
UC Santa Cruz
2011 International Summer Institute for Modeling in
Astrophysics

Title
Planetary dynamics in collisional particle disks

Permalink
https://escholarship.org/uc/item/0bx48606

Authors
Zhao, Sun
Chiang, Eugene
Lithwick, Yoram

Publication Date
2011-09-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0bx48606
https://escholarship.org
http://www.cdlib.org/

ISIMA 2011 Project Report

Planetary Dynamics in Collisional Particle Disks

Zhao Sun1 , Eugene Chiang , Yoram Lithwick 3 2

 Purple Mountain Observatory, Chinese Academy of Sciences, China
1

 University of California, Berkeley, USA
2

 Northwestern University, USA
3

Abstract

A simple, fast algorithm which simulates collisions between inelastic particles in an optically

thin disk orbiting a central mass is implemented to the N-body simulation code MERCURY. The

hybrid symplectic integrator is used to simulate a moonlet in the Saturn ring scenario, and

produced a propeller structure around the moonlet which opens a partial gap in the ring.

1. Introduction

Collisional particle disks evolvements in the presence of planets is an interesting subject and

there are many questions related to it. For example, how do Type I/II migration rates vary with

planet eccentricity? How do gap widths and lengths vary with planet mass? For planets that do not

open gaps or open only partial gaps, what torques are exerted by co-orbital disk material on the

planet? The last two questions have important implications on Type III migration and on Saturn

rings.

In Saturn’s rings, small moonlets produce partial gaps, as physical collisions and

gravitational interactions between ring particles diffuse particles back into the gap downstream of

the moonlet. Because of Keplerian shear, density perturbations excited at a moonlet’s position

drift toward greater longitudes inside the moonlet’s orbit and toward lesser longitudes outside,

forming a pair of features dubbed a “propeller” for its S-like shape. One of the propellers orbital

longitude deviated from a strictly Keplerian solution (Tiscareno et al. 2010), which implies

semimajor axis variations of the underlying moonlet. There are several explanations, Crida et al.

(2010) and Rein & Papaloizou (2010) investigated semimajor axis variations due to stochastic

torques exerted by self-gravitating wakes of ring particles (Salo 1995). Tiscareno et al. (2010)

suggested that the moonlet may librates within a resonance established by another larger moon.

Pan & Chiang (2010) proposed that propellers like it are participating in a new type of co-orbital

resonance with nearby ring material. They interpreted the non-Keplerian motions of propeller

moonlets as back reactions of their perturbed disks on the moonlets, however, they have not

considered how the motions of the moonlet feed back into shaping the gap. To investigate this

issue further, we would like to use a more realistic model which simulates the dynamics of the

system including all the interactions between the moonlet and the disk particles.

In this work, we imply the collision algorithm developed by Lithwick & Chiang (2007),

hereafter L07, to the commonly used N-body simulation code MERCURY (Chambers &

Migliorini 1997). The algorithm simulates collisions between inelastic particles in an optically

thin disk orbiting a central mass. It is simple to implement and adds negligible running time to

existing N-body codes. In L07 they used SWIFT subroutine package (Levison & Duncan 1994) to

integrate the gravitational equations for the motions of the Sun and massless test particles with the

Wisdom-Holman mapping method (Wisdom & Holman 1991). However, they test the algorithm

without planet, and SWIFT can only handle massless test particles in the disk which can only feel

the gravitational influence of the massive bodies but do not affect each other or the massive bodies.

In this work, we use hybrid symplectic integrator (Chambers 1999) of the MERCURY package

with small bodies as disk particles which can have mass and gravitationally affect and are affected

by the massive bodies such as moonlets.

2. The collision algorithm

All bodies are evolved in two dimensions: out-of-plane velocities and coordinates are always

identically zero. The subroutine simulates collisions between test particles in a disk with vertical

optical depth

2

tp 1,
s

N
r

 


 (1)

where is the number of test particles, is their size, and tpN s r and  are are, respectively,

the mean orbital radius and the radial width of the annulus that the particles occupy. In collisional

particle disks, collisions tend to isotropize the velocity distribution. The collision time is

 2
col 1 vt n s u , where is the one-dimensional random speed and is the volumetric

number density, which is related to

u vn

 via . Therefore 2
orbvn s ut

 orb
col

t
t


 . (2)

The collision time is longer than the orbital time by the u-independent factor 1  .

We capture this behavior with two-dimensional simulations in which all bodies have zero

inclination. For every time step dt, a two-dimensional square grid is built, with each grid element

having dimensions ; here, can be thought of as the size of a particle. If two test

particles fall in the same grid cell, and if their relative speed is negative (i.e., if they are

approaching each other), then they collide with each other with probability

grid grids s grids

col orb 1P dt t  ,

where is the orbital time at the collision point. A random number generator is used to

determine whether or not they actually collide.

orbt

To see that this algorithm gives the same collision time as equation (2) (where  is given

by eq. [1] with), it is instructive to consider first a simpler algorithm that also yields the

correct collision time. In this simpler algorithm, one waits for a time interval of (instead of dt)

before finding which particles fall in the same grid cell. Then two particles that do fall in the same

grid cell, and have converging velocities, collide with probability

grids s

orbt

col 1P  . Since the probability

that a given particle lies in a cell occupied by a second particle is  , the collision time is orbt  ,

as required. Turning now to the algorithm that we actually use, since we apply this algorithm

every time interval dt (and not), we must correspondingly reduce the probability of a

collision by

orbt

orbdt t in order to maintain the collision time at the value given by equation (2).

Although carried out in only two dimensions, we emphasize that our algorithm models

three-dimensional disks in which collisions maintain inclinations that are comparable to the

random eccentricities. A truly two-dimensional disk is not realistic, because collisions invariably

generate out-of-plane velocities. But if one could somehow prevent the generation of out-of-plane

velocities, the collision time in such a disk would be  s u , which differs from equation (2)

by the factor orbs ut . Since our algorithm satisfies equation (2), it does not model truly

two-dimensional disks.

As will be shown below, collisions drive the random speed of the particles to grid orbu s t .

Hence, if two particles fall in the same grid cell at one time, they will usually fall in separate grid

cells after one orbital period. Since collisions can potentially occur every time step, it might be

thought that the same two particles can collide many times in succession—a behavior that we

consider undesirable. But this behavior is avoided by the requirement that particles must be

approaching each other for a collision to occur; immediately after they collide, their relative

velocities reverse signs, and they are no longer candidates for a collision pair.

One of the main advantages of our algorithm is that the time step is not restricted by the

Courant condition. In a naive bruteforce algorithm, one must restrict dt s u in order to

ensure that any two particles that fall within a distance s of each other collide. This restriction on

dt can be very cumbersome when orbu s t , as it will be whenever planets stir up the

eccentricities. We avoid the Courant condition by treating the vertical dimension statistically:

when two particles fall within the same two-dimensional grid cell, they need only collide a small

fraction of the time because their vertical positions will, in general, differ. With our algorithm, we

may choose dt to be as large as is allowed by the integrator, which is typically a significant

fraction of the orbital time.

If two particles have been selected for a collision, i.e., if they lie in the same grid cell, are

approaching each other, and are selected by the random number generator, then their velocities are

updated as though the bodies were frictionless spheres whose surfaces touch (e.g., Trulsen 1971):

the component of the relative velocity vector that lies parallel to the axis connecting the two

particles is reversed in sign (from a converging velocity to a diverging one) and multiplied by the

coefficient of restitution  , i.e., in obvious notation,

rel, rel,u u    . (3)

Neither the perpendicular component of the relative velocity vector, nor the velocity of the center

of mass of the two colliders, nor the positions of the colliders are changed by the collision. A

collision does not alter the sum of the angular momenta of both colliding bodies; hence the

collision algorithm exactly conserves total angular momentum. Note that a collision between two

particles separated by distance d changes the velocities of the particles as though each were a

smooth sphere with radius d/2. Since d changes from collision to collision, the particles’ sizes are

effectively changing; they are only approximately . grids

The algorithm has now been completely described, aside from how the code finds which

pairs of particles lie in the same grid cell. To find colliding pairs, the code first determines in

which grid cell each particle lies. A grid cell is labeled by two integers representing its location

along the x- and y-axes. Second, the code sorts the grid cells that contain test particles with the

heapsort algorithm (Press et al. 1992). The sorted occupied grid cells are then checked to see if the

same grid cell is repeated for two different particles. The step that takes the most time in the entire

collision algorithm is the heapsort, which requires operations. tp tplnN N

A ring diffuses in the time that it takes a particle to random walk across its width. This

random walk has a step-size equal to the epicyclic excursion of a particle () and a time per

random step of . Thus, to diffuse the width of the ring

grids

colt  takes a time

2

diff col col
grid

t t t
s

 
  
 

  , (4)

where the inequality holds when grids ; otherwise, until . Since diff colt t grids 

1colt n   , where tpn dN dr is the number of particles per radial distance, a ring

expands as 1 3t  .

 We used a hybrid symplectic/Bulirsch-Stoer integrator instead of a traditional mixed-variable

symplectic integrator. The integration scheme for the second-order hybrid integrator is as follows.

(i) The coordinates remain fixed. Each body receives an acceleration owing to the other bodies

(but not the Sun), weighted by a factor K, lasting for dt/2.

(ii) The momenta remain fixed, and each body shifts position by an amount 2ii
t p M .

(iii) Bodies not in an encounter move on a Keplerian orbit about the Sun for dt. For bodies in an

encounter, the Kepler terms, and the close encounter terms weighted by (1-K), are integrated

numerically for dt.

(iv) As step (ii).

(v) As step (i).

3. Simulations and early results

Firstly, we used circular rings of particles without any planets as a comparison test to the

origin paper L07. The parameters of the simulation include the coefficient of restitution (), the

size of a grid element (), the number of test particles (), and the initial orbital elements of

the test particles. For the test run, the mass of the particles are set to 0. The central body’s mass is

1

grids tpN

M .We simulate narrow rings with mean radius 1 AUr  and radial width r , and

choose dt =0.18 yr for the integration time step.

Because of the steep dependence of the diffusion timescale on the width of the ring, ,

it takes a long time to simulate even a modest increase in

3t  

 . Simulation parameters must be

chosen judiciously. We fix 0.3  , and 4
tp 10N  1 AUr  , and seek the optimal values

for and grids 0 0t  . To simulate as large an increase in  as possible, the simulation

should begin with as narrow a ring as possible. For a fixed , the narrowest ring that is not

optically thick has unity optical depth

grids

 2

0 tN sp grid 2 r 

0 s

. The fastest timescale is obtained

with the smallest . But we must have 0 grid  , so the optimal values are

0 grid tp2s r N   . Rounding up, we set . Initially, the ring particles

were uniformly distributed in a ring with edges at . We plot a histograms of

the ring particles number counts vs. radius at t = 0, 1000 and 100 000 yr in Fig. 1, and it is in

excellent agreement with Fig. 4 of L07, which shows the density evolution in a diffusing ring.

3 A

) A

0 gr U

41 (5 0 U 

id 10

1

s 

Fig.1. Density evolution in a diffusing ring. Histograms of the ring particles number counts are shown at t = 0,

1000 and 100 000 yr from the test simulation.

Secondly, as the test run showed that the implementation of the algorithm to MERCURY was

successful, we put a big body inside the ring as a moonlet to simulate the Saturn ring scenario. The

moonlet has a mass of 6
moon 3 10M M   , and the initial position of the moonlet is at

, in Cartesian Coordinates, therefore the Hill Radius of the moonlet is 0 1 AUx  0 0 AUy 

1 3

2moon
H 10 AU

3

M
R r

M
 

  
 

. (5)

The radius of the moonlet was set to , same as the . In order for the ring

to not diffuse too much during the time of the run which is about 50 yr, and wide enough for the

moonlet to be imbedded in, but also not to be too optically thin to keep a good resolution, we set

with the ring edges at , which is about 10 times of

3
moon 10 AUR 

21 (5 10) A 

grids

1
0 10 AU  U HR , the

ring particles are still massless, and all the other parameters are the same as the test run. Fig. 2, 3,

4 and 5 shows positions of the moonlet and all the ring particles at 0, 1, 10 and 50 yr accordingly.

Fig. 3 shows the moonlet created a partial gap in the disk with a propeller structure around it, but

as the integration continues, the partial gap spreads out and finally forms a full gap, as shown in

Fig.4 and 5. We think this is due to the initial setting of the parameters that the viscosity of the

disk is not big enough comparing to the real Saturn ring. We also did a simulation that gives all

the ring particles the same mass 16
p 3 10M M   , and kept all the other parameters the same

as the last run, and the results look the same.

Fig.2. Positions of the moonlet and all the ring particles at t=0 yr.

Fig.3. Positions of the moonlet and all the ring particles at t=1 yr.

Fig.4. Positions of the moonlet and all the ring particles at t=10 yr.

Fig.4. Positions of the moonlet and all the ring particles at t=50 yr.

4. Summary and outlook

In this work, we imply a simple, fast algorithm developed in L07, which numerically evolves

disks of inelastically colliding particles surrounding a central star, to the N-body simulation code

MERCURY. We use hybrid symplectic integrator to simulate a moonlet in the Saturn ring

scenario, and produced a propeller structure around the moonlet which opens a partial gap in the

ring. However, the initial settings of the parameters need to be adjusted in order to fit the real disk

viscosity in order to maintain the partial gap.

 The next steps of the work would be to find out the best combinations of the free parameters,

namely , , and gridr s  ; to apply the code on the propellers in Saturn's rings and compare

with the observations, and to optimize the code, maybe parallelize it.

5. Acknowledgements

We thank the organizers of the 2011 ISIMA held in Peking University for pro-

viding this great opportunity of collaborative research.

References

Chambers J. E., Migliorini F., 1997, BAAS, 29, 1024

Chambers J. E. 1999, MNRAS, 304, 793

Crida, A., Papaloizou, J. C. B., Rein, H., Charnoz, S., & Salmon, J. 2010, AJ, 140, 944

Lithwick Y. & Chiang E. 2007, ApJ, 656, 524

Levison, H. F., & Duncan, M. J. 1994, Icarus, 108, 18

Pan F. & Chiang E. 2010, ApJL, 722, L178

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical Recipes in FORTRAN: The

Art of Scientific Computing (2nd ed.; Cambridge: Univ. Press)

Rein, H., & Papaloizou, J. C. B. 2010, arXiv:1006.1643

Salo, H. 1995, Icarus, 117, 287

Tiscareno, M. S., et al. 2010, ApJ, 718, L92

Trulsen, J. 1971, Ap&SS, 12, 329

Wisdom, J., & Holman, M. 1991, AJ, 102, 1528

