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Abstract

The analysis of molecular data from natural populations has allowed researchers to answer diverse 

ecological questions that were previously intractable. In particular, ecologists are often interested 

in the demographic history of populations, information that is rarely available from historical 

records. Methods have been developed to infer demographic parameters from genomic data, but it 

is not well understood how inferred parameters compare to true population history or depend on 

aspects of experimental design. Here we present and evaluate a method of SNP discovery using 

RNA-sequencing and demographic inference using the program δaδi, which uses a diffusion 

approximation to the allele frequency spectrum to fit demographic models. We test these methods 

in a population of the checkerspot butterfly Euphydryas gillettii. This population was intentionally 

introduced to Gothic, Colorado in 1977 and has since experienced extreme fluctuations including 

bottlenecks of fewer than 25 adults, as documented by nearly annual field surveys. Using RNA-

sequencing of eight individuals from Colorado and eight individuals from a native population in 

Wyoming, we generate the first genomic resources for this system. While demographic inference 

is commonly used to examine ancient demography, our study demonstrates that our inexpensive, 

all-in-one approach to marker discovery and genotyping provides sufficient data to accurately 

infer the timing of a recent bottleneck. This demographic scenario is relevant for many species of 
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conservation concern, few of which have sequenced genomes. Our results are remarkably 

insensitive to sample size or number of genomic markers, which has important implications for 

applying this method to other non-model systems.

Keywords

demography; bottleneck; transcriptome; Lepidoptera

Introduction

Demographic history shapes patterns of genetic variation within and between populations 

(Wright, 1931). Recent methods take advantage of these patterns to infer past demographic 

events from genomic data sampled from natural populations (Adams & Hudson, 2004; 

Gutenkunst et al, 2009; Lopes et al, 2009; Lukić & Hey, 2012; Lohmueller et al, 2009; Pool 

et al, 2010; Li & Durbin, 2011; Cornuet et al, 2008; Beaumont, 1999). Inferences from 

genomic data supplement paleontological records to reveal ancient events in populations’ 

history, including expansions, crashes, and migration events. While these approaches have 

proven invaluable, most methods of demographic inference have been empirically validated 

in systems where demographic history is known only by indirect means (e.g. alternative 

genetic methods or fossil evidence) and by comparing inferences to known parameters from 

simulated datasets. Meanwhile, all evolutionary simulations rely on particular simplifying 

assumptions (e.g. neutrality or absence of linked selection) that are often violated in nature 

and can potentially lead to inaccurate estimates of demographic parameters 30 (Messer & 

Petrov, 2013). It is therefore important to test methods on positive controls from natural 

systems with known demographic history to examine under what circumstances inferences 

are sensitive or robust to these violations. Similarly unexplored are issues of experimental 

design for generating the genomic data upon which these methods rely. A reference genome 

and other genomic resources are not available for many non-model species in which 

knowledge of demographic history may be desired. An approach that can inexpensively and 

universally survey genetic variation at the scale necessary for demographic inference can 

help reveal important aspects of population history in diverse study systems.

An introduced population of Gillette’s checkerspot butterfly, Euphydryas gillettii 

(Nymphalidae), which has experienced recent and severe bottlenecks, offers an ideal system 

to examine whether demographic inference can be accurately applied to events occurring on 

an ecological timescale. This univoltine butterfly species inhabits meadows on eastern 

facing slopes of the northern Rocky Mountains. Adults fly during a four week period from 

June through mid-August with females laying clusters of more than one hundred eggs on 

leaves of the larval hostplant, Lonicera involucrata (Williams et al, 1984). Eggs hatch in 

July through September, with pre-diapause larvae forming communal feeding webs. The 

larvae then overwinter in diapause within these webs until they emerge in May and June, 

experiencing high mortality during diapause. Post-diapause larvae move out of the web for 

feeding and pupate away from their host plants near the ground.
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The E. gillettii native range spans from western Wyoming through Idaho and Montana into 

Alberta and British Columbia. In 1977 (33 years prior to sampling for this study), the 

species was intentionally introduced to a field site at the Rocky Mountain Biological 

Laboratory in Gothic, Colorado (CO) (Holdren & Ehrlich, 1981) (Figure 1A). Founder 

individuals were obtained from a population at Granite Creek, Wyoming (WY), which has 

since been extirpated (McCoy & Boggs, personal observation). The CO and WY habitats 

were intentionally matched as closely as possible, including an increase in elevation in CO 

accounting for the difference in latitude between the two sites. As a poor disperser with 

narrow habitat requirements, the introduced population of E. gillettii has been completely 

isolated from the native range by the arid Great Divide Basin, eliminating gene flow as a 

potentially confounding factor in our demographic analyses (Williams, 1988; Boggs et al, 

2006). Demographic data were recorded throughout these 34 generations with the 

exceptions of 1990–1997 and 1999–2001, during which the population was unlikely to have 

reached large numbers. The population established at the introduction site, persisting at 200 

or fewer adult individuals for over a decade, including two separate observed bottlenecks of 

fewer than 25 adult butterflies (Figure 1B). Over the past decade, the population experienced 

drastic fluctuations, with mark-release-recapture estimates ranging from 100 to nearly 

10,000 adult individuals (Boggs et al, 2006, Boggs, unpublished data).

Using this unique ecological system, our study demonstrates that multiplex cDNA-

sequencing (RNA-seq) can inexpensively generate sufficient polymorphism data to perform 

demographic inference in an ecological model species with no pre-existing genomic 

resources. We used the program δaδi (Gutenkunst et al, 2009) to infer parameters of 

demographic models that best fit the genomic data. The program uses a numerical solution 

of a multipopulation diffusion equation to calculate the expected allele frequency spectrum 

for a specified demographic model, then performs optimization to find the values of the 

parameters which maximize the likelihood of the data given the model. This numerical 

approach is fast and overcomes the need for computationally-demanding coalescent 

simulations as implemented by other approaches such as approximate Bayesian computation 

(ABC) (e.g. Beaumont et al, 2002) and Markov chain Monte Carlo (MCMC) methods (e.g. 

Drummond et al, 2012). We chose to use the δaδi software for our analyses because 1) 

frequency spectra can be generated from any class of polymorphic marker and the method 

can thereby be generalized to any large-scale genomic dataset, 2) as models are fit to the 

frequency spectra alone, results can be more easily interpreted as compared to more 

complex methods relying on many summary statistics and 3) the δaδi’s application 

programming interface facilitates performance analyses to help understand how inference 

depends on various aspects of experimental design. Future work may compare results from 

different approaches to demographic inference using the same data, but such an analysis is 

beyond the scope of this study which is focused on the demonstration that the frequency 

spectrum generated from a single dataset contains sufficient information to reveal recent 

demographic history in a non-model species. The program δaδi has been widely applied, 

including investigation of the demographic history of humans (Gutenkunst et al, 2009), rice 

(Molina et al, 2011), orangutans (Locke et al, 2011), and other species.
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Our study leverages detailed knowledge of ecology and population history of the unique E. 

gillettii system to evaluate parameter estimates and provide an important positive control in 

the case of recent bottlenecks, a demographic scenario that applies to many non-model 

species of conservation concern. We outline a widely-applicable method for marker 

discovery and genotyping as well as discuss experimental considerations for studying recent 

bottlenecks in other non-model systems.

Materials and Methods

Population sampling and library preparation

Eight third instar larvae were sampled from each of two field sites in September 2010: 

Togwotee Pass, Teton County, WY and Rocky Mountain Biological Laboratory, Gunnison 

County, CO. The Togwotee Pass population serves as a proxy for the now-extirpated 

population from Granite Creek, Teton County, WY, which is located approximately 40 km 

southwest of the Togwotee Pass site. The Granite Creek population, from which the CO 

population is derived, presumably maintained some connectivity with the Togwotee Pass 

population and with the rest of the E. gillettii metapopulation scattered throughout the Gros 

Ventre Wilderness. Larvae were collected and shipped alive in refrigerated containers, 

allowing them to clear their guts before freezing at −80°C.

Population genomic studies encounter a common tradeoff between the number of genomic 

markers covered at sufficient depth and the number of individuals genotyped. Faced with 

this tradeoff, we decided to use RNA-seq of pooled, barcoded samples as a method to 

capture a reduced representation of the genome. This method allowed us to build a reference 

transcriptome and to discover variants from a single dataset. In contrast to restriction site 

associated DNA sequencing (RAD-seq) or other methods of reduced representation, RNA-

seq is biased toward discovery of variation in coding regions (Davey et al, 2011). By 

contrasting results of demographic inference using synonymous versus nonsynonymous 

SNPs, we also sought to understand the impact of selection on demographic inference, 

which may be a confounding factor for certain experimental designs.

Total RNA was extracted from each of 16 whole larvae using a standard Trizol RNA 

isolation protocol. Samples were treated with the TURBO DNA-free kit (Ambion) 

according to manufacturer’s protocol to remove DNA contamination. Samples with the 

highest quality (i.e., the least evidence of small RNA fragments on Bioanalyzer (Agilent) 

traces) were used for downstream library preparation. RNA Integrity Number (RIN) is not a 

reliable metric for this species as E. gillettii ribosomal RNA apparently harbors a hidden 

break that causes the 28S rRNA to fragment and co-migrate with the 18S rRNA (Winnebeck 

et al, 2010).

To prepare cDNA libraries for the selected 16 samples, we used the TruSeq RNA Sample 

Preparation Kit (Illumina). This protocol includes poly-A mRNA selection, enzymatic 

fragmentation, first and second strand cDNA synthesis, end-repair, 3′ adenylation, adapter 

ligation, and PCR amplification. Sample preparation proceeded according to the 

manufacturer’s protocol, except for the adapter ligation step during which we incorporated 

custom adapters (synthesized by IDT) with 8 bp barcodes unique to each of the 16 libraries. 
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Libraries were pooled and sequenced on a single lane of the Illumina HiSeq 117 2000 

platform at the Stanford Center for Genomics and Personalized Medicine. Over 100 million 

2 × 100 bp paired-end reads passed quality filtering and were utilized in downstream 

analyses.

Transcriptome assembly and annotation

We sought to assemble the E. gillettii transcriptome de novo as a reference to which to map 

individual sample data to discover population variation. We first de-multiplexed individual 

sample data in silico according to the unique 8 bp barcodes, then trimmed these barcode 

sequences along with adenine-overhangs (9 bp total) from the beginning of reads. We used 

the FastQC quality control tool <http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc> to 

evaluate the processed reads’ qualities. Based on these metrics, we performed dynamic read 

trimming, removing ambiguous base calls at the end of FASTQ reads with the FASTX-

Toolkit <http://hannonlab.cshl.edu/fastx_toolkit/index.html>. We discarded reads containing 

adapter and primer contamination using TagDust (Lassmann et al, 2009) and any remaining 

orphan reads were discarded.

In preparation for de novo transcriptome assembly, we pooled reads from all 16 libraries, 

then input these data to the de Bruijn graph-based assembler Trinity (Grabherr et al, 2011). 

The Inchworm module of Trinity generates a kmer catalog and performs greedy extension 

based on kmer overlap. Using a range of kmer lengths during assembly can potentially 

improve sensitivity and allow reconstruction of transcripts with a wider range of expression 

levels (Schulz et al, 2012). We therefore modified the Trinity (version r2012-10-05) source 

code (Wheat, personal communication) to perform six separate assemblies with six kmer 

lengths (odd values from k=21 to k=31). We limited assembly to odd kmer lengths because 

even kmers may be palindromic reverse complements of themselves and introduce 

ambiguity to the de Bruijn graph. Assemblies were conducted on the Stanford SCG3 

computing cluster with 120G of RAM. We calculated standard assembly metrics (contig 

number, assembly length, N50) for each of these assemblies, and used blastx (Altschul et al, 

1997) to search for homology between our contigs and a custom database of lepidopteran 

peptides downloaded from Insecta Central (Papanicolaou et al, 2008). We assessed the 

degree of overlap among assemblies by comparing composition of blastx hits to the 

InsectaCentral lepidopteran protein database with e-value < 1e-05 and alignments covering 

>80% of the targets’ length. Based on the apparent similarity in length and content for 

assemblies using different kmer lengths, we selected the k=31 assembly for downstream 

analysis to reduce the possibility that repetitive regions would produce spurious SNPs. In 

our case, the challenge of removing redundancy outweighed the possible gain in sensitivity 

of combining multiple kmer assemblies.

As quality control, we evaluated the k=31 assembly based on homology to protein databases 

of three lepidopteran species. We first selected the longest contig sequences from each 

Trinity subcomponent, since multiple contigs deriving from a single subcomponent can 

share exons and may therefore be partially redundant. We used reciprocal blast searches to 

compare the E. gillettii transcriptome assembly to protein databases from the silkmoth 

(Bombyx mori), monarch (Danaus plexippus), and postman butterfly (Heli conius 
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melpomene). We used blastx to search E. gillettii transcripts against these databases and 

tblastn (Altschul et al, 1997) to reciprocally search the protein databases against the E. 

gillettii transcriptome. Here we report the number of unique hits with e-value < 1e-03, as 

well as the fraction of each reference database hit by the query database (Table S2). We then 

limited these assessments to the small subset of contigs that harbored SNPs that we 

discovered downstream in our pipeline and used for demographic inference. For these 

contigs, we report the number of unique hits with e-value < 1e-03 and the number of these 

hits that cover greater than 80% of reference proteins or 50% of reference contigs (Table 

S3). Shorter alignment length is expected for focal species to E. gillettii because UTRs will 

not be aligned when blasting protein sequences to mRNA transcripts. We also used blastx 

(Altschul et al, 1997) to search SNP-containing contigs against the NCBI nr database, 

assessing the top species hits (e-value < 1e-03) for all contigs as a quality control.

SNP discovery

In order to identify SNPs for the generation of site frequency spectra, each sample’s 

preprocessed reads were mapped to the newly-generated Trinity reference using BWA 

(version 0.6.2) (Li & Durbin, 2009). We used SAMtools (version 0.1.18) to extract only 

uniquely-aligned reads (Li et al, 2009). SNPs were discovered in the filtered multi-sample 

alignments using the GATK (version 2.3) UnifiedGenotyper algorithm with default 

parameters. We found that many called variants exhibited an extreme excess of heterozygote 

genotypes as well as deviation from the expected 50:50 allele balance (i.e., proportion of 

reads supporting the reference versus alternative allele). In some cases, several linked 

variants exhibited these patterns. We suspected that these observations were due to an 

abundance of closely-related paralogs or other repetitive sequences. In the case that one 

member of a paralog family is expressed at a low level, it may not be represented in the 

reference sequence, and reads derived from this gene will map to its highly-expressed, 

assembled paralog. Recent work supports the conclusion that a large proportion of called 

SNPs from RNA-seq data are indeed false positives due to hidden paralogy (Gayral et al, 

2013).

To therefore reduce potential false positives, we modified our pipeline to allow only one 

mismatch per aligned read. We then used a hard filter to extract potential false SNPs with at 

least one sample sequenced to ≥10× coverage with reads supporting both alleles and >75% 

of reads supporting the reference allele. We likewise extracted putative true SNPs for which 

all samples were sequenced to ≥10× coverage and any individual with non-zero counts of 

each allele had an allele balance between 30 and 70%. The resulting sets of 965 putative 

false SNPs and 6834 putative true SNPs were used to train the GATK Variant Quality Score 

Recalibration (VQSR) tool (Depristo et al, 2011) and classify all 42620 raw SNP calls as 

true or false at various sensitivity thresholds. The VQSR procedure, as implemented here, 

uses a Gaussian mixture model to distinguish true and false variants based on allele balance, 

the inbreeding coefficient (a measure of deviation from Hardy-Weinberg equilibrium), and 

mapping quality. We then extracted a final variant set consisting of SNPs that passed VQSR 

at a truth sensitivity threshold of 0.90 and had at least 6× coverage per sample in at least 12 

of the 16 samples.

McCoy et al. Page 6

Mol Ecol. Author manuscript; available in PMC 2015 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We annotated SNPs as synonymous, non-synonymous, or untranslated by identifying open 

reading frames (ORFs) with the program OrfPredictor (version 2.3) (Min et al, 2005). 

OrfPredictor uses homology information from blastx (to the InsectaCentral lepidopteran 

peptide database, in our case) as well as de novo prediction based on intrinsic signals in the 

absence of blastx results. Using ORF predictions, we translated sequences after substituting 

the alternative SNP, classifying variants as nonsynonymous if the substitution altered the 

amino acid sequence.

In order to limit the potentially confounding effects of selection on demographic inference, 

we first confined analyses to high-confidence synonymous SNPs discovered by our pipeline. 

These SNPs were used to generate a joint site frequency spectrum for input to δaδi (version 

1.6.3). In order to incorporate information from all markers and deal with instances of 

missing data, we projected the frequency spectrum down to six samples (12 alleles) per 

population. The projection method of δaδi uses a hypergeometric distribution to effectively 

average over all possible results of sampling 6 alleles per population from the total number 

of genotype calls at each SNP (Gutenkunst et al, 2009).

For visualization of the genetic data used for demographic reconstruction, we generated a 

heatmap of the folded (i.e. unpolarized) joint frequency spectrum of all SNPs using the 

package ggplot2 within the R statistical environment (Figure 3A) (Wickham, 2009; R Core 

Team, 2013). We also performed Q-mode principal component analysis on the genotype 

matrix using the ade4 package (Figure 3B) (Dray & Dufour, 2007). Genotypes were 

encoded as 0, 1, and 2, representing homozygous for the major allele, heterozygous, and 

homozygous for the minor allele, respectively.

Demographic inference

For each of these three models, best fit parameter estimates were inferred using synonymous 

SNPs conforming to our aforementioned filtering criteria (Table 1). We then simulated 

Poisson sampling from the frequency spectrum with the built-in sampling method in δaδi to 

generate 1000 bootstrap samples per model. Confidence intervals were constructed using 

empirical quantiles of the bootstrap distribution. All model parameters were positive by 

definition, so in cases where greater than 2.5% of bootstrap results fell at the lower boundary 

of the parameter space, the lower end of the confidence interval is reported as zero. We 

specified three simple demographic models in δaδi, the first and last of which reflect known 

demographic history.

Model A—Model A, a two population model (Figure 2A), was fit using data from both the 

WY and CO populations. In this model, we inferred the parameters τSPLIT, ηWY, and ηCO, 

which specify the timing of the CO population establishment (or alternatively, the bottleneck 

duration), the effective size of the WY population, and the effective size of the CO 

population, respectively.

Population sizes were inferred in units relative to an ancestral effective population size 

arbitrarily set at one, while time was inferred in coalescent units of τ, where τ · 2NANC = T 

generations. To therefore compare τSPLIT to the timing of the introduction known from the 

demographic record, we estimated the effective population size of the CO population (NCO). 
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We derived annual population estimates from mark release-recapture estimates of census N 

or counts of egg clusters, as detailed in Boggs et al (2006) (Table S4). For years during 

which mark-release-recapture was not performed, we used a regression model incorporating 

significant weather variables to estimate adult population size (Table S5). We accounted for 

deviations from 1:1 sex ratios with the equation Ne = 4NmNf/(Nm + Nf), where Nm and Nf are 

the annual census estimates of adult males and females, respectively (Hedrick, 2011). For 

years during which mark release-recapture data were insufficient to generate separate counts 

of males and females, we applied the average reduction in Ne due to deviation from 1:1 sex 

ratio of 0.94N. The multigeneration estimate of Ne is then the harmonic mean of these sex-

ratio-corrected single-generation estimates (Ni) across t generations: 

(Hedrick, 2011). We then incorporated a literature-derived estimate of variance in 

reproductive success based on cage experiments in Bicyclus anynana (Nymphalidae), further 

reducing Ne to 0.60N (Brakefield et al, 2001). This reduction is consistent with data from 

several species within Nymphalidae that suggest that nearly half of males do not mate 

(Boggs, 1979; Oberhauser, 1989, Boggs, in preparation). Upon incorporating each of these 

factors, we generated a rough estimate of NCO = 34. This estimate was used to calculate an 

estimate of NANC = NCO/ηCO and scale all inferred demographic parameters to units of 

individuals (for population size parameters) and generations (for time parameters).

We wish to emphasize that there are many sources of uncertainty that affect our estimate of 

NCO, including several factors for which we did not account in interest of simplicity. 

Variance due to sampling of the frequency spectrum and error in the regression models are 

easily quantified and are reported here (Table 1, Table S4, Table S5). Countless other 

potential sources of error, including factors such as the effect of early male emergence 

(protandry), fine scale population structure, and assortative mating are not quantified here. 

The final scaling factor should therefore be regarded as a rough estimate to demonstrate that 

the frequency spectrum generated from expressed SNPs contains sufficient information to 

perform such inference. Nevertheless, the estimate of NCO is independent of the genetic data 

and based on intensive field survey over several decades, a rare advantage of this ecological 

system.

Model B—In models B1 and B2 we extended model A to infer recent migration between 

the WY and CO populations (Figure 2B). Though we know that no such migration actually 

occurred, we were interested in inferring migration because in many systems researchers 

will not have pre-existing knowledge that precludes gene flow. In these cases, inferences of 

gene flow may confound inference of other demographic parameters. In model B1, we 

inferred the rate of unidirectional migration from WY to CO (Figure 2B1). If barriers to 

migration were absent, this scenario would be plausible since the native range populations 

could act as a source to the smaller CO sink population. In model B2, we inferred separate 

migration rates in each direction (Figure 2B2). In each case, inferred migration rates are 

reported in units of Mi→j, where Mi→j = 2N ANC mi→j and mi→j is defined as the proportion 

of individuals in population j that are new migrants from population i every generation. We 

then performed model selection by calculating the Akaike information criterion (AIC) for 
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each of the migration models as well as the model with no migration, preferring the model 

with the minimum AIC value (Akaike, 1974).

Model C—Model C (Figure 2C) was fit using data from only the CO population. Inferring 

demographic history from only one population allowed us to understand how the addition of 

data from the second (proxy ancestral) population affected precision in demographic 

inference. In this model, an ancestral population experiences a bottleneck starting at time 

τSPLIT in the past and extending to the time of sampling. This bottleneck is modeled by a 

change in the effective population size from ηANC to ηCO at time τSPLIT. Because τSPLIT and 

ηCO are confounding variables, we fixed ηCO to the best fit estimate from the two-

dimensional model and inferred τSPLIT.

Nonsynonymous SNPs—In order to test the effect of selection on parameter estimates, 

we repeated the demographic inference procedure for model A (Figure 2A), this time fitting 

our model to the full dataset of 6349 high-confidence synonymous, nonsynonymous, and 

untranslated SNPs with genotype calls in at least six samples per population. We contrasted 

parameters estimated from this larger dataset to those inferred from the smaller set of 

synonymous markers alone. To verify that any differences were not an artifact of the larger 

number of markers, we randomly subsampled the frequency spectrum to the same size as the 

synonymous dataset (1881 SNPs), repeating this procedure 1000 times and estimating 95% 

confidence intervals.

Performance analyses

We were interested in the sensitivity of parameter estimates to the number of SNPs included 

in our analysis. We used the program ms (Hudson, 2002) to sample varying numbers of SNP 

markers from eight individuals per population, simulating the frequency spectrum under the 

best fit parameters of model A (Figure 2A). Given that the relative genomic locations of 

SNP markers were unknown, we elected to simulate a single locus with a high 

recombination rate (ρ = 2000 = 4Nrefr, where r is the per-generation probability of 

recombination between the ends of the locus and Nref is the effective size of the ancestral 

population). We then scaled the resulting frequency spectrum to a given number of 

segregating sites using the frequency spectrum manipulation functions in δaδi. We also 

tested a range of recombination rates, finding that they did not qualitatively alter our results. 

Our approach represents a balance between speed of simulation and a desire to account for 

additional variance in the frequency spectrum due to physical linkage among markers. An 

alternative to this approach would be to independently simulate unlinked loci, but our 

approach is conservative in that it accounts for correlations in coalescent history arising 

from physical linkage of among markers. We repeated the simulations 1000 times for each 

number of sampled markers and used δaδi to infer the best fit parameter estimates for each 

simulated dataset. This procedure allowed us to examine how the variance in estimates as 

well as the proportion of non-converging estimates changed as a function of sample size of 

SNP markers (Figure 4A).

We were similarly interested in the sensitivity of parameter estimates to the number of 

sampled individuals per population. We again simulated model A (Figure 2A) using ms, but 
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incremented the number of sampled individuals from one to 10 per population, with the 

number of SNPs fixed at 1881. We repeated the simulations 1000 times under the best fit 

parameters of model A (Figure 2A) and again used δaδi to infer the best fit parameters 

estimates for each simulated dataset. We then examined how variance in parameter 

estimates and the proportion of non-converging estimates changed as a function of the 

number of individuals sampled per population (Figure 4B).

Results

Transcriptome assembly, annotation, and SNP discovery

Combining sequence data from all 16 individuals, we used Trinity to perform de novo 

assembly of the E. gillettii larval transcriptome. We performed separate assemblies using a 

range of kmer lengths for the first Trinity module called Inchworm. Each assembly 

produced greater than 50,000 subcomponents which contain one or more isoforms of 

putative transcripts. When selecting the longest contig per subcomponent, N50 length 

ranged from 812 to 1320 for different kmer choices (Table S1). Greater kmer lengths are 

better for distinguishing among short repetitive sequences, but may lead to a more 

convoluted de Bruijn graph. Based on our goal of variant discovery, we were less concerned 

with assembly contiguity than the presence of false positive SNPs, so we selected the k=31 

assembly for all downstream analyses.

We compared the E. gillettii transcriptome to protein sequence data available from three 

other lepi dopteran species using reciprocal blast searches. Our transcriptome assembly 

covered a large proportion (69.6–76.5%) of the proteomes of these related species (Table 

S2). We observed a comparable number of matches when searching these species’ 

proteomes against the E. gillettii transcriptome. The lower fraction of hits to the target 

database reflects differences in the sizes of the transcriptome and proteome databases, 

divergence among orthologs, genes that are unique to individual species, as well as possible 

contamination or spurious transcripts within each database.

All downstream analyses were biased, however, toward transcripts that were sufficiently 

highly expressed in enough individuals to make high-confidence genotype calls. As a result, 

only 2757 of the 56536 unique contigs harbored high-confidence SNPs ultimately used for 

demographic inference. Higher expression levels facilitate the faithful reconstruction of 

mRNA transcripts, and highly-expressed genes tend to be more evolutionarily conserved 

(Subramanian, 2004). We consequently observed a higher proportion of reciprocal blast hits 

between this subset of E. gillettii transcripts and protein databases of related species (Table 

S3). Of 2408 SNP-containing contigs with significant (e-value < 1e-03) hits to 322 the 

NCBI nr database, 15 had top matches to plants, 99 had top matches to bacteria, and only 

one had a top match to humans, which together represent the most likely sources of 

contamination in this experiment. Meanwhile, 2009 sequences had top matches to 

lepidopteran species. The remainder likely reflects genes that are either species-specific, 

highly conserved, or highly diverged and therefore do not match to lepidopteran reference 

proteins. We therefore opted against filtering SNPs based on these results, as such filtering 

could introduce new biases that could confound downstream demographic analyses. 
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Together, our results suggested that spurious transcripts and contamination are rare in the 

portion of our assembly utilized for demographic inference.

We incorporated homology information from blast searches to all available lepidopteran 

protein data to identify likely ORFs using the program OrfPredictor. This allowed us to 

classify 2277 synonymous, 1396 nonsynonymous, and 2675 UTR SNPs with at least 6× 

coverage per sample in at least six samples per population. As expected under purifying 

selection, the synonymous and nonsynonymous frequency spectra differed in shape in both 

the WY (χ2[6, N=1276]=16.79, p=0.010) and CO (χ2[6, N=531]=12.63, p=0.049) 

populations, with an excess of nonsynonymous SNPs at low frequency (WY synonymous 

Tajima’s D=−0.0494, WY nonsynonymous Tajima’s D=−0.385, CO synonymous Tajima’s 

D=0.692, CO nonsynonymous Tajima’s D=0.505). Of the 2277 synonymous SNPs, 1991 

and 959 were segregating in the WY and CO populations, respectively. While we identified 

71% of CO SNPs segregating in WY, we only identified 34% of WY SNPs segregating in 

CO. The asymmetry in the number and overlap of segregating sites is consistent with the 

founder event and subsequent bottlenecks causing substantial allelic extinction in the 

derived population.

Demographic inference

Model A—The demographic model in which an ancestral population from WY splits to 

form the introduced CO population (Figure 2A), reflects our knowledge of the true 

population history. Upon fitting this model using data from both the contemporary WY and 

CO populations, we recovered converging estimates of all demographic parameters (Table 

1). Our model underestimated the number of low frequency SNPs that were lost in the CO 

population, but provided a good fit to the data overall as the model and data frequency 

spectra were not significantly different (χ2[86, N =1881.4]=50.09, p=0.999) (Figure S1). 

While the effective size of the WY population (ηWY) was inferred to be approximately the 

same as the ancestral population (95% CI [0.673 1.253]), δaδi inferred a severe bottleneck 

(95% CI [0.076 0.137]) in the CO population (ηCO). These population sizes are reported 

with respect to an ancestral population arbitrarily set at ηANC=1. In addition, δaδi detected 

that the bottleneck timing (τSPLIT) was recent (95% CI [0.047 0.087]), with time reported in 

units of 2N ANC generations.

Upon scaling the inferred parameters to units of individuals and generations (for population 

sizes and times, respectively), we found that inferred parameters were consistent with the 

documented history of the population. Our census-based estimate of NCO = 34 placed the 

scaled estimate of τSPLIT based on best-fit parameters of model A between 40 and 47 

generations in the past (95% CI), calculated as 2τSPLIT (NCO/ηCO). We note, however, that 

this confidence interval accounts only for uncertainty in τSPLIT and ηCO. Uncertainty in the 

crude estimate of NCO also contributes to uncertainty in the scaled parameter estimate, 

which would inflate the confidence interval beyond the reported limits. Nevertheless, our 

estimate of bottleneck onset is close to the known population establishment 33 generations 

prior to sampling, with one generation per year in this system. This result demonstrates that 

the joint frequency spectrum generated from RNA-seq data contains sufficient information 

to infer parameters of demographic scenarios occurring in the recent past.

McCoy et al. Page 11

Mol Ecol. Author manuscript; available in PMC 2015 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Model B—Further analyses focused on considering the robustness of the above results to 

different treatments of the data and different specifications of the demographic model. First, 

we extended the two dimensional demographic model to infer recent migration between the 

WY and CO populations (Figure 2B), although we are confident that no such migration 

occurred. In many systems, however, researchers will not be able to exclude this possibility, 

and inferences of migration may be confounded with inferences of other demographic 

parameters. We therefore incorporated migration by modeling unidirectional gene flow from 

WY to CO (MWY →CO, Figure 2B1) as well as bidirectional gene flow of potentially 

different magnitudes between WY and CO (MWY→CO and MCO→WY, Figure 2B2).

For model B1, we found that δaδi inferred a low migration rate (95% CI [0.051 0.121]), but 

that uncertainty in the estimate of τSPLIT (95% CI [0 2.056]) dramatically increased to the 

point that the confidence interval included the parameter boundary of zero (Table 1). This 

result is not unexpected, given that migration and drift have contrasting effects on the allele 

frequency spectrum (Gutenkunst et al, 2009). In order to observe the same amount of drift in 

the joint frequency spectrum in the face of non-zero migration, bottleneck duration must be 

greater. However, these effects cannot be disentangled from the frequency spectrum alone, 

which generates uncertainty in the estimates. Estimation of τSPLIT became erratic upon 

adding the free parameter MCO→WY in model B2, likely due to overfitting of our limited 

sample.

We evaluated the improvement in likelihood given the increase in model complexity by 

calculating the AIC for each migration model as well as the model with no migration 

(Akaike, 1974). The model with no migration had the minimum AIC and was therefore 

preferred over the more complex migration models, consistent with the known demographic 

history of population isolation (Table 1). As models A, B1, and B2 represent nested models, 

we similarly applied the likelihood ratio test, finding that the model fit was not significantly 

improved when allowing for unidirectional (χ2[1]=1.70, p=0.192) or bidirectional migration 

(χ2[2]=1.72, p=0.423) as compared to the null model with no migration. Finally, Gutenkunst 

et al (2009) showed that fitting data including migration with a no-migration model results 

in correlated residuals. Our residuals plot for model A shows no evidence of this 

phenomenon (Figure S1C). In summary, our results demonstrated that while inference of 

migration may confound inference of other demographic parameters, model selection 

procedures may help indicate whether such migration actually occurred.

Model C—When we fit a simple bottleneck model to data from only the CO population 

(Figure 2C), our model predictions fit the data relatively well (χ2[3, N=803.6]=3.15, 

p=0.370). Nevertheless, bottleneck magnitude (ηCO) and timing (τSPLIT) have confounding 

effects on the site frequency spectrum and cannot be disentangled using data from a single 

population. We were interested, however, in the effect of the additional information from the 

WY population on inference of τSPLIT. We therefore fixed ηCO to 0.104, its best fit estimate 

from the model fit using data from both populations and repeated demographic inference on 

the CO site frequency spectrum. With ηCO fixed, δaδi infers a τSPLIT of 0.048. The 

confidence interval of τSPLIT inferred from this single-population spectrum (95% CI [0.029 

0.143]) entirely includes that estimated from the joint-population spectrum in model A (95% 
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CI [0.047 0.087]) demonstrating that we gained precision with multiple-population 

inference.

Nonsynonymous SNPs—We initially fit all models using only synonymous SNP data, 

which we presumed was important because selection can alter the frequency spectrum, 

confounding signatures of neutral demographic history. We examined whether this is the 

case for RNA-seq data by comparing inferences using only synonymous SNPs to the full 

dataset of 6349 synonymous, nonsynonymous, and UTR SNPs. In this case, best fit 

estimates of ηWY, ηCO, and τSPLIT significantly exceeded those inferred when fitting the 

model using synonymous SNP data alone (Table 1). This difference is not an artifact of the 

larger number of SNP markers, as randomly resampling to the same size as the synonymous 

dataset (1881 SNPs) produced confidence intervals for ηW (95% CI [0.936 1.838]), ηCO 

(95% CI [0.121 0.230]), and τSPLIT (411 95% CI [0.083 0.156]) that included the estimates 

from the full dataset, but exceeded the estimates from the synonymous data alone. These 

results suggest that natural selection indeed distorted the frequency spectrum and changed 

our inferences of demographic parameters. Parameter overestimation is caused by the skew 

of the nonsynonymous frequency spectrum toward rare variants in both populations (Figure 

S2). The distortion of the CO frequency spectrum for nonsynonymous SNPs is likely a 

carryover of purifying selection in the ancestral population, since NCO was too small for 

selective differences to generate observable frequency differences within CO.

Performance analyses

In order to better understand how parameter estimates were sensitive to the number of SNP 

markers and the number of sampled individuals per population, we simulated frequency 

spectra under the best fit parameters of demographic model A (Figure 2A), then used δaδi to 

infer these parameters from the simulated data. We subsampled the simulated frequency 

spectra for different numbers of SNP markers and different numbers of individuals. While 

median parameter estimates were robust even for very small marker sets (as few as 50 

SNPs), variance in inferred parameters increased substantially below approximately 400 

SNPs (Figure 4A). Increasing marker sets above 400 SNPs only marginally decreased the 

variance in estimates and the proportion of non-converging estimates. We likewise found 

that δaδi performed remarkably well even with sample sizes as low as 3 individuals per 

population (Figure 4B). Given our particular demographic scenario, sampling more than 4 

individuals per population did not appreciably reduce variance in estimates or the proportion 

of non-converging estimates.

Discussion

Our study generated the first genomic resources for Gillette’s checkerspot butterfly, 

Euphydryas gillettii, using a single dataset to assemble the reference transcriptome and 

discover genetic variation in two populations. We leveraged these population genomic data 

to perform demographic inference in this rare isolated system with a well-known history of 

recent bottlenecks. This demographic scenario is relevant to many ecological systems, 

including species introductions from a small number of propagules and populations of 

conservation concern that have experienced recent declines. We used the program δaδi to 
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accurately infer the timing of the population’s introduction (and accompanying reduction in 

population size), providing a unique positive control given this particular demographic 

history. Our study complements a large body of previous work using checkerspot butterflies 

as model systems in conservation and metapopulation biology (Ehrlich & Hanski, 2004). 

Within this context, this work demonstrates how genomic studies of ecological model 

systems can provide valuable tests of population genetic theory and methods.

SNP discovery in RNA-seq data without pre-existing genomic resources is challenging. 

Well-developed methods such as the GATK framework (Depristo et al, 2011) are designed 

for detecting variants in genomic DNA-derived sequence data. However, high coverage 

whole-genome resequencing is currently prohibitively expensive in most eukaryotic 

systems, and sequence capture methods depend on a priori knowledge of the genome 

sequence to be targeted. Restriction-site-associated DNA sequencing (RAD-seq) offers one 

reduced representation alternative by sequencing restriction-site flanking regions in multiple 

individuals. For the purpose of demographic inference, RAD-seq may in fact be preferable 

to RNA-seq in that highly expressed genes do not account for a large proportion of overall 

sequence data (although normalization methods have been devised to address this problem 

(Christodoulou et al, 2011)), purifying selection is less likely to affect these randomly 

dispersed genomic regions, and gene paralogy is less likely to confound marker discovery. 

For systems with no pre-existing genomic resources, however, researchers may desire a 

method that can discover neutral genomic markers for demographic inference as well as 

surveying functional regions. RNA-seq may be preferable in such cases because it requires 

no a priori knowledge of the genome sequence and preferentially targets transcribed regions 

of the genome that are more likely to be functional. As we demonstrated, this allows 

researchers to address not only questions about neutral effects of demographic history, but 

also the interplay of selection and demography in non-model systems. With the appropriate 

experimental design, the same data may also be leveraged for gene expression analysis or 

comparative transcriptomics between populations or between species.

Careful curation of the reference assembly, tuning of mapping parameters, and stringent 

filtering are however necessary to extract a high-quality SNP set from RNA-seq data. 

Hidden paralogy generates many spurious SNP calls which can have negative effects on 

downstream analyses (Gayral et al, 2013). Here, we used heuristic SNP filtering to 

conservatively identify putative false positives and true positives, using these sets to train a 

Gaussian mixture model and classify variants. Filtering should be performed with care, as 

certain filtering strategies (e.g. allele frequency thresholds) could distort the resulting 

frequency spectrum and confound demographic inference.

We specified three basic demographic models, the first of which reflected the known 

demographic history and included both the WY and CO populations (Figure 2A). We fit this 

model using the synonymous joint frequency spectrum, then scaled the inferred bottleneck 

duration (τSPLIT) based on our estimate of the effective size of the CO population. This 

estimate was derived from mark-release-recapture estimates of adult population size and sex 

ratios in E. gillettii (Boggs et al, 2006, Boggs, unpublished data) as well as a correction for 

high variance in reproductive success as reported in other lepidopteran species (Boggs, 

1979; Oberhauser, 1989; Brakefield et al, 2001). The resulting estimate of bottleneck 
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duration of between 40 and 47 generations (95% CI) compares favorably to the documented 

introduction 33 generations ago. We note that the scaled values of demographic parameters 

carry uncertainty from both the inference procedure (due to sampling of the frequency 

spectrum, for which we account using the bootstrap procedure) and from uncertainty in the 

estimate of the scaling factor NCO, for which we do not account, but discuss here. Crude 

methods of estimating effective population size tend to overestimate Ne, as most biological 

factors reduce Ne relative to census N. In particular, our consideration of how variance in 

reproductive success reduces NCO likely underestimates the true reduction because variance 

in survival among egg clusters from individual females would introduce additional 

variability among parents. Likewise, E. gillettii, like many checkerspots, is highly sedentary, 

and population structure could further reduce Ne relative to census N (Boggs et al, 2006; 

Williams, 1988). It is also likely that there is additional error in δaδi’s estimate due to 

complex evolutionary forces including genetic hitchhiking distorting the frequency spectrum 

relative to assumed neutrality. Nevertheless, the fact that we recover estimates of 

demographic parameters consistent with known demographic history suggests that these 

assumptions are not consequential for demographic inference, at least in this particular case.

In many cases, researchers will not have pre-existing knowledge of demographic history, yet 

will be interested in absolute estimates of demographic parameters rather than coalescent 

units relative to Ne. In such cases, estimates of Ne are often obtained from the population 

genetic data by estimating the parameter θ=4Neμ (Watterson, 1975) and using literature-

derived estimates of the mutation rate μ. Many estimates of θ, however, make the 

assumption of stable demographic history and can be strongly biased under certain 

demographic scenarios, including bottlenecks. A better approach involves inferring θ under 

a specified demographic model, as implemented by δaδi and other methods. Mutation rate 

can also be estimated by performing sequence alignment between the study species and a 

closely related species: μ = D/2T, where D is the pairwise sequence divergence and T is the 

divergence time in units of generations.

Our study highlights the importance of fitting multiple demographic models to test diverse 

demographic scenarios. We found that the model likelihood was not significantly improved 

by the addition of migration parameters when we extended the population split model to 

incorporate possible migration between WY and CO (Figure 2B). In all other cases, 

however, our reported model likelihoods were not directly comparable because they were 

fitted with different data sets. We evaluated our models with 501 χ2 goodness-of-fit tests, 

examining whether the frequency spectrum predicted under our optimized demographic 

models were significantly different than the data frequency spectrum. In each case, we failed 

to reject the demographic models fit with synonymous data, suggesting that these 

demographic models captured important aspects of the true demographic history.

In the third demographic model, we performed demographic inference using only the CO 

frequency spectrum, finding that uncertainty in estimates of demographic parameters was 

significantly greater than when including data from the WY population. Because of 

correlated effects on the allele frequency spectrum, bottleneck magnitude and duration could 

not be disentangled from these data. The addition of the WY dataset (described above) 

added sufficient information to simultaneously infer these parameters. Upon fixing ηCO at 
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its optimized value from two-dimensional demographic inference, we estimated τSPLIT 

similar to the two-dimensional inference. Uncertainty in the estimate increased, however, 

demonstrating that the addition of data from the proxy ancestral population improved 

precision. This result is not unexpected, as the joint frequency spectrum contains 

dramatically more information than the frequency spectrum of individual populations. For 

example, analysis of the joint frequency spectrum revealed that of 984 total SNPs 

(discovered in either population and successfully genotyped in all 16 individuals) 866 were 

segregating in WY while only 392 were segregating in CO. Without addition of the WY 

data, the zero frequency class would be excluded, and limiting inference to the CO 

frequency spectrum comprised of fewer markers. The joint frequency spectrum likewise 

contains information about the magnitude of genetic drift by capturing the change in allele 

frequencies since the populations’ divergence.

By contrasting inferences using synonymous data with inferences using the entire joint 

frequency spectrum of synonymous, nonsynonymous, and UTR SNPs, we show that natural 

selection distorts the frequency spectrum and leads to inaccurate parameter estimates. The 

fact that δaδi overestimates parameters upon inclusion of nonsynonymous and UTR SNPs is 

consistent with the skew of these markers toward rare variants compared to synonymous 

SNPs (Figure S2). Signal in the frequency spectrum is thereby confounded because the 

excess of rare variants is a signature of population expansion, but also purifying selection. 

We should note that excluding nonsynonymous and untranslated SNPs from our analysis 

would not entirely resolve this issue, as purifying selection on synonymous sites as well 

draft due to background and/or positive selection would be reflected in the synonymous 

frequency spectrum. One alternative to selecting only putative neutral sites is to specify the 

distribution of selective effects and incorporate purifying selection in the demographic 

model itself (Gutenkunst et al, 2009) (although, see Messer & Petrov (2013) for how this 

approach does not resolve the issue in the case of linked selection).

We demonstrate that inferences of demographic parameters are remarkably robust to both 

sample number and number of genetic markers. However, our results are particular to the 

demographic history of this system. For other systems with different demographic histories, 

simulations like those that we present can be useful during the planning stages of an 

experiment. By simulating frequency spectra for a range of demographic scenarios, 

researchers can evaluate the necessary number of samples and markers to achieve a given 

level of confidence in parameter estimates.

The δaδi approach is one of many approaches for reconstructing demographic history using 

population genomic data. We tested this approach on our dataset as it fits demographic 

models using the frequency spectrum alone, which simplifies the interpretation of inference 

results. The flexibility of the software also facilitates various performance analyses. We 

remain agnostic, however, to the question of whether alternative methods would give 

consistent or potentially superior results. For example, Gutenkunst et al (2009) point out that 

diffusion approximation assumes that N is large and that frequency changes are small per 

generation, an assumption that may be violated by an extreme bottleneck. The fact that we 

recover parameter estimates consistent with known demographic history, however, suggests 

that the approach is robust to this assumption in this particular case. The demographic 
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history of our study population may be particularly easy to resolve due to dramatic effects 

on the allele frequency spectrum, whereas for other demographic scenarios that require 

information about the distribution of rare alleles, larger sample sizes will be required. 

Alternative approaches may be more appropriate for inferring parameters of different 

demographic scenarios on different time scales. For larger populations, the frequency 

spectrum contains information about substantially older events, allowing reconstruction of 

events occurring hundreds to thousands of generations in the past (e.g. Molina et al, 2011). 

Extreme bottlenecks introduce noise to the frequency spectrum, erasing signatures of ancient 

events.

Positive controls are important for understanding the circumstances under which 

demographic inference from genomic data is sensitive to unrealistic model assumptions and 

simplifications as well as particular methods of data generation. Our study provides one 

such positive control in a particularly well-studied system, demonstrating that it is possible 

to recover estimates of demographic parameters numerically consistent with known 

demographic history. The ability to recover information about past bottlenecks from patterns 

in genetic data is particularly important since bottlenecks increase the risk of population 

extinction (Whitlock, 2000). Our RNA-seq-based approach provides a means to 

simultaneously perform marker discover and multisample genotyping in systems with no 

existing genomic resources. We advocate more positive controls in diverse ecological model 

systems, leveraging detailed knowledge of species’ life 563 history for demographic 

modeling. Meanwhile, application of this multiplex RNA-seq approach in non-model 

species permits the study of transcribed gene sequence and expression levels while also 

generating polymorphism data to accurately infer recent bottlenecks. Together, these 

analyses from genomic data can elucidate important aspects of species’ ecology and 

conservation status.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Documented history of the E. gillettii introduction. A: In 1977, E. gillettii were intentionally 

introduced to Rocky Mountain Biological Laboratory, Gothic, CO from propagules obtained 

from Granite Creek, WY. Contemporary samples were obtained from Gothic as well as a 

site at Togwotee Pass, WY, a proxy for the now-extirpated Granite Creek source population. 

B: Mark-release-recapture (MRR) estimates of adult population size in the Colorado 

population. The y-axis is depicted on a log scale to show fluctuations at very small 

population sizes.
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Figure 2. 
Demographic models specified in δaδi. A: Two-dimensional model fit with WY and CO 

data. An ancestral population in WY gives rise to a derived CO population through a 

founding event at time τSPLIT in the past. The resulting populations in WY and CO have 

sizes ηWY and ηCO, respectively. B1: Model A is extended to include possible unidirectional 

migration from WY to CO. B2: Model A is extended to include possible bidirectional 

migration, both from WY to CO and from CO to WY. C: Single population model fit with 

CO data. An ancestral population experiences a bottleneck at time τSPLIT in the past, 

reducing its size to ηCO.
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Figure 3. 
Representations of the genetic data. A: Joint allele frequency spectrum composed of all 

SNPs segregating in WY, CO, or both populations. The frequency spectrum illustrates the 

loss of ancestral genetic variation in the CO population due to genetic drift during the 

bottleneck. Frequencies range from 0 to 16 chromosomes per population. The spectrum, 

displayed as a heatmap, is folded (i.e. unpolarized), as the state of the ancestral allele is 

unknown. B: Individual samples plotted according to the first two principal components of 

the genotype matrix of all SNPs. Populations are indicated with different plotting symbols. 

Upon stratifying data by SNP class (synonymous, nonsynonymous, UTR), results were 

qualitatively similar and are not depicted. Principal component 1 separates samples 

according to population membership, while principal component 2 separates individuals 

within the WY population (within which the CO samples are nested, but tightly clustered).

McCoy et al. Page 22

Mol Ecol. Author manuscript; available in PMC 2015 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Performance analysis to test the effect of number of samples and number of SNPs on 

demographic inference results. We removed results where estimates hit the upper or lower 

bounds of the set parameter range, but report the proportion of these non-converging 

estimates on the top axes. Simulated parameter values are indicated by the horizontal line 

and correspond to the best-fit estimates from model A. A: Best fit parameter estimates when 

fitting the model with varying numbers of SNPs, demonstrating that variance in estimates is 

relatively stable with 300 or fewer markers. Sample number is fixed at 8 per population, and 

simulation and model fitting are performed 1000 times for each size SNP set. B: Best fit 

parameter estimates when fitting the model with varying numbers of samples per population, 

demonstrating that variance in estimates is relatively stable with as few as two samples (four 

alleles) per population. SNP number is fixed at 1881, and simulation and model fitting are 

performed 1000 times for each number of samples.
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