
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Automated testing tool for PLC based industrial applications

Permalink
https://escholarship.org/uc/item/0bw1m6mp

Author
Zhang, Feng

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0bw1m6mp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

AUTOMATED TESTING TOOL FOR PLC BASED INDUSTRIAL APPLICATIONS

A Thesis submitted in partial satisfaction of the requirements

for the degree Master of Science

in

Computer Science

by

Feng Zhang

Committee in charge:

 Professor Bill Howden, Chair
 Professor Rajesh Gupta
 Professor Ingolf Krueger

2011

Copyright

Feng Zhang, 2011

All rights reserved.

iii

The Thesis of Feng Zhang is approved and it is acceptable in quality and form for
publication on microfilm and electronically:

Chair

University of California, San Diego

2011

iv

DEDICATION

To my wife, Yinghui, who gave me unconditional support throughout the course

of this thesis.

v

TABLE OF CONTENTS

Signature Page ... iii

Dedication .. iv

Table of Contents ...v

List of figures ... vi

List of Tables .. vii

Acknowledgements .. viii

Abstract .. ix

Chapter 1. Introduction ..1

1.1 PLC in Control Systems...1

1.2 Software Testing in Control Systems ..4

Chapter 2. PLC Programming Languages ...7

2.1 Ladder Logic ..7

2.2 Function Block Diagram (FBD) ..8

2.3 Sequential Function Charts (SFC) ...9

2.4 Structured Text (ST) ..10

Chapter 3. Review of PLC Testing Methods ...13

3.1 Hardware Test Stand ..13

3.2 HMI Based Simulator ..14

3.3 New Approach: “Virtual” Simulator ...15

Chapter 4. LogixPlcTester ...16

4.1 Design Diagram ...17

4.2 Inhibit PLC I/O Modules ...19

4.3 Application Overview ..21

4.4 Test Case Structure ..23

4.5 Create Test Case ..24

vi

4.6 Create an Output Tag ...28

4.7 Create an Oracle Tag ...30

4.8 Create an Alarm Tag ..31

4.9 Online Edit ...33

4.10 LogixPlcTester as an Operator Console / a Logger ...34

4.11 Data flow Path..35

4.12 Test Case Example ...36

4.13 Validate and Run Test Case ...45

4.14 Control Graph ..47

4.15 Import and Export ..52

Chapter 5. Experiment ...55

5.1 System Overview ...55

5.2 Software Design ...56

5.3 Testing with LogixPlcTester ..58

5.4 Results ..66

Chapter 6. Related Work ..96

Chapter 7. Conclusion and Future Work ...100

7.1 Conclusion ...100

7.2 Future Work ...101

References ..103

Appendix A. PLC Program Structure Diagram ...104

vii

LIST OF FIGURES

Figure 1.1: Typical PLC configuration. ...2

Figure 1.2: PLC scan cycle. ...3

Figure 2.1: (a) Hardware switch circuit diagram. (b) PLC Ladder Logic diagram.7

Figure 2.2: A sample Function Block Diagram program. ...8

Figure 2.3: A sample Sequential Function Chart program. ...9

Figure 2.4: A sample Structured Text program. ..11

Figure 2.5: PLC project task scheduling example. ..12

Figure 3.1: Typical hardware Test Stand. ..13

Figure 3.2: Allen Bradley PanelView I/O simulation screen. ...15

Figure 4.1: LogixPlcTester design concept diagram. ..18

Figure 4.2: Inhibit PLC I/O modules. ..20

Figure 4.3: LogixPlcTester application overview. ...22

Figure 4.4: A typical test case structure. ..23

Figure 4.5: A test case XML file in Microsoft XML Notepad 2007.26

Figure 4.6: Create a new test case in LogixPlcTester. ...27

Figure 4.7: New Test case dialog. ..27

Figure 4.8: Define a new PLC in LogixPlcTester. ...27

Figure 4.9: New PLC dialog. ...28

Figure 4.10: A PLC with three empty tag lists in LogixPlcTester...28

Figure 4.11: Create a new output tag in LogixPlcTester. ..29

Figure 4.12: New Output Tag dialog (for Time Trigger). ...29

Figure 4.13: New Output Tag dialog (for Condition Trigger). ..30

Figure 4.14: New Oracle Tag dialog..31

Figure 4.15: New Alarm Tag dialog. ...32

Figure 4.16: Tag Details Window in LogixPlcTester. ...34

Figure 4.17: LogixPlcTester data flow path. ...36

Figure 4.18: Pump-Tank control scenario overview. ...37

Figure 4.19: Log messages of a test case for the Pump-Tank control logic.40

viii

Figure 4.20: Deactivate an Output Tag. ...44

Figure 4.21: “Pump failed to stop” alarm log message. ..45

Figure 4.22: A running test case window in LogixPlcTester. ..47

Figure 4.23: GLG Graphics Editor. ...48

Figure 4.24: Animate a tank object in GLG. ...49

Figure 4.25: A pump control test case. ..50

Figure 4.26: Open a GLG graphical display in LogixPlcTester. ...51

Figure 4.27 Graphical display for a pump control system. ..51

Figure 4.28: Import/Export a test case. ..53

Figure 4.29: Test case sample report. ..54

Figure 5.1: Emergency Power System overview in a LogixPlcTester graph.58

Figure 5.2: a FSM model for the Emergency Power system. ..60

Figure 5.3: Logical structure of a LogixPlcTester test case. ..61

Figure 5.4: Scenario 5 for the Emergency Power System. ..62

Figure 5.5: Log messages of running scenario 1 and 6 in LogixPlcTester.64

Figure 5.6: Log messages of the NP-AFeedB sequence. ...71

Figure 5.7: System state update diagram. ..77

Figure 5.8: A code example for demonstrating scan methods. ..84

Figure 5.9: A timer related bug in the sequence NP-BFeedA. ..88

Figure 5.10: Examples of AND and OR instructions. ...90

Figure 5.11: Equivalent logic of Figure 5.6 according to Demorgan's Laws.90

Figure 5.12: A logic that violated Demorgan's Laws. ...91

Figure 5.13: Fixes for the ladder code in Figure 5.12. ...91

Figure 6.1: RSTestStand operator console. ..97

Figure 6.2: RSTestStand flowchart. ...98

ix

LIST OF TABLES

Table 4.1: Test case XML elements and attributes. ...25

Table 4.2: Supported PLC data type. ...25

Table 4.3: Supported operators for Alarm Expression. ...33

Table 4.4: PLC tags for pump-tank control logic. ...37

Table 4.5: Pump-Tank control test case definition. ...38

Table 5.1: A sequence example. ..58

Table 5.2: PLC ladder instructions used in the bug examples. ..67

Table 5.3: System states used in the bug examples. ..68

Table 5.4: PLC variable name abbreviations used in the bug examples.68

Table 5.5: Truth table for Figure 5.5. ...85

x

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Bill Howden for advising my thesis and

for his support as the chair of my committee.

I would also like to acknowledge Professor Rajesh Gupta and Professor Ingolf

Krueger for their supports as the members of my committee.

xi

ABSTRACT OF THE THESIS

AUTOMATED TESTING TOOL FOR PLC BASED INDUSTRIAL APPLICATIONS

by

Feng Zhang

Master of Science in Computer Science

University of California, San Diego, 2011

Professor Bill Howden, Chair

PLCs (Programmable Logic Controllers) are the work horse of industrial control

systems. Industrial control systems are usually both mission-critical and safety-critical

systems. A single software bug in a control system program could cause hardware

equipment damage and human life loss. The PLC programs in control systems must

provide bug-free and failure-free behaviors in order to avoid accidents. A PLC program

must be completely tested for correctness in functionality, reliability, predictability, and

safety before it’s released for production systems. At a PLC program development stage,

xii

hardware devices in the industrial control system are usually not available for testing the

PLC program for safety reasons. The often used solution is to use a simulator to simulate

the hardware devices’ behaviors. The simulator is usually built as a hardware test stand

which consists of toggle switches, lamp indicators, and analog signal generators. The

shortcoming of this kind of simulators is they are not automated and require lots of user

interactions. As a result, they cannot guarantee the accuracy of behaviors of the hardware

devices being simulated.

This research presents an automated testing tool which automates the hardware

device simulation process by using “virtual” wires. The hardware device simulation is

part of a test case which is defined in the presented testing tool and downloaded to the

PLC controller. This testing tool requires no user interaction during a test run so it

reduces the testing cost and time and it can precisely simulate the behaviors of hardware

devices.

1

Chapter 1. Introduction

1.1 PLC in Control Systems

PLC stands for Programmable Logic Controller. A PLC is essentially an

embedded system which consists of a programmable microcontroller and a variable

number of I/O modules. An I/O module has a variable number of I/O channels which are

wired to the hardware devices in the field. A PLC is designed as a hard real-time system

that monitors the inputs (which are wired to sensors like level sensor, pressure sensor, pH

sensor, or temperature sensor) and controls output actuators such as pumps, valves,

generators, or boat locks in real-time. Figure 1.1 shows a typical PLC hardware

configuration. PLC controllers are usually RISC (reduced instruction set computer)

microprocessor. PLC was invented to replace hardware relay logic circuits. When it was

first invented in 1960s, a PLC could only be programmed by a specialized program called

ladder logic which is similar to a schematic of relay logic. Now the modern PLCs support

multiple languages defined by IEC61131 standard (which is an international standard for

PLC programming languages). The five languages defined in IEC61131-3 standard are

Ladder Diagram (LD), Instruction List (IL), Structured Text (ST), Function Block

Diagram (FBD), and Sequential Function Charts (SFC). Allen Bradley’s Logix PLCs

support all languages but IL. IL is mostly used in European PLCs like Siemens PLC. IL

is the European counterpart of LD. A PLC program consists of multiple routines and each

routine can be programmed in any language supported by the PLC. This allows the PLC

programmer to choose the language that is best suited for each individual task. Only one

program can be downloaded to a PLC. A PLC executes its program repeatedly. Each

2

execution iteration is called a scan cycle. The time consumed for a PLC scan cycle is

very fast, in the units of milliseconds. Figure 1.2 shows the major steps of a PLC scan

cycle. At the Scan Input step, the PLC reads the real-time values of the sensors that are

connected to the PLC input modules and records the values in memory. At the Execute

Program step, the PLC executes the program synchronously (from left to right and top to

bottom) based on the real-time input values recorded in memory. At the Update Outputs

step, the PLC updates the outputs (to the actuators) based on the results of executing the

program in the current scan cycle. The I/O values are updated asynchronously.

Controller Input Modules Output Modules

Sensors Actuators

Figure 1.1: Typical PLC configuration.

3

Figure 1.2: PLC scan cycle.

PLCs have made major contributions to industrial automation and they are widely

used in the industrial automation control systems. As mentioned earlier, PLCs were

originally invented to replace the hardware relays. But as the PLC technology advanced,

PLCs provide more and more functionality and play more important roles in industrial

automation control systems. Today’s PLCs provide faster scan cycle time by using high

performance CPU chips, drive high-density I/O systems including wireless I/Os, support

more popular industrial communication protocols such as DNP3.0, Modbus, Ethernet/IP,

and Profibus, provide redundancy for CPU and I/O, and support various I/O signal types

such as discrete, analog (current/voltage), RTD (Resistance Temperature Detector), high

speed pulse, and SOE (Sequence of Events) [1]. All these new PLC features allow them

to accommodate more complex applications. PLCs are widely used as the reliable plant-

4

level controllers and deliver a wide range of functionality for relay control, motion

control, process control in Distributed Control Systems (DCS) and Supervisory Control

and Data Acquisition (SCADA) systems in various of industries including water/waste

water, power, automotive, packing, food, and pharmaceutical.

1.2 Software Testing in Control Systems

Industrial control systems are usually mission-critical and safety-critical real-time

systems. A real-time system must guarantee both logical correctness and temporal

correctness. A PLC program should be designed and developed as a hard real-time

application that must guarantee the response time to handle all events even in the worst

case scenarios. If a signal process is delayed by a PLC then a system failure could occur.

For example, a PLC is used in a power generation system to control a power generator.

The PLC must verify that the generator’s frequency, voltage and phase angle are

synchronized with the power grid before it can output a command to close the main

breaker to connect the generator to the power grid. If the PLC closes the main breaker

when the frequency, voltage, or power phase angle is not synchronized between the

generator and the power grid the hardware equipment such as circuit breakers could be

damaged. Nevertheless, if the PLC has a one-second delay for outputting the main

breaker close command after it confirms the generator and the grid are synchronized it

will also cause the same problem due to a temporal failure.

Software Testing is a very important stage in the software development life cycle

in general-purpose systems. It’s even more important in industrial control systems. In

software development for an industrial control system application, you want to find as

5

many bugs as possible before you release the application program for the control system.

As mentioned before, control systems are usually mission-critical and safety-critical

systems. A bug in a production control system could damage the controlled hardware

devices and could even cause human life loss. So testing is extremely important and

critical in control systems vs. in general-purpose systems.

A program in a control system is essentially a black box which takes some inputs

and generates some outputs based on the inputs. Inside the black box it’s the control

logic. It also can be put in this way, a control program answers “what-if” questions. If the

program covers all possible operation scenarios it most likely will answer all the “what-

if” questions correctly. However this is a tough task. Often times, when a control system

goes into an unknown condition or an unexpected condition the control program may not

know how to react. It just sits there and does nothing instead of commanding the system

to a safe state. This is very dangerous in safety-critical system. If the control program

fails to handle a control scenario an accident could happen and that could cause hardware

device damages and even human life loss. A control program in a safety-critical system

must provide failure-free behavior by considering all possible operation scenarios. A

simple example is a control program ignores the quality bit of an analog I/O point from a

sensor. In this case, the control program will continue to use the I/O value of the analog

point even after its quality bit became bad (due to a broken sensor). The control program

will use the wrong reading for its control logic and eventually will make incorrect control

decisions. For example, in a pump control scenario, the pump starts to fill water into a

tank when the tank level is low and stops to fill water when the tank level is high. While

the pump is running to fill water, the tank level sensor becomes defective. As a result the

6

tank level reading stops updating. But the actual tank level is still rising. Since the control

program doesn’t check the quality bit of the tank level signal, it will continue to actuate

the pump (instead of stopping the pump and generate a sensor failure alarm). Eventually

the tank will overflow. This is a real example that shows why a control program should

consider all possible operation scenarios and all possible device failures (broken sensors,

jamming actuators) at the software development stage. The program must be tested

against expected failures as well as unexpected failures at the testing stage in order to

prove the correctness of handling system failures. Ensuring high reliability of a PLC

program is critical in industrial control systems.

7

Chapter 2. PLC Programming Languages

The Allen Bradley CompactLogix PLC and ControlLogix PLC support four

languages defined in the IEC61131-3 standard and they are Ladder Diagram (LD) [2],

Function Block Diagram (FBD) [3], Sequential Function Charts (SFC) [4], and

Structured Text (ST) [5].

2.1 Ladder Logic

Ladder Logic is the most often used language in PLC programming because it

was the first and only supported language when PLC was invented; it’s made to mimic

the existing relay logic wiring schematics; it’s easy to debug. Using Ladder Logic

reduces the training needs for electricians, technicians and engineers to learn how to

program a PLC because they’re already familiar with the style of the Ladder Logic

diagram. Figure 2.1 shows a hardware switch circuit diagram and a PLC Ladder Logic

diagram for the same lamp control circuit.

Figure 2.1: (a) Hardware switch circuit diagram. (b) PLC Ladder Logic diagram.

8

2.2 Function Block Diagram (FBD)

Function Block Diagram (FBD) is a graphical programming language. The basic

element of FBD is called a block. A block describes a function between input variables

and output variables. A set of function blocks can be connected together (like an

electrical circuit) to form a new function. Inputs and outputs of blocks are connected by

connection lines. A function block encapsulates its implementation and it makes it

possible to develop modular programs and reuse them from one PLC project to another.

Figure 2.2 shows a Function Block Diagram program that buffers the value of a digital

input module and maps the buffered value to an internal pump structure.

Figure 2.2: A sample Function Block Diagram program.

9

2.3 Sequential Function Charts (SFC)

Sequential Function Charts (SFC) is another graphical language supported by

Allen Bradley Logix PLCs. It’s designed for complex sequential process controls. The

basic elements in SFC are step, action, and transition. A step defines a major function of

the control process. It contains the actions that execute at this step. An action is one of the

functions that a step performs. A transition is a condition that is checked before the SFC

can go to the next step. Sequential Function Charts are similar to flowcharts and they are

the industrial implementation of Petri Net.

Figure 2.3: A sample Sequential Function Chart program.

Figure 2.3 shows a 3-step SFC program. Each step has a single action. A transition is

defined between two consecutive steps to determine when the process control can move

to the next step. SFC simplifies the logic for a complex sequential control by a

10

graphical representation. With SFC It becomes very easy to design and troubleshoot a

PLC program. You can easily see what the program is doing and locate the logic where

the problem occurs during a process control sequence. SFC is self-documented.

2.4 Structured Text (ST)

Structured Text (ST) is a high-level procedural language that is similar to the

Basic language or the Pascal language. Structured Text is very useful when developing

complex functions in the PLC such as complicated math calculations or algorithms.

People who are familiar with high-level programming languages will feel comfortable to

program a PLC in Structured Text. Structured Text programs can be created and edited in

any Text Editor. Most of the modern PLCs support Structured Text language. However,

debugging a Structured Text program can be very hard because there is no any debugger

available for Structured Text in the PLC program development environment. Therefore,

Structured Text is not an ideal language for developing process control logics because in

Structured Text you cannot track which stage the program is currently running at. Figure

2.4 shows a Structured Text program that calculates pump runtimes.

11

Figure 2.4: A sample Structured Text program.

Multiple programming languages can be used in the same PLC program. In order to

choose an appropriate language, many factors need to be evaluated such as the

programmers’ skill, the complexity, modularity, and structure of the programming task,

12

the type of control logic of the application, who will troubleshoot and maintain the

program, and how often the program needs to be modified. A right choice of the

programming language will shorten both development time and troubleshooting time and

deliver more efficient and reliable programs.

An Allen Bradley Logix PLC controller is a preemptive, multitasking controller.

A single PLC project runs in a PLC controller, which supports multiple tasks. Each task

supports multiple programs and each program supports multiple routines. Logix PLC

supports three types of tasks: Continuous, Periodic, and Event. A continuous task has the

lowest priority so it can be interrupted by a periodic task or an event task. Figure 2.5

shows an example of scheduling three tasks. T1 and T2 are periodic tasks and T1 has a

higher priority than T2. T1 runs every 10ms and it takes 2ms to run. T2 runs every 7

seconds and it takes 4ms to run. T3 is a continuous task.

Figure 2.5: PLC project task scheduling example.

3

g

fr

an

pr

to

in

d

F

g

sw

L

th

.1 Hardwa

Since

enerators in

rom the field

nd they may

rograms in s

o help develo

n the testing

evices in the

Figure 3.1: T

The T

enerators, an

witches and

LED indicato

he following

Chapter

are Test S

PLC progra

the field, it’

d to the test e

y be still wor

such product

op the PLC p

stage. A har

e field. Figur

Typical hard

Test Stand is

nd meters th

the analog s

ors and the m

g disadvantag

r 3. Review

tand

ams control m

s almost imp

environment

rking in the p

tion systems

program dur

rdware Test

re 3.1 shows

dware Test

made by ma

at are wired

signal genera

meters are us

ges and limit

13

w of PLC T

massive hard

possible to p

t. The hardw

production s

s. Therefore,

ring the deve

Stand is ofte

s a picture of

Stand.

any LED ind

to the PLC’

ators are use

ed to indicat

tations:

Testing M

dware device

physically m

ware devices

systems, it’s

 a PLC I/O s

elopment sta

en used to si

f a typical H

dicators, togg

’s input and

ed to simulat

te the PLC o

Methods

es such as pu

move the hard

are usually

impossible t

simulation sy

age and test t

imulate the I

Hardware Tes

gle switches

output modu

te the sensor

outputs. The

umps, valve

dware device

very expens

to test the PL

ystem is req

the PLC pro

I/Os of hardw

st Stand.

s, analog sign

ules. The tog

inputs and t

Test Stand h

s,

es

sive

LC

quired

gram

ware

nal

ggle

the

has

14

1. It’s expensive and limited to the number of I/O channels it’s designed for

2. It requires the physical presence of all the PLC I/O modules because the signals

from the Test Stand will need to be wired to the PLC’s I/O modules.

3. It requires user interaction during a test run. In a complex process control, it’s

difficult to simulate multiple signals in a certain sequence or to simulate multiple

signals simultaneously.

4. It’s a manual simulation and cannot conduct automatic simulation.

3.2 HMI Based Simulator

Another approach that is often used for simulating the PLC I/Os is a HMI (Human

Machine Interface) based software simulation. In this approach, a HMI control screen is

developed and used for the PLC I/O simulation. The HMI control screen can be made as

a SCADA system screen or a standalone Operator Terminal screen. Figure 3.2 shows an

Allen Bradley Operator Terminal (called PanelView [6]) screen. Since this is a software

simulator it eliminates the requirement of the PLC I/O modules. However, it is still a

manual simulation and it’s time-consuming to make the I/O simulation screens

themselves. A HMI based simulator can be used to test all functions of a PLC program.

But the timing between a command and the response for the command is not automated.

It requires user interaction to click a button on the screen to trigger each I/O simulation.

So it cannot be used for automatic control sequence simulation and the accuracy of a test

depends on the user’s actions too.

F

3

si

w

so

d

te

P

Figure 3.2: A

.3 New Ap

This r

ignals via “v

wires connect

oftware deve

evelopment

esting. The g

LC program

Allen Bradle

pproach: “

research prop

virtual” wire

ted between

elopers and t

stage and th

goal of this to

ms for industr

ey PanelVie

“Virtual”

poses an aut

s and autom

LogixPlcTe

testers test P

he testing sta

ool is to assu

rial control s

ew I/O simu

Simulator

omated testi

mate the test e

ester and the

PLC program

age. It can be

ure quality o

systems.

ulation scree

r

ing tool that

execution. T

e PLC being

ms during the

e used for bo

of PLC progr

en.

can simulat

There are no p

tested. This

e entire softw

oth unit testin

rams and to

e the PLC I/

physical har

tool helps P

ware

ng and syste

deliver relia

15

/O

rd

PLC

em

able

16

Chapter 4. LogixPlcTester

To overcome the shortcomings of the hardware Test Stand and the HMI based

simulator, this research presents a Windows based application called LogixPlcTester that

can precisely simulate behaviors of hardware devices in the field. LogixPlcTester can

automatically read the outputs of the PLC and simulate inputs to the PLC by sending

values directly to the input memory of the PLC controller based on inputs’ trigger events

(either time-based event or condition-based event). Unlike the other simulation methods,

LogixPlcTester doesn’t require the presence of any PLC I/O module in order to simulate

signals. LogixPlcTester is connected to the PLC that is being tested through “virtual”

wires. LogixPlcTester doesn’t require user interaction in order to run the simulations.

LogixPlcTester has the following main features:

 Define test cases offline.

 Run test cases against the PLC program.

 Simulate incidents occurring in the production system.

 Simulate “odd ball” cases that cannot be tested in the production system.

 Verify bug fixes before applying the production system.

 Good for both unit testing and system testing.

 Can be also used as a good training system that can demonstrate how the

system works in every scenario.

 A good troubleshooting tool for debugging PLC programs when it’s set to

monitor-only mode.

17

4.1 Design Diagram

In a typical PLC-based industrial control system, all the field hardware devices’

feedback signals are wired to the PLC’s input modules, and the PLC control output

signals (sent from the PLC’s output modules) are wired to the actuators of the field

hardware devices. The PLC knows the status of the field hardware devices by reading the

input signals and the PLC control program runs based on the input signals and generates

output signals to control the field hardware devices. The diagram at the left hand side of

Figure 4.1 shows a typical industrial PLC control system. The diagram at the right hand

side of Figure 4.1 shows the concept diagram of the automated testing tool presented in

this research. Instead of connecting the real devices to the PLC using real wires, the

presented testing tool acts as a virtual device or virtual devices and connects to the PLC

through virtual wires. LogixPlcTester is the name of the automated testing tool

application and is programmed with C# language in Visual Studio 2005. LogixPlcTester

simulates the field hardware devices’ signals by sending the configured signals in the test

case as sequence of events (time triggered simulation). LogixPlcTester can also read the

PLC control output signals and based on the PLC output signals it can send the

configured signals to the PLC (condition triggered simulation). The diagram at the

bottom of Figure 4.1 shows the system diagram at the network level. LogixPlcTester

communicates with the PLCs using Ethernet/IP protocol [7]. Ethernet/IP stands for

Ethernet Industrial Protocol which was originally developed by Rockwell automation (the

vendor of Allen Bradley PLCs). Ethernet/IP is an application layer protocol. Ethernet/IP

uses all the transport and control protocols of standard Ethernet including Transport

18

Control Protocol (TCP), the User Datagram Protocol (UDP), the Internet Protocol (IP)

and the media access and signaling technologies. Ethernet/IP protocol is transferred in a

TCP/IP packet. Ethernet/IP uses an open application layer protocol called Common

Industrial Protocol (CIP).

Figure 4.1: LogixPlcTester design concept diagram.

19

As shown in Figure 4.1, Ethernet/IP protocol has been implemented in the PLC

controller’s firmware, which allows direct read from and direct write to the PLC’s input

and output memory. LogixPlcTester uses the corresponding packets of Ethernet/IP to

read data from the PLC and write data to the PLC.

4.2 Inhibit PLC I/O Modules

In order for LogixPlcTester to work correctly, no code change is required in the PLC

program that is being tested. However, a PLC I/O module configuration change (in the

PLC project file) may be required in order to disable the communications between the

PLC controller and its I/O modules. During testing, since LogixPlcTester will simulate

values for all the PLC input modules by directly updating the PLC’s input memory, we

need to make sure that the PLC controller won’t update its input memory with the

hardware values read from the input modules. We can disable the communication

between the PLC controller and an I/O module by inhibiting the module. Figure 4.2

shows the I/O modules at slot 2 to 15 are inhibited in a PLC project. The communications

between the PLC controller and the output modules can be left enabled as far as

LogixPlcTester is concerned. However, we want to disable them as well from the safety

standpoint. For example, if the PLC controller updates its output memory during a test it

will energize the relay outputs based on the program execution results and that may

accidently actuate the field hardware devices if they were wired to the PLC that is being

tested and that may cause some unexpected incidents and damages to the hardware

devices. The module inhibition step can be ignored if an I/O module is not physically

present in the PLC rack because the PLC controller doesn’t update the I/O memory for a

m

co

te

th

pr

h

F

module if it c

onfiguration

ests in Logix

he productio

roject in ord

ardware valu

Figure 4.2: I

cannot comm

n change (not

xPlcTester. A

n system, th

der to allow t

ues while ru

nhibit PLC

municate with

t a code chan

After all the t

he Inhibit Mo

the PLC con

unning in the

 I/O module

h the module

nge) it won’

tests are com

odule checkb

ntroller to up

 production

es.

e. Because th

’t reduce the

mplete, befor

boxes must b

pdate its I/O m

system.

the module in

 level of trut

re installing

be unchecke

memory wit

nhibition is

thfulness of

the program

ed in the PLC

th the real-tim

20

a

the

m in

C

me

21

4.3 Application Overview

LogixPlcTester is a Windows .NET application developed with C# language in

Microsoft Visual Studio 2005. LogixPlcTester creates customized test cases in an

Extensible Markup Language (XML) format. Test case XML files can be shared among

QA engineers. LogixPlcTester displays a test case in a tree view structure. Users can edit

a test case either online or offline. LogixPlcTester displays real-time values of PLC tags

defined in a test case and it supports online changes on the fly while a test case is

running. A log view feature is supported to log alarms, tag value change notifications,

system operation messages online in a spreadsheet format. The logs can be exported from

LogixPlcTester to a Comma-Separated Values (CSV) file for further review. Once

initiated, a test case runs in LogixPlcTester automatically based on the time triggers and

condition triggers in the test case. Figure 4.3 shows the main application window of

LogixPlcTester.

22

Figure 4.3: LogixPlcTester application overview.

23

4.4 Test Case Structure

In LogixPlcTester, a test case supports multiple PLCs and each PLC consists of

three PLC tag lists that belong to different tag categories. Figure 4.4 shows a typical

structure of a test case in LogixPlcTester.

Figure 4.4: A typical test case structure.

In Figure 4.4, the test case that is called “Test Case #1” defined two PLCs (Pump

PLC and Tank PLC). Each PLC has Output Tags, Oracle Tags, and Alarm Tags.

24

An Output Tag is used to send a value to a tag in the PLC based on a time trigger

or a condition trigger while the test case is running. Output tags are responsible for

simulating field hardware devices by sending configured data to the PLC’s I/O channels

in real-time. An Oracle Tag is used to monitor the value of a PLC tag. Oracle tags read

values in a report-by-exception basis. Only changed values in the PLC are reported to

LogixPlcTester. The report-by-exception mechanism dramatically reduces the network

communication traffic between LogixPlcTester and the PLCs that are being tested. An

Alarm Tag is used to define a system operation alarm or to define an event trigger. For

example, you can use an Alarm Tag for a pump overload alarm. You can use an Alarm

Tag to monitor a pump run command sent by the PLC and configure an Output Tag that

uses the Alarm tag as a condition trigger to simulate a pump running signal once the

pump run command is detected by LogixPlcTester.

A tag name in LogixPlcTester must be identical to a tag name in the PLC. The

definition of a LogixPlcTester tag name is referred to the same tag name in the PLC.

4.5 Create Test Case

There are two ways to create a test case. One is to manually create an XML file

(using the elements and attributes definitions listed in Table 4.1) in any Editor and

another is to create it in LogixPlcTester.

As mentioned above, a test case definition is stored in a XML file. Table 4.1

shows the element and attributes that are used to define a test case. Figure 4.5 shows the

hierarchical structure of a test case XML file in Microsoft XML Notepad 2007 that is a

free XML editor.

25

Table 4.1: Test case XML elements and attributes.

Type Name Description
Element Test_Case Test case element
Attribute (of
Test_Case) Name Test case name

Attribute (of
Test_Case) Duration Test case execution time (in seconds)

Element PLC PLC element
Attribute (of PLC) Name PLC name
Attribute (of PLC) IP_Address PLC IP address
Element Output_Tag Output tag element
Element Oracle_Tag Oracle tag element
Element Alarm_Tag Alarm tag element
Element Tag Tag element
Attribute (of Tag) Name PLC tag name (it must resides in PLC)

Attribute (of Tag) Description PLC tag description (It should match the tag description
in PLC)

Attribute (of Tag) Active Enable/disable tag
Attribute (of Tag) Data_Type Data type of PLC tag name. See Table 4.2 for details

Attribute (of Tag) Write_Delay_Timer Time trigger (in seconds): time to elapse before the tag
value is sent to PLC

Attribute (of Tag) Output_Value Value to write to PLC tag
Attribute (of Tag) Event_Trigger An alarm tag that is used as event trigger for a PLC tag

Attribute (of Tag) Deadband Deadband for oracle tag. Tag value change within the
deadband won't be logged in LogixPlcTester

Attribute (of Tag) Enabled_Delay_Timer Event trigger is set to true after the condition has been
active for the defined time (in seconds)

Attribute (of Tag) Alarm_Expression Alarm or event trigger expression
Attribute (of Tag) Log_Option Log as event (for event trigger) or log as alarm

Table 4.2: Supported PLC data type.

Data Type Description Memory Bits Range
BOOL Boolean 1 0 or 1
SINT Short Integer 8 0
INT Integer 16 -128 to 127
DINT Double Integer 32 -2,147,483,648 to +2,147,483,647
REAL Floating Point 32 +/-3.402823E38 to +/-1.1754944E-38

F

1

2

3

4

Figure 4.5: A

The fo

1. Click Fil

appears a

2. In the Ne

(in secon

long the t

3. Click Fil

shown in

4. In the Ne

OK.

A test case X

ollowing bas

le > New… >

as shown in F

ew Test Cas

nds) of the te

test case wil

le > New… >

n Figure 4.9.

ew PLC dial

XML file in

sic steps sho

> Test Case

Figure 4.7.

se dialog, typ

est case then

ll run.

> PLC as sh

log, type in t

Microsoft X

ow how to cr

e as in Figure

pe in the test

click OK. T

hown in Figu

the PLC nam

XML Notep

reate a new t

e 4.6. The N

t case name

The executio

ure 4.8. The

me and the P

pad 2007.

test case in L

New Test Ca

and the exec

on duration s

New PLC d

PLC IP addre

LogixPlcTes

ase dialog

cution durati

specifies how

dialog appea

ess then click

26

ter:

ion

w

ars as

k

5

F

F

F

5. A test ca

that are c

Figure 4.6: C

Figure 4.7: N

Figure 4.8: D

se with one

created autom

Create a new

New Test ca

Define a new

PLC is creat

matically as

w test case i

se dialog.

w PLC in Lo

ted. Under th

shown in Fi

n LogixPlcT

ogixPlcTest

he PLC, ther

gure 4.10.

Tester.

ter.

re are three eempty tag lis

27

sts

F

F

4

th

in

th

T

W

sp

te

Figure 4.9: N

Figure 4.10:

4.6 Create

Outpu

hen click Ad

n Figure 4.12

he New Out

Trigger is sel

Write Delay

pecified as th

est case has b

New PLC di

A PLC with

an Outpu

ut Tags can b

dd as shown

2 (for time tr

put Tag dia

ected, the ou

Time has el

he Write De

been running

ialog.

h three emp

ut Tag

be added to t

in Figure 4.

riggered Out

alog changes

utput value w

lapsed after t

elay Time, t

g for 30 seco

pty tag lists

the Output T

11. The New

tput Tag). W

 its appearan

will be writte

the test case

then the valu

onds. When

in LogixPlc

Tag list. Righ

w Output Ta

When the Con

nce as shown

en to the tag

e is initiated.

ue will be wr

Condition T

cTester.

ht click on O

ag dialog ap

ndition Trigg

n in Figure 4

g in the PLC

 For exampl

ritten to the P

Trigger is se

Output Tags

ppears as sho

ger is selecte

4.13. When T

as soon as th

le, if 30 is

PLC tag afte

elected, the

28

s

own

ed,

Time

he

er the

ou

ac

F

F

utput value w

ctive for the

Figure 4.11:

Figure 4.12:

will be writt

amount of t

Create a ne

New Outpu

ten to the tag

time defined

ew output ta

ut Tag dialo

g in the PLC

d in the Cond

ag in LogixP

og (for Time

 after the Co

dition On_D

PlcTester.

e Trigger).

ondition Ta

Delay Time

ag has becom

parameter.

29

me

F

4

cl

u

ru

re

in

Figure 4.13:

4.7 Create

Oracle

lick Add. Th

sed to monit

unning statu

eadings of a

n LogixPlcT

New Outpu

an Oracle

e tags can be

he New Ora

tor PLC tags

s, tank level

tag so only t

ester. For ex

ut Tag dialo

e Tag

e added to th

acle Tag dial

s. For examp

, or device h

the values ou

xample, if th

og (for Cond

he Oracle Ta

log appears

ple, you can

health status.

utside of the

he deadband

dition Trigg

ag list. Right

as shown in

create oracle

. Deadband i

e deadband w

of a pipeline

ger).

t click on Or

Figure 4.14

e tags to mo

is used to eli

will be repor

e pressure is

racle Tags th

4. Oracle Tag

onitor pump

iminate simi

rted and logg

s set to 1 PSI

30

hen

gs are

ilar

ged

I,

th

b

F

4

cl

u

m

hen only valu

e seen in Lo

Figure 4.14:

4.8 Create

Alarm

lick Add. Th

sed to define

math parser h

ues that are a

ogixPlcTeste

New Oracle

an Alarm

m tags can be

he New Alar

e alarms or C

have been im

at least 1 PS

r.

e Tag dialog

 Tag

e added to th

rm Tag dial

Condition Tr

mplemented i

SI higher than

g.

he Alarm Tag

log appears a

riggers for O

in the applic

n (or less tha

g list. Right

as shown in

Output Tags.

cation to pars

an) the curre

click on Ala

Figure 4.15

 A lexical an

se the alarm

ent reading w

arm Tags th

. Alarm Tag

nalyzer and

expression.

31

will

hen

gs are

a

The

p

4

F

arser evalua

.3 shows the

Example

Pump_Ru

Pump_Ru

Example

running.

Pump_Ru

Pressure i

Figure 4.15:

tes an alarm

e math and lo

1: To detect

unning == 1

unning is a B

2: To detect

unning == 1

is a floating

New Alarm

m expression

ogical opera

t if a pump ru

Boolean tag i

t if there is a

&& Pressur

point tag in

m Tag dialog

and returns

ators support

unning.

in the PLC.

pressure is g

re > 80

the PLC.

g.

the value of

ted in an Ala

greater than

f the alarm ex

arm Expressi

80 PSI whil

xpression. T

ion.

le a pump is

32

Table

33

Table 4.3: Supported operators for Alarm Expression.

Math Operators Logical Operators

+, -, *, /, ^, % !, ==, !=, ||, &&, >, < , >=, <=

4.9 Online Edit

Once a test case is loaded in LogixPlcTester, it can be edited online. Figure 4.16

shows a Tag Details Window in which you can make change to the tag’s configuration.

While a test case is running, you still can make tag configuration changes. The test case

running process can automatically pick up the changes made on the fly and they will take

effect immediately for the rest of the test case run process. You can click the Read button

to read the real-time value of the selected tag in the PLC. Clicking the Write button (for

Output Tag only) will write the configured Output Value to the selected tag in the PLC.

The Read and Write buttons are helpful when doing a step-by-step testing. They can also

be used for troubleshooting the PLC program. For instance, you can create an Output Tag

for a pump reset command and then you can click the Write button to reset the pump

alarms. You can create an Oracle Tag for the tank level tag in the PLC and then you can

click the Read button to read the real-time value of the tank level in the PLC when you

need it during the troubleshooting process. You can create an Alarm Tag to monitor a

pump control output command in the PLC when debugging a pump control problem.

F

4

L

co

an

co

cr

ex

en

L

st

se

co

re

m

Figure 4.16:

4.10 LogixP

When

LogixPlcTest

ontrol conso

nd/or Alarm

onnected to

reate your cu

xample, if yo

ntire sequen

LogixPlcTest

tartup sequen

equence is in

omplete you

eference. Co

more cheaper

Tag Details

PlcTester

n there are on

ter will turn

ole (a HMI te

m Tags from t

the producti

ustomized co

ou want to m

ce for furthe

ter with only

nce. The test

nitiated in th

u can export

ompared to a

r, flexible, cu

s Window in

as an Ope

nly tags in th

into an Oper

erminal). In

the PLC and

ion control s

onfiguration

monitor a hy

er study or a

y Oracle Tag

t case shall b

he production

the LogixPlc

a formal cont

ustomized an

n LogixPlcT

erator Con

he Oracle Ta

rator Termin

this case, Lo

d won’t exec

ystem to per

n in LogixPlc

dro-electric

analysis, then

gs and Alarm

be started be

n system. On

cTester log m

trol console

nd quicker to

Tester.

nsole / a L

ag list and/or

nal which is

ogixPlcTeste

cute any writ

rform a mon

cTester for a

generator st

n you can cr

m tags associ

efore the hyd

nce the gene

messages to

or a formal

o setup.

Logger

r the Alarm T

similar to a

er will only r

te operations

nitoring func

a specific pur

tartup sequen

reate a test c

iated with th

dro-electric g

erator startup

 a flat file fo

logger, Logi

Tag list,

control syste

read Oracle

s. It can be

ction. You ca

rpose. For

nce and log t

ase in

he generator

generator sta

p sequence is

or future

ixPlcTester

34

em

Tags

an

the

artup

s

is

35

4.10 LogixPlcTester as a Training System

Besides being an efficient tool for testing and troubleshooting purpose,

LogixPlcTester can also be used as a training system. A training system basically needs

to mimic all the activities that the production system has. In LogicPlcTester, a test case

can simulate one or more system behaviors. By running a test case, the trainees will learn

how the system works under the scenario that the test case presents. If the test case

describes a system failure scenario, the trainees will learn what to do under that

circumstance by watching the simulated actions by LogixPlcTester. This is an easy,

efficient and safe way to conduct the system operation training without interfering with

the production system. The scenario based test cases can be run over and over again

without wearing out any hardware devices or causing any damage to hardware devices.

4.11 Data flow Path

Figure 4.17 shows the data flows between LogixPlcTester and the PLC that is

being tested. LogixPlcTester simulates field hardware devices’ signals by writing values

into the PLC using Output Tags. LogixPlcTester reads PLC output commands and PLC

internal tags using Oracle Tags. Alarm Tags are similar to Oracle Tags and they’re used

to generate alarms in LogixPlcTester. Alarm Tags can also be used as Condition Triggers

for Output Tags.

36

Figure 4.17: LogixPlcTester data flow path.

4.12 Test Case Example

The following example uses LogixPlcTester to test a typical Pump-Tank control

logic (Figure 4.18). The control logic is defined as follows:

 Call the pump to start filling water to the tank when the tank level is below 15

feet.

 Call the pump to stop filling water to the tank if the tank level is above 28 feet.

 The PLC generates a “pump failed to start” alarm if it hasn’t received the pump

running signal for 5 seconds after the pump start command is issued.

 The PLC generates a “pump failed to stop” alarm if it hasn’t received the pump

stopped signal for 5 seconds after the pump stop command is issued.

37

Figure 4.18: Pump-Tank control scenario overview.

Table 4.4: PLC tags for pump-tank control logic.

PLC Tag Description Data Type
Pump_Running 1: running 0:stopped Boolean
Pump_Start_Cmd PLC call pump to start Boolean
Pump_Stop_Cmd PLC call pump to stop Boolean
Pump_Fail_To_Start Pump failed to start alarm Boolean
Pump_Fail_To_Stop Pump failed to stop alarm Boolean
Tank_Level Tank level real-time reading Floating Point
Pump_Reset_Cmd Reset pump alarms Boolean

38

Table 4.5: Pump-Tank control test case definition.

Test Case Tag Type Description
Trigger

Type
Condition Tag Value

Pump_Running Note 1
Output
Tag

Write pump running
signal to PLC Condition Pump_Start_Cmd 1

Pump_Running Note 1
Output
Tag

Write pump stopped
signal to PLC Condition Pump_Stop_Cmd 0

Tank_Level Note 2
Output
Tag

Write tank level to PLC
to simulate tank is above
the Pump_OFF threshold
(Write Delay Time is set
to 2s)

Time 28.1

Pump_Reset_Cmd Output
Tag

Write pump alarm reset
command to PLC (Write
Delay Time is set to 1s)

Time 1

Tank_Level Note 2
Output
Tag

Write tank level to PLC
to simulate tank level is
below the Pump_ON
threshold (Write Delay
Time is set to 3s)

Time 14.9

Pump_Running Note 3
Oracle
Tag

Monitor real-time pump
running status in PLC

Tank_Level Note 3
Oracle
Tag

Monitor real-time tank
level reading in PLC

Pump_Fail_To_Start Alarm
Tag

Monitor pump failed to
start alarm in PLC

Pump_Fail_To_Stop Alarm
Tag

Monitor pump failed to
stop alarm in PLC

Pump_Start_Cmd Alarm
Tag

PLC output command to
start pump

Pump_Stop_Cmd Alarm
Tag

PLC output command to
stop pump

Notes:

1. In LogixPlcTester, a same tag name can be defined multiple times with different

functions. The tag Pump_Running is defined twice. One is to simulate pump

running signal and another is to simulate pump stopped signal.

2. The tag tank_Level is defined twice. One is to simulate high tank level and

another is to simulate low tank level.

39

3. In LogixPlcTester, the same PLC tag can be used multiple times in different tag

lists. The tag Pump_Running and the tag Tank_level are defined in both the

Output Tag list and the Oracle Tag list.

4. The order of the Output Tags in Table 4.5 won’t affect the test. The write

operation sequences are defined by the Write_Delay_Timer parameter of each tag

when using Timer Trigger.

 Table 4.4 shows the tags used in the PLC program for the Pump-Tank control

logic. Table 4.5 shows the tags used in the test case. Based on the settings in Table 4.5,

this test case is used to verify if the PLC control program sends an output command to

stop the pump when the tank level rises higher the upper limit (28 feet) and verify if the

PLC control program sends an output command to start the pump when the tank level

drops below the lower limit (15 feet). After the test case is initiated, at the first second,

LogixPlcTester sends a pump reset command to the PLC to reset the pump alarms if there

is any. At the third second, LogixPlcTester writes 14.9 (feet) to the Tank_Level tag in the

PLC. If the PLC control logic is correctly implemented then it will send an output

command to start the pump as soon as it sees the tank level (14.9 feet) written by

LogixPlcTester. If the PLC sends an output command to start the pump then

LogixPlcTester will read this command through the alarm tag (Pump_Start_Cmd) defined

in the test case. Since the Alarm Tag (Pump_Start_Cmd) was configured as a Condition

Trigger to initiate the write operation of the Output Tag (Pump_Running),

LogixPlcTester will write 1 to the Pump_Running tag in the PLC. Once this is done, the

PLC gets the pump running signal feedback so its logic is satisfied in this scenario.

Figure 4.19 shows the log messages in LogixPlcTester after the execution of the test case

40

defined in Table 4.5 is complete. In Figure 4.19, green color indicates snapshot values of

Oracle Tags before the test case starts to run; blue color indicates writing Output Tag

values to the PLC; wheat color indicates updated Oracle Tag values; white color indicates

updated Alarm Tag (or Condition Tag) values.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Figure 4.19: Log messages of a test case for the Pump-Tank control logic.

41

There are 16 log messages generated while the test case defined in Table 4.5 was

running.

1. Snapshot of the Oracle Tag “Pump_Running” before the test case was started.

The pump was running.

2. Snapshot of Oracle Tag “Tank_Level” before the test case was started. The tank

level was 12.7 feet.

3. Status of the Alarm/Event Tag “Pump_Start_Cmd”. The PLC command for

running the pump was active.

4. LogixPlcTester sent the value (1) of the Output Tag “Pump_Reset_cmd” to the

PLC. This command reset the pump alarms (if there is any).

5. LogixPlcTester sent the value (28.1 feet) of the Output Tag “Tank_Level” to the

PLC.

6. LogixPlcTester read the value of Oracle Tag “Tank_Level” tank level from the

PLC. The tank level in the PLC was 28.1 feet. So Step 5 was successful.

7. Status of the Alarm/Event Tag “Pump_Start_Cmd”. The PLC command for

running the pump was inactive.

8. Status of the Alarm/Event Tag “Pump_Stop_Cmd”. The PLC command for

stopping the pump was active.

9. LogixPlcTester sent the value (0) of the Output Tag “Pump_Running” to the PLC

to simulate the pump was stopped because the trigger event “Pump_Stop_Cmd”

was active.

10. LogixPlcTester read the value of Oracle Tag “Pump_Running” from the PLC.

The pump was shown stopped in the PLC. So Step 9 was successful.

42

11. LogixPlcTester sent the value (14.9 feet) of the Output Tag “Tank_Level” to the

PLC.

12. LogixPlcTester read the value of Oracle Tag “Tank_Level” tank level from the

PLC. The tank level in the PLC was 14.9 feet. So Step 11 was successful.

13. Status of the Alarm/Event Tag “Pump_Stop_Cmd”. The PLC command for

stopping the pump was inactive.

14. Status of the Alarm/Event Tag “Pump_Start_Cmd”. The PLC command for

starting the pump was active.

15. LogixPlcTester sent the value (1) of the Output Tag “Pump_Running” to the PLC

to simulate the pump was running because the trigger event “Pump_Start_Cmd”

was active.

16. LogixPlcTester read the value of Oracle Tag “Pump_Running” from the PLC.

The pump was shown running in the PLC. So Step 15 was successful.

Actually, more test cases can be derived from the test case described in Table 4.5.

The following are some example test cases that are derived from the base test case in

Table 4.5.

1. Add a time trigger (with the Write Delay Time as 6s) based Output Tag to write

28.2 to the Tank_Level tag in the PLC. This will verify if the PLC issues an

output command to stop the pump when the tank level rises higher than the upper

limit (28 feet). This will complete a pump stop-running-stop control cycle.

2. Change the Condition On_Delay Time of Pump_Running (Output Tag to simulate

pump running) to be greater than 5 seconds or completely deactivate the Output

43

Tag and verify if the PLC drops the pump start output command and generates a

“pump failed to start” alarm.

3. In item #1 above, change the Condition On_Delay Time of Pump_Running

(Output Tag to simulate pump stop) to be greater than 5 seconds or completely

deactivate the Output Tag and verify if the PLC drops the pump stop output

command and generates a “pump failed to stop” alarm.

4. Add a time trigger based Output Tag to simulate tank level reading becomes

invalid while the pump is running and verify how the PLC reacts to it. (In this

case, the PLC should drop the pump start output command and generate an

invalid tank level alarm.)

5. Add a time trigger based Output Tag to write a value (between 15 and 28) to the

Tank_Level tag in the PLC while the pump is running and verify the PLC

continues to run the pump. (The pump should only stop when the tank level is

above 28 feet in this case).

6. In item #1 above, add another time trigger based Output Tag to write a value

(between 15 and 28) to the Tank_Level tag in the PLC while the pump is stopped

and verify the PLC won’t issue an output command to start the pump. (The pump

should only start when the tank level is below 15 feet in this case).

7. Add a time trigger based Output Tag to simulate pump stopped signal while the

pump start command is active and the pump is running and then verify how the

PLC reacts to it. (In this case, the PLC should drop the pump start output

command and generate a “pump stopped without a PLC command” alarm.)

44

8. Add a time trigger based Output Tag to write a value (not in the range of between

15 and 28) to the Tank_Level tag in the PLC and verify how the PLC reacts to it.

(In this case, the PLC should seize control of the pump and generate a tank level

out-of-range alarm.)

If we deactivate the Output Tag “Pump_running” to stop simulating the pump

stopped signal (Figure 4.20) when the trigger event (PLC output command to stop the

pump) is active, then we have a test case for the example #3 above. Figure 4.21 shows

the generated log messages while running the test case in example #3. In Figure 4.21, a

“pump failed to stop” alarm was generated after the PLC has energized the pump stop

command for 5 seconds. This test case was passed because the PLC did generate a “pump

failed to stop” alarm when it hadn’t received the pump stopped feedback signal for 5

seconds.

Figure 4.20: Deactivate an Output Tag.

45

Figure 4.21: “Pump failed to stop” alarm log message.

The above example illustrates that after you have created the first test case for a

PLC program, it’s very easy to build more test cases based on the previous ones.

LogixPlcTester is a method neutral test tool that can be used with a variety testing

methods including Random Testing, Black-Box Testing, Combinational Testing,

Bounded Exhaustive Testing, Model Based Testing, and Error-Based Testing.

4.13 Validate and Run Test Case

After a test case has been created, the existence of the tags in the Output Tag list,

Oracle Tag list, and Alarm Tag list need to be verified in the PLC. The execution of a test

case is prohibited if any of its tags is not verified or is verified with error. All the tags

defined in a test case must exist in the PLC and defined as controller scoped tags

(accessible to all routines). (Note: An Alarm Tag itself may not be in the PLC. But the

tags used in an Alarm Tag’s expression must exist in the PLC.) LogixPlcTester cannot

access a program scoped tag (accessible to only the routines within a single program).

This is specified by the PLC CIP protocol. This won’t be an issue in common PLC based

control systems. A PLC in a production system is normally on a plant-level Ethernet

46

network so that it can exchange data with the Human Machine Interface (HMI) such as

Supervisory Control and Data Acquisition (SCADA) systems or Distributed Control

Systems (DCS). In order for SCADA or DCS to access the tags in the PLC, they must

have existed in the PLC as controller scoped tags. To verify the tags of a test case in

LogixPlcTester, click Tools > Validate. The tags that are validated successfully will be

changed to green color in the tag lists and the tags that cannot be validated will be

changed to magenta color in the tag lists so they can be easily identified. If all the tags are

validated successfully then the test case can run. To run a test case in LogixPlcTester,

click Tools > Run. While a test case is running, the log messages will be filled in the Log

View window as they occur. A running test case can be terminated at any time by

clicking Tools > Stop. Figure 4.22 shows a test case that is running. The tags in the left

panel are all in green color indicating they are validated. The Log View window shows

the log messages generated by the test case. The Status Strip bar at the bottom of the

application shows various information about the test case including tag validation status,

test case running status, test case running progress bar, the number of PLCs defined in the

test case, statistics of the Output Tag list, Oracle Tag list and alarm Tag list.

F

4

L

T

gr

gr

in

on

T

an

4

Figure 4.22:

4.14 Contr

In ord

LogixPlcTest

The GLG Too

raphical disp

raphical draw

ncludes tank

n a display.

Toolkit were

nd update th

.24 shows a

A running

ol Graph

der to help te

ter has devel

olkit from G

plays. The G

wings. The G

ks, pumps, di

The API (Ap

called in Lo

he drawing w

tank level an

test case wi

esters observ

loped its own

Generic Logic

GLG Graphic

GLG Graphi

ials, meters a

pplication P

ogixPlcTeste

with real-time

nimation in

ndow in Lo

ve the test pro

n HMI interf

c [8] was em

cs Builder (F

ics builder h

and other ind

rogram Inter

er to incorpor

e data (from

GLG.

ogixPlcTeste

ocess and re

face that can

mbedded in L

Figure 4.23)

has a graphic

dustrial sym

rface) functi

rate a GLG d

m Oracle Tag

er.

esults graphi

n edit and ru

LogixPlcTes

is used to cr

cal objects lib

mbols that can

ions provide

drawing into

gs or Alarm T

cally,

un control gra

ster to suppo

reate and edi

brary that

n be used dir

ed by the GL

o the applica

Tags). Figur

47

aphs.

ort

it

rectly

LG

ation

re

F

Figure 4.23:

GLG Grapphics Editor.

48

F

st

L

L

L

F

Figure 4.24:

To an

tring that def

LogixPlcTest

LogixPlcTest

LogixPlcTest

igure 4.23 is

Animate a

imate an obj

fines a link t

ter is PlcNam

ter test case.

ter test case.

s linked.

tank object

ject in a GLG

to a tag in th

me/Tagname

The Tagnam

Figure 4.25

t in GLG.

G drawing, a

he PLC. The

e. The PlcNa

me is a valid

 shows the t

a tag source

custom synt

ame is the sa

d Oracle Tag

test case to w

is needed. A

tax of a tag s

ame PLC nam

g or alarm Ta

which the GL

A tag source

source used

me specified

ag in a

LG drawing

49

is a

in

d in a

in

F

G

co

Figure 4.25:

To run

Graph. (Figu

ontrol system

A pump co

n a graphica

ure 4.26). Fig

m.

ntrol test ca

al display in L

gure 4.27 sh

ase.

LogixPlcTes

hows the runt

ster, click To

time graphic

ools > Open

cal display fo

n Contorl

for a pump

50

F

F

Figure 4.26:

Figure 4.27 G

Open a GL

Graphical d

LG graphica

display for a

al display in

a pump cont

n LogixPlcT

trol system.

ester.

.

51

52

4.15 Import and Export

A test case defined in LogixPlcTester can be saved as a XML file. A test case

created externally by using a Text Editor can be imported into LogixPlcTester. Figure

4.28 shows how to import/export a test case.

LogixPlcTester can generate a report for a test case. A report lists a summary of

the test case definitions. Compared to a test case XML file, a report is easy to read and

understand because the information presented in a report is in spreadsheet formats. A

report itself is in a PDF format. Figure 4.29 shows a sample report generated by

LogixPlcTester.

53

Import test case

Export test case

Export test case report

Figure 4.28: Import/Export a test case.

54

Figure 4.29: Test case sample report.

55

Chapter 5. Experiment

LogixPlcTester was used to test the functions of a PLC application program for a

real industrial control system. The PLC program runs in a development system that

consists of a computer that runs LogixPlcTester, a computer that runs the PLC

programming software, a PLC with no I/O modules, and a network switch that connects

the computers and the PLC to the same network. LogixPlcTester was used to test the PLC

program as it was developed.

5.1 System Overview

The application, the Emergency Power System was built for a water treatment

plant in Southern California. The plant utility power is supplied via two main switchgear

buses by two Southern California Edison feeders. The two main buses can be tied

together so one feeder can power both of the buses in the event of a power outage or

scheduled maintenance. The Emergency Power System is comprised of a separate

switchgear bus and two generators. The emergency power switchgear bus connects the

two generators to both main buses via circuit breakers so that the two main buses can be

powered by the two generators during either a loss of both utility feeders, a malfunction

of specific circuit breakers, or scheduled maintenance.

An Allen Bradley ControlLogix PLC is utilized in this system to monitor the

utility power feeder status, switchgear status, circuit breaker status and control the circuit

breakers and the generators to feed power to the plant when an abnormal condition occurs

in the system such as a utility power failure or a circuit breaker failure. For example, if

56

the utility power is lost to one of the two main switchgears the PLC shall operate circuit

breakers to feed power to this switchgear from the other switchgear that has normal

power. If both main switchgears lose utility power at same time the PLC shall operate

circuit breakers and start both generators and transfer power from the generators to both

main switchgears. The PLC program for the Emergency Power System is a mission-

critical program. If the PLC program fails to deliver power to the water treatment plant in

a certain amount of time, then the water treatment process conducted at the plant will

stop. As a result, untreated water could flow into the distribution water system and some

residential area could be delivered with untreated water as drinkable water. In order to

prevent such incident from happening, the PLC program must be tested thoroughly

against all possible scenarios to verify it can deliver power to the plant within an allowed

time period in every scenario. That is, both logical correctness and temporal correctness

of the PLC program must be validated in order to meet the system operation

requirements. Figure 5.1 shows the Emergency Power System diagram.

5.2 Software Design

The system specification lists over 200 operation scenarios in which the PLC

program must respond correctly. Every scenario is triggered by an external event. The

PLC program is designed as an event driven program. When an external event occurs

(such as utility power loss, utility power return, or circuit breaker failure) the PLC will

run a sequence (a series of hardware operations such as open breaker 1, close breaker 2)

to respond to the event. Every sequence is defined by a subroutine, which is called in the

main routine. In a sequence subroutine, there are some conditions (trigger events) that

57

must be met before the sequence can be actually started. Once a sequence is running,

other sequences are not allowed to run. Only one sequence is allowed to run at any time.

Table 5.1 shows an example of a sequence (sequence 9 in Figure 5.2). As a result, the

switchgear configuration will change accordingly. An example scenario, suppose that the

utility power A is failed (the utility power B is still normal) while the switchgear is in

Normal. In this scenario, the PLC needs to open CB102 and then close CB2604 to power

the bus A from the bus B. After the sequence is complete, the switchgear’s state will

change to BFeedA under normal power. So the system state changes from Normal to

Normal BFeedA in this scenario. Another example scenario, both the utility power A and

B are failed while the switchgear is in Normal. In this scenario, the PLC needs to open

CB102 and CB202 first, then starts both generators, after CB2704 and CB2804 are closed

the PLC should close both CB302 and CB403 to feed the plant with the generator power.

After the sequence is complete, the system state will change to Split_Feed under

generator power.

LogixPlcTester Logview captures all the log messages while a sequence is

running. The log messages show the logical order of a series of actions that the sequence

executes. The log messages are the main evidence used to verify the correctness of a

sequence. To visually monitor the entire switchgear status and the progress of a running

sequence, a control graph (Figure 5.1) is developed in LogixPlcTester. Figure 5.1 shows

the control graph for system overview. The status of circuit breakers and generators in

Figure 5.1 reflects the switchgear state while it’s in normal mode in which the plant is fed

with both utility power feeders. Appendix A shows the PLC program structure diagram.

T

S
S
S
S
S

F

5

to

m

ac

si

th

Table 5.1: A

Sequence 9:
Step 0
Step 1
Step 2
Step 3

Figure 5.1: E

5.3 Testing

Since

o the location

must be cond

cceptance te

imulation tes

he hardware

sequence ex

: Retransfer
Open 302,
Close 102 (
Close 202 (
Shutdown b

Emergency P

 with Log

the hardwar

n where the

ducted in a si

est has to be

sts are passe

from being

xample.

r to Plant N
402, 2604 (F
(Feedback ti
(Feedback ti
both generat

Power Syste

ixPlcTeste

re equipmen

software dev

imulation sy

conducted o

ed. Testing th

damaged by

Normal State
Feedback tim
ime: 2 secon
ime: 2 secon
tors (Feedba

em overview

er

t is very exp

velopment/te

stem except

on the real ha

he PLC prog

y software bu

e
me: 2 second
nds)
nds)
ack time: 2 se

w in a Logix

pensive and i

esting team

the final acc

ardware equ

gram in a sim

ugs and it wi

ds)

econds)

xPlcTester g

is impossibl

works, all so

ceptance tes

ipment after

mulation syst

ill also preve

graph.

e to be reloc

oftware tests

st. The final

r all the

tem will pro

ent the hardw

58

cated

s

otect

ware

59

from wearing out by massive number of repeated operations during software

development. So running tests in a simulation system will extend the lifetime of the

hardware equipment. LogixPlcTester is utilized as both a simulation tool that simulates

the hardware equipment’s behaviors and a testing tool that tests the PLC program against

every scenario of the Emergency Power System. To reduce the software development

cycle by finding and fixing bugs at an early stage, the software tests were conducted as

the PLC program was being developed. When a scenario becomes available in the PLC

program a test case was created for the scenario and executed in LogixPlcTester to test

the scenario.

To capture all the features and behaviors of the system, three Finite State Machine

(FSM) models were established. The test cases are created according to the FSM models.

Figure 5.2 shows a FSM model for power transfer and retransfer operations under normal

conditions (no device failures) in the system. (There are two more models created in this

system: the Circuit Breaker Failure Model and the Lockout Relay Failure Model. These

two models define more than 150 scenarios.) As in Figure 5.2, each scenario has a trigger

event and a sequence. The sequence will be initiated when the trigger event occurs. When

the sequence is complete the system state (switchgear configuration) will change. A test

case is created for each scenario. In some cases, a power transfer scenario and a power

retransfer scenario are combined in the same test case. For example, scenario 1 (transfer

upon utility power A failure) and scenario 6 (retransfer upon utility power A return) are

combined in a same test case. The logical structure of a test case is illustrated in Figure

5.3.

60

Figure 5.2: a FSM model for the Emergency Power system.

61

Figure 5.3: Logical structure of a LogixPlcTester test case.

For example, scenario 5 (in Figure 5.4) defines a transition from NP_AFeedB

(bus A feed bus B under normal power) to GP_SplitFeed (generator power feed both bus

A and bus B) when utility power source A is failed. The test case for scenario 5 consists

of the following four major steps (corresponding to the four steps in Figure 5.3).

1. Use Output Tags to set the system to plant normal mode. Set CB102, CB202,

CB2504, CB502, CB602 to the closed state by simulating the circuit breakers’

feedback signals to the PLC. Use the same way to set the other circuit

breakers to the open state and to set both generators (G1 and G2) to the off

state.

62

2. Set the system to the initial state of scenario 5. NP-AFeedB (bus A feed bus B

under normal power) is the initial state of scenario 5. The reason that the

system is in NP-AFeedB mode is because utility power source B was failed.

So at this step, we need to run scenario 2 first (by simulating a utility power

source B failure) to get to the initial state of scenario 5.

3. Use an Output Tag to simulate the trigger event of scenario 5 which is utility

power source A failure. This will initiate the sequence associated with

scenario 5.

4. Use Oracle Tags and Alarm Tags to log necessary events in order to monitor

and validate the sequence of scenario 5.

Figure 5.4: Scenario 5 for the Emergency Power System.

63

Unlike most general purpose systems, the test result of a scenario in a PLC

program is usually a sequence of events (including the sequential relationship between

the events) that determines the logical correctness of the test result. The timestamps of

the events determine the temporal correctness of the test result. For example, in scenario

1, after utility power A is lost, the PLC shall open CB102 first and then close CB 2604.

The sequence between actions is very important. Verifying the state of CB102 and

CB2604 at the end of the test is not sufficient to verify the logical correctness of the

result. You must also verify that CB102 open operation occurred before CB2604 close

operation. To verify if a sequence was completed within the allowed time period, the

timestamp of each action executed in the sequence must be inspected. Figure 5.5 shows

the test results of the test case for scenario 1 and 6.

F

Figure 5.5: L

Log messagees of runninng scenario 1 and 6 in LLogixPlcTesster.

64

65

Every time after a major change was made in the PLC program, a regression

testing process was conducted by LogixPlcTester. Basically all the tests that were

verified before must be retested again because a major code change could potentially

introduce new bugs in the PLC program. The functions of the PLC program that worked

before might not work again in the new code. There are around 200 test cases created for

the Emergency Power System. It will take at least a week to run all the tests if using a

hardware test stand or testing against the real equipment. But with LogixPlcTester, it only

takes a day to run all the tests. Because all the test cases were saved in XML files there is

no preparation for a test before running it. Once a test case XML file is loaded,

LogixPlcTester will automatically read the test instructions from the XML file and

execute them in the pre-defined orders.

The PLC program was written by a programmer and the author did a code review

for most parts of the code resulting in familiarizing with the internal data structure and

program structure. The author also had a complete knowledge of how the system should

work. Most of the test cases were created based on the FSM model. There were some test

cases that were created based on knowledge of the internal structure of the program. For

example, by code reviewing it was found that there was a operation mode selector switch

that sends two hardware signals to a PLC digital input module. The two signals are

Automatic mode and Manual mode. In normal operation, only one of the two signals is

active. Two test cases were created to test the mode switch logic under abnormal

conditions. One is used to simulate both hardware signals are active and another is used

to simulate both hardware signals are inactive. These two test cases help the operators

understand how the PLC will react to the mode selector switch hardware failure. Another

66

example is I knew the PLC feedback timer (the time that the PLC waits for a feedback

signal after it issues a control command) which is set to 3 seconds for the circuit breaker

open and close commands. Two test cases were created to test the feedback timer logic.

One is to simulate the feedback signal 4 seconds after the PLC issued a circuit breaker

open command and another is to send no feedback. These two test cases test how the

PLC handles the circuit breaker control failures.

5.4 Results

The PLC program has 52 subroutines and around 2500 rungs of ladder logic code

in total. There are around 220 test cases created in LogixPlcTester to cover all operation

scenarios specified in the system specification. The entire testing process took one month

to finish due to the availability of the PLC software functions. The software tests were

conducted as the PLC software was developed. Sometimes the testing process had to stop

to wait for the new functions or bug fixes to be available. The time spent on actual

software testing and troubleshooting was about 20 days and over 1000 tests were

conducted in LogixPlcTester. There were 23 bugs detected in the PLC program by

LogixPlcTester during the entire testing process and the following 10 bugs represent

them. Table 5.2 shows the PLC instructions used in the bug examples. Table 5.3 shows

the system states used in the bug examples. Table 5.4 shows the abbreviations used in the

bug examples.

Because of the bugs were detected and fixed during the simulation tests by

LogixPlcTester, there was not a single bug reported during the final tests in the

67

production system besides few scenarios that were missed in the original design

document.

Table 5.2: PLC ladder instructions used in the bug examples.

Ladder Instruction Description
-] [-

(Examine if closed) The instruction tests the data bit to see if it is set.

-]\[-
(Examine if open) The instruction tests the data bit to see if it is cleared.

-()-
(Output energize)

When the instruction is enabled, the controller sets the data bit. When
the instruction is disabled, the controller clears the data bit.

-(L)-
(Output latch)

When enabled, the instruction sets the data bit. The data bit remains
set until it is cleared, typically by an -(U)- instruction. When disabled,
the instruction does not change the status of the data bit.

-(U)-
(Output unlatch)

When enabled, the instruction clears the data bit. When disabled, the
instruction does not change the status of the data bit.

-]ONS[-
(One-shot bit)

When enabled and the storage bit is cleared, the instruction enables
the remainder of the rung. When disabled or when the storage bit is
set, the instruction disables the remainder of the rung.

JSR
(Jump to subroutine) The instruction jumps execution to a different routine

TON
(Timer on delay)

The instruction is a non-retentive timer that accumulates time when
the instruction is enabled. A timer’s enable bit (.EN) indicates the
timer is enabled. A timer’s done bit (.DN) indicates the timer times
out.

RES
(Reset) The instruction resets a timer.

68

Table 5.3: System states used in the bug examples.
System
State

CB102
Status

CB202
Status

CB2604
Status

CB302
Status

CB402
Status Description

NP-BFeedA Open Closed Closed Open Open

Utility power B feeds both
A-side and B-side of the
plant. Utility power A is not
available.

NP-AFeedB Closed Open Closed Open Open

Utility power A feeds both
A-side and B-side of the
plant. Utility power B is not
available.

GP-SplitFeed Open Open Open Closed Closed
Generators feed the plant.
Both utility power A and B
are not available.

Plant Normal Closed Closed Open Open Open
Utility power A feeds A-side
of the plant and Utility power
B feeds B-side of the plant.

NP-AOnly Closed Open Open Open Open
Utility power A feeds A-side
of the plant. B-side of the
plant has no power.

NP-BOnly Open Closed Open Open Open
Utility power B feeds B-side
of the plant. A-side of the
plant has no power.

Plant Dark N/A N/A N/A N/A N/A The plant has no power.

Table 5.4: PLC variable name abbreviations used in the bug examples.

Abbreviation Description
Alm Alarm
CB Circuit Breaker
Cmd Output Command
DI Digital Input
DN Timer is done
DO Digital Output
GP Generator Power
In Input
NP Normal Power
Seq Sequence
Seqx Sequence x
Stat Status
Step.x Step x of a sequence (x starts from 0)
SwGear Switchgear

69

The following examples illuminate the common variable names that are used in

the code examples in this chapter.

Example 1: SwGear.Cmd.SetupNP_B_Feed_A means the switchgear sequence NP-
BFeedA is running.

Example 2: CB102.In.OpenDI means the circuit breaker 102 is open.

Example 3: CB102.Cmd.OpenDO means the circuit breaker 102 open command is active.

Example 4: Sq1_NP_BFeedA.Step.0 means the sequence 1 (NP-BFeedA) is running at
the first step.

Example 5: CB2604.Alm.FailToClose means the circuit breaker 2604 has a “failed to
close” alarm.

Example 6: SwGear.Stat.NP_BOnly means the switchgear’s current system state is NP-
BOnly.

1. Incorrect permissive conditions

Overview

Permissive conditions are a PLC programming idiom. A permissive is a process

condition that must be met before hardware equipment is allowed to operate. Permissive

conditions can protect the equipment from unsafe or illegal operations. Usually there are

multiple permissive conditions that need to be met in order to operator on equipment. In

process control PLC programs, almost all the output commands to equipment have

associated with permissive conditions. The permissive conditions must be set accurately

in order for PLC to send the right command to the right equipment at the right time. If a

permissive condition is missing for an output command then the output command might

be sent to the equipment when it shouldn’t be sent. If unnecessary or unrelated

p

se

D

tr

o

ex

th

L

n

fo

se

v

re

p

“S

on

N

“S

ermissive co

ent to the eq

Detection

The te

ransition sce

f this scenar

xpected syst

here was no

LogixPlcTest

ot be setup c

ollowing lad

equence.

It was

ariable) was

esulted in an

ermissive “S

SwGear.Stat

nly when “S

NP-AFeedB s

SwGear.Stat

onditions are

uipment or t

est case that

nario #2 of t

rio is Plant N

tem state is N

indication th

ter logs. This

correctly. Af

dder code. Th

s found that t

s not related

n unsatisfied

SwGear.Alm

t.B_LineAva

SwGear.Alm

sequence is r

t.B_LineAva

e set for an o

the comman

detected the

the FSM mo

Normal, the t

NP-AFeedB

hat showed t

s implied tha

fter debuggin

he code lists

the permissi

to the seque

permissive c

m.LossOfUtil

ail” are mutu

m.LossOfUtil

ready to run

ail” is alway

output comm

d will be sen

e bug is the t

odel describe

trigger event

. During the

the NP-AFee

at the permis

ng the PLC p

6 permissiv

ve condition

ence and its v

condition fo

lPowerB” an

ually exclusi

lPowerB” is

n (the first 5 p

ys false. So th

mand then the

nt to the equ

test case desi

ed in Figure

t is the utility

 test, after th

edB sequenc

ssive conditi

program, a b

ve conditions

n “SwGear.S

value was fa

or the sequen

nd the permi

ive. (“SwGe

false and CB

permissives

he sequence

e output com

uipment unex

igned for the

5.2. The init

y power B fa

he trigger ev

ce was called

ions for the s

bug was foun

s for calling

Stat.B_LineA

alse during th

nce. In this b

issive

ear.Stat.B_Li

B202 is clos

are met), th

e will never r

mmand won’

xpectedly.

e system stat

tial system s

ailure, and th

vent was initi

d in the

sequence ma

nd in this

the NP-AFe

Avail” (a PL

he test. This

bug, the

ineAvail” is

sed.) When t

e permissive

run.

70

t be

te

state

he

iated

ay

eedB

LC

true

the

e

71

After removing “SwGear.Stat.B_LineAvail” from the above code, the same test

case was rerun and the expected result was observed by reviewing the log messages in

LogixPlcTester. Figure 5.6 shows the log messages while running the sequence after the

bug was fixed. The green circle shows the initial state of the sequence and the blue circle

shows the trigger event of the sequence. The log messages in the red rectangle show the

“Normal power A feed B” sequence was called after the trigger event had been initiated.

When the bug was present in the ladder code, the log messages in the red rectangle were

not seen and that was how the bug was detected by LogixPlcTester.

Figure 5.6: Log messages of the NP-AFeedB sequence.

Error Analysis

Since every transition in the FSM models is covered in a test case, every sequence

is covered by at least one test case. (Some transitions share one sequence. See Figure

5.2.) For this particular bug, it can be uncovered during the system tests because of the

mutual exclusive property of this bug. General speaking, the incorrect permissive

conditions related bugs could be detected by a test because if a bug exists in a transition

72

then the test case that tests that transition will fail due to a control sequence failure (such

as an output command is not issued or an output command is issued unexpectedly). But

it’s not always the case. For example, in the above bug, if the permissive “Line_B_OK”

is independent and it has no logical relationship with the rest of the permissive conditions

in the ladder rung and its value is true by coincidence during the test, then this bug may

be missed. In this example, code review may be more efficient to reveal this kind of bug.

Permissive conditions for the equipment control commands may not be available

or may be only partially available in the system specification because the people who

wrote the system specification may not have the information. As a result, the programmer

may make some assumptions during the software development and at the end of the

development those assumptions were not verified with the operators who know all the

permissive conditions for operating the equipment. Considering all the possible

combinations of the permissive condition a model such as a truth table could be used to

help to create test cases to cover all the possibilities. At the software development stage,

the programmer may not have a full view of the permissive conditions. It’s common and

reasonable to make some assumptions in order to continue the software development.

However, at a later time these assumptions muse be revisited and verified with the

domain expert.

2. Typo

Overview

In the PLC program, there are many tags that are similar to each other. For

example, when you create two instances of a generator type, the two new instances will

have similar names such as G1 and G2. The similar names in the PLC program are

lo

li

sy

D

S

fo

fa

ut

th

w

st

cl

su

w

p

w

A

af

V

A

ogical. If an

ikely will beh

ystem state t

Detection

The ty

wGear.Stat.N

ollowing lad

The te

ailures. In th

tility power

he expected

was called to

tep 2 (Sq9_N

lose but it w

upposed call

was never exe

ermissives to

was false bec

AFeedB and t

fter observin

Viewer, there

AOnly becau

incorrect tag

have unexpe

transition tes

ypo bug foun

NP_AFeedB

dder code.

est case that

he test, the in

B is normal

system state

run the tran

NormalPowe

was failed to c

l the sequenc

ecuted becau

o run the NP

ause it wasn

the system s

ng the CB20

e was no furt

se the bus ti

g is used in t

ectedly and t

st in which th

nd by a test w

B was mistak

detected the

nitial system

, the second

e is the same

sition was th

er.Step.2 is t

close (simul

ce 2 (the NP

use the syste

P-AFeedB se

n’t the curren

state variable

2 “failed to

ther PLC act

e breaker CB

the program

the unexpect

he ladder run

was that the

kenly written

e bug is one o

state is NP-

trigger even

as the initia

he sequence

rue) of the s

ated by Log

P-AFeedB se

em state SwG

equence. Du

nt system sta

e SwGear.St

close” log m

tion observe

B2604 was o

due to a typ

ted behavior

ng (where th

system state

n as SwGear

of the test ca

-AFeedB, the

nt is CB202

al state - NP-

9 (in scenar

sequence 9, C

gixPlcTester)

equence). Bu

Gear.Stat.NP

uring the test

ate. (The cur

tat.NP_AFee

message in th

d and the sy

opened at the

po then the p

r could be re

he typo resid

e variable

r.Stat.NP_BF

ases that test

e first trigge

“failed to cl

-AFeedB. Th

rio 7 of Figu

CB202 was c

). The ladder

ut due to the

P_AFeedB w

t, SwGear.St

rrent system

edB was true

he LogixPlcT

ystem state w

e step 1 of th

program mos

evealed durin

des) is check

FeedA in the

t the system

er event is th

ose” alarm,

he sequence

ure 5.2). At th

commanded

r code was

typo, this ru

was one of th

tat.NP_BFee

state was N

e.) As a resu

Tester Log

was left at NP

he sequence

73

st

ng a

ked.

e

e

and

that

he

d to

ung

he

edA

P-

ult,

P-

9.

74

Error Analysis

The bug actually led to a permissive condition problem and it was caught by a test

case that was testing a system state transition. The kind of typo bug can be discovered by

the tests because similar tags in the PLC program usually are mutually exclusive of each

other. One possible earlier error-oriented detection mechanism for this kind of bugs is to

add detailed comments in the code that specify the function of each tag and function.

When doing code review, this kind of bug can be easily identified. Another possibility is

to use assertion based formal verification in the code to inspect the input conditions of the

logic. This kind of bug is easy to fix but is difficult to prevent in the code unless using

names, comments, or assertions to make a distinction between similar names.

3. One-shot related problem

Overview

In PLC programming, one-shot bit is a mechanism which is used to only execute

the ladder rung once when the condition becomes true. The following structured text code

demonstrates how one-shot works. A, B, C are Boolean type variables. B is a one-shot

bit. The initial value of B is false. When A becomes true, “C := 1” will be executed. In

the next scan cycle “C := 1” won’t be executed because B is true. “C := 1” will only be

executed again when A goes through a transition of 1 to 0 to 1.

IF A AND (NOT B) THEN C := 1;

B = A;

In PLC ladder logic, there is an instruction called -[ONS]- for the one-shot bit

function. The following ladder code has the same function as the structured text code

above.

on

w

D

th

H

cy

se

“E

sh

it

E

te

co

on

b

In lad

ne-shot bit (

work correctl

Detection

The o

The co

he “Return to

However the

ycle resultin

equences we

Early update

hown in the

t caused the

Error Analy

The la

ests because

ode. In a PL

ne-shot prob

ehaviors/sce

dder code, a o

(B) is manua

ly and that w

ne-shot bug

ode is suppo

o Normal Po

subroutine R

ng in the syst

ere running.

e of system s

LogixPlcTe

sequence to

sis

adder rung th

the test case

LC ladder pro

blem definite

enarios are c

one-shot bit

ally set or res

will cause the

was found i

osed to run a

ower” sequen

ReadSystem

tem state cap

The bug wa

state” examp

ster Log Vie

terminate ea

hat contains

es that cover

ogram, every

ely changes t

overed by th

is controlled

set by the co

e program to

in the follow

a subroutine

nce (sequenc

mState was co

pturing all th

s detected in

ple, the interm

ewer because

arly.

the one-sho

r all transitio

y rung of the

the system’s

he test cases,

d by the cont

ode then the

o behave une

wing ladder r

called Read

ce 9 in Figur

ontinuously

he intermedia

n multiple te

rmediate syst

e it was mon

t bit problem

ons will cove

e program is

s behaviors a

, it would be

troller autom

one-shot fun

expectedly.

rungs.

SystemState

re 5.2) is com

called in eve

ate states wh

est cases. For

tem state – “

nitored by an

m will be exe

er all the bran

essentially a

and all the sy

e captured du

matically. If

nction won’t

e only once w

mpleted.

ery PLC scan

hile other

r instance, in

“Plant Dark”

n Oracle Tag

ecuted durin

nches in the

a branch. Sin

ystem

uring the sys

75

the

t

when

n

n the

” was

g and

ng the

nce a

stem

76

tests. If the intermediate system states showed in the Control system operator terminal

then it will confuse the operator. The system state should be updated at the end of a

sequence but not while a sequence is running. To detect one-shot bit problems in the PLC

program at an early stage, a one-shot bit rule can be added to the programmer’s checklist,

which should be followed during code review.

4. Early update of system state

Overview

When an external event occurs (such as one utility power source becomes

unavailable), a sequence will be called in the PLC code to run a series of commands

(open/close some breakers) to transit to a new system state. Once the sequence is

completed the system will be in a new state that is usually different from its original state

before the sequence was called. When a sequence finishes, it must update the system state

(described by a PLC internal variable) at the last rung of the sequence subroutine. If this

is done earlier (meaning the system state is updated while a sequence is still running), the

PLC program will be confused by the intermediate system states, which will lead to an

unexpected termination of the running sequence. Figure 5.6 shows a system state update

diagram.

77

Figure 5.7: System state update diagram.

 In Figure 5.7, there are three sequence subroutines and one System State Update

subroutine and the arrows indicate the sequence that the subroutines are scanned in the

PLC program. In the left chart of Figure 5.7, the System State Update subroutine is called

in every PLC scan cycle regardless of the running status of the sequences and this will

generate all the intermediate system states as a sequence is running. The intermediate

system states will cause unexpected early termination of the running sequence. If the

code is structured as in the right chart of Figure 5.7 this kind of bug won’t appear because

the system state is only updated at the end of every sequence.

Detection

The following ladder code shows the bug discovered during a system test. The

initial system state of the test is NP-AFeedB, the first trigger event is the utility power A

failure, the second trigger event is the CB2604 “failed to open” alarm, and the expected

sy

th

se

C

op

sy

ca

se

v

co

th

p

E

sy

L

T

It

st

st

ystem state i

he PLC calle

equence, the

CB102 open

pen (this is t

ystem state w

aused the se

equence 3’s

ariable is Sw

ode is suppo

he system wa

ower, which

Error Analy

As sho

ystem model

LogixPlcTest

This kind of b

t can occur in

tate must be

table and fin

is GP-AFeed

ed the sequen

e first step w

signal but no

the second tr

was updated

quence to be

subroutine e

wGear.Stat.N

osed to close

as left as “Pl

h is a serious

sis

own in this e

l transition t

ter can alway

bug could be

n different w

only update

nal real-time

dB. When th

nce 3 (in sce

as to open C

ot the CB260

rigger event

d and the new

e stopped at

expected the

NP_AFeedB)

e CB302 to tr

lant Dark” w

s operation in

example, thi

tests because

ys capture it

e classified a

ways and cau

ed when a se

system state

he first trigge

enario 5 of F

CB102 and C

04 open sign

in this test c

w (intermedi

this step bec

e system state

) before it co

ransit to GP-

when the test

ncident in th

is kind of de

e the problem

by monitori

as an iconic e

use different

quence is co

e.

er event was

Figure 5.2) as

CB2604. Log

nal. As a resu

case). As soo

ate) system

cause the fol

e to be NP-A

ould continu

-AFeedB aft

t was done. T

he plant.

fect will be r

m caused by

ing the Syste

error of the t

t problems. T

ompleted so

 enabled by

s it supposed

gixPlcTester

ult, CB2604

on as CB102

state was “P

llowing ladd

AFeedB (the

ue. (The follo

ter CB2604

This means t

revealed by

the defect is

em State by

type of Early

To prevent it

the code wil

LogixPlcTe

d to. In this

r simulated th

4 was failed t

2 was opened

Plant Dark”.

der rung in th

e system stat

owing ladder

fails to open

the plant had

one of the

s obvious an

an Oracle T

y State Upda

t, any system

ll always use

78

ester,

he

to

d, the

This

he

te

r

n.) So

d no

nd

Tag.

ate.

m

e the

79

5. Sequence conflict

Overview

In the PLC code, a sequence is a series of commands (in a sequential order) to

execute a system state transition. In the original design, there were 7 sequences. Later 6

more sequences were added as the development progressed to cover some new scenarios

that were missed in the system specification. As the new sequences were added, some of

them conflicted with the original sequences. For example, when a certain condition

occurs, a new sequence was called unexpectedly instead of calling some original

sequence. A sequence is called based on conditions (trigger events). When a new

sequence was added the programmer didn’t define the trigger event (for the new

sequence) to be strict enough to distinguish from the existing sequences’ trigger events.

As a result, a system state may satisfy multiple sequences’ trigger events. In this case,

which sequence will be called when such trigger events occur only depends on the

locations where the sequence subroutines are called in main routine. The PLC scans the

code from top to bottom so the first sequence subroutine that has satisfied trigger

condition(s) will be called and the other sequence subroutines that also have their trigger

conditions met won’t be called because at any time there is only one sequence that can

run. Due to the fact that all the condition variables are very similar in the code, it’s easy

for the programmer to get confused and use the wrong conditions.

Detection

The original bug was very complicated because it involves multiple subroutines

and needs more industrial power operation background to understand. To simplify it, a

simple model for the bug is described by the following ladder code to explain the bug.

T

“C

T

ar

C

sy

In

P

la

th

L

se

fo

The variable

CallSeq2” an

The original s

re met. The n

Condition 4 a

ystem transit

n the test cas

LC first bec

adder code. S

he test is to e

LogixPlcTest

The b

equence. A p

ollows:

“SeqIsCalle

nd the variab

sequence (th

new sequenc

are met and C

tion done by

se that tests t

ause its occu

So the seque

exercise the

ter Log View

ug in the abo

possible solu

d” is set whe

ble “CallSeq

he sequence 2

ce (the seque

Condition 6

y the sequenc

the sequence

urrence was

ence 8 was c

sequence 2.

wer.

ove ladder c

ution is to tig

en there is a

q8” indicate

2) is called w

ence 8) is ca

is met. Duri

ce 2), Condi

e 2, the rung

earlier than

alled and the

As a result,

code is introd

ghten the trig

running seq

the respectiv

when Condit

alled when C

ing the test (

ition 1 throu

g of the seque

the sequenc

e sequence 2

the wrong s

duced by a w

gger conditio

quence. The

ve sequence

tion 1 throug

Condition 1 t

(designed to

ugh Condition

ence 8 was e

ce 2’s occurr

2 was not. B

sequence wa

weak trigger

on for Seque

variable

 is called to

gh Condition

through

verify the

n 6 are all m

examined by

rence in the

ut the purpo

as observed i

condition fo

ence 8 as

80

run.

n 5

met.

y the

ose of

in the

or a

E

se

pr

st

ch

an

o

m

ef

6

O

in

ru

fo

ca

Error Analy

Seque

equence that

resence of a

tate transitio

hanges being

nd a change

f the change

made by new

ffects can be

. Wrong sy

Overview

In the

n the system

ungs in the “

orm this subr

alculation of

sis

ences get cal

t gets execut

sequence w

on tests. The

g made in re

is made. Th

e, not just the

w code. It loo

e subtle.

ystem state

 PLC progra

. All the seq

“system state

routine can c

f the system

lled under ce

ted. Since ev

with a wrong

defect is ma

eal time. It m

he old code n

e new code.

oks more lik

am, the switc

quences rely

e update” sub

cause the en

state, all the

ertain conditi

very sequenc

trigger cond

ade worse sin

may be a regr

needs to be c

 This is an e

ke a code add

chgear’s syst

on it to exec

broutine are

ntire system t

e system asse

ions. At any

ce is tested b

dition will be

nce it may o

ression error

completely re

example of h

dition rather

tem state is t

cute successf

 critical. A w

to fail. Since

ets (such as

y time there i

by at least on

e revealed du

occur during

r in which th

eanalyzed an

how subtle a

than a chang

the most imp

fully. Theref

wrong system

e this subrou

circuit break

is only one

ne test case, t

uring the sys

site testing,

here is a solu

nd tested bec

change is th

ge, but the

portant varia

fore, the ladd

m state gene

utine handles

kers, generat

81

the

stem

with

ution

cause

hat is

able

der

erated

s the

tors,

an

ca

D

su

h

co

to

st

al

ci

fa

sw

co

T

p

nd alarms) m

an be produc

Detection

The fo

ubroutine ru

ave taken a w

orrectly. In t

o determine t

tate such as b

larms.

In ord

ircuit beaker

ailure condit

witchgear sh

orrect versio

The te

The initial sy

ower B failu

must be exam

ced when an

ollowing lad

ns once whe

wider and bi

this bug, the

the next syst

breakers’ av

der to determ

rs’ states is n

tion in this c

hould be in th

on of the ladd

est that found

stem state of

ure, the secon

mined to con

n asset is ove

dder code is i

en a sequenc

igger snapsh

PLC was on

tem state. Th

vailabilities, u

mine if the sw

necessary bu

ase. If CB20

he Plant Dar

der code is a

d the bug is

f this scenar

nd trigger ev

nclude the co

erlooked dur

in the subrou

ce is complet

hot of the sys

nly checking

here are othe

utility powe

witchgear is i

ut not suffici

02 “failed to

rk state inste

as follows:

designed to

io is NP-BF

vent in this t

orrect system

ring the syste

utine for upd

ted. The cod

stem in orde

g the (open/c

er properties

er status, gen

in the NP_B

ent. You als

open” alarm

ead of in the

test one of t

eedA, the fir

test is the CB

m state. A wr

em state calc

dating the sy

de has a bug

er to determin

close) states

s that also af

nerator status

BOnly state,

so need to ch

m is active th

NP_BOnly

the system fa

rst trigger ev

B202 “failed

rong system

culation.

ystem state. T

in it. It shou

ne the new s

of the break

ffect the syst

s, and switch

checking the

heck CB202’

hen the

state. The

failure scenar

vent is the ut

d to open” ala

82

state

The

uld

state

kers

tem

hgear

e

’s

rios.

tility

arm,

83

and the expected system state is Plant Dark. During the test, after the first trigger event

was initiated, the sequence 3 (in scenario 4 of Figure 5.2) was called. In the sequence, the

first step was to open CB202 and CB2604, and the second step was to start both

generators. At the first step, LogixPlcTester didn’t simulate the CB202 open signal to the

PLC resulting in a CB202 “failed to open” alarm (this is the second trigger event). When

this alarm was active, the sequence should terminate and the system state should be

“Plant Dark”. But due to the bug, the wrong system state NB-BOnly was observed in the

LogixPlcTester Log Viewer at the end of the test. Since the system state is monitored by

an Oracle Tag, any wrong state can be detected in LogixPlcTester.

Error Analysis

A system state variable is maintained to reflect the current system state. The state

variable is updated based on various conditions. In some cases the programmer does not

know all the information for a correct state because it is not in the system specifications.

It could simply be a case of additional details that need to be added as the system is

developed. The operators who are familiar with the system know the details that affect

the state. During the system development, the programmer should work with the

operators to determine for missing information from the system specification.

This kind of bug can be caught early if the programmer asks the operators "what

if" questions concerning the additional details. It may not be constructive to do this

during the system design or programming. But after the basic system can be constructed,

the programmer can revisit and deal with details and unspecified cases. To facilitate this,

the programmer needs to document the additional information that is required for

programming so that it will not be forgotten later.

84

Sometimes the programmers need to make some assumptions to push through an

initial solution. However, after the initial solution has been acquired, all the assumptions

made during the development must be revisited and reexamined. Any wrong assumptions

must be fixed.

7. PLC scan direction related error

Overview

There are two different scan styles that PLCs use to scan their programs. One is

called Rung Scan, which scans the code form left to right, top to bottom. Another is

called Column Scan, which scans the code from top to bottom, left to right. Different

scan direction can result in different output from a same code. Figure 5.8 shows a sample

code on which the two PLC scan methods lead to different results.

Figure 5.8: A code example for demonstrating scan methods.

85

 The equivalent function in Structured Text language is as follows:

if tag_A = true then tag_B := true;
if tag_C = true then tag_B := false;
if tag_B = true then tag_D := true;

Table 5.5 lists the results of the above logic when using Rung Scan and Column

Scan. If we scan the code with the Rung Scan method the result of the variable D is 0.

But if we scan the code with the Column Scan method the result of the variable D is 1.

However, if the initial values for (A,B,C,D) changes from (1,1,1,0) to (1,0,1,0) the results

of Rung Scan and Column Scan will be the same. So this bug will only reveal when

specific inputs are used for testing. A possible test method is to construct a truth table that

lists every logical condition as an entry and test all the entries, as in Table 5.5.

Table 5.5: Truth table for Figure 5.5.

 A B C D

Initial Value 1 1 1 0
Rung Scan Result 1 0 1 0
Column Scan Result 1 0 1 1

The bug was in the follow ladder code which is from the sequence 1 (NP-

BFeedA) subroutine. The code was written so when the CB2604 “failed to close” alarm

is generated at the step 2 of the sequence it will terminate and call another sequence (GP-

SplitFeed). When the test case that is designed to test this scenario was running, it was

observed in LogixPlcTester that the sequence GP-SplitFeed was never called by the PLC.

After checking the code for the permissive conditions for calling the sequence GP-

SplitFeed, the bug was identified. Because the PLC uses the Rung Scan method for

scanning the ladder code, the first rung is always examined before the second rung. That

m

w

ex

E

b

v

sy

al

8

O

co

w

d

P

lo

D

co

means when C

was set to fal

xecute due t

Error Analy

If the

ecause in an

ariable “SwG

ystem tests b

ll system beh

. Wrong lo

Overview

In a se

ommands to

won’t take lon

evice that is

LC sets the

onger than th

Detection

The d

ode. The pro

CB2604 fail

se by the firs

o the false p

sis

PLC scans w

ny PLC scan

Gear.Cmd.S

because it us

haviors are m

gical relation

equence, the

o different ha

nger than an

used for wa

“device faile

he feedback

defect was fo

ogrammer m

led to close,

st rung and w

permissive co

with the Colu

cycle both r

SetupNP_B_F

sually causes

monitored as

n between ti

ere are usuall

ardware devi

n allowed tim

aiting the fee

ed to respon

timer.

ound during a

made assumpt

the variable

when the sec

ondition.

umn Scan m

rungs will re

Feed_A”. Th

s a serious pr

s Oracle Tag

imers

ly multiple s

ices. Each st

me for that st

edback from

d” alarm. Th

a regression

tions on the

 “SwGear.C

cond rung w

method, then

ead and use t

his type of b

roblem in te

gs in LogixP

steps and eac

tep has a tim

tep. There is

the field har

he step timer

test after a c

preset value

Cmd.SetupNP

was examined

this wouldn

the same val

bug can be d

erms of syste

PlcTester dur

ch step will

mer to ensure

s also a timer

rdware devic

r should be a

change was

es of the feed

P_B_Feed_A

d it wouldn’t

n’t be an issu

lue for the

etected durin

em behaviors

ring the tests

output sever

e that the step

r per hardwa

ce before the

always set to

made in the

dback timers

86

A”

t

ue

ng

s and

s.

ral

p

are

e

o be

s

87

during the code development. Before starting to test on real hardware equipment, the

programmer was told to increase the feedback timer setting for a generator based on the

circuit breaker’s response time to control commands. After the change was made, the

feedback timer was longer than the step timer. (The programmer forgot to change the step

timer’s value to be greater than the new feedback timer’s value. That caused any

sequence in which that particular feedback timer was used to fail every time. In

LogixPlcTester, the sequence failure message was logged. The ladder code in Figure 5.9

shows the bug. The first rung defines a 1-second step timer. The second rung sets the

sequence failure alarm if the step timer times out. The third rung resets the step timer if

the CB102 open feedback signal is received by the PLC while neither the step timer nor

the feedback timer has timed out. The last rung defines a 2-second feedback timer for

waiting for the CB102 open signal. The feedback timer was set to 0.5 second originally.

After it was adjusted to 2 seconds, the programmer forgot to adjust the step timer to be

greater than 2 seconds. This bug always led to a failure at this step of the NP-BFeedA

sequence.

88

Figure 5.9: A timer related bug in the sequence NP-BFeedA.

Error Analysis

This is a regression error because the same sequence was tested with the same test

case and it was working. This kind of bug can be detected by LogixPlcTester because it

causes multiple scenarios (that use the defect sequence) to fail and there is at least one

test case designed to test each scenario for correctness. This could be labeled as a

disturbed invariant error. When any logical relationship involves quantities that are

changed, the logical relationship must be analyzed and tested to see if the invariant of the

logical relationship has been altered by the change. A PLC programming rule can be

added to the checklist to verify the timers’ preset values in the PLC program and the

89

logical relationship between timers. The timer related bugs are very common in PLC

programming and some of them are not easy to detect. For example, a hardware device’s

response time is 10 seconds but it was set to 5 seconds in the PLC program. During the

simulation tests, this may not be found because the response time simulated by

LogixPlcTester could be always within the threshold (5 seconds). But when conducting

the real tests against the hardware device, this bug will reveal because the actual response

time from this device is between 5 seconds and 10 seconds. By preparing a checklist with

all known PLC issues and using it during the system tests, the known common bugs can

be easily sweep out of the PLC code.

9. Confusion between logical AND and logical OR

Overview

In PLC programing, there are two bit instructions called logical AND and logical

OR. They perform bitwise AND or OR operations. For example, AND instructions

should be used between permission conditions, and OR instructions should be used

between alarm conditions. Figure 5.10 shows an example of AND instructions and an

example of OR instructions.

90

Figure 5.10: Examples of AND and OR instructions.

According to Demorgan's Laws, the logic in Figure 5.10 can also be represented

as in Figure 5.11.

Figure 5.11: Equivalent logic of Figure 5.6 according to Demorgan's Laws.

Detection

Figure 5.12 shows the bug that was discovered during system tests. This logic is

meant to set the Boolean variable “SwGear.Stat.SeqRunning” when any of the sequences

91

is running. (When this variable is set, no new sequence is allowed to run until the current

running sequence is done.) However the code in Figure 5.12 obviously violated

Demorgan's Laws. Figure 5.13 shows two possible solutions to the problem.

Figure 5.12: A logic that violated Demorgan's Laws.

Figure 5.13: Fixes for the ladder code in Figure 5.12.

92

This bug was detected by both test cases and code review. Because the function

represented by the logic is fundamental and it’s used by all the sequence subroutines, it

was detected by multiple test cases that test the system state transitions. Due to this bug,

when a sequence’s trigger event was enabled by LogixPlcTester, the sequence couldn’t

be started because the variable “SwGear.Stat.SeqRunning” was always true, which was

indicating there was a running sequence. As a result, no log messages were observed in

LogixPlcTester to indicate the expected sequence was called to run by the PLC.

Error Analysis

Because breaking Demorgan's Laws in PLC programs results in wrong logics in

system functions, they are easy to be discovered by some test cases that rely on the

system function. Code review method was used in this project to perform an initial

screening for bugs in the code and it did find this bug. Code review is usually performed

during the software development prior the black-box testing and it’s usually performed

by another programmer who’s familiar with the system specification, the overall structure

of the program and its objectives. During code review, the programmer will carefully

inspect the logic implemented in the source code rung by rung in order to find errors. A

mental simulation of a code execution is helpful to verify the correctness of the functions.

Code review will show the location of a bug found so there is no debug process required.

Because of the native characteristics of the PLC ladder logic program, it’s proved that

code review is quite efficient for detecting bugs in PLC programs. However, code review

doesn’t tend to find more subtle problems in the code because it can only deal with

certain level of complexity of the code. Most likely, it won’t be able to find a bug that is

buried in a complex code such as an algorithm. Code review can be improved with an

er

m

ov

o

1

O

op

or

b

th

ca

co

a

fo

br

C

lo

in

p

rror oriented

miss things ov

verflow, inc

f error at a ti

0. Hardware

Overview

There

perations (to

riginal simu

eginning of

he real hardw

ases then we

orrespond to

circuit break

or protective

reaker’s clos

CB102 close

ock out relay

nterlock, it c

ower loop in

d approach. F

ver and over

orrect timer

ime, then yo

e interlock

 are usually

o protect the

lation tests.

the tests. Th

ware equipm

e can integra

o missing per

ker when cer

e purpose. In

se command

operation. T

y alarm is ac

ould potenti

n the system

For example

r again such

presets, etc.

ou may see th

some interlo

hardware).

This is due t

hey are usual

ment. If we kn

ate them in th

rmissive con

rtain conditi

n the program

d. The follow

The interlock

tive or CB25

ially cause so

.

e, when you’

as wrong ta

. But if you d

he errors.

ocks built in

The hardwar

to the unawa

lly discovere

now the inte

he test cases

nditions. For

ions exist. Th

m, this acts a

wing ladder c

k prevents CB

504 lock out

ome hardwa

re walking t

ag names, wr

do it in itera

n the hardwar

re interlocks

areness of th

ed when runn

erlocks befor

s. Missing ha

r instance, th

his is an inte

as a permissi

code shows a

B102 from c

t relay alarm

are damages

through the c

rong comme

ations, focusi

re to prevent

s could be ov

he hardware

ning the sam

re we start to

ardware inter

he PLC shou

erlock built i

ive condition

a hardware i

closing when

m is active. W

because it m

code you can

ents, counter

ing on one ty

t illegal

verlooked in

interlocks at

me tests again

o design the

rlocks could

uldn’t try to c

in the hardw

n for the

interlock for

n either CB3

Without the

may cause a

93

n

r

ype

n the

t the

nst

test

d

close

ware

r

302

94

Detection

The above interlock was missing when a test was conducted. The test that found

the missing interlock was actually required by a field operator. The test is to verify how

the PLC reacts in the scenario where the system state is NP-BFeedA (initial state) and the

utility power A is normal (trigger event). It’s similar to the scenario 6 of Figure 5.2. But

in this scenario, CB302 was simulated to have a lockout relay alarm. It was observed in

LogixPlcTester Log Viewer that the PLC called the sequence 9 to close CB102, which

was correct if there was no lockout relay alarm on CB302 or CB2504. In this test, the

actual expected result was no action from the PLC.

Error Analysis

At the software development and testing stage, the programmer should ask the

domain expert – the operator for the hardware interlocks and implement them in the

program. For the missed interlocks, most likely they will show themselves during the

final acceptance test in the production system. The interlocks should be added in the

software program as permissive conditions as they reveal during the final test. Software

interlocks and hardware interlocks complement each other. If one fails the hardware is

still protected by the other one.

Another lesson learnt from this project is “Difference between designer’s mind

and equipment’s mind”. The system designer writes the system specification based on

what he knows about the system and what he thinks the system should work. However,

the physical equipment may work differently than what says in the specification. As a

result, there will be some code changes at the site to remedy the misunderstanding. When

you are making changes at the site (with people looking over your shoulder), sometimes

95

you do not think it through and just patch the code for the current issue. You may

introduce some more bugs into the code while patching the code. The sequence conflict

bug is a typical example in here. The programmer added a new sequence at the site

without considering the impact on the existing sequences resulting in a sequence conflict

defect.

In this project, there were three parties involved (engineer/designer, operator, and

programmer/tester). The engineer designs the system and writes the system specification.

The programmer/tester writes and tests the program based on the system specification.

Once the development and testing are done, the operator will test the program against the

real equipment to verify if the program works in the production system and meets

operation standards. At this step, some discrepancies between the system design and the

way the real equipment actually works will be exposed. In this case, onsite code changes

are inevitable. As a result, a regression test has to be conducted. Sometimes the engineer

and the operator may make contradictory demands to the programmer for changes to the

code and in that case the same code can be changed back and forth multiple times.

96

Chapter 6. Related Work

Allen Bradley has a software product called RSTestStand [9], which enables

control system developers to create virtual control system scenarios that can be used to

test design configurations and programs. RSTestStand allows you to develop and test

your control program in an offline system by simulating the field inputs and outputs

signals. RSTestStand uses industry standard OPC (OLE for Process Control) protocol to

communicate with Allen-Bradley PLCs using RSLinx. RSLinx is another software

product from Allen Bradley that is a communication server providing plant floor device

connectivity to support Allen Bradley software applications such as RSLogix 5000 (the

Allen Bradley Logix PLC programming software). In addition, RSLinx is an OPC

compliant data server supporting the OPC Data Access 2.05 specifications. In order for

RSTestStand to work, RSLinx must be installed on the same computer where

RSTestStand resides. In the communication link between RSTestStand and the PLC,

RSTestStand acts as an OPC client and RSLinx acts as an OPC server. RSTestStand

reads and writes PLC tag values by inquiring the OPC server (RSLinx)

Similar to a hardware test stand, RSTestStand provides you with a range of

devices like push buttons and pilot lights to interact with your logic program. Figure 6.1

shows the RSTestStand operator console, which is the runtime interface equipped with

buttons, selector switches, and pilot lights used by an operator to interact with the logic

program test. The operator console is similar to the Control Graph feature in LogixTester.

F

th

a

R

it

tr

sh

as

st

Figure 6.1: R

Like i

he PLC. RST

graphical in

RSTestStand

t won’t give

riggers as in

hows the seq

s its commun

tandard. The

RSTestStand

in LogixPlcT

TestStand us

nterface for p

flowchart. A

users the fle

LogixPlcTe

quence of ev

nication pro

e typical OPC

d operator c

Tester, RSTe

ses flowchart

programming

A test case c

exibility of d

ester. RSTest

vents while a

tocol, its com

C resolution

console.

estStand also

ts to control

g RSTestSta

an be create

defining time

tStand doesn

a test case is

mmunication

n is 1 second

o uses tags to

 the behavio

and. Figure 6

d using a flo

e based trigg

n’t provide a

running. Sin

n resolution

. LogixPlcT

o exchange i

ors of the tag

6.2 shows an

owchart in R

gers or condi

an explicit lo

nce RSTestS

is limited by

ester uses th

information

gs. A flowch

n example of

RSTestStand

ition based

og viewer tha

Stand uses O

y the OPC

he PLC’s nat

97

with

art is

f

. But

at

OPC

tive

co

is

F

v

it

to

an

si

si

ommunicatio

s optimal.

Figure 6.2: R

Simila

irtual enviro

t provides a c

o installation

Sieme

nother type o

imulation rat

imulators wi

on protocol

RSTestStand

ar to LogixP

onment. This

cost-effectiv

n.

ens’ S7-PLC

of PLC simu

ther than I/O

ithout the ac

(Ethernet/IP

d flowchart

PlcTester, RS

s approach d

ve and system

CSIM [10] an

ulator tool. T

O simulation

tual PLC ha

P) to commun

t.

STestStand c

doesn't requir

m-safe way t

nd Allen Bra

They both fo

. They can ru

ardware. The

nicate with t

can train ope

re expensive

to understan

adley’s RSLo

ocus on PLC

run PLC prog

ey can simula

the PLC so t

erators and te

e equipment

nd the system

ogix Emulat

controller h

grams in the

ate most of t

that its resolu

echnicians in

in the plant

m operations

te 5000 [11]

hardware

eir software

the functions

98

ution

n a

and

prior

are

s that

99

a real PLC has. You can debug your program in the software simulator. They are very

useful when you want to develop and debug programs without the PLC hardware. But

they don’t provide any automated mechanism for I/O simulation. The only way you can

simulate I/O points in them is to manually change values in the System Data Reference

Table. However, when the PLC controller simulators [10][11] are used with

LogixPlcTester together, a pure software testing environment is formed, which requires

no PLCs during the entire software testing process. It will be extremely beneficial in

terms of costs when multiple testers are working in the system. With this solution, every

tester can have a dedicated test environment (a virtual PLC and a virtual test stand for I/O

simulation) other than sharing one test environment with others. This will eliminate the

interference between testers and their ongoing tests.

100

Chapter 7. Conclusion and Future Work

7.1 CONCLUSION

The automated testing tool, LogixPlcTester, was designed to test software

programs running in Allen Bradley Logix PLCs based on test cases. It acts as a virtual

device that can respond to the PLC’s commands by writing feedbacks to the PLC. With

LogixPlcTester, the testing process can start early in the software development cycle. As

a result, software bugs can be discovered at an earlier stage than usual and this makes bug

fixing easier and faster. The project development costs can be greatly reduced and stable

and high quality programs can be produced. A control program that has been precisely

tested by LogixPlcTester in a development environment will make the final onsite testing

easier and faster in the production system. Unnecessary hardware equipment damage due

to software bugs can be prevented. And the system startup process will become much

smoother. Since all the tests can be conducted in a simulation system using

LogixPlcTester, only the final acceptance test need to be run on the real hardware system.

As a result, the hardware equipment’s operation life time can be extended.

LogixPlcTester is a powerful and easy to use automated PLC testing tool that helps

building and assuring quality into industrial control programs. LogixPlcTester allows

testers to build test cases quickly with a built-in configurator that requires no

programming for building test cases. The goal of LogixPlcTester is to provide an

effective and time-saving test environment for testing PLC programs to identify potential

problems with the PLC programs and eliminate the identified bugs with regression tests

101

so that high quality programs can be attained before they are downloaded into production

systems and start controlling hardware equipment. The goal was achieved in the

Emergency Generator Control project.

7.2 Future Work

Currently the time resolution that LogixPlcTester supports is 250 milliseconds

meaning any signal changes in the PLC that are faster than 250 milliseconds won’t be

captured by LogixPlcTester. A time resolution of 250 milliseconds is actually good

enough for most of the PLC control programs because the field devices normally have a

response time longer than 250 milliseconds. However in some time-critical systems

where higher time resolution is required, LogixPlcTester may not produce feedbacks to

the PLC fast enough in order to meet the response time requirement. A temporary work-

around for this is to enlarge the feedback timers in the PLC so that the LogixPlcTester

test cases can be passed as far as the response time is concerned. The work of improving

LogixPlcTester’s time solution has been started. The code for reading tag values from

PLC is being rewritten to improve efficiency. The optimal goal of time resolution for

LogixPlcTester is 100 milliseconds.

Hardware interlocks are usually overlooked during software simulation testing. In

industrial control systems’ testing, hardware interlocks should be put as a rule in the

checklist. Testers should always check with domain experts about hardware interlock

while creating test cases. All hardware interlocks should be implemented in software for

redundant protection.

102

In the current version of LogixPlcTester, log messages are the only way to verify

a test result. Timestamped log messages show the sequence of actions issued by the PLC

and the sequence of responses sent from LogixPlcTester. Testers need to review the log

messages in order to determine if the test is passed. Although the log messages clearly

record the entire test process, sometimes testers misread the log messages resulting in

incorrect test results. Even with a graphical control screen supported by LogixPlcTester,

testers’ interactions are still required. A potential solution is to have LogixPlcTester be

able to read a temporal logic specification and use it to automatically verify the result of a

test while it’s running. This temporal logic specification will act as a “oracle” for the test

case. With this feature, LogixPlcTester will generate an explicit result of a test case

(either passed or failed). Currently this new feature is under feasibility evaluation.

A batch test mode will be added to process multiple test cases in a predefined

sequential order automatically. Currently a test case is loaded manually in

LogixPlcTester. When a test case is done, a new test case has to be loaded in

LogixPlcTester manually. With the batch mode support, testers just need to specify the

location of the test cases that need to run and then initiate the start of tests. After that,

LogixPlcTester will automatically execute the tests in the following order: load a test, run

the test, unload the test, load a new test, run the new test… until all the tests are done.

Testers only need to review the log messages after all test cases are complete. With the

temporal logic specification feature, this would become even easier. Basically what

testers would get is the final test reports. They would no longer review the log messages

from the tests because LogixPlcTester already verified the test results by using the

temporal logic specifications.

103

References

[1] Allen Bradley ControlLogix System User Manual. Rockwell Automation Publication
1756-UM001L-EN-P. 2011.

[2] Allen Bradley Logix5000 Controllers General Instructions. Rockwell Automation
Publication 1756-RM003M-EN-P. 2010

[3] Allen Bradley Logix5000 Controllers Function Block Diagram Programming Manual.
Rockwell Automation Publication 1756-PM009C-EN-P. 2009

[4] Allen Bradley Logix5000 Controllers Sequential Function Charts Programming
Manual. Rockwell Automation Publication 1756-PM006C-EN-P. 2009

[5] Allen Bradley Logix5000 Controllers Structured Text Programming Manual.
Rockwell Automation Publication 1756-PM007C-EN-P. 2009

[6] Allen Bradley PanelView Plus Terminals User Manual. Rockwell Automation
Publication 2711P-UM001J-EN-P. 2009

[7] EtherNet/IP Technology Overview. 2011. http://www.odva.org.

[8] GLG User’s Guide and Builder Reference Manual.2011. http://www.genlogic.com.

[9] RSTestStand Getting Results Guide. Rockwell Automation Publication TSTENT-
GR001A-EN-P. 2004

[10] Siemens’ Simatic S7-PLCSIM User’s Manual. 2007

[11] Allen Bradley RSLogix Emulate 5000 Getting Results Guide. Rockwell Automation
Publication LGEM5K-GR015A-EN-P. 2005

App

pendix A. PLC Prog

104

gram Struucture Diaagram

