as prescribed by the 

NEMA protocol.  

 

The calculation of spatial resolution was guided by the National Electrical Manufacturers 

Association (NEMA) Standards Publication NU 4-2008 [3]. All post-reconstruction analysis was 

performed on the raw Genisys images using the Interactive Data Language (IDL) version 7.0. 

The method consisted of adding the profiles of each point source image to obtain a “response 

function”. The FWHM of the response function was then computed using a parabolic fit through 

its maximum. Points which corresponded to half of the maximum value of the parabolic fit were 

linearly interpolated. The reported FWHM is then defined as the distance between these 

interpolated points. Table 1, Table 2, and Table 3 indicate the computed FHWM values. 

 

Direction Full Width at Half of Maximum (mm) 

Left-Right 1.32 

Anterior-Posterior 2.82 

Superior-Inferior 1.71 
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Table 1: FWHM of Genisys images using 30 iterations and no post-reconstruction smoothing 

filter. 

 

Direction Full Width at Half of Maximum (mm) 

Left-Right 1.31 

Anterior-Posterior 2.72 

Superior-Inferior 1.60 

Table 2: FWHM of Genisys images using 100 iterations and no post-reconstruction smoothing 

filter. 

 

Direction Full Width at Half of Maximum (mm) 

Left-Right 1.58 

Anterior-Posterior 3.01 

Superior-Inferior 1.71 

Table 3: FWHM of Genisys images using 100 iterations and a Gaussian post-reconstruction 

smoothing filter with 0.35 mm standard deviation. 

 

For comparative purposes, the spatial resolution of the Siemens Inveon system is ~1.5 

mm at FWHM [4, 5]. As expected from the detector configuration, the effects of limited angle 

tomography are most detrimental in the anterior-posterior (AP) direction. The post-

reconstruction smooth filter is generally applied for to reduce noise while preserving spatial 

resolution and does not appear to have a significant effect. Measurements performed above or 

below the central coronal plane are expected to show increased FHWM values in all directions 

due to limited angle tomography as well as increased parallax effects. 

 

2.3 Phantom Measurements 

 

Due to the unconventional size and configuration of the Genisys system, an image quality 

phantom was constructed by Sofie Biosciences specifically for image quality control of the 
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Genisys [2]. This image quality phantom consists of two 1.0 mL cylindrical chambers; five rods 

with diameters of 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm; and a rectangular pool of 14.2 mL. 

Both cylindrical chambers are engulfed within the pool. Note that the pool is filled with activity 

via injection into the rods; all rods and the pool share the same activity concentration when 

filled. A schematic diagram of the phantom is shown in Figure 2.3. 

 

Figure 2.3: Schematic drawing of image the quality phantom used in some of the Genisys 

studies. All dimensions are in millimeters. Activity concentration within one of the large 

cylindrical chambers was approximately 5x that of the rectangular pool. The other large 

cylindrical chamber was filled with inactive saline. The five rods (varying in diameter between 1 

mm and 5 mm) consisted of an activity concentration equal to that of the pool.  

 

This phantom was employed when testing the Genisys for uniformity, contrast-to-noise 

ratio (CNR), and resolution recovery coefficient. Using a solution of 
18

F-Fluorodeoxyglucose 

(
18

F -FDG), a single cylindrical chamber, all rods, and the rectangular pool were filled such that 

the cylindrical chamber contained an activity concentration (24.5 µCi/mL) that was 

approximately 5.3 higher than that of the rods and pool (4.6 µCi/mL). The second cylindrical 

chamber was filled with inactive saline. The total activity within the entire phantom was 

approximately 74 µCi at the start of acquisition. Events were acquired over an 8 hour period 

resulting in a very high-statistic data set (~379 million true events). Histogramming was 

performed using decay correction, randoms correction, deadtime correction, and detector 
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normalization. Partial volume correction, scatter correction, and attenuation correction were not 

available on the Genisys system. A series of static images were then reconstructed using 10, 20, 

30, 40, 50, 60, 70, 80, 90, and 100 iterations with the default EM algorithm. A post-

reconstruction Gaussian smoothing filter of standard deviation 0.35 mm was applied post-

reconstruction. Regions of interest (RIOs) were drawn about each section of the phantom. Note 

that the ROI corresponding to the rectangular pool is not drawn to contain the entire pool; the 

pool ROI was drawn to include signal from the pool itself while avoiding contamination from the 

rods and hot chamber. The smallest diameter rod (1 mm) was not visible in any image. An 

example of this series is shown in Figure 2.4. 

 

Figure 2.4: Coronal image of phantom with ROIs drawn to segment the various sections. The hot 

cylindrical chamber is on the lower right. The rectangular pool physically encompasses both 

cylindrical chambers, but its ROI is drawn to prevent contamination from the rods and hot 

chamber. Four of the five rods are visible in the upper central portion. 

 

Note that the hot chamber (Figure 2.4) appears to have higher activity concentration 

within its interior compared to its periphery. The lack of attenuation correction should render this 

to be the opposite. This appears to be one of the artifacts of the limited angle tomography. In 
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fact, it is clear that the signal within the hot chamber “spills over” into the relatively cold 

background pool.  

In order to test the effect of low statistics in conjunction with the differing number of 

iterations, the bootstrap method was employed. In addition to reconstructing with varying 

number of iterations, the image was also reconstructed using a randomly chosen subsample of 

the original true events data set. The subsamples included 1%, 10%, 25%, 50%, and 75% of the 

full data set. Subsampling was performed by reading the listmode file event by event within IDL; 

prompt and random events were kept or discarded based on the output of a random number 

generator adjusted to keep a certain percentage of the overall events. Single events were not 

discarded. The retained events were then written to a new listmode file. This file was 

subsequently processed using the Genisys histogramming and EM reconstruction protocols. The 

subsampled set was independently created four times for each percentage. An example of an 

image created from a subset is shown in Figure 2.5. 

 

 

Figure 2.5: Coronal image of phantom using 1% of the data used to create the image shown in 

Figure 2.4. The same number of iterations (50) and smoothing filter was used as that for Figure 

2.4. Four of these subsampled images were created independently for each percentage and each 

iteration. 
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Note that the 2 mm diameter rod is barely visible in Figure 2.5 due to the limited number 

of true events (1% of ~379 million). However, the interior of the hot chamber appears to be more 

uniform. Spillover from the hot chamber appears to be better contained as well. Based on the 

examples in Figure 2.4 and Figure 2.5, it appears that a balance between total counts and number 

of iterations may be struck in order to achieve optimal image quality. A low number of counts 

does not necessarily imply that more iterations are needed for optimal quality. 

 

2.4 Uniformity Measurements 

 

 Using the four images obtained by subsampling at fixed percentage and with a fixed 

number of iterations, a “mean image” and “standard deviation image” were computed. An 

example of this is shown in Figure 2.6.  

 

Figure 2.6: Mean image (left) and standard deviation image (right) computed for the phantom 

using four subset images each created with 1% of the data. One of the four images is shown in 

Figure 2.5. 
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After reconstructing these mean images and standard deviation, average values within each 

region were computed using the ROIs shown in Figure 2.4. The average ROI values were then 

plotted against number of iterations for each fixed subsample percentage. Computations were not 

computed when using 100% of the data due to theoretical statistical inconsistencies. Figure 2.7 

through Figure 2.10 depict the average ROI values from these images for all subsets plotted 

against the number of iterations.  

 

Figure 2.7: Average hot chamber ROI values derived from mean images. Regardless of how 

much of the original data set was used, there is relatively little change after ~30 iterations. 
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Figure 2.8: Average hot chamber ROI values derived from the standard deviation images. It is 

clear that these values increase steadily with iterations, especially for the sets with a higher 

percentage of the original data. 

 

Figure 2.9: Average pool ROI values derived from mean images. Average values are relatively 

consistent after ~40 iterations regardless of how much data is used. 



 

 

15 

 

 

Figure 2.10: Average pool ROI values derived from standard deviation images. . It is clear that 

these values increase steadily with iterations, especially for the sets with a higher percentage of 

the original data. 

 

Data from the mean images, as seen in Figure 2.7 and Figure 2.9, indicate that the mean values 

within each ROI do not significantly change when increasing the number of iterations beyond 

30. Data from the standard deviation images, as shown in Figure 2.8 and Figure 2.10, show 

markedly increased deviation when using a higher number of iterations. This is highly 

undesirable for ROIs with uniform activity distributions. 

 

2.5 Contrast-to-Noise Ratio 
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 The phantom data set also allowed for a quantitative measure of the contrast-to-noise 

ratio (CNR). For a given percentage of data and given number of iterations, contrast was defined 

as 

�������� � 	
���	��	
��	�������	��� � 
���	��	����	���
���	������	���  
Equation 2.1 

 

The ROIs used to compute contrast are drawn from the mean images. Noise was defined as 

 

��������	����� � 	
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���	�����  
Equation 2.2 

 

Note that noise is defined relative to a mean. Both contrast and noise are dimensionless 

quantities. Ratios of contrast-to-noise were computed and plotted against number of iterations for 

each percentage, as shown in Figure 2.11. 

 

Figure 2.11: Contrast-to-noise ratio measured using ROIs from hot chamber and pool. Contrast 

itself was found to be slightly lower than expected, but relatively constant regardless of the 
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number of iterations. The noise, however, increased steadily with iterations. As a result, the CNR 

decreased rapidly with number of iterations. 

 

 

Figure 2.12: Relative noise derived from pool ROI values. The relative noise increases in a linear 

fashion with the number of iterations, regardless of how much of the original data set was used. 

 

 As can be seen Figure 2.11, the CNR generally decreases as the number of iterations is 

increased. Contrast itself was observed to be somewhat lower than expected based on the relative 

activity concentrations of the hot chamber and the pool. Furthermore, while contrast itself was 

observed to remain fairly constant regardless of percentage or number of iterations, relative noise 

decreased significantly with higher counts as seen in Figure 2.12. Therefore, these CNR results 

appear to be consistent with qualitative expectations. 
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2.6 Recovery Coefficients 

 

 Spillover between regions with significantly different activity concentrations may affect 

the accuracy of the voxels values within these regions [6]. The recovery coefficient is a 

quantitative measure of how well true voxel values are retained when neighboring voxels are of a 

different activity concentration. Recovery coefficients for all visible rods were computed. Each 

rod was physically separated from other regions. For each rod acquired at a given subsample 

percentage and iteration, a centroid within its interior was computed based on the mean images. 

All voxels within a neighborhood of 2 voxels about this centroid were averaged. The ratio of this 

value to that of the mean ROI value of the entire rod, as shown in Figure 2.4, is then defined to 

be the recovery coefficient: 

 

��������	����������� � 	
���	��	 �!���	����	��������	��	���
���	 ��"�	��	���	���  
Equation 2.3 

 

Since the 1 mm diameter rod was not visible in any of the images, it was not included in this 

analysis. The recovery coefficients of the remaining rods for each of the percentages are shown 

in Figure 2.13 through Figure 2.18. 
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Figure 2.13: Recovery coefficients of rods using 1% of data. The 1 mm diameter rod was not 

visible in the final image. All recovery coefficients are less than 1, indicating that the spillover 

effect is dominant regardless of the number of iterations used. 

 

 

Figure 2.14: Recovery coefficients of rods using 10% of data. The 1 mm diameter rod was not 

visible in the final image. Most coefficients are less than 1. However, coefficients greater than 1 

are possible due to spillover of activity from the periphery of the rod into the centroid. 
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Figure 2.15: Recovery coefficients of rods using 25% of data. The 1 mm diameter rod was not 

visible in the final image. Most coefficients are less than 1. However, coefficients greater than 1 

are possible due to spill over of activity from the periphery of the rod into the centroid. 

 

 

Figure 2.16: Recovery coefficients of rods using 50% of data. The 1 mm diameter rod was not 

visible in the final image. Most coefficients are less than 1. However, coefficients greater than 1 

are possible due to spillover of activity from the periphery of the rod into the centroid. 
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Figure 2.17: Recovery coefficient of rods using 75% of data. The 1 mm diameter rod was not 

visible in the final image. Most coefficients are less than 1. However, coefficients greater than 1 

are possible due to spillover of activity from the periphery of the rod into the centroid. 

 

 

Figure 2.18: Recovery coefficients of rods using 100% of data. The 1 mm diameter rod was not 

visible in the final image. Most coefficients are less than 1. However, coefficients greater than 1 

are possible due to spillover of activity from the periphery of the rod into the centroid. There 

appears to be slightly more fluctuation in the coefficients when using this complete data set 

compared to the randomly selected subsets. 
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The recovery coefficients tend to increase slightly with increasing number of iterations. 

The 5 mm diameter rod appears to be an exception to this, but remains relatively unchanged after 

reaching an initial peak at ~20 iterations. In addition, a recovery coefficient of greater than 1.0 

for this rod has been measured in the low statistic data. This overestimation of voxel values may 

be due to spillover of activity from the periphery of the rod into its interior. The spillover of 

activity outside of the rod ROI appears to be dominant for rods of diameter less than 5 mm. 

 

2.7 Deadtime Measurement 

 

As is common with most nuclear medical systems, the Genisys is prone to loss of counts 

during periods of excessively high count rates known as deadtime. Deadtime is typically due to 

signal “saturation” within the photomultiplier tube amplifiers; in short, counts may not be 

registered due to the system being temporarily “paralyzed” during deadtime. Deadtime is 

measured using the singles count rate over the entire FOV. Therefore, only a global estimate of 

deadtime is typically measured [7]. 

The total activity at which this global deadtime becomes intolerable is of interest in order 

to avoid loss of useful event acquisition. A continuous scan of relatively high initial activity is 

performed such that the duration of the scan allows for the nearly complete decay of all activity. 

For measurements performed on the specifically on the Genisys, a uniform cylinder (Ø = 25.5 

mm, length of 76.0 mm, fluid volume of 21 mL) was filled with approximately 102 µCi of 
18

F –

FDG activity. A 10-hour scan was performed and histogrammed into 20 30-minute frames using 

the default 3D protocol. 
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Note that the deadtime correction is applied to counts within the sinogram, as opposed to 

voxel values within the image. As a result, image reconstruction was not necessary. Two data 

sets were created. The first set of 20 sinograms included normalization and randoms correction, 

but lacked decay correction (scatter correction and attenuation correction were not available); the 

second set of 20 sinograms included the deadtime correction built into the Genisys 

histogramming protocols. As a result, elements within the sinogram are interpreted as the total 

number of events (singles, randoms, and true coincidence detection of annihilation photons) 

recorded along a given LOR. 

 At low activity levels, the induced deadtime is considered to be negligible; in other 

words, the observed count rate can be considered to be a very good approximation to that of the 

true count rate. The true count, per frame, at higher activity levels can then be extrapolated from 

this low-activity regime using at least two measured points and the initial activity. Due to the 

exponential nature of the decay, the extrapolation is nonlinear. However, the data can be put into 

a linear form when the counts are plotted semi-logarithmically against frame time (as opposed to 

activity level). Once the extrapolation is performed, the true counts may be computed at any 

activity level. For the results shown here, only the last two points were used for the 

extrapolation. The quantity of interest is the activity level at which the observed number of 

counts is approximately 20% lower than that of the true number of counts. The true counts 

themselves are estimated from the extrapolated counts. 

The semi-logarithmic plot is shown in Figure 2.19, and illustrates the linear extrapolation 

from the low-activity regime (i.e. frame time at 9.0 hours and 9.5 hours) towards the high-

activity regime (i.e. earlier frame times).  
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Figure 2.19: Semi-logarithmic plot indicating the measured counts without deadtime correction 

and the extrapolated true counts. The measured counts with deadtime correction are shown only 

for visual comparison; it was not used within the analysis. 

 

Prior to the 0.5-hour mark, the system is unable to accommodate all events; after the 0.5-hour 

mark, the number of events gradually becomes more manageable. The extrapolated counts curve 

represents the number of counts measured, per frame, if the system did not suffer from any 

deadtime or any other nonlinearity.  
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Figure 2.20: Counts acquired as a function of activity within the Genisys system. The activity 

indicated is based on the half-life of 
18

F (109.8 minutes) and the initial activity (102 µCi) as 

measured by a dose calibrator prior to the scan. The true counts were extrapolated from the 

region of lowest activity where deadtime is the least intrusive. The measured counts with 

deadtime correction are shown only for visual comparison; it was not used within the analysis. 

 

The counts-vs-activity plot corresponding to Figure 2.19 is shown in Figure 2.20. Figure 

2.20 presents the same information as that in Figure 2.19, but allows determination of the activity 

at which the measured counts fall to approximately 20% of the true counts. As seen in Figure 

2.20, this occurs at an activity level of approximately 22 µCi. This discrepancy will only increase 

at activity levels greater than this, and vice-versa. Note that the high activity region within Figure 

2.20 corresponds to the low frame number region in Figure 2.19 due to the fact that the scan was 

performed with a relatively high activity initially, and then allowed to naturally decay as time 

progressed. In addition, application of the deadtime correction within the Genisys appears to 

overestimate the number of true counts at nearly all activity levels. Most scans performed on the 
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Genisys, however, are performed at relatively low activity levels (between ~20 µCi and ~30 

µCi). As a result, this discrepancy is minimized. 

 Figure 2.20 also provides a rough estimate for the width of the deadtime window (in units 

of time). The activity level of approximately 91 µCi represents a “critical point” for the system. 

For activity levels lower than this, the timing between consecutive detection events are long 

enough for the system to manage; although counts may be lost at this activity level, the measured 

count rate is proportional to the true count rate. As a result, the average time between detected 

events at 91 µCi represents the shortest window for which the system may adequately 

accommodate detection events. This can be found simply by converting the activity into units of 

counts-per-second (cps) and then taking the reciprocal. The resulting value is 29.5 µs. In other 

words, activity levels at which consecutive detection events occur, on average, within 29.5 µs of 

each other will induce paralyzable deadtime within the system. Detection events which take 

place more than 29.5 µs apart will induce deadtime, but not paralyze the system. Again, this 

estimate of the deadtime window should only be considered as a rough approximation. A more 

accurate calculation would require the instantaneous count rate over time in order to find the 

“critical point”. In addition, only the average time between events is considered; as can be 

deduced from Poisson statistics and error propagation, lower activity levels will inherently have 

a higher average timing window (and higher variance of this window) between detection events 

compared to that of higher activity [7]. 

 

2.8 Summary 
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A number of performance characteristics for the Genisys have been measured. Spatial 

resolution was measured at a moderate ~1.5 mm while CNR and resolution recovery proved 

adequate. Deadtime was found to be somewhat restrictive; even a moderate activity of 22 µCi 

induced about a 20% loss of counts. Even though this may be compensated for using deadtime 

correction, the correction itself is a somewhat crude global correction. As result, regions with a 

relatively high activity will be under-corrected, and vice-versa. 

Along with the image quality phantom, measurements for SNR and uniformity were 

measured using the bootstrap method. Note that this method acquires subsamples from a given 

“global” distribution in order to approximate a data set from a limited number of samples. For 

the work presented here, four such sets were created. However, it is unclear if this is an adequate 

number of samples; even global distributions generally require more samples to find a 

representative data set compared to uneven distributions (as seen in information theory). This 

issue may be avoided by applying analytical statistical methods to the global distribution in order 

to obtain the most representative data set without the need for subsampling. Future work may 

also investigate a direct measure of parallax and intercrystal scattering by measuring line widths 

within the sinogram. The flat geometrical configuration of the system makes this investigation 

much more convenient than that performed on a typical cylindrical system in which the curvature 

of the crystal elements may interfere with an accurate measurement. 

  



 

 

28 

 

3 Factor Analysis on the Genisys System Images 

 

3.1 Introduction 

 

Due to high cost of traditional preclinical positron emission tomography (PET) systems, 

recent advances in low-cost, simplified systems have been made. One such system, Genisys 

(Sofie Biosciences, Culver City, CA 90230), utilizes two planar bismuth germinate (BGO) 

crystal arrays [1, 2]. Each 5-mm thick array includes 20 x 44 crystal elements with dimensions of 

2 mm x 2 mm. Each BGO array is coupled to two position-sensitive photomultiplier tubes 

(PSPMT) (Hamamatsu Photonics, Bridgewater, NJ). The upper and lower detector heads are 

separated by 5 cm and measure 5 cm x 10 cm each as seen in Figure 2.1. 

Due to the lack of data from certain lines-of-response (LORs), the scanner suffers from 

limited tomography. This limited tomography, in turn, results in relatively poor spatial resolution 

particularly for the transaxial and sagittal planes. This poor spatial resolution then results in the 

spillover effect in which activity from one region intrudes on activity within another region, 

thereby preventing accurate quantification of activity within a given region. The spillover in the 

coronal plane is minimized due to the geometrical configuration, but still prevalent. 

Although cost-effective and suitable for distant-organ imaging, poor resolution and 

delineation of neighboring organs may become unreliable as a result of the limited angle 

tomography. This is particularly true for cases in which structures are aligned vertically (AP 

direction). This is illustrated in Figure 3.1, where two sources of approximately the same activity 

are placed next to each other in the horizontal plane (left) and in the vertical plane (right). 
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Figure 3.1: Transaxial slice of horizontally (left) and vertically (right) aligned chambers of 

approximately equal activity. Due to the limited angle tomography, clear separation is only 

possible when the sources are horizontal relative to each other. 

 

As can be seen in Figure 3.1, when the sources are adjacent to each other in the 

horizontal plane the sources can be easily distinguished, although distorted due to limited angle 

tomography reconstruction. When the sources are placed on top of each other it is virtually 

impossible to distinguish the two sources.  

Factor analysis (FA) has been proposed as a method to mitigate this. Previous work has 

shown FA to be a suitable statistical method of organ delineation in dynamic imaging studies 

utilizing the different tracer kinetics of different tissue types [8, 9, 10, 11]. The work presented 

here attempts to address the issue of organ delineation on the Genisys with the application of FA 

on the reconstructed dynamic images.  

When interpreting the results of FA, a few key points should be kept in mind. Ideally, a 

set of a few factor curves should retain all the information in a given set of measured TACs. A 

quantitative measure of how much information is retained is given by the percentage of total 

variance explained by the factor curves. This is loosely analogous to the Modulation Transfer 

Function (MTF) used when assessing image quality. The variance, as used here, is in reference to 

total temporal variance of all measured TACs. It is not in reference to the variance of the image 
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in the spatial domain. In addition, the percentage of explained variance associated with each 

factor curve is not a measure of how well FA separates structures. Factor curves are often 

ordered such that the factor which retains the largest percentage of the original data is first. 

Successive factor curves will explain a successively smaller percentage. When attempting to 

calculate the overall percentage of variance explained by all factor curves, it is not entirely 

accurate to add the individual percentages; the nonzero covariance between factor curves may 

increase or decrease substantially depending on the data and number of factor curves chosen to 

represent them. From each factor curve, a corresponding factor image may be computed. These 

factor images indicate which voxels have a high degree of resemblance, over time, to the 

corresponding factor curve. The factor images are not dynamic images; they simply indicate the 

linear combinations that are used to construct the measured TACs from the factor curves. Factor 

images should be thought of as weighting maps. 

 

3.2 Methods 

 

3.2.1  Calculation of Factors 

 

The number of factors used to represent a given data set is primarily limited by 

computational requirements. A large number of frames will typical preclude the use of many 

factors. For our purposes here, only two or three factors were used for a given study. The method 

of determining the factors is based on Di Paola [9]. A least-squares criterion is used as the cost 

function to be minimized. Note that, unlike other methods such as Principal Component Analysis 

(Chapter 4), all desired quantities must be calculated simultaneously. The elements of all factor 
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curves should be interpreted as a set of variables that minimize the cost function. The least-

squares criterion allows for the problem to be reduced to a set of linear equations. These 

equations are then iteratively computed using the Nelder-Mead simplex method [12, 13, 14]. A 

non-negativity constraint is applied to each factor in order to obtain physically reasonable results. 

As with most iterative methods, convergence of a solution is paramount. In addition, the 

choice of initial factors may have an impact on the number of iterations needed for convergence. 

For these purposes, the initial factors are computed based on Principal Component Analysis. Not 

only do the principle components serves as initial factors, but the percentage of data retained by 

using these factors, regardless of the number of iterations computed, is also calculated. This 

relationship is further exploited in Chapter 4. 

 

3.2.2 Dual-Isotope Experiment 

 

The ability of FA to spatially separate structures relies heavily on the relative covariances 

between TACs. These TACs, in turn, rely not only on the physiological tracer kinetics, but also 

on the noise inherent in the system. In order to quantitatively assess the use of FA in the Genisys, 

a dual-isotope scan was performed. The explained variance of the resulting two factor curves can 

then be considered as a metric for how much information is retained. 

The dual-isotope scan provides an ideal testing ground for FA in a few different ways. 

First, the activity concentration at a given time can be calculated based on the isotopes’ half-lives 

and initial concentration values. Using these computed curves, the covariance between TACs can 

also be estimated. Secondly, the use of only two linearly independent sources is amongst the 
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simplex problems for which FA can be applied. Ideally, only two factor curves should account 

for 100% of the temporal variance in the dual-isotope image. Noise, however, may severely 

reduce this percentage. Note that the effectiveness of FA is not dependent on spatial relations 

between sources. However, the use of two spatially separate sources also allows visual 

comparison between the factor images and reconstructed images. Finally, the use of spatially 

separated sources with very limited volume limits any spillover between sources. This also aids 

in visual comparison between reconstructed images and factor images. 

For the purposes of this experiment, two vials were constructed in order to hold tracer of 

high concentration, but negligible volume. These “point sources” consisted of one vial 

containing 
18

F (T1/2: 109.8 minutes), and another vial containing 
11

C (T1/2: 20 minutes). At the 

beginning of the 30-minute acquisition, the 
18

F point source contained approximately 22 µCi of 

activity while the 
11

C point source contained approximately 29 µCi of activity. Dynamic 

reconstruction included deadtime correction, randoms correction, and normalization, but did not 

include decay correction or attenuation correction. Reconstruction of the dynamic images was 

performed using 30 frames. All frames were reconstructed using the Expectation Maximization 

(EM) Algorithm with 100 iterations and a post-reconstruction Gaussian smoothing filter (σ = 

0.35 mm). Adjacent frames were spaced 1 minute apart, but had a variety frame durations 

including: 1-minute; 30-second frames; 15-second; 10-second; and 1-second. These frame 

durations were designed to reduce the signal-to-noise ratio (SNR), yet maintain the same overall 

kinetics. An example of a given frame with ROIs is shown in Figure 3.2.  
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Figure 3.2: Example of coronal slice from the dual-isotope experiment. The image shown 

corresponds to the first frame of the 15-second data set. The color mapping has been chosen to 

emphasize noise surrounding the point sources. The 
11

C source is on the upper-left; the 
18

F 

source is on the lower-right. 

 

The deterioration of the exponential decay curves, due to this reduction in SNR, is 

illustrated in Figure 3.3 and Figure 3.4. Noise-free exponential decay curves, with the same 

initial activities as those shown in Figure 3.3 and Figure 3.4, can be computed. Based on this 

simple model, the inherent variance of the 
11

C curve is approximately 1.4 times that of the 
18

F.  



 

 

34 

 

 

Figure 3.3: 
11

C decay curves measured from the raw dynamic images pertaining to the 
11

C ROI 

shown in Figure 3.2. The 1-minute data set makes full use of all acquired data and is, therefore, 

the least noisy.  

 

 

Figure 3.4: 
18

F decay curves measured from the raw dynamic images pertaining to the 
18

F ROI 

shown in Figure 3.2. The 1-minute data set makes full use of all acquired data and is, therefore, 

the least noisy. The scaling is set to match that of Figure 3.3 for visual comparative purposes. 
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For each dynamic set, FA was applied to the raw Genisys images. Each raw image 

contains 80 x 80 x 176 voxels (0.55 mm x 0.55 mm x 0.55 mm). Amongst all these voxels, only 

1330 TACs can be used in FA due to computational limitations. Therefore, the 665 TACs with 

the largest variance were chosen from each of the two ROIs. This selection process not only 

results in a manageable subset, but also compensates for differences in the number TACs 

corresponding to each isotope. By choosing equal numbers of TACs from both regions, results 

from FA will be based purely on the variances of the TACs and not on the number of TACs 

acquired from each region. Since FA produces factor curves that resemble TACs of the largest 

variances, this set of 1330 TACs would prove to be the most influential even if the entire 

dynamic image were to be processed. Subsets of these 1330 TACs are shown in Figure 3.5 and 

Figure 3.6.  

 

Figure 3.5: Example of voxel-based TACs from dynamic image. TACs derived from the 
11

C ROI 

shown in Figure 3.2. The TACs exhibit overall temporal decay, but also exhibit signs of random 

noise. For visual clarity, only 20 of the 665 TACs selected from the 
11

C ROI are shown here. 
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Figure 3.6: Example of voxel-based TACs from dynamic image. TACs derived from the 
18

F ROI 

shown in Figure 3.2. The TACs exhibit signs of random noise, but not natural decay due to the 

relatively long half-life of 
18

F (109.8 minutes). The natural decay of 
11

C shown in Figure 3.5 is 

more apparent. For visual clarity, only 20 of the 665 TACs selected from the 
18

F ROI are shown 

here. 

 

Once the set of 1330 TACs were selected, FA was performed using the Interactive Data 

Language (IDL) version 7.0. Only two factors were calculated for each dynamic set. The total 

variance explained by both factors was then calculated and used as a quantitative metric to assess 

the effectiveness of FA. 

 

3.2.3  Factor Analysis Applied to a Synthetic Data Set 

 

In order to assess the use of FA on the Genisys, a second, semi-quantitative, study was 

performed. The study involved the use of synthetically created dynamic images. The sets of 
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dynamic images produced differed in terms of noise and level of overlap between structures. 

These dynamic sets were individually processed using FA in order to assess the “recovery” of 

the TACs which were used in the synthesizing of the data. This method consisted of computing 

two TACs resembling those which may be found during a typical ROI analysis in mice studies. 

The area under the curve (AUC) of each TAC was normalized to unity. Subsequently, two 

corresponding static images of high-activity, “noise-free”, 3 mL cylindrical chambers (50 mm 

length and 9 mm diameter) were acquired on the Genisys system. These static images were 

acquired such that both sinograms contained approximately the same number of total counts. The 

chambers, both filled with approximately 40 µCi of 
18

F-FDG, were placed adjacent to one 

another along the AP direction.  

The sinograms corresponding to each image were scaled according to its corresponding 

synthetic TAC. The resulting sinograms were then summed and reconstructed to form one 

dynamic data set in which both chambers are present, but have varying temporal behavior. The 

images were reconstructed using 30 frames with a total scan duration of approximately 50 

minutes. The EM reconstruction algorithm with 100 iterations and a post-reconstruction 

smoothing filter (σ = 0.35 mm) was used for the reconstruction of all images in the study. 

Additional data sets were produced by the same method, but by pruning the original 

sinograms in order to simulate moderate-statistic image sets. In order to perform the pruning, 

only a fixed fraction of events from the original listmode file were randomly selected for 

inclusion in a new listmode file. The number of events which were included within each frame 

was proportional to the height of the synthetic TAC being used. This sampling method ensured 

that, while fewer events were captured in the new listmode file, the overall shape of the TAC 

was preserved. Two new listmode files were created using this method; each one corresponded 
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to the two synthetic TACs. Sinograms from each of the listmode files were produced and then 

summed together. This summed sinogram was then reconstructed using EM to produce the final 

dynamic data set. Note that this method was used to simulate statistical noise present in low 

activity regions, as opposed to “white-zero-mean” noise. The total number of counts within the 

moderate statistic data set was only 20% of that within the original high activity data set. 

In addition, the degree to which chambers spatially overlapped was also varied, thereby 

simulating different levels of spillover between the chambers. Each synthetic dynamic data set 

was then processed with thresholding and curve-smoothing prior to FA. Curve-smoothing was 

performed by using a 1-2-1 averaging filter for each data-derived TAC. The thresholding and 

curve-smoothing were performed in order to reduce noise and simplify the data into a more 

manageable form for the subsequent PCA. Thresholding was applied by retaining values which 

were within 5% of the maximum value within each data-derived TAC. The overall method is 

illustrated in Figure 3.7. 

 

Figure 3.7: Diagram illustrating the overall method used in the production of the synthetic 

images. Two different synthetic TACs are used to scale the sinograms representing each of the 
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two chambers. Recovery of these synthetic TACs is attempted using FA. The experiment was 

repeated twice using images of varying degrees of overlap. 

 

3.2.4  Factor Analysis Applied to a Mouse Study 

 

As an example of the practical application of FA, a mouse study was conducted on the 

Genisys. The mouse used for this study was treated in accordance with the Animal Research 

Committee at the University of California – Los Angeles. The mouse, bearing a subcutaneous 

murine melanoma B16 tumor, was injected with 86 µCi of 
18

F-FDG. Data was acquired over a 

60-minute period. Dynamic reconstruction, employing the EM Algorithm with 100 iterations 

with post-reconstruction smoothing filter (σ = 0.35 mm), was performed using 44 frames. Frame 

lengths were adjusted to properly sample curve kinetics which typically change more rapidly 

during the early portion of the scan.  Factor analysis was then applied to this dynamic set after 

applying significant thresholding and voxel-averaging in order to reduce noise and render the 

data more manageable. Note that, for this particular image, activity accumulated within the 

bladder was grossly disproportionate to the rest of the field-of-view. Consequently, the computed 

factor curves would be largely biased towards bladder activity. As a result, the bladder, and all 

inferior regions, were eliminated before Factor Analysis was used. Two factor curves were used 

in the analysis, resulting in two factor images, and a third “residual” image that is effectively 

discarded. A summed coronal slice of the mouse image is shown Figure 3.8. 
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Figure 3.8: Summed-coronal slice of tumor-bearing mouse. The arrow points to subcutaneously 

injected tumor. The bladder, and regions inferior to the bladder, were removed in order to 

prevent biasing within the FA results. 

 

3.3 Results  

 

3.3.1  Dual-Isotope Experiment 

 

The explained variances of the dual-isotope experiment are shown in Table 4. 

 

Frame Duration 

(seconds) 

Total Variance of Data Explained by 

Both Factors 

1 7.5% 

10 18.0% 

15 22.4% 

30 32.3% 

60 45.4% 

Table 4. Percentage of explained variance resulting from Factor Analysis on the dual-isotope 

dynamic scans. 
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These results are a quantitative indication of how well two computed factor curves could capture 

the measured decay curves from two different isotopes. In the ideal, noise-free, case, only two 

factor curves would capture 100% of the decay from two different isotopes. However, in reality, 

the noise properties of the system will prevent this. Therefore, these results can be interpreted as 

how well factor analysis performs in the presence of noise within the system. 

 

3.3.2  Factor Analysis Applied to a Synthetic Data Set 

 

 

The factor curves derived from the second, semi-quantitative study are shown in Figure 

3.9 through Figure 3.12. The factor curves derived from the FA are plotted over the synthetic 

curves used to scale the sinograms from the images of the two chambers. Note that the 

calculation of these factor curves did not include any prior knowledge about the synthetic curves. 

Furthermore, FA was applied to the entire dynamic image which consisted of both overlapping 

chambers. No analysis was conducted on the individual chamber images or sinograms. 
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Figure 3.9: Results for the “high overlap” and “noise free” data sets from the semi-quantitative 

study shown in Figure 3.7. All curves have been normalized to unity using the Euclidean norm. 

 

 

 

Figure 3.10: Results for the “high overlap” and “moderate statistics” data sets from the semi-

quantitative study shown in Figure 3.7. All curves have been normalized to unity using the 

Euclidean norm. 
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Figure 3.11: Results for the “moderate overlap” and “noise free” data sets from the semi-

quantitative study shown in Figure 3.7. All curves have been normalized to unity using the 

Euclidean norm. 

   

 

Figure 3.12: Results for the “moderate overlap” and “moderate statistics” data sets from the 

semi-quantitative study shown in Figure 3.7. All curves have been normalized to unity using the 

Euclidean norm. 
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3.3.3  Factor Analysis Applied to a Mouse Study 

 

Factor images from the mouse study are shown Figure 3.13. The first two factor images 

correspond to the two factor curves derived in the FA study. Each factor image can be 

interpreted as a weighting map. Voxel values within each factor image correspond to how well 

the TAC derived from that voxel resembles the corresponding factor curve. In fact, the weighting 

values themselves are the covariances between the measured TAC and the factor curve. The third 

image, shown on the right in Figure 3.13, is a “residual” image. This residual image does not 

correspond to a factor curve itself. The image represents regions which do not resemble any 

combination of the two factor curves. FA effectively discards information from this image. The 

factor curves corresponding to these images are shown in Figure 3.14. 

 

Figure 3.13: Coronal views of factor images produced from Factor Analysis of a dynamic image 

of tumor-bearing mouse.  Vascular component (left), tissue component (middle), and residual 

(right). The arrow indicates the location of tumor. 
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Figure 3.14: Factor curves used to derive the factor images shown in Figure 3.13. The factor 

images shown Figure 3.13 are weighting maps; the voxel-based weights represent the 

covariances between the factor curves and the voxel-derived TACs. Note that factor 1 resembles 

vascular kinetics while factor 2 resembles tissue kinetics. The residual curve appears to have 

some structure temporally, but doesn’t does not contribute significantly to most voxels as seen in 

the residual image of Figure 3.13. All curves have been normalized to unity using the Euclidean 

norm. 

 

3.4  Discussion 

 

3.4.1  Dual-Isotope Experiment 

 

The dual-isotope experiment provided a test for which the ideal results of FA are known 

and for which the results can be easily quantified. Note that, mathematically, the separation of 

data into two factors is the simplest scenario for FA. Furthermore, since the images consisted of 

only two highly localized “point sources”, the statistical noise from each source is considered 

minimal. Therefore, the only sources of variation in the signal are from the inherent isotope 

decays and the instrumentation noise. The variation due to isotope decay can be model based on 
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simple exponential decay laws. As seen in Table 4, FA managed to recover only 45.4% of the 

data even when using the full data set. However, this percentage includes the “dominant” 

portion of the data. In other words, if the variance of a signal due to the change in kinetics is 

greater than the variance due to noise, FA will produce results that are more representative of 

the kinetics, and less influenced by the noise.  

It is desirable to retain as much data as possible when using FA. However, in general, 

using a few factors to represent data will cause FA to effectively discard some of the data. Note, 

however, that the variance of this discarded data may represent the undesirable noise 

characteristics. Therefore, application of FA, even with a moderately low percentage of retained 

data, may still be feasible. In short, the percentage of data retained is not necessarily an 

indication of how well FA will separate data due to the fact that not all of the variance within the 

data stems from a true change in the signal. Conditions detrimental to FA will occur when noise 

is present within regions without a true dynamic signal. 

 Unfortunately, when applying FA to the dual-isotope data in order to derive factor curves 

(as opposed to principal components), meaningful results were not achieved. Additional 

attempts to compute factor curves were made on smaller data sets (10 of the highest-variance 

TACs from each of the two ROIs) using 100% of the data, but were still unsuccessful. As an 

alternative to using the results of PCA as an initial value in the iterative FA, measured TACs 

may be used. Such TACs may be determined by finding pairs of TACs such that the covariance 

between pairs is as close to zero as possible. This method will not only insure that meaningful 

factor curves are computed, but may also promote convergence since the initial values are closer 

to the measured curves. 
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3.4.2  Factor Analysis Applied to a Synthetic Data Set 

 

Much like the dual-isotope experiment, the synthetic data set allows for a test of FA. 

However, in the case of the synthetic data, a signal is measured across the FOV, and not 

localized to a “point”. Furthermore, the experiment allows for overlapping structures. As seen in 

Figure 3.9 through Figure 3.12, there is a very strong agreement between the synthetic curves 

and factor curves regardless of the noise characteristics or degree of overlap. It should be noted 

that even the “moderate statistics” data set consisted of a fairly robust set of events; images of 

this quality may not be captured in actual mice studies.  

The insensitivity of FA to the spatial relations of overlapping structures is to be 

expected. Factor analysis is a nonparametric technique; the order in which voxel-derived TACs 

are arranged in FA does not change the overall statistical behavior. This nonparametric nature of 

FA is what differentiates it from conventional segmentation methods. The difference in kinetics 

between structures, as measured by covariance, is what FA relies on to separate TACs into 

factors. 

 The results of the synthetic data set are not definitive proof of the applicability of FA, 

but they do illustrate the potential of FA to separate structures under proper conditions 

regardless of the spatial arrangements. The results suggest that the factor curves provide a slight 

overestimate of the synthetic curves during periods of increasing activity, and vice-versa. In 

addition, factor 2 exhibits dynamic properties even when the corresponding synthetic curve has 

a value of zero during the approximate period between 0 and 5 minutes in Figure 3.10. Note that 
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the dynamics of the second factor during this period resemble that of the first synthetic curve 

during the same period. This suggests the interference of factor 2 by the first synthetic curve. 

This effect is exaggerated for the case in which there is a high degree of overlap between 

structures. The spatial relations between regions do not have a significant effect on the results of 

FA. However, the dominance of kinetics between overlapping regions may interfere with the 

results of FA. 

 The semi-quantitative study is, in effect, a study in the linearity properties of the imaging 

system and the FA method. The study consisted of scaling and adding independent data sets in 

order to synthetically create a new data set. If nonlinearities during the image reconstruction are 

introduced, Factor Analysis would not have been successful in recovering the original 

independent data. 

 

3.4.3  Factor Analysis Applied to a Mouse Study 

 

The dual-isotope experiment and synthetic data set provided controlled systems in which 

the behavior of FA results could be investigated. However, the complexities of a living subject 

cannot be easily simulated. A mouse study was conducted to evaluate the usefulness of FA in 

practice. As seen in Figure 3.13, the tumor was not entirely separated from the other structures 

within the mouse. Two factors were implemented in FA, resulting in the factor curves shown in 

Figure 3.14. It should be noted that the factor images and factor curves have no prior 

physiological knowledge. 
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The designation of the first factor curve as “vascular” and the second curve as “tissue” is 

purely based on interpretation. In addition, these two factor curves account for approximately 

79% of the variance in the data. While this value may seem quite high compared to those found 

in the dual-isotope experiment (Table 4), it should be noted that the processing of the raw voxel-

derived TACs was used prior to FA. This processing included smoothing and thresholding. 

Inclusion of a third factor (not a residual) would increase the data retention. However, inclusion 

of a third factor would require recalculation of the first two factors in addition to the third factor.  

It is unlikely that the incremental increase in data retention would justify the additional 

computational expense required to compute three factor images.  

The results of the mouse study also support the notion that separation may be possible if 

the variance of data retained by FA is dominated by tracer kinetics even in the presence of 

moderate noise. In other words, the noise itself, nor the SNR, is indicative of the performance of 

FA. The performance of FA is determined by the variations of the signal compared to that of the 

noise. In other words, FA attempts to recreate as much of the kinetics as possible, but is unable 

to distinguish between kinetics due to noise versus that of the desired signal. As a consequence, 

the kinetics of the desired signal must be assumed to be generally prevailing before using FA. 

In addition to the study shown in Figure 3.13, FA was applied to several other mice 

studies of various using various tracers, cell lines, tumor locations, scanning protocols, etc. 

Unfortunately, FA was unable to provide meaningful results from these studies. It is not quite 

clear why FA failed for these studies. It is possible that limited uptake within the tumors 

prevented FA from obtaining adequate kinetic information. 
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3.5 Summary 

 

Three separate studies were performed to assess the use of FA on images from the 

Genisys preclinical PET system. The results from the dual-isotope experiment indicate that the 

noise characteristics of the system hinder the ability of FA to retain much of the data. However, 

the ability to retain data is not necessarily an indication of how well FA will identify and 

separate the prominent kinetics. The semi-quantitative study indicates the potential of FA when 

separating structures, even with overlapping images. The mouse study results indicate that 

certain kinetic properties of tumor, tissues, etc. may interfere with the ability of FA to perform a 

complete separation of structures. However, the results also provide insight into the kinetic 

properties of these structures. The work shown here indicates that FA might be applicable on the 

Genisys, but further quantitative studies must be performed in order to assess the optimal 

conditions. 
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4 Principal Component Analysis for Performance Metrics and Factor Analysis Limits 

 

4.1 Introduction 

 

4.1.1  Principal Component Analysis Primer 

 

Principal Component Analysis (PCA) is often used as a technique for image processing 

due to its straightforward interpretation and convenient mathematical properties. However, for 

the purposes of this study, we investigate the use of PCA as a tool to characterize the system 

performance of a microPET system. Dynamic images of a uniform cylinder are acquired and 

subsequently processed using PCA. The results are interpreted in terms of uniformity; the signal-

to-noise ratio (SNR); the noise distribution both spatially and temporally; and as an upper bound 

to Factor Analysis.  

 Principal Component Analysis is a method used to reduce the number of independent 

variables required to explain the statistical features of a given data set [13, 15, 16]. It attempts to 

explain as much of the statistical features as possible by using as few variables as possible. From 

a mathematical viewpoint, PCA exploits orthogonality between independent variables, and 

creates new variables. These new variables are also mutually orthogonal, and are derived from a 

linear combination of the original variables. Computing these linear combinations is the essence 

of PCA, and can be constructed as an eigenvector problem [17]. In geometrical terms, PCA 

performs a rigid rotation in the “data space” to maximize alignment with the most prominent 

features. In short, PCA attempts to compress the data so that they can be represented with as few 

variables as possible. This is similar to other methods such as Fourier Transforms. However, 
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PCA does not restrict itself to sinusoidal components; it constructs components that will 

maximize compression [16]. The only restriction is that these components are orthogonal. Non-

orthogonal components, which allow for interdependent variables, may be computed using other 

methods such as Factor Analysis (see Chapter 3). 

 Principal Component Analysis (PCA) is a non-parametric technique; the order in which 

data is collected or computed is inconsequential. In addition, PCA assumes that the original 

variables of the data are independent. Furthermore, PCA produces a new set of variables in such 

a way that each new variable retains as much information as possible without redundancy. As a 

result, it is possible to retain most of the data features using fewer new variables than original 

variables. Finally, PCA does not necessarily result in components which are physically 

measured; the results of PCA must be properly interpreted for its physical relevance to the actual 

data. 

Note that PCA can be performed on any symmetric matrix. These include the correlation 

matrix and covariance matrix. Correlation and covariance are both metrics for similarity between 

two signals. For example, if a data set consists of a set of time-activity curves (TACs), the 

correlation and covariance matrices express how similar a given TAC is to another given TAC. 

Correlation between two TACs, Ti(t) and Tj(t), as defined here, is computed by multiplying 

element-by-element, and then summing each product [18]. 

 

����#$%, $'( � 	)$%*�+$'*�+,
 

Equation 4.1 
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Note that the correlation between two TACs may be thought of as the “inner product” or 

“projection” of one of the signal onto the other. Computing the covariance between two TACs is 

similarly performed; however, each TAC is mean-shifted prior to the element-by-element 

multiplication and summing. In addition, this sum is scaled by the total number of frames, n [18]. 

 

���#$%, $'( � 	∑ #$%*�+ �	$% 	(#$'*�+ �	$' 	(, �  
Equation 4.2 

 

The mean of each TAC is computed conventionally. 

 

$% �	∑ $%*�+, �  
Equation 4.3 

 

Note that the correlation between two TACs can be interpreted as similarity of the “raw” curves. 

Covariance is an indication of how much one curve deviates from its mean while the other 

deviates from its own mean. The correlation of a given TAC with itself is simply the Euclidean 

length of the TAC (not the area under the curve of a TAC). The covariance of a given TAC with 

itself is simply the variance of the TAC. Covariance of two curves may also be thought of as 

correlation of the same two curves after mean-shifting. These calculations can be applied to any 

pair of curves from the same data set. 
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 For practical purposes, measured TACs are comprised of a true signal as well as a 

“residual” noise component. Under most conditions, reliable separation of the true signal from 

the noise is very difficult. However, if the TACs are derived from an activity source with no 

inherent kinetics, the true signal within each TAC is a constant, time-independent value. The 

variance observed within the TAC is then due entirely to noise. In other words, if each TAC is 

composed of a time-independent signal, Si, and a time-varying noise component, Ni(t), the 

measured TAC is given by 

 

$%*�+ � 	 �% .	�%*�+ Equation 4.4 

 

If the noise component, Ni(t), has a mean of zero, then the true signal can be computed as the 

average value of the TAC. 

 

�% �	∑ $%*�+, �  
Equation 4.5 

 

Conversely, if one assumes that the true signal is given by the average value of the TAC, then the 

assumption of noise with zero-mean directly follows. 

Such a data set can be measured by imaging a phantom with uniformly distributed 

activity. Dynamic reconstruction can be performed after histogramming with decay correction. 

The uniform nature of the phantom results in a true signal that is spatially uniform, while the 
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decay correction insures that the true signal is also temporally uniform. As a result, all voxel-

derived TACs will have very similar true signals. In other words, the true signal present in each 

voxel-derived TAC will not depend significantly on the voxel location within the field-of-view 

(FOV). Ideally, all TACs derived from such a data set would be time-independent and identical. 

In such a case, the correlation between any two TACs would be equal to the same constant.  

All of the elements of the corresponding correlation matrix, therefore, are also equal to 

this constant. When performing PCA on such a matrix, only one component is found. Since it is 

the only component, it explains 100% of the data. In practice, the noise present in each TAC will 

reduce this. Therefore, the percentage of data explained is a metric for the level of true signal 

present relative to the total signal. Due to the orthogonal nature of PCA, signals must be 

combined in a Euclidean (i.e. quadrature) fashion. The percentage of data explained, or retained, 

with one component, is therefore 

 

%	��	������	�!0������ � 	�,1,234 $,1,2345  
Equation 4.6 

 

The true signal within each TAC as measured by PCA, Si, is simply the component of the TAC 

that is “selected” by the first component. This selection is done simply by computing the 

correlation of the total TAC with the principal component, p(t). 
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�% � ����*$%, 0+ Equation 4.7 

 

The principal component computed using PCA, p(t), is normalized to one, using the Euclidean 

norm, in order to prevent any bias. Due to the large number of TACs, computation of p(t) cannot 

be done by traditional eigenvector methods. The details of computing p(t) are described within 

Chapter 4.2.1. The selected true signal, Si, can be thought of as a weighting coefficient. This 

coefficient may vary from TAC to TAC (i.e. voxel to voxel). As a result a weighting map may be 

computed; this map indicates the distribution of true signal within the FOV.  

The total true signal present measured by PCA is found by adding these components in 

quadrature. 

 

�,1,234 �	))�%4%,
 

Equation 4.8 

 

Note that, even though Si, is not time dependent, it must be summed over voxel and time. The 

total signal measured is found by adding all measured TACs in quadrature. 

 

$,1,234 �	))$%*�+4%,
 

Equation 4.9 
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4.1.2  Correlation-Based Principal Component Analysis, Uniformity, and Signal-to-Noise 

Ratio 

 

A simplified, geometrical illustration of the principal component, when using the 

correlation-based method, is shown in Figure 4.1.  

 

 

Figure 4.1: A graphical representation of correlation-based Principal Component Analysis. The 

principal component, p, is chosen such that the projections of all TACs onto the principal 

component are maximized. The component of a given TAC, Ti, which lies parallel to p is 

interpreted as the true signal as shown in Figure 4.9. The component orthogonal to p is 

interpreted as the noise present within the TAC. If TACs are derived from a dynamic image 

consisting of a uniform phantom, the first principal component may be calculated as the 

normalized mean of all TACs. 

 

For this simple illustration, the entire dynamic data set consists of eight voxels reconstructed 

over two frames. Each TAC is represented by a vector. Since all measured TACs include 

positive values, all vectors lie within the upper-right quadrant. The correlation between two 
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arbitrary vectors, Ti and Tj, is given by Equation 4.1. This correlation is geometrically equivalent 

to the “projection” of one of these vectors onto the other. The principal component, p, is a 

normalized unit vector in the general direction of all other vectors. The quantity Si (Equation 4.7) 

corresponds to the component of vector Ti that lies parallel to p. Stated another way, the 

“projection” of a vector Ti onto p is the true signal within TAC i. Note that p is 45 degrees from 

either axis; this is due to the fact each TAC is, ideally, a constant value. In the ideal noise-free 

case, all vectors would lie entirely parallel to p. However, in practice, the measured TACs 

include a random component within each frame. As a result, the TACs “fan” away from p. Since 

this orthogonal component is defined to be zero-mean, this spreading is somewhat symmetric 

about p. The component of each TAC which lies orthogonal to p is interpreted as representing 

this noisy component. The percentage shown in Equation 4.6 is essentially a measure of 

uniformity of all nonzero TACs. Note that, if each TAC were simply a scaled version of every 

other TAC, the percentage calculated would equal 100%. In other words, the image would be 

completely uniform over time. 

Note that this percentage (Equation 4.6) involves summation of all TACs both spatially 

and temporally. This percentage does not quantify the distribution of signal or noise; it simply 

provides a metric for how much true signal is present within the total signal. All voxels are, by 

nature of PCA, treated as independent samples of this signal. In addition, once this percentage is 

calculated, rearrangement of Equation 4.4 and Equation 4.6 yields the SNR, calculated as 
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� 	6∑ ∑ �%4%, ∑ ∑ �%*�+4%,5  

Equation 4.10 

 

Using this definition of SNR, the spatial and temporal properties of the signal are both taken into 

account. As indicated in Equation 4.10, Si must be summed over voxel indices, i, as well as time 

points, t, even though it is a constant (i.e. independent of time). 

 

4.1.3  Covariance-Based Principal Component Analysis and Noise Distribution 

 

Applying PCA to the correlation of TACs provides information about the true signal 

within the total signal. Applying PCA to the covariance of TACs, however, provides information 

on the noise component itself. Note that the covariance between a pair of TACs (Equation 4.2) 

requires subtraction of the means of each TAC. For the simple model presented in Equation 4.4, 

the mean of a TAC is the true signal itself. As a result, computing the covariance between such 

TACs is mathematically equivalent to computing the correlation of the “residual” noise 

components themselves. 

 

���#$%, $'( � ����*�%, �'+ Equation 4.11 
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The correlation of zero-mean noise with any other signal is, ideally, zero if the noise is in fact 

randomly distributed. As a result, the covariance between two different TACs is, ideally, zero. 

The covariance of a given TAC with itself, however, is simply the variance of the noise 

component under this simple model (Equation 4.4).  

The corresponding covariance matrix computed using this model is, therefore, diagonal. 

Note, however, that not all diagonal elements are necessarily equal. These diagonal values all 

become equal only if one further assumes that the noise is distributed uniformly spatially and 

temporally. Note that, in such an ideal case, there is no single component which dominates the 

data; in other words, the noise component of the data is only partially explained by any given 

component. In total, n components will be needed to retain 100% of this data. Since there are n 

components, each component, including the first component, contains approximately an equal 

percentage of the data. 

 

%	��	��������	�!0������ � 	100% �9  Equation 4.12 

 

In practice, the computed percentage for some components may be greater than this. This 

may be due to an uneven distribution of noise. Due to the nature of PCA, n orthogonal 

components are needed to retain all of the data. The first component, by definition, retains the 

most data. Therefore, the first component must retain the percentage shown in Equation 4.12 at 

the very least; a percentage lower than this is not mathematically possible if PCA is performed 

correctly. Due to the ambiguity of the principal component of this matrix, the component is not 

physically meaningful in itself. The percentage of data retained by this component, however, is 
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indicative of how uniformly the noise is distributed spatially and temporally. Furthermore, this 

percentage may change when varying activity levels, particularly at activity levels outside of the 

nominal range of the system due to nonlinearities within the imaging process.  

A geometrical illustration of the principal component, p, using the covariance of data is 

shown in Figure 4.2.  

 

Figure 4.2: A graphical representation of covariance-based Principal Component Analysis. The 

vectors represent the mean-shifted TACs. For the idealized case, this amounts to only the noise 

components of each TAC. If noise is randomly distributed spatially and temporally, the 

orientation of p is essentially arbitrary. Although p itself does not have a physically meaningful 

interpretation, the total of the projections onto p can be used to calculate the percentage of 

variance explained, as in Equation 4.12. 

 

Similar to Figure 4.1, the entire dynamic data set consists of just eight voxels 

reconstructed over two frames for simplicity. Note that all data vectors are created by shifting 

each TAC, Ti, by its mean, as indicated in Equation 4.2. Note that negative values may result 

from mean-shifting; as a result, some of the vector components may be negative unlike the 

components shown in Figure 4.1. Since only the noise component of the signal remains after this 

shifting, the vectors shown are randomly oriented in a radial fashion. Furthermore, each TAC has 
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essentially the same constant value in the case of a uniform cylinder; as a result, each vector 

shown has approximately the same norm. In the ideal case shown in Figure 4.2, there is no 

general direction of all vectors; the orientation of p is essentially arbitrary. Regardless of the 

orientation of p, the total projection of all vectors onto p is the same. This total projection, when 

added in quadrature, can be compared to the total norm of all vectors. This ratio results in the 

percentage of variance explained shown in Equation 4.12. 

 Note that, if noise is evenly distributed as suggested by Equation 4.12, then all 

subsequent components are responsible for explaining the percentage of data that is not taken 

into account by the first principal component. This fact will prove useful when evaluating the 

limits of FA, since only first components are computed for the studies described here. 

It is physically possible that the noise is randomly distributed, but is not zero-mean. In 

such a case, the noise is biased. Dark noise resulting from the instrumentation electronics, for 

example, occurs even without a true signal source as may be seen on a blank scan. If so, the 

mean value of the noise, along with the true constant signal, will be included in the calculation of 

covariance (Equation 4.2). As a result, the computed covariance only retains information 

regarding the zero-mean component when applied to a data set with constant signal. 

 

4.1.4  Insights from the Uniform Model 

 

Practical imaging consists of data from uneven, time-varying activity distributions, and 

varying frame durations. As a result, the simple model presented here may appear irrelevant or 
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too naïve for useful application. However, when applying PCA to data sets of fixed frame 

durations or activity levels, performance characteristics of the system can be quite apparent.  

For time-varying activity sources, the true signal will not be a time-independent constant. 

The PCA results, however, give an indication as to how much of the variation in the observed 

signal is due to noise. For example, suppose the percentage of explained signal (Equation 4.6), 

using this simple model, is 80%. When assessing the variation of a time-varying source, it can be 

estimated that 20% of the variance in the observed signal is due primarily to noise and not due to 

the actual variation of the activity concentration. 

When attempting to reconstruct dynamic images, a balance must be struck between the 

number of frames and image quality; a large number of frames is desirable for kinetic analysis, 

but long duration frames are desirable for image quality. By comparing the results of PCA for 

various frame durations, the overall improvement in image quality, at the sacrifice of less kinetic 

sampling, can be quantitatively assessed. 

 

4.1.5  Upper Bounds to Factor Analysis 

 

Due to the close relationship between PCA and Factor Analysis (FA), the percentages 

computed from PCA are equivalent to those derived from FA. In fact, applying FA with only one 

factor will yield a solution nearly identical to that of the first component derived from PCA. As a 

result, the PCA results applied to this simple model give an upper bound estimate of how much 

data will be explained using FA. This can be generalized to situations in which more than one 

factor is being derived in FA.  
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4.1.6  Summary of Principal Component Analysis 

 

In summary, PCA provides a quantitative method of decomposing data into basic 

components. These components are mutually exclusive (i.e. orthogonal), and constructed from a 

particular combination of the original variables from which the data was taken. The first 

component, by definition, retains more of the data characteristics than subsequent components. 

These characteristics can be measured by a number of metrics. For PCA purposes, these 

characteristics are measured as correlation and covariance. Both metrics lend themselves to PCA 

and have a straightforward interpretation. When applying PCA to the data correlation matrix, the 

results are interpreted as a measurement for the true signal content compared to the total signal. 

These results can be mathematically rearranged to determine SNR. When applying PCA to the 

covariance matrix, the noise characteristics are emphasized. The results from this are 

representative of how evenly distributed the noise is within the FOV. The simple model 

presented may appear too unrealistic for practical purposes. However, the results of PCA applied 

to a uniform cylinder can be interpreted in a number of ways. The linear nature of PCA allows 

the results to be applied as upper or lower bounds to nonuniform activity distributions. The 

characterization of noise by PCA is applicable to time-varying activity distributions. The PCA 

results also serve as a guideline for compromising the number of frames for image quality, or 

vice-versa. Finally, the strong link between PCA and FA implies the results of PCA to be an 

upper bound (i.e. most optimistic) for FA.  
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4.2 Methods 

 

4.2.1  Alternative Computation of Principal Components Using Recursion 

 

After reconstruction of all images, PCA was individually applied to each dynamic image 

set. All analysis was performed using the Interactive Data Language (IDL) version 7.0. Note that 

the PCA routines within IDL only allow for analysis on the covariance matrix or the correlation 

coefficient matrix and not on the correlation matrix. Therefore, a separate routine must be written 

in order to perform the desired computations. Furthermore, the matrices computed are 

impractically large due to the inclusion of all voxel-derived TACs within the FOV. Note that 

Inveon FOV contains 128 x 128 x 159 voxels by default. For a 10-frame data set, these square 

matrices contain ~6.7 x 10
12

 elements. This can be reduced by inclusion of only nonzero TACs 

(i.e. TACs which have at least one nonzero sample). Inclusion of empty voxels (i.e. voxels that 

do not have any nonzero samples) does not contribute towards these results. As a result, only 

nonzero TACs were included in the analysis. The number of nonzero TACs for a given data set 

may vary, but is ~2.0 x 10
3
 using the cylindrical phantom (described in Chapter 4.2.2). Figure 

4.3 illustrates a subset of nonzero TACs taken from a typical Inveon data set. As can be seen in 

Figure 4.3, there is considerable variation in voxel values not only between TACs, but also 

within a given TAC. 
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Figure 4.3: A subset of nonzero TACs taken from an Inveon 5-minute acquisition reconstructed 

into 20 frames using the protocol of the first study. Most data sets used in these studies consist of 

~2000 nonzero TACs; only the 50 TACs with the largest norms have been shown here for visual 

clarity. 

 

Even with the removal of nonzero TACs, the resulting matrices are still unwieldy. 

Although subsampling or smoothing can be used to reduce the number of nonzero TACs, it is 

believed that this processing would render the results less physically meaningful; any attempt at 

characterizing the system should minimize the processing of the data. 

Conventional PCA methods attempt to find the eigenvalues and eigenvectors of these 

matrices. The eigenvector corresponding to the largest eigenvalue is, by definition, the first 

principal component; the relative eigenvalue indicate the percentage of data retained. As a result, 

it may seem necessary to find the eigenvalues and eigenvectors of these large matrices. For these 

purposes, however, only the first principal component is necessary; since there is only one true 

signal within the data, all other components are not physically meaningful. In the case of the 

correlation matrix, it can be shown that the first principal component, p, is given by the mean of 
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the TACs. A straightforward proof of this is shown in Chapter 4 Appendix A. A similar method 

can be used to find the first principal component of the covariance matrix. 

Assuming that there are m nonzero TACs, this mean is given by  

 

$2:; �	∑ $%*�+<%=> �9  
Equation 4.13 

 

This is not to be confused with the mean of a given TAC. The former (Equation 4.13) is a time-

dependent curve; the latter (Equation 4.3) is simply a scalar. This is normalized to unity in order 

to prevent bias; if not normalized, the correlation between the principal component and a given 

TAC will reflect not only the similarity between the two, but also the arbitrary norm of the 

principal component. Normalization is done in the usual way using the Euclidean norm (i.e. in 

quadrature fashion): 

 

0 � 	$2:; ?$2:;?5  
Equation 4.14 

 

 

 The relationship between the mean TAC and the principal components is somewhat 

intuitive. Note that the principal component is designed such that the deviation of the data, when 

calculated about the component, is at a minimum. This minimum occurs when the deviation is 
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calculated about the mean of the data. (This is similar to the “DC” component of Fourier 

Transforms.) 

Calculating the first component in this manner is mathematically correct, but does not 

give any of the necessary eigenvalues. In a conventional PCA computation, all of these values 

are needed, even if only one component is of interest. However, the eigenvalues themselves 

simply represent the correlation between each TAC and the corresponding normalized 

eigenvector. In geometrical terms, the eigenvalue is a measure of the total “projection” of each 

TAC onto the normalized eigenvector. Each “projection” of a TAC onto the principal component 

is simply the correlation shown in Equation 4.7. The total is then given by Equation 4.8. The 

percentage of data explained by the first principal component is then calculated based on 

Equation 4.6. The execution time for a typical dynamic data set is approximately 10 seconds 

using a 64-bit system. Sets with more frames require an execution time that is slightly higher.  

Once the first component is computed by taking the mean, the additional principal 

components may be computed in a recursive fashion. After computing the projection of each 

TAC onto the first principal component, the “residual” of each TAC may be easily computed 

using standard vector subtraction. Once performed, the resulting data is a subset of the original 

data; the component of data accounted for by the first principal component is no longer presented 

in this subset. The second principal component, therefore, may be computed as the mean of the 

TACs within this subset. Additional principal components may be computed as needed using this 

recursive method. Conceptually, this method of successively “peeling away” principal 

components is similar to that of the Gram-Schmidt method of creating an orthogonal basis from 

a set of vectors [17]. Note that this method of computing principal components makes no 
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assumptions or approximations; all computations are based on the definitions of correlation 

(Equation 4.1) and covariance (Equation 4.2). 

Covariance-based PCA can be performed in a similar manner. However, as seen in 

Equation 4.2, each TAC must be mean-shifted prior to the first recursion. After this, the 

computations for the first principal component and percentage of explained variance are identical 

to that of correlation-based PCA. No additional mean-shifting is required. 

 

4.2.2  Principal Component Analysis Applied to Various Frame Durations 

 

 The first study was conducted to test the application of PCA in order to assess the quality 

of a given scan based on frame duration. It is intuitively clear that longer frame durations result 

in images with a higher SNR. Note that the increase in SNR is not necessarily proportional to the 

number of counts or to the square root of counts, as Poisson statistics suggest. A number of 

nonlinearities in the imaging process may preclude the benefit of additional counts. These may 

be due to detector inefficiencies, instrumentation noise, signal saturation, and reconstruction 

artifacts. As a result, a measurement-based method of performance characterization is used. 

 In order to achieve these measurements PCA was applied to a data set consisting of 

various scan durations and frame numbers. Data was collected from a uniform cylindrical 

phantom (21 mL, Ø = 25.5 mm) filled with 
18

F-Fluorodeoxyglucose (
18

F-FDG) a nominal 

activity of approximately 80 µCi. All scans were acquired on the Siemens Inveon preclinical 

PET scanner. Acquisitions were performed for a variety of durations: 1 minute, 2 minutes, 5 

minutes, 10 minutes, and 20 minutes. Histogramming was performed using the Inveon’s default 
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3D histogramming protocol. Reconstruction was performed using the default 3D Ordered-Subset 

Expectation Maximization algorithm in conjunction with Maximum A Priori (OSEM3D/MAP). 

The default settings were used: 2 OSEM3D iterations and 18 MAP iterations. The resulting 3D 

image volumes had dimensions of 128 x 128 x 159 voxels (0.80 mm x 0.80 mm x 0.86 mm). 

Each scan was dynamically reconstructed into 10-frame, 20-frame, and 30-frame data sets. 

Decay correction, deadtime correction, and detector normalization were applied for all scans. 

Frames were scaled such that voxel values were proportional to activity (as opposed to the total 

counts acquired within the frame). 

 The activity of 80 µCi was chosen simply because it lies within the nominal range of the 

scanner. Due to 
18

F decay, the total activity within the cylinder at the beginning of each scan was 

slightly different. However, given the relatively long half-life (T1/2 = 109.8 minutes) and the 

relatively brief scan durations, activity levels do not vary appreciably between scans. As a result, 

compensation for decay between scans will have little bearing on the PCA results. Attenuation 

correction was unavailable, and, therefore, not applied. However, it is believed that the moderate 

size of the cylinder precludes any appreciable attenuation artifacts.  

It is possible to acquire data using only one 20-minute data set and then use subsets of the 

data to reconstruct the 1-minute, 2-minute, 5-minute, and 10-minute sets. However, full physical 

measurements were performed in order to insure that all system characteristics were taken into 

account. 

In addition to measurements taken on the Siemens Inveon, a similar approach was taken 

for characterization of Sofie Bioscience’s dual-headed Genisys preclinical PET system (Figure 

2.1). Due to its own limitations, however, the scanning protocols were different from those of the 



 

 

71 

 

Inveon. Acquisitions on the Genisys were performed for 1-minute, 2-minute, 5-minute, 10-

minute, and 20-minute data sets using a total activity of approximately 40 µCi. Histogramming 

was performed using 20-frame data sets. The default reconstruction was performed using an 

Expectation-Maximization (EM) algorithm with 100 iterations and a post-reconstruction normal 

smoothing filter (σ = 0.35 mm). 

Once all images were reconstructed, PCA was applied to each image. Computation of the 

first principal component, and the corresponding percentages, was performed as described in 

Chapter 4.2.1. The uniformity and SNR for each dynamic set were then computed based on the 

methods described in Chapter 4.1.2. The noise distributions were computed based on methods 

described in Chapter 4.1.3  

 

4.2.3  Principal Component Analysis Applied to Various Activity Levels 

 

The second study was conducted on the Inveon to test the use of PCA in determining 

image quality across a range of activity levels. A series of dynamic images were constructed 

using a range of activity levels. Each dynamic set was acquired over a 20-minute period at 

activity levels of approximately 10 µCi, 14 µCi, 22 µCi, 31 µCi, 46 µCi, and 67 µCi of 
18

F-FDG. 

All scans were performed using the same cylinder (21 mL, Ø = 25.5 mm) as that used in the 

varying frame duration study (Chapter 4.2.2), and positioned identically from scan to scan. 

Variation in activity levels was achieved using the natural decay of 
18

F, as opposed to refilling 

the phantom with various activity levels. Histogramming and reconstruction protocols were 
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performed using the same parameters as described above. The first principal component, and 

corresponding percentage, was then computed as described in Chapter 4.2.1. 

 For the Genisys system, dynamic sets were acquired at activity levels of 6 µCi, 8.7 µCi, 

12.7 µCi, 18.6 µCi, 27.3 µCi, and 40 µCi of 
18

F-FDG. Histogramming and reconstruction 

protocols were performed using the Genisys’ default protocols (Chapter 4.2.2). Principal 

Component Analysis was performed identically to that applied on the data sets acquired from the 

Inveon. 

 

4.3 Results 

 

4.3.1  Principal Component Analysis Applied to Various Frame Duration 

 

 The percentage of data retained was computed, based on the methods described in 

Chapter 4.2.2, for scans in which the duration was varied and for scans in which the activity 

levels were varied. The results from correlation-based PCA were plotted for each study 

separately. Figure 4.4 and Figure 4.5 respectively depict the uniformity and SNR obtained from 

the fixed-activity Inveon study. 
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Figure 4.4: Percentage of Inveon data explained by the first component computed for each set 

using a total activity of approximately 80 µCi. These curves demonstrate “diminishing returns” 

in terms of percentage explained as scan duration is increased. 

 

 

Figure 4.5: SNR calculated from PCA Inveon results shown in Figure 4.4. These curves indicate 

increasing benefit in SNR as scan duration is increased, regardless of the number of frames 

reconstructed. 
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Using covariance-based PCA, the percentage of variance explained by the first principal 

component was also calculated for the fixed-activity Inveon study. The percentages are shown in 

Table 5 through Table 7 for the 10-frame, 20-frame, and 30-frame data sets, respectively. 

 

Scan Duration (minutes) % of variance explained by first component 

1 11.28 

2 11.03 

5 10.92 

10 10.94 

20 11.15 

Table 5: The percentage of variance explained by the first component obtained from covariance-

based PCA of the fixed-activity Inveon 10-frame data set. The ideal value is 10.00% based on 

Equation 4.12. 

 

Scan Duration (minutes) % of variance explained by first component 

1 5.41 

2 5.32 

5 5.42 

10 5.35 

20 5.46 

Table 6: The percentage of variance explained by the first component obtained from covariance-

based PCA of the fixed-activity Inveon 20-frame data set. The ideal value is 5.00% based on 

Equation 4.12. 

 

Scan Duration (minutes) % of variance explained by first component 

1 3.53 

2 3.42 

5 3.48 

10 3.53 

20 3.73 

Table 7: The percentage of variance explained by the first component obtained from covariance-

based PCA of the fixed-activity Inveon 30-frame data set. The ideal value is 3.33% based on 

Equation 4.12. 
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 The results from correlation-based PCA were applied to each Genisys study as well. 

Figure 4.6 indicates the results obtained from the first study in which activity was kept fixed at 

approximately 40 µCi and scan duration varied. The SNR computed directly from these results is 

shown in Figure 4.7.  

 

Figure 4.6: Percentage of Genisys data explained by the first component computed for each set 

using a total scan duration of 20 minutes for each set. These curves demonstrate “diminishing 

returns” in terms of percentage explained as scan duration is increased. 
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Figure 4.7: SNR calculated from PCA Genisys results shown in Figure 4.6. These curves 

indicate increasing benefit in SNR as activity is increased, regardless of the number of frames 

reconstructed. The total activity within the cylinder was approximately 40 µCi for all data sets. 

 

Using covariance-based PCA, the percentage of variance explained for each of these data sets 

was computed. These are shown for the 10-frame, 20-frame, and 30-frame data sets in Table 8 

through Table 10, respectively. 

Scan Duration (minutes) % of variance explained by first component 

1 11.01 

2 11.21 

5 11.33 

10 10.94 

20 11.12 

Table 8: The percentage of variance explained by the first component obtained from covariance-

based PCA of the Genisys 10-frame data sets. The ideal value is 10.00% based on Equation 4.12. 

 

Scan Duration (minutes) % of variance explained by first component 

1 5.29 

2 5.44 

5 5.39 

10 5.33 

20 5.34 
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Table 9: The percentage of variance explained by the first component obtained from covariance-

based PCA of the Genisys 20-frame data sets. The ideal value is 5.00% based on Equation 4.12. 

 

Scan Duration (minutes) % of variance explained by first component 

1 3.51 

2 3.57 

5 3.55 

10 3.56 

20 3.57 

Table 10: The percentage of variance explained by the first component obtained from 

covariance-based PCA of the Genisys 30-frame data sets. The ideal value is 3.33% based on 

Equation 4.12. 

 

4.3.2  Principal Component Analysis Applied to Various Activity Levels 

 

 The first principal component was calculated for the Inveon data sets in which the scan 

duration was fixed at 20 minutes, but activity levels varied. The uniformity and SNR, as 

measured by correlation-based PCA, are shown in Figure 4.8 and Figure 4.9 respectively. 
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Figure 4.8: Percentage of Inveon data explained by the first component computed for each set 

using a total scan duration of 20 minutes for each set. These curves demonstrate “diminishing 

returns” in terms of percentage explained as scan duration is increased. 

 

 

Figure 4.9: SNR calculated from PCA Inveon results shown in Figure 4.8. These curves indicate 

increasing benefit in SNR as activity is increased, regardless of the number of frames 

reconstructed. 
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 The percentages of variance explained, using covariance-based PCA, were also computed for 

each data set independently. Table 11, Table 12, and Table 13 indicate these percentages for the 

10-frame, 20-frame, and 30-frame data sets, respectively. 

Approximate Total Activity (µCi) % of variance explained by first component 

10 11.09 

15 11.36 

22 11.31 

31 11.43 

46 11.27 

67 10.09 

Table 11: The percentage of variance explained by the first component obtained from 

covariance-based PCA of the Inveon 10-frame data sets. The ideal value is 10.00% based on 

Equation 4.12. 

 

Approximate Total Activity (µCi) % of variance explained by first component 

10 5.48 

15 5.74 

22 5.43 

31 5.17 

46 5.31 

67 5.27 

Table 12: The percentage of variance explained by the first component obtained from 

covariance-based PCA of the Inveon 20-frame data sets. The ideal value is 5.00% based on 

Equation 4.12. 

 

Approximate Total Activity (µCi) % of variance explained by first component 

10 3.82 

15 3.72 

22 3.45 

31 3.45 

46 3.40 

67 3.52 

Table 13: The percentage of variance explained by the first component obtained from 

covariance-based PCA of the Inveon 30-frame data sets. The ideal value is 3.33% based on 

Equation 4.12. 
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Results from the correlation-based PCA, applied to Genisys data sets with varying 

activity levels, are shown in Figure 4.10 and Figure 4.11.  

 

Figure 4.10: Percentage of Genisys data explained by the first component computed for each 

data set using a total scan duration of 20 minutes for each set. These curves demonstrate 

“diminishing returns” in terms of percentage explained as scan duration is increased. 
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Figure 4.11: SNR calculated from PCA Genisys results shown in Figure 4.10. These curves 

indicate increasing benefit in SNR as activity is increased, regardless of the number of frames 

reconstructed. 

 

Results using covariance-based PCA applied to the Genisys data are shown in Table 14 through 

Table 16. 

Approximate Total Activity (µCi) % of variance explained by first component 

6.0 11.60 

8.7 11.33 

12.7 11.17 

18.6 11.02 

27.3 11.38 

40.0 11.09 

Table 14: The percentage of variance explained by the first component obtained from 

covariance-based PCA of the Genisys 10-frame data sets. The ideal value is 10.00% based on 

Equation 4.12. 

 

Approximate Total Activity (µCi) % of variance explained by first component 

6.0 5.35 

8.7 5.48 

12.7 5.49 
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18.6 5.48 

27.3 5.60 

40.0 5.64 

Table 15: The percentage of variance explained by the first component obtained from 

covariance-based PCA of the Genisys 20-frame data sets. The ideal value is 5.00% based on 

Equation 4.12. 

 

Approximate Total Activity (µCi) % of variance explained by first component 

6.0 3.55 

8.7 3.60 

12.7 3.58 

18.6 3.50 

27.3 3.56 

40.0 3.54 

Table 16: The percentage of variance explained by the first component obtained from 

covariance-based PCA of the Genisys 30-frame data sets. The ideal value is 3.33% based on 

Equation 4.12. 

 

4.4 Discussion 

 

4.4.1  Uniformity as Measured by the Principal Component 

 

 The results from the first Inveon study indicate that uniformity, as measured by the 

percentage of data explained, increases quite rapidly with scan duration as demonstrated in 

Figure 4.4, but quickly reach an asymptotic limit. As a result, the increase in uniformity with 

longer scan durations (implying longer frame durations) eventually diminishes; the uniformity is 

essentially independent of number of frames after a certain point. Within the 5-minute scans 

shown in Figure 4.4, for example, the 30-frame set and 10-frame data set have ~96% uniformity 

and ~99% uniformity, respectively. Only a small ~3% gain in uniformity has been achieved by 

tripling the frame duration. This might be further emphasized by the fact that data was acquired 
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using a nominal activity of approximately 80 µCi. Such behavior may not be readily seen with 

relatively low levels of activity.  

A compromise between uniformity and frame sampling is desired; uniformity within a 

uniform region is, of course, preferred. A higher number of frames may also be desired for 

kinetic studies. The curves shown in Figure 4.4 may be used to determine a scan duration in 

which both needs can be quantitatively balanced. The optimal point may be defined as the scan 

duration at which the curve tangent (i.e. derivative) is equal to one. Prior to this point, the 

uniformity increases significantly with scan duration; after this point, the increase in uniformity 

will gradually become less appreciable. For example, the 10-frame data set in Figure 4.4 has this 

optimal point at a scan duration of ~2.5 minutes. This is graphically shown in Figure 4.12 where 

the dashed line has a slope of 1/min and is tangent to the curve at the optimal point. 
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Figure 4.12: Example of finding the optimal point defined as the point of the curve at which the 

tangent slope (i.e. derivative) has a value of 1/min. The curve shown is the 10-frame data set 

rescaled from that in Figure 4.4. The 20-frame and 30-frame data sets have not been shown for 

visual clarity. The optimal point for this particular set occurs at a scan duration of ~2.5 minutes. 

 

Based on Figure 4.12, a total duration of approximately 2.5 minutes should provide 

adequate uniformity for a 10-frame data set starting with an activity of approximately 80 µCi 

(using decay correction). The 20-frame and 30-frame sets have this point at scan durations of ~5 

minutes and ~6 minutes, respectively. In each of the three cases, the measured uniformity is 

above 97%. These optimal values should be seen as a lower bound; nonuniform activity 

distributions which occur in practice will exhibit less uniformity, as measured by PCA. As a 

result the optimal points determined here will increase. 

The results of the second Inveon study (Figure 4.8) exhibit similar properties. Due to the 

relatively long scan duration (20 minutes), the 30-frame data set has uniformity greater than 93% 

even at an activity level of only ~10 µCi. The uniformity dependence on activity levels is 
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surprisingly weak; activity levels beyond ~32 µCi exhibit less than 1% increase between the 30-

frame and 10-frame data sets. The optimal points, as measured by activity levels, are not visible 

on Figure 4.8 and appear to occur at points less than 10 µCi even when using 30 frames. These 

points may be calculated if sets of higher frames and lower activity are reconstructed. 

Very similar trends are apparent in the Genisys results. However, uniformity, as seen in 

Figure 4.6 and Figure 4.10, do not appear to increase as quickly as those of the Inveon, as seen in 

Figure 4.4 and Figure 4.8. The optimal points for uniformity appear to be greater than 20-minute 

scan duration for all data sets. 

 

4.4.2  Signal-to-Noise Ratio as Measured the Principal Component  

 

The SNR results, derived directly from these percentages (Equation 4.10) are in general 

agreement with what is intuitively expected. The curves shown in Figure 4.5 and Figure 4.9 

indicate the increase in SNR with increasing scan duration and activity, respectively. Each curve 

demonstrates a somewhat abrupt rate of change. For example, the 10-frame data exhibits a 

decrease in the rate of change at ~5-minute scan duration. The other curves in both figures all 

show this, but to a lesser degree. 

Optimal points which balance the needs of acceptable SNR and short scan durations can 

be quantified in a similar manner to that of the uniformity. In particular, the point at which the 

tangent slope of each curve is equal to one can be defined, again, as the optimal point. After this 

point, the gains in SNR are gradually diminished. For example, in Figure 4.5, the 10-frame set 

has an optimal point at a scan duration of ~6.5 minutes. The 20-frame and 30-frame sets both 
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have optimal points at scan durations of ~8.5 minutes. The 10-frame data set in Figure 4.9 

indicates an optimal point at ~11 µCi. The 20-frame and 30-frame sets both appear to have an 

optimal point below 10 µCi. 

The signal and noise are commonly assumed to follow Poisson statistics in which the 

standard deviation (i.e. noise) of a set of samples (counts) is given by the square root of the mean 

[18]. As a result, SNR is generally considered to be proportional to the square root of counts: 

 

counts
counts

countsSNR =∝  Equation 4.15 

 

In this case, the counts variable refers to the total number of raw true coincidence counts 

detected per frame. The counts themselves can be considered to be proportional to scan duration 

and activity level. The general curves of each data set in Figure 4.5 and Figure 4.9 agree with the 

expected curve of Equation 4.15.  

More quantitatively, Equation 4.15 indicates that, for a fixed scan duration, doubling the 

number of frames will decrease the SNR by a factor of 2 . The results, shown in Figure 4.5 and 

Figure 4.9, are in general agreement with this. For example, Figure 4.5 indicates that the 10-

frame set has an SNR of ~28 at a scan duration of 20 minutes. The corresponding 20-frame set, 

at the same scan duration, has an SNR of ~19. Comparison of these values yields a decrease in 

SNR by a factor of 1.47 which is in close agreement with the expected value of 2 . However, 

this agreement deteriorates with lower scan duration (Figure 4.5) or lower activity levels (Figure 

4.9). The Poisson model appears to underestimate the decrease in SNR when reconstructing a 
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given data set with fewer counts per frame. Possible reasons for the breakdown of the Poisson 

model include instrumentation dark noise or the inability of the iterative reconstruction algorithm 

to accommodate low statistic data sets. 

Equation 4.15 also suggests that the SNR for a given frame is determined by its total 

counts. The method of how those counts were obtained, including high activity or long frame 

duration, is irrelevant according to the simple Poisson model. The results presented in Figure 4.5 

are in general agreement with this as well. However, there is a slight, but measurable discrepancy 

when computing SNR using PCA. For example, Figure 4.5 indicates that a 5-minute acquisition 

reconstructed into 10-frames has a slightly higher SNR (~13.9) than that of a 10-minute 

acquisition reconstructed into 20-frames (~13.8). The discrepancy becomes more apparent when 

compared against the SNR of a 15-minute acquisition using 30 frames (~12.6).  

Ideally, all data sets should contain approximately the same number of counts per frame. 

However, it is possible that the natural 
18

F decay leads to more noise over longer acquisition 

periods, even with the use of decay correction. This is not supported, however, by the results of 

the covariance-based PCA; they strongly indicate that noise is randomly distributed both 

spatially and temporally. Note that the change in SNR with total counts is not as apparent in 

Figure 4.9 in which activity levels vary, but scan durations are fixed at 20 minutes. This suggests 

that, for a given number of counts per frame, there may be a modest increase in SNR when using 

shorter acquisitions of higher activity as opposed to longer acquisitions of lower activities. 

 The SNR results obtained from the Genisys data sets may be interpreted in the same 

manner. However, the curves shown in Figure 4.7 and Figure 4.11 do not appear to have any 
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point at which the derivative is equal to one; optimal points, using this criterion, are not well-

defined, or possibly occur at very small scan durations or activity levels. 

 Poisson statistics (Equation 4.15) is generally adhered to within these results as well. For 

example, the 10-frame data set in Figure 4.7 indicates a SNR of ~0.62 for a 1-minute scan with 

10 frames. The SNR is reduced to ~0.43 for the 20-frame data set of the same scan duration. The 

decrease in SNR is about 1.44, in rough agreement with the expected value of 2 . The Inveon 

results appear to diverge from the Poisson model at low counts; however, no discernible trend 

was found for the behavior of the Genisys system. The rough agreement between the computed 

SNR and the Poisson model appears to be constant throughout the range of measured scan 

durations and activity levels. 

 As in the case of the Inveon results, the SNR is significantly different even between data 

sets with roughly the same number of counts per frame. For example, Figure 4.7 indicates an 

SNR of ~1.58 for the 10-frame data set at an activity level of approximately 12 µCi. Therefore, 

one would expect approximately the same SNR for the 20-frame data set at an activity level of 

24 µCi. The PCA results, however, indicate an SNR of ~1.40. For the 30-frame data set at an 

activity of 36 µCi, the computed SNR is even smaller (~1.20). 

In short, the computed SNR of the Inveon is generally an order of magnitude greater than 

that of the Genisys. Both systems generally follow the Poisson model when observed at fixed 

scan duration or fixed activity level. The model appears to be more valid for higher durations or 

higher activity levels within the Inveon system; this trend is not apparent within the Genisys 

results. None of the results, from either system, indicate an improvement in SNR greater than 

that of the Poisson model. 
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4.4.3  Noise Distribution as Measured by the Principal Component 

 

 Table 5 through Table 16 indicates the percentage of variance explained by each 

principal component using the covariance-based method. These results are indicative of how 

evenly distributed the noise is both temporally and spatially. Due to the mean-shifting of each 

TAC performed, the true signal itself should have no bearing on the results; only the random 

zero-mean component of the total noise is reflected in these results. If noise is uniformly 

distributed temporally and spatially, the resulting percentages are ideally given by Equation 4.12. 

Percentages lower than these ideal values are mathematically impossible. 

 Note that, in all cases, the resulting percentage is slightly higher than the ideal value. At 

most, the calculated percentage is 1.6% greater than the expected value (as seen in the first row 

of Table 14). Somewhat surprisingly, this noise distribution does not appear to be correlated with 

scan duration as seen in Tables 1-3 or with activity levels as seen in Tables 4-6. No discernible 

trend can be seen within a given set of results. However, in both studies, the 10-frame sets seen 

in Table 5 and Table 11 exhibit a greater deviation from the ideal result compared to the 20-

frame and 30-frame data sets.  

It is possible that the fewer frames themselves lead to this. Note that the covariance 

between any two signals is zero if either, or both, signals are zero-mean noise. However, the 

signals themselves must be of sufficient length due to the statistical nature of noise; only a 

summation of an infinitely long noisy signal is guaranteed to have a covariance of zero (Equation 

4.2). The finite summations used in practice may not lead to this. Summations of shorter length, 
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as in the case of the 10-frame data sets, may not converge to zero. The interpretation, however, 

of these percentages as metrics for noise distribution, is not affected. The results, shown in Table 

5-Table 16, strongly suggest the nearly uniform distribution of zero-mean noise temporally and 

spatially. In addition, these noise characteristics appear to be independent of scan duration and 

activity level. Extremely short frames or low activity levels, beyond those used for these studies, 

might exhibit more coherent noise properties. 

 If so, this implies that the PCA results are rather independent of the number of nonzero 

TACs measured. In other words, the actual dimensions of the uniform phantom used in the 

experiment are somewhat irrelevant to the PCA results. The same appears to be true for the 

actual placement of the phantom within the FOV. However, obtaining an adequate number of 

TACs to supply sufficient statistics will still be necessary. Therefore, the uniform phantom must 

not be too small. 

 

4.4.4  Upper Bounds to Factor Analysis 

 

 Due to the close relationship between PCA and FA, the results presented here may be 

used as a guideline for determining how much data is retained when performing FA. Note that 

uniform activity distribution, for a given set of TACs, is the simplest case in which FA can be 

performed; the lack of any inherent kinetics implies that only the variation in signal due to noise 

must be accommodated by the derived factors. In the ideal case, all TACs are scalar multiplies of 

each other (i.e. no noise). If so, only one principal component would explain 100% of the data. If 

using FA, only one factor would explain 100% of the data. However, due to the inability of PCA 
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or FA to distinguish variance from noise from that of kinetics, any level of noise present will 

reduce this. Furthermore, the results of PCA are designed such that each subsequent component 

retains as much of the data as possible without overlapping with that of previously derived 

components. In short, it is mathematically impossible to retain more data using a method other 

than PCA for a given number of parameters. Therefore, the percentages calculated from PCA 

should be seen as an upper bound (i.e. most optimistic) for those in FA. The actual amount of 

data retained by FA will be determined by the measured kinetics, number of iterations, and how 

sensitive to noise the particular FA algorithm is. 

 An upper bound to FA using one factor is simply equal to that of PCA. For example, if 

applying FA to a uniform distribution with a total of ~80 µCi acquired over 1 minute and 

reconstructed using 30 frames, Figure 4.4 gives the upper bound of approximately 71%. In the 

case of a uniform activity distribution, this first component accommodates the true signal itself; 

presumably, all subsequent components retain information of the noise only. Table 5 - Table 16 

strongly suggests that the noise is uniformly distributed both spatially and temporally. As a 

result, the percentages of data explained by these subsequent components are approximately 

equal. Therefore, the remaining 29 % of the data is equally explained by the remaining 29 

components. Note that the total number of components, when using PCA (or number of factors 

when using FA) is equal to the number of frames for a given data set. Therefore, the second 

component explains approximately 1 % of the data. The orthogonal nature of PCA allows for 

calculation of the total data explained as the sum these two components. Therefore the 

approximate percentage of data retained by two components is approximately 72%. This additive 

property may not be applicable to FA due to the possibility of interdependent (i.e. 

nonorthogonal) variables. As a result, this sum should be considered as an upper limit only. For 
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this particular example, percentages for additional components may be computed by adding 

1.0% for each subsequent component. Inclusion of all 30 components must result in a total of 

100% of the data. 

 This approximation for percentage explained becomes less valid for a larger number of 

components. The usefulness of PCA and FA lies in the fact that the majority of the data is 

compressed with a number of components that is small relative to the number of total 

components. In addition, FA employed in practice attempts to categorize various signals into 

classes with common kinetics. These signals may come from regions with different numbers of 

TACs or even regions of uneven activity distribution. As a result, FA attempts to explain 

variations not limited just to variations due to noise. The inclusion of these kinetics will only 

decrease the percentage of data retained relative to these estimates. 

 

4.5 Summary 

 

 Application of Principal Component Analysis as a measure of system performance of the 

Siemens Inveon and Sofie Biosciences Genisys preclinical PET systems were assessed using two 

studies. The results of correlation-based PCA and covariance-based PCA are interpreted in terms 

of uniformity, SNR, noise distribution, and an upper bound for possible FA. Uniformity was 

defined in terms of percentages of data retained by the first component obtained from 

correlation-based PCA. The PCA methods were applied to data sets in which activity was held 

fixed and frame duration varied, and vice-versa. 
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Uniformity within the Inveon was found to increase quickly for low counts, but soon 

reached a point at which increases in uniformity were less appreciable. The corresponding 

Genisys results also showed increased uniformity with increasing counts, but did not exhibit the 

rapid growth found within the Inveon system.  

The SNR of each dynamic set was computed from the uniformity measurements under 

the assumption of zero-mean noise. The SNR was observed to obey Poisson statistics fairly well. 

Agreement with Poisson statistics increased for higher count levels within the Inveon results, and 

generally remained constant for the Genisys. The SNR of most Inveon data sets were an order of 

magnitude greater than that of the Genisys.  

Noise distribution was quantified using the percentage of data retained obtained from 

covariance-based PCA. The results from these analyses strongly suggest a nearly uniform 

distribution of noise spatially within both systems. This allows for a simple estimation of the 

upper limit of percentage retained when using FA regardless of the details of the algorithm and 

kinetics.  

 Further work with this method can be used to investigate these properties in less desirable 

conditions such as very short frame durations or low activity levels. It is believed that larger 

discrepancies will result within these ranges. In addition, the method of computing principal 

components, using the correlation-based method, can be extended such that all subsequent 

components can be explicitly computed in a recursive fashion as described in Chapter 4.2.1. 

Percentages retained by the second component can then be quantified and compared against the 

ideal case of a uniform noise distribution. Finally, the methods described are not specific to PET 

systems and may also be applied to other time-varying imaging modalities. 
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4.6 Appendix A: Derivation of the Mean as the First Principal Component 

 

We wish to prove that the mean of a given set of TACs is equivalent to finding the first 

principal component. For the proof presented here, the matrix representations, eigenvectors, and 

eigenvalues involved in PCA [15] are not used; instead each TAC is represented as a simple 

time-dependent function, Ti(t). The straightforward calculus-based technique for minimizing 

functions is used. It is nearly identically to that used to find the best-fitting curves in linear 

regression [18]. This method is analytic and is facilitated by the fact that the principal 

components follow a least-squares criterion. This criterion happens to be especially convenient 

for minimization purposes. In fact, PCA can be thought of as a least-squares problem with 

multiple, independent parameters. For our purposes, the problem is further simplified by the fact 

that no constraints are used on these parameters. 

 The quantity of interest is the time-dependent principal component, p. Assuming there 

are n frames, and m nonzero TACs, we wish to find all of the n values within p. For notational 

simplicity, the value of the principal component at a given time t is denoted as pt as opposed to 

p(t). Each element within p(t) is  a continuous variable independent from all other elements. By 

definition, the principal component maximizes the percentage of data explained; in other words, 

the principal component follows the usual least-squares criterion by minimizing the total residual 

error, χ
2
. 
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@4 �	)*$% � 0+4
%

 
Equation 4.16 

 

This equation subtracts two curves (i.e. vectors), at all time points (i.e. elements), and then adds 

the differences in quadrature. However this can be expanded in quadrature fashion to show the 

subtraction between individual time points within each curve. This necessarily assumes 

independence between all curves at all time points, as is the nature of PCA: 

 

@4 �	))*$%*�+ � 0+4
,%

 
Equation 4.17 

 

We wish to find all values of pt such that	@4 is minimized. This is done using the usual calculus-

based method of taking derivatives. Note that in Equation 4.17, the variable t is discrete, but all 

the elements of pt are continuous. Also note that the total residual error can be made arbitrary 

large by making any, or all, variables pt arbitrary large; in other words, χ
2
 does not have an 

absolute or local maximum.  

Therefore, the usual method setting derivatives to zero and solving for pt will suffice to 

find a minimum. Since there is only one such minimum, these values of pt will define the 

absolute minimum, which is the quantity in question. To find this minimum, we can use the 

usual calculus-based method of setting the derivative of χ
2
, with respect to a particular time point 

pk, equal to zero: 
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A@4A0B � 	0 
Equation 4.18 

 

Equation 4.18 must be zero for all values of k. Note that, in general, this condition is not enough 

to guarantee a local minima or maxima. Additional conditions involving the second derivatives 

and cross derivatives must also be used. Referring to Equation 4.17, we can see that all second 

derivatives and cross derivatives are identically zero. Therefore, these additional conditions for 

finding a local maxima or local minima are automatically satisfied. This convenient property 

makes the least-squares criteria extremely versatile. 

Referring again to Equation 4.17 and taking the derivative with respect to pk yields: 

 

A@4A0B �	�2)*$%*D+ �	0B+%
 

Equation 4.19 

 

Setting Equation 4.19 equal to Equation 4.18, and solving for pk results in 

 

0B �	∑ $%*D+% �9  
Equation 4.20 
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where n is the number of time points. Equation 4.20 indicates that, for a particular time point k, 

the principal component element pk is found by averaging the values of all TACs for that same 

time point. 

 In short, the first principal component for correlation-based PCA can be found by 

averaging all nonzero TACs. For covariance-based PCA, a nearly identically argument can be 

made. However, all TACs must be mean-shifted prior to the averaging. In other words, Ti(k) 

must be substituted with the mean-shifted version (Equation 4.2). A separate principal 

component must be computed for every dynamic data set. In addition, the correlation-based and 

covariance-based methods each produced their own principal components. After computation of 

the components, the components are normalized in quadrature fashion as shown in Equation 

4.14. 
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5 Multimodality Coregistration Using Rigid Body Transformations 

 

5.1 Introduction 

 

5.1.1  Rigid Body Transformations for Coregistration 

 

 Multimodality coregistration for mice imaging has been employed using a variety of 

methods. Some methods rely on landmarks or markers, precompiled atlases, or statistical 

properties of the pair of images being fused. In each case, the transformation is reliant on a 

fundamental assumption regarding the mice or voxel value distributions. These methods may fail 

when applied to anatomically unusual specimens, noisy images, or even modalities for which the 

assumed properties do not apply. Futhermore, the actual transformation employed for 

coregistration between a given pair of images may differ from pair to pair. In other words, the 

transformation being applied may not be consistent even if applied to pairs of images taken from 

the same modality. Certain methods may also alter the information from a given image for the 

sake of fusion thereby decreasing its quantitative value. Even if visually agreeable, it is difficult 

to determine how accurately the coregistration was performed.  A coregistration method which 

does not rely on any assumptions of anatomy or on the images themselves, yet retains all the 

quantitative value of the images, would be highly useful. 

 Note that coregistration can be mathematically considered as a problem involving the 

alignment of two different coordinate systems. Due to the static positioning of mice during 

image acquisition, the mice can be effectively treated as a rigid body. As a result, coregistration 

of mice can be treated as a rigid body transformation between two coordinate systems. This 
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approach has been recognized by Ji et. al. [19]. The problem of rigid body transformation has 

also been used in motion correction for PET brain imaging [20, 21, 22]. The motion correction 

problem involves multiple frames from a single imaging system; the coregistration problem 

involves multiple modalities of varying image sizes. However, the fundamental concepts and 

algorithms are applicable in both due to the rigid body nature of the problem. In other words, 

motion of a rigid body and coregistration of a static subject are mathematically equivalent 

problems. In the case of motion correction, an external motion-tracking device may be used to 

provide a transformation from one image to the next. However, no such device is currently in 

place for the coregistration problem. The challenge lies in how to derive a transformation which 

puts each image into a common frame of reference. This frame of reference can be arbitrarly 

chosen. However, for convenience, the coordinate system of one modality is chosen to be the 

common frame of reference itself. 

 A qualitative illustration of the rigid body coregistration problem is shown in Figure 5.1. 

As shown in Figure 5.1, each modality, or imaging system, may be thought of as having its own 

inherent coordinate system. For visual purposes, only a 2-dimensional (2D) depiction is shown.  
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Figure 5.1: Graphical illustration of the rigid body coregistration problem. The coordinate 

systems of two modalities, A and B, are translated and rotated arbitrarily with respect to one 

another. The rigid body coregistration problem consists of finding the optimal rotation and 

translation such that alignment between the two systems is as close as possible. For simplicity, 

only a 2-dimensional view is shown. In practice, the imaging and coregistration are performed in 

all three dimensions. 

 

In practice, the coregistration problem applies to all three spatial dimensions (3D) 

simultaneously. These coordinate systems are independent, and rotated and shifted relative to 

each other in an arbitrary fashion. In short, there is no universally agreed upon convention for 

defining each of the three axes relative to the subject. For each system, a given point within the 

subject is localized by a system-specific coordinate. The coordinates EF→ and EHIJ represent the 

coordinates to the same point from modality A and B, respectively. The coordinates, themselves, 

however, are not the same due to the fact that there are measured relative to different coordinate 

systems. The coordinates are measured in terms of physical distance (i.e. mm); they do not 

indicate voxel indices. The origin of each coordinate system is chosen to lie somewhere within 

the field-of-view (FOV) within each system. The choice of where in the FOV is arbitrary. 
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The problem of interest is to compute a rigid body transformation such that the two 

coordinates systems align as closely as possible. By definition of rigid body transformation, the 

transformation may only consist of a rotation and translation; other possible transformations such 

as dilation, shearing, etc. are not used. However, instead of transforming the coordinate systems 

(i.e. “passive transformations”), the coordinates themselves can be transformed (i.e. “active 

transforms”). Mathematically, both concepts are essentially equivalent. For a given passive 

transformation, the corresponding active transformation is given by the inverse. For 

computational reasons, it is easier to work with the active transformations; the coordinates within 

a given modality, A, are rigidly transformed to match that of B. The problem of coregistration, 

therefore, is to find some transformation T, such that 

 

EHIJ� $ KEF→L 
Equation 5.1 

 

This transformation applies equally to all points within the subject; no adjustments to the 

transformation are made based on location within the subject. This principal is a defining 

characteristic of the rigid body transformation. 

 

5.1.2  Computation of the Rigid Body Transformation 

 

 As mentioned, calculating T involves two pieces: calculating a 3D rotation and 

calculating a 3D translation. Taken separately, each piece is manageable. However, when taken 
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simultaneously, the problem is nontrivial, particularly when an analytic solution is desired. The 

general mathematical problem has been addressed by Horn using a least-squares criterion [23, 

24]. The resulting rotational piece is expressed in terms of a quaternion, q. Although a more 

familiar rotation matrix can be computed, the quaternion-based method is computationally much 

more straightforward. Details of how a quaternion expresses rotation and its analogy to the 

rotation matrix can be found in Kuipers [25]. The translational piece is expressed as a standard 

3D vector �M . In short, EF→ and EHIJ are related by 

EHIJ		� 	$ KEF→L � KN EF→ N∗L . �M Equation 5.2 

 

By convention, the coordinates are first rotated using the quantity in parenthesis in Equation 5.2. 

(The quantity q* is the complex conjugate of q.) After rotation, a linear shift is applied using the 

translation vector. The rotation and translation each provide three degrees of freedom. In other 

words, the transformation consists of six independent values to be determined. All other values 

can be computed from these six.  

 

5.1.3  Bed Apparatus Used for Rigid Body Coregistration 

 

The success of this coregistration method rests almost entirely on how immobile the 

subject is relative to the bed. Even minor repositioning of the subject between scans may affect 

the accuracy of the coregistration. In addition, the bed itself must be rigidly placed. In other 

words, the placement of the bed within the (FOV) for each system must be reproducible. For 
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these purposes, beds adopted for use with the Sofie Biosciences Genisys G4 preclinical PET 

scanner were employed. The bed dimensions and tracks were customized to fit both the Inveon 

and microCT. As a result, the subject can be imaged on all three systems without having to be 

removed from the bed. A photograph of the bed apparatus used within the Siemens Inveon 

preclinical PET system is shown in Figure 5.2. The apparatus is also designed to accommodate 

oxygenation, heating, and sedation of the subject while in the bed during acquisition (not 

shown). 

 

Figure 5.2: Bed apparatus used within the Siemens Inveon preclinical PET system. For visual 

clarity, no subject is shown, and the bed is only partially inserted into the bore. In practice, the 

bed is fully inserted into the bore so that the subject within the bed lies within the FOV. Identical 

bed tracks are fitted to each imaging system allowing the bed to be inserted into each system 

without having to reposition the subject between scans.   

 

5.1.4  Coregistration Calibration Measurements 
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As stated, this coregistration method does not rely on landmarks or statistical properties 

to compute a transformation. Instead, it uses a set of calibration measurements acquired 

independently of any image. These measurements require the same set of points within the bed to 

be localized by two different systems. The concept is illustrated in Figure 5.3.  

 

Figure 5.3: Illustration of calibration data used by Horn’s method for computing the rigid body 

transformation. Three random points are chosen to be localized within each FOV. The points 

themselves are stationary relative to the bed. Mathematically, at least three noncollinear points 

are needed to compute a transformation. 

 

As seen in Figure 5.3, the calibration data consists of the coordinates EFPIJ, EFQIJ, and EFRIJ 

measured in Modality A and similarly for Modality B. Note that EFSIJ  and EHSIJ  are different 

coordinates (regardless of the value of i), but are measuring the location of the same physical 

point. The choice of these points is arbitrary. However, at least three points much be used to 

calculate a transformation. In addition, at least three of these points must be noncollinear. (Note 
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that if points are noncollinear in one system, then they are necessarily noncollinear in any other 

system after a rigid transform.) 

The localization is done in terms of physical coordinates (measured in distance), not in 

terms of voxel indices, voxel values, etc. This data may be thought of as calibration data for the 

algorithm; the derived transformation attempts to rigidly align this data as much as possible in 

the least-squares sense. Mathematically, there is only one such transformation for a given set of 

data. Due to the rigid nature of the subject, this same transformation can be applied to any pair of 

images from the same pair of systems as long as the calibration data and subject images were 

captured using the same bed positioning and axes convention. In other words, if the calibration 

data and subject images are acquired using different bed positioning or axes convention, the 

transformation is invalid. Repeated measurements of the calibration data are not necessary if no 

changes have been made to bed positioning or axes convention regardless of the protocols used 

for acquiring subject images. This consistent “cookie-cutter” approach to the coregistration is 

one of its key advantages. In short, coregistration is being performed not on the subject per se, 

but on the FOVs between the two systems. 

 

5.1.5  Horn’s Method for Computing a Rigid Body Transformation 

 

The method of computing a rigid body transformation, simply referred to as Horn’s 

method has been proposed and utilized in a number of applications [23, 24]. The method is well-

established and has been used for coregistration between microSPECT and microCT [19], 

amongst other applications. The algorithm is a least-squares method which utilizes three or more 
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reference points. The physical coordinates of these reference points are known within each 

coordinate system. These reference points, not the images themselves, are used by Horn’s 

method to compute a transformation between the coordinate systems.  

The computation first shifts all coordinates within each coordinate system relative to their 

respective centroids. This has the effect of creating an origin for both coordinate systems which 

coincide with each other; in other words, the effect of translation between the two coordinate 

systems is removed without having to solve for it explicitly. The problem is then reduced to 

finding an orthogonal transformation (i.e. rigid rotation) between the two sets of redefined 

coordinates. This is done through a somewhat lengthy series of vector computations, at the end 

of which an eigenvector must be computed for a 4 x 4 matrix. Note that this is not a spatial 

transformation matrix (which may incorporate rotation and translation together). The 4-element 

eigenvector which corresponds to the largest eigenvalue of this matrix is, however, the sought 

after quaternion q (Equation 5.2). The translation is subsequently found using a 3D vector 

subtraction. The use of the maximum eigenvalue is conceptually very similar to the linear 

algebra approach taken in Principal Component Analysis (Chapter 4). In short, the eigenvectors 

may be thought of as representing axes of symmetries; their corresponding eigenvalues indicate 

their degree of symmetry.  

 The quaternion, much like a rotation matrix, specifies instructions about the rotation. The 

quaternion produced by the method can describe any orthogonal spatial transformation. Once 

this is acquired, the inverse of this rotation is applied to the original coordinates. From this, a 

simple subtraction yields the desired translation vector. The final transformation given by Horn’s 

method, therefore, yields a quaternion and vector used for rotation and translation, respectively. 

Aside from the assumption of a rigid body transformation, no other assumptions or 
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approximations are used in the calculation. In addition, the reference points used in the 

calculation can constitute any set of three, or more, noncollinear points.  No restrictions are 

imposed on the distances between points, orientation, etc. Implementation for Horn’s method 

was performed using the Interactive Data Language (IDL) version 7.0. 

Simulated studies have shown that Horn’s method does, in fact, recover exact coordinates 

(within floating-point error) for a known, user-defined transformation. Alternatively, the 

transformation itself can be recovered using user-defined coordinates. In practice, of course, the 

transformation is not user-defined, but is prescribed by the systems being coregistered. 

Therefore, an investigation of this method involves quantifying how accurately the calibration 

itself can be measured. In short, Horn’s algorithm itself is not being tested. Under the assumption 

of a rigid body transformation, the method provides highly accurate transformations. How well 

the calibration data agrees with this assumption is the point in question. 

 

5.1.6  Least-Squares Metric for Rigid Body Transformations 

 

As stated, Horn’s method employs a least-squares criterion for determining the rigid 

transformation. Regardless of how rigid the data is, Horn’s method [23, 24] always provides the 

best fitting rigid body transformation in the least-squares sense. Quantitatively, it finds the 

transformation, T, such that the total residual error squared is minimized. In terms of Equation 

5.2 and Figure 5.3, it minimizes the quantity @4: 
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@4 �)TEHSIJ � $ KEFSIJLT4
%

 
Equation 5.3 

   

Equation 5.3 simply finds the total residual error squared for all points before and after a 

given transformation. The squared quantity within bars is simply the distance (i.e. norm) between 

the location of a point in system B and the same point measured in system A after transforming 

to the coordinates in system B. Note that the total error is in units of length-squared. It may be 

interpreted as a goodness-of-fit parameter [18], or as the variance of a measurement of distance.  

For ideal, perfectly fitting data, this value will be zero regardless of which points were used in 

the calibration data. However, practical limitations of how well the calibration data can be 

measured will only increase this error. 

 Although the quantity shown in Equation 5.3 has physical units, it should not be 

interpreted in an absolute manner. In other words, if the calibration measurements are repeated 

using another set of randomly selected reference points, this value may change. The calibration 

with the larger value is not necessarily inferior. The apparent difference may be due to inaccurate 

localization. However, this discrepancy may simply be due to the arbitrary choice of locations 

used in the calibration; locations further away from the origin within a FOV may increase this 

quantity even if Equation 5.3 is minimized. Furthermore, including additional calibration points 

(beyond the requisite three) may improve the calibration, but may also increase this quantity. In 

short, the minimization of this quantity is of interest, not the value itself. 

 In the example described, coordinates from system A are converted to that of system B as 

seen in Equation 5.2. The inverse of this may be easily calculated by performing the inverse of 

the rotation and translation in the reverse order. 
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EF→		≌ $V> KEHIJL � 	N∗ KEHIJ �	�ML N 
Equation 5.4 

 

Equation 5.4 first translates the coordinate from system B using the opposite shift of that 

computed; it then rotates the result in an opposite manner from that computed. Again, for ideal 

data, the location of any given point in system A can be recovered exactly using the transform 

and coordinate in system B. In short, there are four transformations that can be used to coregister 

any given pair of images. The results may differ slightly for all four cases when using less-than-

ideal calibration data. 

 In practice, the limitations of measured data, however, indicate the recovery shown in 

Equation 5.4 is only a very good approximation. This limitation stems from the discretization of 

voxels and, therefore, coordinates. In addition, measurements taken for the calibration data may 

have their own errors. The errors acquired during the calibration measurements propagate into 

the coregistration itself. Note that the same set of points, relative to the bed, must be measured in 

both coordinate systems. However, the limitations of this measurement may preclude 

localization of exactly the same points as seen in Figure 5.4.  
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Figure 5.4: Graphical illustration of calibration data used for computing the rigid body 

transformation. Unlike what is shown in Figure 5.3, the same three points are not localized by 

both systems. The error in the measurement will degrade the accuracy of the coregistration. 

 

For our purposes, the calibration data was acquired using a spherical phantom imaged in both 

systems in various locations. The various placement of the phantom is shown in blue in Figure 

5.3 and Figure 5.4. The details of acquiring the calibration data are discussed in Chapter 5.2.2.  

 

5.1.7 Summary of the Rigid Body Coregistration Problem 

 

In summary, the problem of coregistration is inherently a spatial problem, as opposed to a 

statistical problem. As a result, a suitable solution is inherently spatial and makes no assumptions 

about voxel values, distributions, anatomy, or landmarks. Coregistration of mice imaging and 

motion correction of brain images share the property of a rigid body transformation. Horn’s 

method provides a highly accurate method of calculating a giving rigid body transformation 
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using a straightforward analytical method. It also uses the intuitive least-squares criterion for 

deriving a rigid body transformation. In addition to the transformation, a metric can be computed 

using the least-squares criterion. Although not absolute, the metric provides a way of gauging 

how well the given transformation applies to the measured calibration data. Due to the 

reproducible nature of rigid body transformations, this computed transformation can be applied 

to any pair of images assuming that the bed position and axes orientations have remained 

consistent. Investigation into this method does not involve testing the algorithm itself; instead, 

the investigations involve determining how well the method can be applied under practical 

imaging conditions. 

The experiments performed attempt to quantify how well the imaging systems 

correspond to rigidly transformed coordinate systems. These experiments were first measured 

without a subject in order to determine any errors originating from the bed apparatus or scanners 

themselves. Once these errors were found to be minimal, calibration data was taken to compute 

the transformation between them. This transformation was applied to the calibration data itself as 

well as to mice images to visually assess the quality of coregistration. 

 

5.2 Methods 

  

5.2.1 Determining Positioning Repeatability 

 

 As mentioned, the success of the coregistration algorithm depends heavily on how 

consistent positioning of each bed, relative to the FOV, is within each scanner. As a result, we 
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must quantify this consistency (or lack thereof) in order to assure that a rigid body 

transformation is an applicable method of coregistration. The measurement of position within the 

FOV is performed relative to an arbitrary origin with each system’s FOV. The variance of these 

measurements, however, is an absolute metric for how reproducible positioning with the FOV is. 

The scanners used in these experiments consisted of the Siemens microCT II, Siemens Inveon 

preclinical PET scanner, and Sofie Biosciences Genisys G4 preclinical PET scanner. The 

microCT and Inveon were both fitted with the bed apparatus shown in Figure 5.2; the apparatus 

was not required for the Genisys G4 due to the fact that the inherent bed track was designed to fit 

the bed. In short, the bed apparatus insured that a subject could be scanned in all three systems 

such that repositioning of the subject, relative to the bed, is not necessary. Due to the 

incompatibility of the bed with the original Genisys system (the dual-headed “G2”), no 

measurements were taken on this system. All visualization was performed using Amide while all 

calculations were performed using the Interactive Data Language (IDL) version 7.0. 

 In order to obtain positioning data within the microCT, a spherical phantom (Ø = 16 mm) 

was filled with saline and affixed to the bed such that the sphere appeared within the 

approximate center of the microCT FOV. The sphere was scanned repeatedly over ten 

acquisitions. Each scan consisted of an 8-minute acquisition using a tube energy of 70 kVp and 

500 µA current. The resulting raw images had voxel dimensions of 256 x 256 x 496 (0.2 mm x 

0.2 mm x 0.2 mm). In between each acquisition, the bed was fully removed from the scanner and 

then reinserted. The sphere itself was not repositioned relative to the bed. All centroids were 

calculated using the same choice of origin. One example of these ten images is shown in Figure 

5.5. 
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Figure 5.5: Example transaxial image of sphere scanned within the microCT scanner. The size of 

this slice is 256 x 256 (0.2 mm x 0.2 mm). The centroid of this sphere is the quantity of interest, 

but the nonzero voxels of the bed and nonuniformity within the sphere precludes this. Additional 

image processing must be performed before the geometrical centroid can be calculated. 

 

The straightforward calculation of the centroid consists of a position average weighted by 

voxel values (i.e. “center-of-mass”). However, the nonzero voxels of the bed interfere with this. 

In addition, the nonuniformity within the sphere may bias the results away from the geometric 

center of the sphere. As a result, all ten images were cropped so that only the sphere was visible. 

In addition, a voxel threshold was applied so that all voxels within the sphere with a Hounsfield 

unit value of zero, or greater, were reassigned to have a value of one. (The inclusion of voxels 

with values less than zero would undesirably include the voxels surrounding the sphere.) All 

other voxels were set to zero. This simple method insured that the centroid calculation included 

only voxels within the sphere. The cropped and thresholded image obtained from Figure 5.5 is 

shown in Figure 5.6. 
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Figure 5.6: Cropping and thresholding applied to the sphere shown in Figure 5.5. All voxels 

which lie outside the sphere are set to have a value of zero. Most voxels within the sphere have a 

value of one, but a negligible few a value of zero due to the presence of voxel values below zero 

in the original image. 

 

As seen in Figure 5.6, most voxels within the original sphere have a value of zero or 

greater. However, a few have values below zero. As a result, the thresholding is not able to set 

these voxels to one. In order to compute the centroid, the eight nonzero voxels with the largest 

and smallest x, y, and z coordinates were found. These coordinates constitute the periphery of 

sphere. The centroid of the sphere was then computed as the geometric center of these 

coordinates. In short, this additional processing performed on these images makes computation 

of the centroid more convenient and less error-prone to the thresholding artifact. Despite these 

measures, it is still possible that the centroid measurement may introduce errors within the 

calibration data. 

 The same sphere (Ø = 16 mm) used in the microCT images were also used for measuring 

position reproducibility of the Inveon microPET system. The sphere was filled with 

approximately 50 µCi of 
18

F-Fluorodeoxyglucose (
18

F-FDG) activity at the beginning of the first 

scan. Ten images were acquired in a manner similar to that of the microCT; the bed was fully 
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removed and replaced prior to each acquisition, but the sphere itself remained undisturbed. Each 

image consisted of a 1-minute acquisition followed by 3D histogramming, and Ordered Subset 

Expectation Maximization (OSEM) 3D with Maximum A Posteriori (MAP) reconstruction. 

Decay correction, randoms correction, deadtime correction, and normalization were applied; no 

attenuation correction was applied. The resulting raw images had voxel dimensions of 128 x 128 

x 159 (0.86 mm x 0.86 mm x 0.8 mm). An example of one of these images is shown in Figure 

5.7.  

 

Figure 5.7: Example transaxial image of the spherical phantom scanned with the Inveon 

preclinical PET scanner. The size of this slice is 128 x 128 (0.86 mm x 0.86 mm). The colorbar 

has been adjusted to accommodate the entire dynamic range of voxel values. No noticeable 

artifacts prevent calculation of the centroid. 

 

With the exception of noise, the entire signal within the image originates from the sphere activity 

itself. Therefore, the straightforward calculation of the centroid (i.e. “center-of-mass) is readily 

feasible. The last of the ten images was acquired within 30 minutes of the first scan. The decay 

of activity (T1/2 = 109.8 minutes) may cause subsequent images to have nominally different voxel 

values from previous images. However, due to the symmetry of the sphere, these slight 

differences should not introduce appreciable error in the centroid calculation. Again, the 
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calculated centroid, due to the symmetrical shape, should coincide with the geometrical center of 

the sphere. 

 In addition to testing the positioning precision on the microCT and Inveon, the same 

spherical phantom (Ø = 16 mm) was used for measurements on the Genisys G4. The sphere was 

filled with approximately 20 µCi of 
18

F-FDG. Ten 1-minute acquisitions were implemented. All 

acquisitions were performed within 15 minutes of each other. As a result, the intermittent 
18

F 

decay is considered negligible. Histogramming was performed using decay correction, randoms 

correction, deadtime correction, and normalization; attenuation correction was not available. 

Reconstruction was performed using the default EM 3D with 60 iterations. Following 

reconstruction, images of the Digital Imaging and Communications in Medicine (DICOM) 

format were produced and converted to raw images using Amide. The final raw images had 

voxel sizes of 96 x 96 x 208 (0.46 mm x 0.46 mm x 0.46 mm). An example of one of these raw 

images is shown in Figure 5.8. 

 

Figure 5.8: Example transaxial image of the spherical phantom scanned with the preclinical 

Genisys G4 scanner. The size of this slice is 96 x 96 (0.46 mm x 0.46 mm). The colorbar has 

been adjusted to accommodate the entire dynamic range of voxel values. No noticeable artifacts 

prevent calculation of the centroid. 
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 After image acquisitions, the 3D centroid of each image was tallied and separated into the 

three spatial dimensions: left-right, superior-inferior, and anterior-posterior. The results, for each 

scanner, therefore consisted of 30 individual measurements. The variance between measurements 

for each of the three dimensions was computed. A total variance for all measurements was also 

computed. These measurements quantify the position repeatability (i.e. rigidity) of both systems; 

larger values of variance imply less repeatability, and, therefore, less suitably for the rigid body 

transformation. These measurements take into account the mechanical repeatability of bed 

insertion and image statistical noise which may preclude obtaining accurate calibration data, and, 

therefore, a proper fitting rigid body transformation. 

 

5.2.2  Measurement of Calibration Data  

 

 The coregistration algorithm relies on independently acquired calibration data in order to 

compute a transformation between two different scanners. This calibration data is, in essence, a 

substitute for the information normally provided by the optical tracker use for motion correction 

studies. The calibration data consists of coordinates which attempt to measure the same physical 

point within the coordinate systems inherent in each of these two scanners (Figure 5.3). Initial 

attempts to measure these points used crudely made “point” sources that were visible on the 

microCT and microPET systems. However, this method provided inconsistent and error-prone 

results. 

For this reason, we acquired images using the spherical phantom and protocols described 

in Chapter 5.2.1. The sphere was randomly repositioned relative to the bed after acquisition 
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within the microCT and microPET systems. In other words, each microCT image has a 

corresponding microPET image in which the sphere is in the same position relative to the bed. 

The scanning protocols were identical to those used in the positioning repeatability study. In 

addition, only the minimum three reference points were used. Centroids of each image were 

computed identically to that described in Chapter 5.2.1. All three microCT images, fused 

together, are shown in Figure 5.9. The image shown corresponds to the fusion of images after 

cropping and thresholding (as seen in Figure 5.6).  

 

Figure 5.9: Fusion of three separate microCT coronal images of the spherical phantom. The 

phantom was repositioned in between scans. Centroids of each sphere were computed 

individually. These images were used to compute the coregistration transformation between the 

microCT and the Inveon microPET systems. 

 

Images taken at location 1 and location 2 in Figure 5.9 appear to overlap. However, their 

centroids are distinct and, therefore, provide appropriate calibration data. Note that, due to the 

thresholding, not all voxels within the sphere are assigned to a value of one. Therefore, the 

spherical shapes appear “hollow” in certain areas. Although not ideal, this artifact is considered 

manageable since the geometric center of the sphere is calculated using on the peripheral voxels. 
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The fused Inveon image corresponding to that in Figure 5.9 is shown in Figure 5.10. (These 

images have not been coregistered.)  

 

 

Figure 5.10: Fusion of three separate Inveon coronal images of the spherical phantom. The 

phantom was repositioned in between scans. The locations indicated correspond to those in 

Figure 5.9. Centroids of each sphere were computed individually. 

 

Again, overlapping spheres are present, but do not pose a barrier to the accuracy of the 

calibration data since their centroids do not overlap. Visual comparison of Figure 5.9 and Figure 

5.10 indicate that the two images are indeed related by a rotation. The translational component is 

also present, but not readily seen due to the fact that the choice of origin within each system is 

arbitrary. In addition, due to the difference in voxel sizes and FOV sizes, a resampling of voxels 

is also needed. These are all accommodated with the transformation that is computed based on 

these centroid coordinates. 
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 A nearly identical method was used to acquire calibration data between the microCT and 

G4 scanners. The microCT acquisitions were fused and presented in Figure 5.11. The fused 

Genisys G4 image, corresponding to Figure 5.11, is shown in Figure 5.12. 

 

Figure 5.11: Fusion of three separate microCT coronal images of the spherical phantom. The 

phantom was repositioned in between scans. Centroids of each sphere were computed 

individually. These images were used to compute the coregistration transformation between the 

microCT and the Genisys G4 microPET systems. 

 

 

Figure 5.12: Fusion of three separate Genisys G4 coronal images of the spherical phantom. The 

phantom was repositioned in between scans. The locations indicated correspond to those in 

Figure 5.11. Centroids of each sphere were computed individually. 
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 Note that the data shown in Figure 5.11 and Figure 5.12 was acquired completely independently 

of the data shown in Figure 5.9 and Figure 5.10. Therefore, the location labels within Figure 5.9 

and Figure 5.10 do not necessarily match those of Figure 5.11 and Figure 5.12. Any resemblance 

is purely coincidental. 

 Note that centroids of a sphere are not integral to the computation of the transformation. 

The geometrical center of the sphere, the centroid of the sphere in the microCT image, and the 

centroid of the sphere in the microPET images should coincide with one another due to 

symmetry of the sphere. As a result, computation of the centroid provides a convenient way to 

identify the same physical point within a set of different imaging systems. The coregistration 

itself is not reliant on any particular phantom, voxel values, or set of images. In fact, the only 

input into Horn’s method are the coordinates EFSIJ  and EHSIJ  shown in Figure 5.3. How those 

coordinates were measured is not a factor in computing the transformation. 

 

5.2.3  Application of the Rigid Body Transformation to Any Pair of Images 

 

 The computed transformation results in a rotation, q, and translation �M , as seen in 

Equation 5.2. Note that this transformation is designed to transform physical coordinates 

(measured in distance), not voxel values or indices. In addition, both images to be coregistered 

may not share the same voxel dimensions or FOV size. As a result, the transformation is derived 

such that the image with the finer voxel size (e.g. microCT) is coregistered to the second image 
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(e.g. microPET). Referring to Equation 5.1, system A corresponds to the microCT while system 

B corresponds to the microPET. If performed in an opposite manner, the newly created 

coregistered image will suffer from undersampling compared to the original (i.e. violate the 

Nyquist Theorem).  

Prior to applying the transformation, a blank image array is created (in IDL) such that its 

array size matches that of system A (e.g. microCT). This new image array is populated voxel-by-

voxel in a raster-like format such that, after completion, the array represents image A 

coregistered to image B. 

Converting each voxel within system A to a coordinate requires the use of the voxels 

sizes, ∆xA, ∆yA, and ∆zA in each of the three dimensions, respectively. For a given voxel with 

indices (iA, jA, kA), its corresponding coordinate is computed as 

 

EF→ � *�W ∆!W, YW∆�W, DW∆ZW+ Equation 5.5 

 

Note that, depending on the choice of origin, some components of EF→ may be negative. Once 

computed, the corresponding coordinate in system B is found using Equation 5.2. The 

transformed coordinate, EHIJ , must then be converted into voxel indices corresponding to system 

B. These indices (iB, jB, kB) can be computed by simply dividing the components of EHIJ  

appropriately: 
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*�[, Y[, D[+ � ��"�� K ![∆!\ , �[∆�\ , Z[∆Z\L 
Equation 5.6 

 

where ![, �[, and Z[ represent the three components of EHIJ, respectively. The variables ∆![, ∆�[, 

and ∆Z[ represent the voxel sizes (in units of distance) of the images obtained in system B. The 

round operator rounds all values to the nearest integer. This rounding is necessary since 

fractional indices are computationally meaningless. In short, voxel (iB, jB, kB) indicates the voxel 

in system B which lies the physically closest to voxel (iA, jA, kA) in system A. Once identified, the 

value of this voxel is simply assigned to the voxel in the previously created empty image. 

Denoting this new empty image as Inew, and the image from system B as IB 

 

�]^_*�W, YW, DW+ � �[*�[, Y[, D[+ Equation 5.7 

 

The process of transforming the coordinate, converting to indices, and assigning voxel 

values is employed repeatedly for each voxel in system A until all voxels in image A have been 

accounted for. This new image, Inew, has the same orientation, translation, and voxel dimensions 

as system A by construction; however, it contains information entirely from image B.  In short, 

this new image is a resampled and reoriented version of image B such that it spatially overlaps 

with image A on a voxel-by-voxel basis. Note the frequency distribution of voxel value is 

preserved; no values were altered in the coregistration process. In other words, the information 

(in the mathematical sense) remains essentially constant between image B and the coregistered 

version of image B. Due to the differences in FOV sizes, it is possible that transformed 
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coordinates lie outside the measurable FOV; if so, these coordinates are disregarded and no 

voxel values are assigned to the new image. Finally, note that voxel values from image A are not 

used anywhere throughout this process. Once completed, this new image is written to a new raw 

image file. This raw file is then imported into Amide along with image A to produce a fused 

image. 

 

5.3 Results 

 

5.3.1  Determining Positioning Repeatability 

 

Measurements were taken to quantify the rigidity of the bed apparatus within each scanner. 

Using the spherical phantom affixed to the bed, ten images were acquired on each scanner. The 

bed was fully removed and reinserted in between each acquisition. The centroid of each image 

was calculated and used to represent the position of the bed within the FOV. The variance of all 

positions, in each of the three spatial directions, was then calculated to quantify how much 

inherent error the bed apparatus may introduce into the coregistration system.  Table 17, Table 

18, and Table 19 indicate the computed coordinates and variance for the microCT, Inveon, and 

Genisys G4 measurements, respectively. Note that the coordinates themselves are arbitrary due 

to the choice of origin. However, the fact that the results are fairly consistent is of interest. 

  

Measurement 

Number 

Left-Right Direction 

(mm) 

Anterior-Posterior Direction 

(mm) 

Superior-Inferior Direction 

(mm) 

1 23.68 18.67 44.61 
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2 23.68 18.67 44.51 

3 23.68 18.67 44.61 

4 23.68 18.67 44.61 

5 23.78 18.57 44.61 

6 23.78 18.57 44.61 

7 23.87 18.57 44.61 

8 23.87 18.57 44.61 

9 23.87 18.57 44.61 

10 23.87 18.57 44.61 

Variance (mm
2
) 8.59 x 10

-3
 2.57 x 10

-3
 9.66 x 10

-4
 

Total Variance 

(mm
2
) 

1.32 x 10
-2

 

Table 17: Bed positioning measurements taken with the Siemens microCT. The results, in 

general, are quite reproducible. 

 

Measurement 

Number 

Left-Right Direction 

(mm) 

Anterior-Posterior Direction 

(mm) 

Superior-Inferior Direction 

(mm) 

1 54.92 57.20 54.58 

2 54.93 57.19 54.54 

3 54.91 57.21 54.57 

4 54.91 57.20 54.55 

5 54.90 57.22 54.52 

6 54.91 57.21 54.51 

7 54.91 57.22 54.51 

8 54.90 57.20 54.50 

9 54.89 57.22 54.50 

10 54.88 57.21 54.52 

Variance (mm
2
) 2.29 x 10

-4
 8.83 x 10

-5
 7.87 x 10

-4
 

Total Variance 

(mm
2
) 

1.10 x 10
-3

 

Table 18: Bed positioning measurements taken with the Inveon microPET system. The results, in 

general, are quite reproducible. 

 

Measurement 

Number 

Left-Right Direction 

(mm) 

Anterior-Posterior Direction 

(mm) 

Superior-Inferior Direction 

(mm) 

1 21.54 20.54 46.26 

2 21.54 20.53 46.21 

3 21.56 20.54 46.22 

4 21.56 20.52 46.22 

5 21.57 20.52 46.19 

6 21.55 20.53 46.20 

7 21.55 20.52 46.16 

8 21.55 20.54 46.25 

9 21.56 20.54 46.20 

10 21.57 20.54 46.19 

Variance (mm
2
) 1.12 x 10

-4
 6.14 x 10

-5
 8.63 x 10

-4
 

Total Variance 

(mm
2
) 

1.04 x 10
-3

 



 

 

126 

 

Table 19: Bed positioning measurements taken with the Genisys G4 preclinical PET system. The 

results, in general, are quite reproducible. 

 

5.3.2  Measurement of Calibration Data 

 

 Three separate images of the spherical phantom were acquired for each calibration. For 

the microCT-Inveon calibration, the phantom was randomly repositioned in between each pair of 

microCT and Inveon scans. Figure 5.9 and Figure 5.10 represent the fusion of all three images 

taken within each system. Centroids of each image were calculated separately. These centroids 

were then used as coordinates for computing a rigid body transformation via Horn’s method as 

described in Equation 5.2 and Figure 5.3. The resulting χ
2
 was computed as 1.5 x 10

-3
 mm

2
. The 

resulting transformation included approximate values of q ≈ (0.0, 1.0, 0.0, 0.0) and t ≈ (27.2, 

75.9, 99.7) mm. The transformation represents the conversion of coordinates within the microCT 

frame to the microPET frame (as opposed to the microPET frame to the microCT frame). The 

transformation was separately applied to these. For visual clarity, these coregistered images are 

shown separately. Figure 5.13, Figure 5.14, and Figure 5.15 correspond to location 1, location 2, 

and location 3, respectively. The location numbers correspond to those seen in Figure 5.9 and 

Figure 5.10. 
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Figure 5.13: Coregistered coronal images of spherical phantom within the microCT and Inveon 

at location 1. The sphere at location 1 in Figure 5.10 has been transformed to coincide with the 

sphere at location 1 in Figure 5.9. 

 

 

Figure 5.14: Coregistered coronal images of spherical phantom within the microCT and Inveon 

at location 2. The sphere at location 2 in Figure 5.10 has been transformed to coincide with the 

sphere at location 2 in Figure 5.9. 
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Figure 5.15: Coregistered coronal images of spherical phantom within the microCT and Inveon 

at location 3. The sphere at location 3 in Figure 5.10 has been transformed to coincide with the 

sphere at location 3 in Figure 5.9. 

 

 In addition to coregistration of the Inveon images to the microCT images, coregistration 

was also performed between the microCT and Genisys G4 systems in a very similar manner. The 

resulting χ
2
 was computed as 0.31 mm

2
. The resulting transformation included approximate 

values of q ≈ (0.0, 0.0, 0.0, 1.0) and t ≈ (45.2, 42.6, -7.9) mm.  For visual clarity, each individual 

coregistration is shown separately. The results are shown in Figure 5.16, Figure 5.17, and Figure 

5.18. The location numbers correspond to those seen in Figure 5.11 and Figure 5.12. 
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Figure 5.16: Coregistered coronal images of spherical phantom within the microCT and Genisys 

G4 at location 1. The sphere at location 1 in Figure 5.12 has been transformed to coincide with 

the sphere at location 1 in Figure 5.11. 

 

 

Figure 5.17: Coregistered coronal images of spherical phantom within the microCT and Genisys 

G4 at location 2. The sphere at location 2 in Figure 5.12 has been transformed to coincide with 

the sphere at location 2 in Figure 5.11. 
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Figure 5.18: Coregistered coronal images of spherical phantom within the microCT and Genisys 

G4 at location 3. The sphere at location 3 in Figure 5.12 has been transformed to coincide with 

the sphere at location 3 in Figure 5.11. 

 

Coregistration of these spherical phantom images is not necessary; once computed, the 

transformation obtained from Horn’s method can be used to coregister any pair of images taken 

from the same systems using the same bed positioning and FOVs. However, coregistration of 

these images provides a visual qualitative check for consistency and accuracy. Any errors present 

within this calibration data will also be visible when coregistering images of interest. There is an 

overall agreement between locations of each sphere after coregistration. 

 

5.3.3  Application of the Rigid Body Transformation to Any Pair of Images 

 

 Using the transformation derived with the spherical phantom images and Horn’s method, 

pairs of mice images were coregistered. The scanning protocols were similar to those used for 
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the calibration data. However, the microPET scan used approximately 70 µCi of 
18

F-FDG; the 1-

minute scan started approximately one hour post-injection. The microCT scan, Inveon scan, and 

coregistered images can be seen in Figure 5.19, Figure 5.20, and Figure 5.21, respectively. 

 

 

Figure 5.19: Raw CT image slices of a normal C57BL6 mouse, scanned on the Siemens 

MicroCT II system, using Amide. The voxel sizes are 256 x 256 x 496 (0.2 mm x 0.2 mm x 0.2 

mm). 
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Figure 5.20: Raw PET image slices of a normal C57BL6 mouse, scanned on the Siemens Inveon 

microPET system, using Amide. The voxel sizes are 128 x 128 x 159 (0.86 mm x 0.86 mm x 0.8 

mm). This scan was performed immediately after the scan shown in Figure 5.19 without 

repositioning the mouse relative to the bed. 

 

Figure 5.21: Coregistration between microCT and Inveon images. The Inveon microPET image 

(Figure 5.20) was transformed to match the orientation and sampling of the Siemens microCT II 

image (Figure 5.21). After coregistration, the fused image was reoriented to match that of the 

standard orientation. 
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Coregistration of a mouse between the microCT and the Genisys G4 was performed on 

another mouse using the same method. Calibration data, however, was acquired completely 

independently of that of the previous study. This study consisted of a NOD SCID Gamma (NSG) 

mouse injected with a CEM-shC tumor cells on its left, and CEM-shdCK tumor cells on its right. 

The mouse was intraperitoneally injected with approximately 200 µL of Captisol about four 

hours prior to scanning. The microCT scan is shown in Figure 5.22. Without repositioning the 

mouse relative to the bed, the mouse was also scanned on the Genisys G4. Approximately 26 

µCi of 
18

F-2’-deoxy-2’-arabinofuranosyl-cytosine (D-FAC) was injected about one hour prior to 

the ten minute scan. The resulting raw image is shown in Figure 5.23. The Genisys G4 image in 

Figure 5.23 was coregistered to the microCT image in Figure 5.22. This coregistered image was 

then put into the standard orientation. The fused image is shown in Figure 5.24. 

 

 

Figure 5.22: Raw CT image slices of a NSG mouse with two laterally-positioned tumors, 

scanned on the Siemens MicroCT II system, using Amide. The voxel sizes are 256 x 256 x 496 

(0.2 mm x 0.2 mm x 0.2 mm). 
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Figure 5.23: Raw PET image slices of a NSG mouse, scanned on the Genisys G4 microPET 

system, displayed using Amide. The voxel sizes are 96 x 96 x 208 (0.46 mm x 0.46 mm x 0.46 

mm). This scan was performed immediately after the scan shown in Figure 5.22 without 

repositioning the mouse relative to the bed.  

 

 

Figure 5.24: Coregistration between microCT and Genisys images. The Genisys G4 microPET 

image (Figure 5.23) was transformed to match the orientation and sampling of the Siemens 

microCT II image (Figure 5.22). After coregistration, the fused image was reoriented to match 

that of the standard orientation. The artifacts visible near the hind legs are not due to 

coregistration, as can be seen in Figure 5.23. 
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5.4 Discussion 

 

5.4.1  Positioning Repeatability 

 

 Table 17 through Table 19 list the positioning results for the spherical phantom when 

scanned removed and reinserted into each system ten times. All three tables indicate a high 

degree of repeatability. In fact, the total standard deviation within each system is considerably 

lower than the spatial resolution of the system. The microCT bed apparatus appears to have the 

greatest variance. It is not clear, however, if this is due to undesired latitude in the bed apparatus 

itself, or due to any error introduced by the cropping and thresholding processing performed on 

the spherical phantom images. As seen in Figure 5.6 and Figure 5.9, the thresholding does not 

properly separate all voxels within each phantom image from their empty surroundings. As a 

result, computing the center of mass may be somewhat error prone. Note that the microCT 

positioning (Table 17) was not only reproducible, but chronologically consistent. For example, 

the last four measurements were identical within 1/100
th

 of a mm. This is not seen in the Inveon 

positioning (Table 18) or Genisys G4 positioning (Table 19). In fact, none of these 

measurements were exactly reproducible in all three dimensions. This may seem a little 

unexpected given the fact that no processing of the microPET images was performed prior to 

computing the centroid. This may be explained by the generally poor signal statistics of PET 

compared to that of CT. 

 For all of these repositioning studies, the bed actuators built into each scanner were not 

used; the bed itself was slipped in manually until firmly docked with the locking mechanism. 

Had the actuators been used for each scan, variability might have been markedly increased due to 
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the limited precision with which the bed can be positioned. In short, the method of bed 

positioning seems very favorable for rigid body coregistration purposes; only minimal error 

should be introduced by the bed apparatus itself. Assuming statistical independence of the 

positioning error within systems, the total expected error may be approximated by the sum of the 

variances. 

Future improvements to this method may consist of imaging using a CT contrast agent 

within the sphere or designing a new phantom to accommodate this method (forgoing the 

spherical phantom altogether). In addition, the spherical phantom was placed in the approximate 

center of each FOV. It is possible that repositioning may exhibit more variability for positions 

near the edge of the FOV due to imprecision within the bed tracks. Future studies may confirm 

or disprove this by repeated measurements similar to those performed. Positioning measurements 

may also be conducted without relying on the images at all using external systems similar to 

those used in PET brain motion correction. 

 

5.4.2  Measurement of Calibration Data 

 

 The calibration data obtained from the separate sphere centroids were fed into Horn’s 

method in order to produce a transformation. Two separate transformations were computed for 

the microCT-Inveon coregistration and microCT-Genisys coregistration. Each transformation 

was based on independently acquired calibration data. 

The quaternion calculated for microCT-Inveon coregistration, q ≈ (0.0, 1.0, 0.0, 0.0), 

indicates a 180⁰ rotation about the first axis (i.e. left-right axis) of the microCT image. This can 
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be visually verified using Figure 5.9 and Figure 5.10. In this particular example, a rotation of 

180⁰ about a given axis was found; the coregistration method, in general, however is not 

restrained to such angles. Horn’s method will compute any arbitrary rotation about any arbitrary 

axis with equal accuracy due to the fact that it uses physical coordinates. Although most rotations 

likely to be encountered between imaging systems are similar to those computed in this example, 

the rotations are also influenced by any mispositioning of the bed tracks within the bore. For 

example, if the bed tracks do not run exactly parallel to the axial direction of the bore, the 

computed rotation may not yield such results even if no other sources of error are present. 

The transformed spherical images are shown in Figure 5.13 through Figure 5.15. All 

images indicate that the Inveon images are properly oriented and shifted such that the spheres of 

the microCT images and microPET images generally coincide as desired. The resampling of the 

microPET spheres appears to be reasonable given the fact that the sizes of the coregistered 

spheres and the microCT spheres are approximately equal. However, there is a slight discrepancy 

visible on all three figures. In each case, it appears as if though the computation of translation 

slightly underestimated the shift in the left-right direction. This may be due to inaccuracies of the 

centroid measurements (Figure 5.4). However, it may also be due to the roundoff error 

associated with the discretized voxels (Equation 5.6). In short, if the voxel sizes of system A are 

not integer multiples of voxel sizes from system B, this roundoff error may be present. This is 

true for voxel sizes of the microCT and microPET systems; voxel sizes of the microCT are 0.2 

mm x 0.2 mm x 0.2 mm while voxel sizes from the Inveon system is 0.86 mm x 0.86 mm x 0.8 

mm. Due to this roundoff error, the order in which system A coordinates are “looped through” 

(Equation 5.5) may have a minor effect on the final result. 
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The results of the microCT-Genisys coregistration follow a similar pattern. The 

quaternion computed for the microCT-Genisys coregistration, q ≈ (0.0, 0.0, 0.0, 1.0), indicates a 

180⁰ rotation about the third axis (i.e. superior-inferior axis) of the microCT image. A visual 

comparison between Figure 5.11 and Figure 5.12 confirms this. When coregistering the 

individual spherical images, a slight error is visible. Figure 5.16, Figure 5.17, and Figure 5.18 all 

indicate a general agreement between spherical images, but also show a tendency for the Genisys 

G4 image to be shifted slightly in the left-right direction relative to the microCT image. The 

potential reasons for this shift are identical to those of the microCT-Inveon data set; errors within 

the centroid measurements or voxel roundoff errors may both be the source of this discrepancy. 

The same direction of erroneous shift can also be seen on the microCT-Inveon 

coregistered images (Figure 5.13, Figure 5.14, and Figure 5.15). However, note that the former 

case, the Genisys G4 spheres are shifted to the right of the microCT; in the latter case, the Inveon 

spheres are shifted to the left of the microCT spheres. In other words, both sets of data include 

similar, but uncorrelated, error.  

 Future work to mitigate this may consist of oversampling both images such that this 

voxel size condition is satisfied. In short, it is clear that the resulting transformation performs the 

generally desired result. Incremental improvements may be obtained with more precise 

measurements from the phantom as well as from finer sampling of the images. 

 

5.4.3  Coregistration Applied to Mice Studies 
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 The computed transformation was applied to a pair of mice images taken independently 

of the calibration data. Coregistration of an Inveon microPET scan to a microCT scan is shown 

in Figure 5.21. As expected from the calibration data (Figure 5.13, Figure 5.14, and Figure 5.15), 

the fused image shows strong agreement between the heart and bladder. With adjustments made 

to the microPET color mapping (not shown), a discrepancy similar to that in Figure 5.13 through 

Figure 5.15 can be seen. This consistency is simply due to the rigid nature of the computed 

transform. In other words the magnitude, and general direction of an error introduced when 

computing the transformation is not amplified, or suppressed, when applying the transformation. 

The coregistered microPET image may also appear pixelated; this is due to the fact that nearest 

neighbor interpolation was used (Equation 5.6) in the oversampling. This effect can be easily 

alleviated using a smoothing filter; for illustration purposes, it has been left unprocessed. 

 The coregistration between the microCT and Genisys G4 systems also show a generally 

strong overlap as seen in Figure 5.24. However, as in the case of the calibration data (Figure 5.16 

through Figure 5.18), a discrepancy is visible particularly with the bladder in the sagittal view 

(Figure 5.24). Note that the shift of the G4 image relative to the microCT is similar to that seen 

in the calibration data. As in the case of the microCT-Inveon coregistration, this may be 

mitigated using more accurate centroid measurements for the calibration. In addition, the 

pixilation visible in the Inveon image within Figure 5.21 is not as pronounced within the G4 

image of Figure 5.24. This is not specific to the coregistration; it is simply due to the fact that the 

voxel sizes of the G4 are closer to the microCT than that of the Inveon. In other words, finer 

sampling of the G4 image is possible when coregistering to the microCT compared to that of the 

Inveon. 
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5.5 Summary 

 

 Using methods adapted from PET brain motion correction, a rigid body coregistration 

method has been developed for small animal imaging. However, no tracking system is available 

for coregistration purposes. Instead, a calibration method has been developed. The method can 

be applied to any pair of modalities taken from any pair of systems, even with varying 

orientation, voxel sizes, and voxel dimensions. The validity of the algorithm depends almost 

entirely on the assumption of little to no motion of the subject relative to the bed in between 

acquisitions. At least three randomly chosen points on the bed are selected; coordinates of these 

points are measured in both systems using the centroid of a spherical phantom. These 

coordinates are fed into Horn’s method which provides the actual transformation to be used for 

coregistration. The transformation itself consists of rotation and translation components with 

which one image can be directly fused to another. Once computed, the transformation is applied 

on a voxel-by-voxel basis to one of the images in order to identify the corresponding voxel 

within the other image. The values of these corresponding voxels are systematically collected 

into a new 3D image. This new image can then be directly fused over the existing image. By 

construction, this new image has the same orientation, voxel size, and voxel dimensions as one 

image, but contains voxel values derived directly from the other image. 

Measurements have shown that the bed apparatus used introduces negligible error into 

the coregistration; bed positioning within each FOV is quite reproducible. The main source of 

error is believed to be the method by which calibration data is obtained; the centroids of the 

spherical phantoms may not provide the most reliable measurements of coordinates within two 

different systems. Voxel roundoff error is thought to contribute to the error as well. The 
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transformation derived from the calibration data appears to be in strong agreement with the 

positioning of the randomly sampled points. When applied to the mice images, this same 

transformation provides generally positive results. The minor visible discrepancy within the 

calibration data is similar to that seen within the mice images. This consistency is expected due 

to the nature of rigid body transforms; any errors present within the calibration will be apparent 

in the same manner during coregistration. 

Future research into this method will focus on obtaining more accurate coordinate 

measurements for the calibration. This can be performed by using smaller spheres, or by 

constructing customized phantoms which would provide localization for all modalities of 

interest. If the computed coordinates are believed to have some error, an iterative method for 

refining them may also be derived due to the convexity of the least squares criterion [14]. 

Finally, fusion of three or more images may also be obtained using the methods described or by 

using appropriate combinations of transforms and inverse transforms. 
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6 Spatial Linearity on the Genisys System 

 

6.1 Introduction 

 

6.1.1  Quantifying Spatial Linearity 

 

By definition of a rigid transformation, the Euclidean distance between any two points is 

identical before and after the transformation. Comparison of the distance between physical points 

within the subject and the corresponding points within the image may reveal this not to be true. 

For example, points near the edge of the field-of-view (FOV) may be distorted due to the system 

configuration. As a result, these distances may be altered; the relative position of a given point 

within the subject may not be properly positioned within its image. In short, a given point within 

the subject (relative to some origin) and within the image (relative to the same origin) may not be 

identical [26]. Mathematically, the process of producing an image from a given physical subject 

may introduce non-rigid features such as shearing, dilation, warping, etc.; in essence, any 

transformation other than a pure rotation and translation is considered non-rigid. 

Measuring this spatial linearity can be performed by imaging a grid of equally spaced 

points, and then comparing the position of each point on the grid to its corresponding point in the 

image. The regularly spaced physical grid and its randomly distorted image are graphically 

shown in Figure 6.1. 
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Figure 6.1: Graphical illustration of measuring the spatial linearity of an imaging system. 

Positions of the regularly-spaced physical points are shown in solid black; their corresponding 

measured positions within the image are shown as empty circles. The error between each grid 

point and its corresponding image is measured as a vector �BaaaaM. All adjacent grid points are spaced 

by a fixed distance d. Although the concept is applicable in 3D, it is shown in 2D for visual 

clarity. 

 

Within Figure 6.1, each point of the grid (solid black circle) has a corresponding point 

within the image (empty circle). Although shown in two dimensions (2D) for visual clarity, the 

concept can be extended into three dimensions (3D). Note that, in general, they do not overlap 

due to the non-rigid distortions introduced by the imaging process. The distance between 

adjacent grid points (i.e. grid spacing) is labeled as d. The error between the position of the 

imaged point and its expected position based on the grid points is labeled as a vector �BaaaaM. This 

error measures the distance between the center of the solid circle and the center of its 

corresponding empty circle.  For the sake of generality, the distortions shown are random. In 

practical applications, some specific forms of distortions, such as pincushion distortion, may be 

very apparent. Regardless, the level of distortion may be quantified in the same manner. By 

adding the errors in quadrature, and taking the average over all n points, we obtain a total mean-

squared error, χ
2
.  
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@4 �	∑ |�BaaaaM|4]B=> �9  
Equation 6.1 

 

The metric shown in Equation 6.1 can be interpreted as the total error, or variance, in all 

three dimensions. It has units of distance squared (i.e. mm
2
). The quantity in absolute value is the 

Euclidean norm of the error for a given pair of points. The addition is performed in quadrature 

which implies that the position error for each imaged point is independent of all other imaged 

points. 

 

6.1.2  Using Rigid Body Coregistration to Measure Spatial Linearity 

 

A direct approach to measuring this error (Equation 6.1) would require the locations of 

each grid point. This location, of course, must be measured independently of the actual image. 

Note, however, that Figure 6.1 can be interpreted as a coregistration between two images. The 

first image is a synthetic grid with adjacent points spaced exactly by d. The second image is the 

measured image of this synthetic grid. Both images are shown side-by-side in Figure 6.2. 
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Figure 6.2: The synthetic grid composed of points with consistent grid spacing d is shown on the 

left. The image obtained from measured positions of these dots in shown on the right. The spatial 

linearity measurement shown in Figure 6.1 can be obtained by a rigid coregistration between this 

synthetic grid and the measured image. 

 

Note that the coregistration method (Chapter 5.1.5) performs this rigid coregistration 

using Equation 6.1 as the criterion for best fit. In other words, using Horn’s method [23, 24] to 

perform a coregistration between this synthetic image and a measured image of grid points 

minimizes the least-squares metric in Equation 6.1. The least-squares metric used in the 

coregistration method (Equation 5.3) relies on randomly selected points within the FOVs for two 

systems. It should only be interpreted as a relative measure of how well a transformation will 

coregister two images. The metric shown in Equation 6.1, however, can be interpreted as an 

absolute measure of how well the synthetic grid and imaged grid are coregistered; no random 

points are used for these purposes. Note that the particular coordinate system used in localizing 

points is irrelevant; Horn’s method will inherently apply a rotation and translation such that the 

agreement between the synthetic points and the measured points will be maximized in the least-

squares sense.  

Horn’s method only makes use of coordinates, as opposed to images. Therefore, no 

synthetic image is actually required; only the coordinates (relative to any arbitrary point) of the 

regularly-spaced points are necessary. Coordinates of the points within the measured imaged are 

defined by their centroids. These coordinates may also be relative to any arbitrary point. If 

discrepancies between coordinate systems are present, they will be automatically accommodated 

for within Horn’s method via a rotation and translation. Unlike the metric produced within the 

calibration data for coregistration, this metric is absolute. In other words, higher values of χ
2
 

necessarily imply less spatial linearity. 
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 Due to the observed relationship between Figure 6.1 and Figure 6.2, a method of creating 

a regularly-spaced grid and measuring the centroids of each imaged point within the grid was 

developed in order to assess spatial linearity of the Genisys dual-headed (“G2”) system (Figure 

2.1). Regularly-spaced coordinates within the synthetic grid were computationally generated. A 

second set of corresponding coordinates of the centroids within the measured image were then 

computed. Both sets of coordinates were used as input into Horn’s method in order to compute 

the mean-squared error metric (Equation 6.1). Although a transformation is also computed, it is 

not used for purposes of measuring spatial linearity. 

 

6.2 Method 

 

6.2.1  Printing of Grids 

 

In order to compute the spatial linearity as described, a grid of regularly spaced activity 

“dots” is needed for scanning on the Genisys system. Due to the difficulties in producing a 3D 

grid, initial attempts were restricted to simple 2D grids. These 2D grids were created by printing 

activity onto high-quality photographic paper using a standard inkjet printer. The graphical 

software Canvas (ACD Systems, Victoria, BC, Canada) version 10 was used for all printing 

needs. Using a syringe, approximately 50 µCi of 
18

F-Fluorodeoxyglucose (
18

F-FDG) was 

injected into the blank ink cartridge. Soon after, grids of various sizes were printed using only 

black ink. After printing, grids were laminated for additional rigidity. Potential sources of error 

involved in this process stem from the fact that it is unclear how much ink within the cartridge is 
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used in the actual printing. It is also unclear how consistent the activity of each printed dot is. 

This quantity, however, may be estimated from the final image. 

For sufficient counts within the final image, larger diameter dots are desirable. However, 

for computation of the centroid within these dots of unknown activity distribution, smaller dots 

are desirable. In addition, dots smaller than the spatial resolution of the system would be 

unreliably imaged. In addition to the size of dots, the spacing between dots must also be 

considered. Smaller spacing allows for more dots which, in turn, allow for a more 

comprehensive measure of spatial linearity. In addition, Horn’s method has a minimal 

requirement of three points to be used, but can accommodate a virtually limitless number of 

points. While the execution time may increase slightly for a higher number of points, the 

accuracy and computational method do not change. Two slightly different grids were produced. 

The first grid consisted of 260 dots (Ø = 1.0 mm) arranged in 13 columns x 20 rows. The grid 

spacing (i.e. d in Figure 6.1) was 5.0 mm. A photograph of this printed grid is shown in Figure 

6.3.  

 

Figure 6.3: Photograph of the printed grid consisting of 260 dots. Each dot is 1.0 mm in 

diameter, and spaced 5.0 mm away from adjacent dots. The grid was laminated in order to 

increase rigidity. After imaging of the grid, the centroid locations of each dot within in the FOV 
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were computed. The agreement between these positions and the hypothetical positions, based on 

the 5.0 mm separation, was then quantified using Horn’s method.  

 

The second grid consisted of 200 dots (Ø = 2.0 mm) arranged in 10 columns and 20 rows. 

The grid spacing for this second set was 6.0 mm. No visual differences, in terms of ink 

uniformity or contrast, were apparent between dots on either grid. 

 

6.2.2  Imaging Protocols for Grids 

 

Both grids were scanned on the Genisys in an identical manner. In order to reduce 

position range (and, therefore, annihilation within the air surrounding the grid), imaging was 

performed by placing the grid sandwiched between two plates of metal. The first grid was 

sandwiched with plates of Galvanized steel with 0.5 mm thickness; the second grid was 

sandwiched in between plates of aluminum (Al) with 1.0 mm thickness each. Each plate had a 

length and width similar to the grids. The grids were placed in between the plates such that the 

plates covered both faces. In addition to reducing positron range, the use of plates also served to 

insure that the grid remained flat during scanning; any curvature of the grid would effectively 

distort the regular spacing and introduce errors within the spatial linearity. 

While the positron range from 
18

F decay (maximum energy of 634 keV) is well known to 

be ~2 mm in water, positron ranges in Galvanized steel and aluminum were estimated using data 

published by the National Institute of Standard and Technology (NIST) Physical Measurement 

Laboratory [27]. Using iron as a substitute for steel and approximating the positron emission 
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energy as 600 keV, the positron projected range for steel was recorded as 2.82 x 10
-3

 g/cm
2
 while 

the positron projected range for Al was recorded as 2.07 x 10
-3

 g/cm
2
. The measured densities of 

the steel and Al plates were found to be 7.5 g/cm
3
 and 2.7 g/cm

3
, respectively. Using these 

measured densities and the NIST data, the positron range within steel and Al can be estimated to 

be 3.8 x 10
-3

 mm and 7.6 x 10
-3

 mm, respectively. Since the thickness of all plates is at least two 

orders of magnitude greater than these estimated ranges, positron annihilation within the plates is 

nearly guaranteed. 

The plates and grid were placed in the approximate center coronal slice of the system in 

order to minimize the effects of limited tomography. Rather than using the conventional bed, the 

grid and plates were suspended from a hollow carrier designed to insert flat rectangular sources 

into the Genisys. Both sides of the plates had minimal contact with the carrier; as a result, photon 

attenuation between the edge of the plates and the detectors by any surrounding material was 

virtually eliminated. Acquisition was performed over an eight hour period in order to obtain as 

many counts as possible. Histogramming included the default 3D method as well as 

normalization, decay correction, randoms correction, and deadtime correction. No attenuation 

correction was applied. Although attenuation might be introduced by the plates, it is believed that 

this effect would be minimal compared to the loss of resolution from positron annihilation within 

the surrounding air. Reconstruction was performed using the default Expectation Maximization 

(EM) algorithm with 100 iterations and a post reconstruction smoothing filter (σ = 0.35 mm). 

The final raw images produced from the Genisys had voxel sizes of 80 x 80 x 176 (0.55 mm x 

0.55 mm x 0.55 mm). Note, however, that only a few of the slices near the central coronal slice 

had appreciable activity due to the placement of the grid within the scanner. 
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6.2.3  Computation of the Dots’ Centroids and Total Mean Squared Metric 

 

Following imaging of each grid, the image was viewed within Amide. Due to the large 

size of the grids relative to the size of the FOV, some dots fell out of the FOV and were not 

imaged. Dots imaged near the edge of the FOV exhibited artifacts; the voxel indices of such dots 

were noted and restricted from inclusion in the centroid analysis. Computation of the remaining 

dots, towards the center of the FOV, was performed in a systematic raster-like format using the 

Interactive Data Programming Language (IDL) version 7.0. Further analysis was also restrained 

to the coronal slice which exhibited the highest count level; all other coronal slices were ignored. 

In essence, the 3D image volume was reduced to a 2D slice based on total voxel values within 

each coronal slice. Inspection of these images has shown that the vast majority of counts within 

the 3D volume were included within the selected 2D slice. 

For each dot, a square region of interest (ROI), with dimensions d x d, was defined 

around each dot such that the dot lay in the approximate center of the ROI. Separate ROIs were 

defined for each dot such that the ROI “tiles” were disjoint and contained only one dot. The 

centroid of each dot was computed as the average of each voxel position, within the ROI, 

weighted by voxel value (i.e. “center-of-mass”). In other words, each voxel within the 2D slice 

contributed to the centroid computation of only one dot. In addition, the minimum and maximum 

errors contributed from each dot (i.e. the minimum and maximum values of |�BaaaaM|4 in Equation 

6.1) were also recorded in order to give an indication of the variability of mispositioning. 

After the centroids of all relevant dots were computed, a corresponding set of synthetic 

coordinates with spacing d was created. Although arbitrary, the initial coordinate generated was 
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(0.0 mm, 0.0 mm); subsequent coordinates were chosen by adding d to either or both 

components. The order in which these synthetic coordinates were generated matched that of the 

raster-like ROI analysis of the centroid computation. Once the number of synthetic coordinates 

matched that of the number of centroids computed, both sets were input into Horn’s algorithm to 

determine spatial linearity. Horn’s algorithm was used such that the measured coordinates of the 

imaged dots were coregistered to the synthetic coordinates.  

 

6.3 Results 

 

Raw images, produced by the Genisys, were imported into Amide. The 2D slices selected 

for analysis are shown for the first and second grid in Figure 6.4 and Figure 6.5, respectively. 

 

Figure 6.4: Coronal slice used in spatial linearity measurement taken from the Genisys image of 

the first grid using Ø = 1.0 mm dots with 5.0 mm grid spacing. The slice is 80 x 176 voxels (0.55 

mm x 0.55 mm). A photograph of the printed grid is shown in Figure 6.3. The dots near the edge 

of the FOV exhibit significant distortion and, therefore, were excluded from the centroid 

analysis. The 126 dots within the rectangular ROI were used in the analysis. 
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Figure 6.5: Coronal slice used in spatial linearity measurement taken from the Genisys image of 

the second grid using Ø = 2.0 mm dots with 6.0 mm grid spacing. The slice is 80 x 176 voxels 

(0.55 mm x 0.55 mm). The dots near the edge of the FOV exhibit significant distortion and, 

therefore, were excluded from the centroid analysis. The 84 dots within the rectangular ROI were 

used in the analysis. 

 

The results of the coregistration were obtained for each of the two grids in an independent 

manner. The results are shown in Table 20. 

Dot Ø 

(mm) 

# of Dots 

in 

Printed 

Grid 

# of Dots 

Visible 

in FOV 

# of Dots 

Used in 

Analysis 

Grid 

Spacing 

(�) 

(mm) 

Plate 

Material 

Plate 

Thickness 

(mm) 

Total 

Mean 

Squared 

Error 

(@4) 

(mm2) 

Minimum 

Error 

Min{|�BaaaaM|4} 

(mm2) 

Maximum 

Error 

Max{|�BaaaaM|4} 

(mm2) 

1.0 260 171 126 5.0 
Galvanized 

Steel 
0.5 0.17 9.8 x 10-10 2.32 

2.0 200 136 84 6.0 Aluminum 1.0 0.06 1.4 x 10-7 0.43 

Table 20: Results from the spatial linearity measurements. For both grids, the average deviation 

between the imaged dot and synthetic grid point (i.e. the square root of χ
2
) was less than the 

spatial resolution in the coronal plane (~1.5 mm). 

 

6.4 Discussion 
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The imaged grids in Figure 6.4 and Figure 6.5 do not show any appreciable distortions 

near the center of FOV. The dot-to-dot spacing appears to be consistent. Note that the rotation of 

the grid relative to the FOV is not of consequence when computing the spatial linearity; Horn’s 

method will implicitly rotate and translate the image such that the final result is the best fit 

between the grid image and synthetic coordinates. The total mean squared error is the metric for 

this fit. 

Table 20 indicates that the spatial linearity, as measured by the total mean squared error, 

is well within the coronal spatial resolution of the Genisys (~1.5 mm at FWHM) for both imaged 

grids. The average deviation of each image point from its grid point is approximated by taking 

the square root of χ
2
. This results in average deviation values of 0.41 mm and 0.24 mm for the 

first and second grid, respectively. 

Somewhat surprisingly, the total mean squared error for the first grid is about 4 times 

larger than that of the second grid even though the dot diameter for the first grid (1.0 mm) is 

smaller than that of the second grid (2.0 mm). In other words, the synthetic coordinates did a 

poorer job of predicting where the centroids would be measured in the first grid compared to the 

second grid. This may be attributed to the fact that more dots were used in the analysis for the 

first grid (126 dots vs. 84 dots). These additional points were in the periphery of the FOV and, 

therefore, more prone to distortion. In addition, the maximum error for the first grid is 

significantly higher than that of the second grid. In fact, this maximum error (2.32 mm
2
) implies 

a deviation of 1.52 mm which is comparable to the coronal spatial resolution. Deviations of this 

magnitude, if present in significant portions within the FOV, should be considered intolerable for 

imaging purposes. 



 

 

154 

 

 

6.5 Summary 

 

The spatial linearity for the Genisys system appears to be quite consistent within the 

central coronal FOV. Discrepancies, as measured by the total mean squared error, were found 

when using slightly different configurations for the printed grids and metal plates. However, in 

either case, the distortions present are significantly small compared to the coronal spatial 

resolution of the system. 

 Future work should consist of measurements within coronal planes away from the central 

region where spatial linearity is expected to degrade. A more comprehensive investigation may 

make use of a 3D phantom grid in order to accommodate the entire FOV as well as to bypass the 

uncertainties associated with printing the grids. If constructed grids can imaged on other 

modalities, this method of measured spatial linearity may be applied to them as well. 

Furthermore, the inherent independence assumed for each centroid measurement allows errors to 

be measured not only in total, but also by position or by axis. In other words, the degradation of 

spatial linearity can be characterized by region within the FOV or by transaxial, sagittal, and 

coronal planes simply by observing grids points with the largest deviations from the synthetic 

coordinates.  
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7 Conclusion 

 

 Performance metrics for the limited angle tomography system were performed and 

revealed a number of limitations. Spatial resolution was generally found to be acceptable while 

deadtime was somewhat restrictive for practical applications. Other metrics including contrast-

to-noise ratio (CNR) and resolution recovery were found to perform moderately well. Imaging 

artifacts, in particular, were prohibitively large for the sagittal and transaxial slices. The simple 

geometrical configuration of this system allows for a measure of parallax and intercrystal scatter 

that may not be easy to perform on a traditional cylindrical system. As a result, future work on 

performance should focus on this unique aspect of the limited angle tomography system. 

 In an attempt to compensate for this, Factor Analysis (FA) was applied to a number of 

imaging studies. A dual-isotope experiment proved unsuccessful, despite the fact that only two 

factors were required, and the fact that a limited number of voxels were selected for analysis. 

The results from the semi-quantitative study indicate that FA may be successful for sufficient 

counts. The mouse study indicated moderate success, but significant effort must, in general, be 

put forth in smoothing and reducing the data prior to applying FA. In short, FA does not appear 

to be a straightforward and simple method to counter the image artifacts from a limited 

tomography system. Future work may attempt to improve results by altering the choice of initial 

values, within the iterative simplex method used for the FA, in order to promote convergence. 

 These results prompted a more quantitative investigation into FA. The close relation 

between FA and Principal Component Analysis (PCA) allows for such an analysis without any 

loss of accuracy. Studies which attempted to measure the success of FA, by performing PCA, 

were conducted using a uniform cylindrical phantom at various activity levels and scan 
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durations. These results were used to provide an upper bound for FA. However, additional 

information was mathematically deduced which allowed the results to be interpreted in terms of  

uniformity, signal-to-noise ratio (SNR), and noise distribution within the FOV. This method was 

applied to a conventional cylindrical microPET system as well as the limited tomography 

microPET system within their nominal activity ranges. As expected, uniformity and SNR 

increase with activity and scan duration. For the cylindrical microPET system, uniformity and 

SNR were found to increase quite rapidly with increased activity or scan duration initially, but 

then leveled off at higher ranges. The uniformity and SNR increases within the limited angle 

tomography system prove to be much less robust. The change in SNR between data sets, within a 

given system, was found to be in close agreement with that predicated by Poisson statistics. For 

the cylindrical system, the level of agreement appeared to grow as the activity or scan duration 

increased; the limited angle tomography system also agreed with the Poisson model, but the level 

of agreement seemed to be nearly consistent regardless of the activity level or scan duration. 

Optimal levels of activity and scan duration were calculated, whenever possible, using a simple 

criterion of “diminishing returns”. Noise distribution within both systems agreed very well with 

the simple zero-mean model. For all results, only the first principal component was computed for 

the correlation-based and covariance-based data sets. No assumptions or approximations were 

made in the calculation of this component. However, due to the sizes of these data sets, an 

alternative method of computing these components was developed.  Future work may apply this 

method to other systems, modalities, and may even recursively compute the additional 

components beyond the first. 

 Coregistration between imaging systems was also performed via a rigid body 

transformation method. The positioning precision study indicates that, at least mechanically, the 
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microCT and microPET bed adapters are quite stable and highly suitable for use with this 

coregistration method. Calibration data for calculation of this transformation was performed 

using the same spherical phantom with random placement within each field-of-view (FOV). 

Calibration data taken from the microCT, in particular, proved somewhat troublesome due to the 

ambiguity in calculating the centroid of the spherical phantom. Coregistration of the calibration 

images themselves proved generally successful. As a result, coregistration of subsequent mice 

images was successful as well. However, the small visual discrepancies seen in the coregistered 

calibration data also appeared in the coregistered mice images, indicating that the method is 

consistent from scan to scan. This is expected given the nature of the rigid body transformation. 

Future work will attempt to improve the accuracy of the calibration data with the construction of 

a calibration phantom, as well as oversampling images prior to coregistration in order to reduce 

the roundoff errors stemming from converting physical coordinates to voxel indices. Future work 

may also involve coregistration between other small animal imaging modalities using nearly 

identical methods. 

 The assumption of a rigid body used for coregistering purposes may also be used to 

determine the spatial linearity of a given system. For these purposes, rigid body coregistration 

was performed between a synthetic regularly-spaced grid and its measured image. Due to the 

insensitivity of the coregistration to the chosen coordinate systems used for each set of 

measurements, the final results are only dependent on the imaging parameters. The metric 

provided by the coregistration is the total mean squared error between each grid point and its 

imaged point. Two-dimensional grids were printed with radioactive ink. High-count scans were 

acquired on the limited angle tomography system. Results indicate a fairly high degree of spatial 

linearity within the central coronal slice. Future work should include similar measurements 
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within other coronal slices near the edges of the FOV as that is where significant spatial 

distortion is likely to occur. As an alternative to the 2D printed grid, a 3D grid-like phantom may 

prove useful and allow for a more comprehensive study. This method may also be applied to 

other modalities assuming that a suitable regularly-spaced grid can be manufactured for that 

particular modality. 

 In conclusion, a number of venues have been explored in order to characterize the system 

performance of the limited angle tomography PET system. The severe drawbacks of this system 

may prevent its full applicability. In the process of investigation, relatively straightforward 

methods to measure several measures of performance have been developed. Many of these 

methods apply not only to most PET systems, but also to modalities other than PET. In fact, 

some of these methods are nearly identical in terms of mathematical foundation. While limited 

angle tomography may not be suitable for PET applications, it is hoped that these other methods 

will be very useful for many other imaging applications. 
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