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Abstract 

A simple, fast algorithm which simulates collisions between inelastic particles in an optically 

thin disk orbiting a central mass is implemented to the N-body simulation code MERCURY. The 

hybrid symplectic integrator is used to simulate a moonlet in the Saturn ring scenario, and 

produced a propeller structure around the moonlet which opens a partial gap in the ring.  

 

1. Introduction 

 

Collisional particle disks evolvements in the presence of planets is an interesting subject and 

there are many questions related to it. For example, how do Type I/II migration rates vary with 

planet eccentricity? How do gap widths and lengths vary with planet mass? For planets that do not 

open gaps or open only partial gaps, what torques are exerted by co-orbital disk material on the 

planet? The last two questions have important implications on Type III migration and on Saturn 

rings. 

In Saturn’s rings, small moonlets produce partial gaps, as physical collisions and 

gravitational interactions between ring particles diffuse particles back into the gap downstream of 

the moonlet. Because of Keplerian shear, density perturbations excited at a moonlet’s position 

drift toward greater longitudes inside the moonlet’s orbit and toward lesser longitudes outside, 

forming a pair of features dubbed a “propeller” for its S-like shape. One of the propellers orbital 

longitude deviated from a strictly Keplerian solution (Tiscareno et al. 2010), which implies 

semimajor axis variations of the underlying moonlet. There are several explanations, Crida et al. 



(2010) and Rein & Papaloizou (2010) investigated semimajor axis variations due to stochastic 

torques exerted by self-gravitating wakes of ring particles (Salo 1995). Tiscareno et al. (2010) 

suggested that the moonlet may librates within a resonance established by another larger moon. 

Pan & Chiang (2010) proposed that propellers like it are participating in a new type of co-orbital 

resonance with nearby ring material. They interpreted the non-Keplerian motions of propeller 

moonlets as back reactions of their perturbed disks on the moonlets, however, they have not 

considered how the motions of the moonlet feed back into shaping the gap. To investigate this 

issue further, we would like to use a more realistic model which simulates the dynamics of the 

system including all the interactions between the moonlet and the disk particles. 

In this work, we imply the collision algorithm developed by Lithwick & Chiang (2007), 

hereafter L07, to the commonly used N-body simulation code MERCURY (Chambers & 

Migliorini 1997). The algorithm simulates collisions between inelastic particles in an optically 

thin disk orbiting a central mass. It is simple to implement and adds negligible running time to 

existing N-body codes. In L07 they used SWIFT subroutine package (Levison & Duncan 1994) to 

integrate the gravitational equations for the motions of the Sun and massless test particles with the 

Wisdom-Holman mapping method (Wisdom & Holman 1991). However, they test the algorithm 

without planet, and SWIFT can only handle massless test particles in the disk which can only feel 

the gravitational influence of the massive bodies but do not affect each other or the massive bodies. 

In this work, we use hybrid symplectic integrator (Chambers 1999) of the MERCURY package 

with small bodies as disk particles which can have mass and gravitationally affect and are affected 

by the massive bodies such as moonlets. 

 

2. The collision algorithm 

 

All bodies are evolved in two dimensions: out-of-plane velocities and coordinates are always 

identically zero. The subroutine simulates collisions between test particles in a disk with vertical 
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where  is the number of test particles,  is their size, and tpN s r  and   are are, respectively, 

the mean orbital radius and the radial width of the annulus that the particles occupy. In collisional 

particle disks, collisions tend to isotropize the velocity distribution. The collision time is 
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The collision time is longer than the orbital time by the u-independent factor 1  . 

We capture this behavior with two-dimensional simulations in which all bodies have zero 

inclination. For every time step dt, a two-dimensional square grid is built, with each grid element 

having dimensions ; here,  can be thought of as the size of a particle. If two test 

particles fall in the same grid cell, and if their relative speed is negative (i.e., if they are 

approaching each other), then they collide with each other with probability 

grid grids s grids

col orb 1P dt t  , 

where  is the orbital time at the collision point. A random number generator is used to 

determine whether or not they actually collide. 

orbt

To see that this algorithm gives the same collision time as equation (2) (where   is given 

by eq. [1] with ), it is instructive to consider first a simpler algorithm that also yields the 

correct collision time. In this simpler algorithm, one waits for a time interval of (instead of dt) 

before finding which particles fall in the same grid cell. Then two particles that do fall in the same 

grid cell, and have converging velocities, collide with probability 

grids s

orbt

col 1P  . Since the probability 

that a given particle lies in a cell occupied by a second particle is  , the collision time is orbt  , 

as required. Turning now to the algorithm that we actually use, since we apply this algorithm 

every time interval dt (and not ), we must correspondingly reduce the probability of a 

collision by 

orbt

orbdt t  in order to maintain the collision time at the value given by equation (2). 

Although carried out in only two dimensions, we emphasize that our algorithm models 

three-dimensional disks in which collisions maintain inclinations that are comparable to the 



random eccentricities. A truly two-dimensional disk is not realistic, because collisions invariably 

generate out-of-plane velocities. But if one could somehow prevent the generation of out-of-plane 

velocities, the collision time in such a disk would be  s u , which differs from equation (2) 

by the factor orbs ut . Since our algorithm satisfies equation (2), it does not model truly 

two-dimensional disks. 

As will be shown below, collisions drive the random speed of the particles to grid orbu s t . 

Hence, if two particles fall in the same grid cell at one time, they will usually fall in separate grid 

cells after one orbital period. Since collisions can potentially occur every time step, it might be 

thought that the same two particles can collide many times in succession—a behavior that we 

consider undesirable. But this behavior is avoided by the requirement that particles must be 

approaching each other for a collision to occur; immediately after they collide, their relative 

velocities reverse signs, and they are no longer candidates for a collision pair. 

One of the main advantages of our algorithm is that the time step is not restricted by the 

Courant condition. In a naive bruteforce algorithm, one must restrict dt s u  in order to 

ensure that any two particles that fall within a distance s of each other collide. This restriction on 

dt can be very cumbersome when orbu s t , as it will be whenever planets stir up the 

eccentricities. We avoid the Courant condition by treating the vertical dimension statistically: 

when two particles fall within the same two-dimensional grid cell, they need only collide a small 

fraction of the time because their vertical positions will, in general, differ. With our algorithm, we 

may choose dt to be as large as is allowed by the integrator, which is typically a significant 

fraction of the orbital time. 

If two particles have been selected for a collision, i.e., if they lie in the same grid cell, are 

approaching each other, and are selected by the random number generator, then their velocities are 

updated as though the bodies were frictionless spheres whose surfaces touch (e.g., Trulsen 1971): 

the component of the relative velocity vector that lies parallel to the axis connecting the two 

particles is reversed in sign (from a converging velocity to a diverging one) and multiplied by the 

coefficient of restitution  , i.e., in obvious notation, 

rel, rel,u u    .                             (3) 



Neither the perpendicular component of the relative velocity vector, nor the velocity of the center 

of mass of the two colliders, nor the positions of the colliders are changed by the collision. A 

collision does not alter the sum of the angular momenta of both colliding bodies; hence the 

collision algorithm exactly conserves total angular momentum. Note that a collision between two 

particles separated by distance d changes the velocities of the particles as though each were a 

smooth sphere with radius d/2. Since d changes from collision to collision, the particles’ sizes are 

effectively changing; they are only approximately . grids

The algorithm has now been completely described, aside from how the code finds which 

pairs of particles lie in the same grid cell. To find colliding pairs, the code first determines in 

which grid cell each particle lies. A grid cell is labeled by two integers representing its location 

along the x- and y-axes. Second, the code sorts the grid cells that contain test particles with the 

heapsort algorithm (Press et al. 1992). The sorted occupied grid cells are then checked to see if the 

same grid cell is repeated for two different particles. The step that takes the most time in the entire 

collision algorithm is the heapsort, which requires  operations. tp tplnN N

A ring diffuses in the time that it takes a particle to random walk across its width. This 

random walk has a step-size equal to the epicyclic excursion of a particle ( ) and a time per 

random step of . Thus, to diffuse the width of the ring 
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where the inequality holds when grids ; otherwise,  until . Since diff colt t grids 

1colt n   , where tpn dN dr is the number of particles per radial distance, a ring 

expands as 1 3t  . 

    We used a hybrid symplectic/Bulirsch-Stoer integrator instead of a traditional mixed-variable 

symplectic integrator. The integration scheme for the second-order hybrid integrator is as follows. 

(i) The coordinates remain fixed. Each body receives an acceleration owing to the other bodies 

(but not the Sun), weighted by a factor K, lasting for dt/2. 

(ii) The momenta remain fixed, and each body shifts position by an amount 2ii
t p M . 



(iii) Bodies not in an encounter move on a Keplerian orbit about the Sun for dt. For bodies in an 

encounter, the Kepler terms, and the close encounter terms weighted by (1-K), are integrated 

numerically for dt. 

(iv) As step (ii). 

(v) As step (i). 

 

3. Simulations and early results 

 

Firstly, we used circular rings of particles without any planets as a comparison test to the 

origin paper L07. The parameters of the simulation include the coefficient of restitution ( ), the 

size of a grid element ( ), the number of test particles ( ), and the initial orbital elements of 

the test particles. For the test run, the mass of the particles are set to 0. The central body’s mass is 

1 

grids tpN

M .We simulate narrow rings with mean radius 1 AUr   and radial width r , and 

choose dt =0.18 yr for the integration time step.  

Because of the steep dependence of the diffusion timescale on the width of the ring, , 

it takes a long time to simulate even a modest increase in 

3t  

 . Simulation parameters must be 

chosen judiciously. We fix 0.3  ,  and 4
tp 10N  1 AUr  , and seek the optimal values 

for  and grids 0 0t  . To simulate as large an increase in   as possible, the simulation 

should begin with as narrow a ring as possible. For a fixed , the narrowest ring that is not 

optically thick has unity optical depth 

grids

 2

0 tN sp grid 2 r 

0 s

. The fastest timescale is obtained 

with the smallest . But we must have 0 grid  , so the optimal values are 

0 grid tp2s r N   . Rounding up, we set . Initially, the ring particles 

were uniformly distributed in a ring with edges at . We plot a histograms of 

the ring particles number counts vs. radius at t = 0, 1000 and 100 000 yr in Fig. 1, and it is in 

excellent agreement with Fig. 4 of L07, which shows the density evolution in a diffusing ring. 
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Fig.1. Density evolution in a diffusing ring. Histograms of the ring particles number counts are shown at t = 0, 

1000 and 100 000 yr from the test simulation.  

 

Secondly, as the test run showed that the implementation of the algorithm to MERCURY was 

successful, we put a big body inside the ring as a moonlet to simulate the Saturn ring scenario. The 

moonlet has a mass of 6
moon 3 10M M   , and the initial position of the moonlet is at 

,  in Cartesian Coordinates, therefore the Hill Radius of the moonlet is 0 1 AUx  0 0 AUy 

1 3
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M
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.                       (5) 

The radius of the moonlet was set to , same as the . In order for the ring 

to not diffuse too much during the time of the run which is about 50 yr, and wide enough for the 

moonlet to be imbedded in, but also not to be too optically thin to keep a good resolution, we set 

with the ring edges at , which is about 10 times of 

3
moon 10  AUR 

21 (5 10 ) A 

grids

1
0 10  AU  U HR , the 

ring particles are still massless, and all the other parameters are the same as the test run. Fig. 2, 3, 

4 and 5 shows positions of the moonlet and all the ring particles at 0, 1, 10 and 50 yr accordingly. 

Fig. 3 shows the moonlet created a partial gap in the disk with a propeller structure around it, but 

as the integration continues, the partial gap spreads out and finally forms a full gap, as shown in 

Fig.4 and 5. We think this is due to the initial setting of the parameters that the viscosity of the 



disk is not big enough comparing to the real Saturn ring. We also did a simulation that gives all 

the ring particles the same mass 16
p 3 10M M   , and kept all the other parameters the same 

as the last run, and the results look the same. 

 

Fig.2. Positions of the moonlet and all the ring particles at t=0 yr. 

 

Fig.3. Positions of the moonlet and all the ring particles at t=1 yr. 



 

Fig.4. Positions of the moonlet and all the ring particles at t=10 yr. 

 

Fig.4. Positions of the moonlet and all the ring particles at t=50 yr. 

 

4. Summary and outlook 

 

In this work, we imply a simple, fast algorithm developed in L07, which numerically evolves 



disks of inelastically colliding particles surrounding a central star, to the N-body simulation code 

MERCURY. We use hybrid symplectic integrator to simulate a moonlet in the Saturn ring 

scenario, and produced a propeller structure around the moonlet which opens a partial gap in the 

ring. However, the initial settings of the parameters need to be adjusted in order to fit the real disk 

viscosity in order to maintain the partial gap.  

    The next steps of the work would be to find out the best combinations of the free parameters, 

namely ,  ,   and gridr s  ; to apply the code on the propellers in Saturn's rings and compare 

with the observations, and to optimize the code, maybe parallelize it. 
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