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PLCs (Programmable Logic Controllers) are the work horse of industrial control 

systems. Industrial control systems are usually both mission-critical and safety-critical 

systems. A single software bug in a control system program could cause hardware 

equipment damage and human life loss. The PLC programs in control systems must 

provide bug-free and failure-free behaviors in order to avoid accidents. A PLC program 

must be completely tested for correctness in functionality, reliability, predictability, and 

safety before it’s released for production systems. At a PLC program development stage, 



 

xii 

 

hardware devices in the industrial control system are usually not available for testing the 

PLC program for safety reasons. The often used solution is to use a simulator to simulate 

the hardware devices’ behaviors. The simulator is usually built as a hardware test stand 

which consists of toggle switches, lamp indicators, and analog signal generators. The 

shortcoming of this kind of simulators is they are not automated and require lots of user 

interactions. As a result, they cannot guarantee the accuracy of behaviors of the hardware 

devices being simulated.  

This research presents an automated testing tool which automates the hardware 

device simulation process by using “virtual” wires. The hardware device simulation is 

part of a test case which is defined in the presented testing tool and downloaded to the 

PLC controller. This testing tool requires no user interaction during a test run so it 

reduces the testing cost and time and it can precisely simulate the behaviors of hardware 

devices. 
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Chapter 1. Introduction 

1.1 PLC in Control Systems 

PLC stands for Programmable Logic Controller. A PLC is essentially an 

embedded system which consists of a programmable microcontroller and a variable 

number of I/O modules. An I/O module has a variable number of I/O channels which are 

wired to the hardware devices in the field. A PLC is designed as a hard real-time system 

that monitors the inputs (which are wired to sensors like level sensor, pressure sensor, pH 

sensor, or temperature sensor) and controls output actuators such as pumps, valves, 

generators, or boat locks in real-time. Figure 1.1 shows a typical PLC hardware 

configuration. PLC controllers are usually RISC (reduced instruction set computer) 

microprocessor. PLC was invented to replace hardware relay logic circuits. When it was 

first invented in 1960s, a PLC could only be programmed by a specialized program called 

ladder logic which is similar to a schematic of relay logic. Now the modern PLCs support 

multiple languages defined by IEC61131 standard (which is an international standard for 

PLC programming languages). The five languages defined in IEC61131-3 standard are 

Ladder Diagram (LD), Instruction List (IL), Structured Text (ST), Function Block 

Diagram (FBD), and Sequential Function Charts (SFC). Allen Bradley’s Logix PLCs 

support all languages but IL. IL is mostly used in European PLCs like Siemens PLC. IL 

is the European counterpart of LD. A PLC program consists of multiple routines and each 

routine can be programmed in any language supported by the PLC. This allows the PLC 

programmer to choose the language that is best suited for each individual task. Only one 

program can be downloaded to a PLC. A PLC executes its program repeatedly. Each 
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execution iteration is called a scan cycle. The time consumed for a PLC scan cycle is 

very fast, in the units of milliseconds. Figure 1.2 shows the major steps of a PLC scan 

cycle. At the Scan Input step, the PLC reads the real-time values of the sensors that are 

connected to the PLC input modules and records the values in memory. At the Execute 

Program step, the PLC executes the program synchronously (from left to right and top to 

bottom) based on the real-time input values recorded in memory. At the Update Outputs 

step, the PLC updates the outputs (to the actuators) based on the results of executing the 

program in the current scan cycle. The I/O values are updated asynchronously.

Controller Input Modules Output Modules

Sensors Actuators

  

Figure 1.1: Typical PLC configuration. 
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Figure 1.2: PLC scan cycle. 

PLCs have made major contributions to industrial automation and they are widely 

used in the industrial automation control systems. As mentioned earlier, PLCs were 

originally invented to replace the hardware relays. But as the PLC technology advanced, 

PLCs provide more and more functionality and play more important roles in industrial 

automation control systems. Today’s PLCs provide faster scan cycle time by using high 

performance CPU chips, drive high-density I/O systems including wireless I/Os, support 

more popular industrial communication protocols such as DNP3.0, Modbus, Ethernet/IP, 

and Profibus, provide redundancy for CPU and I/O, and support various I/O signal types 

such as discrete, analog (current/voltage), RTD (Resistance Temperature Detector), high 

speed pulse, and SOE (Sequence of Events) [1]. All these new PLC features allow them 

to accommodate more complex applications. PLCs are widely used as the reliable plant-
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level controllers and deliver a wide range of functionality for relay control, motion 

control, process control in Distributed Control Systems (DCS) and Supervisory Control 

and Data Acquisition (SCADA) systems in various of industries including water/waste 

water, power, automotive, packing, food, and pharmaceutical. 

1.2 Software Testing in Control Systems 

Industrial control systems are usually mission-critical and safety-critical real-time 

systems. A real-time system must guarantee both logical correctness and temporal 

correctness. A PLC program should be designed and developed as a hard real-time 

application that must guarantee the response time to handle all events even in the worst 

case scenarios. If a signal process is delayed by a PLC then a system failure could occur. 

For example, a PLC is used in a power generation system to control a power generator. 

The PLC must verify that the generator’s frequency, voltage and phase angle are 

synchronized with the power grid before it can output a command to close the main 

breaker to connect the generator to the power grid. If the PLC closes the main breaker 

when the frequency, voltage, or power phase angle is not synchronized between the 

generator and the power grid the hardware equipment such as circuit breakers could be 

damaged. Nevertheless, if the PLC has a one-second delay for outputting the main 

breaker close command after it confirms the generator and the grid are synchronized it 

will also cause the same problem due to a temporal failure. 

Software Testing is a very important stage in the software development life cycle 

in general-purpose systems. It’s even more important in industrial control systems. In 

software development for an industrial control system application, you want to find as 
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many bugs as possible before you release the application program for the control system. 

As mentioned before, control systems are usually mission-critical and safety-critical 

systems. A bug in a production control system could damage the controlled hardware 

devices and could even cause human life loss. So testing is extremely important and 

critical in control systems vs. in general-purpose systems.  

A program in a control system is essentially a black box which takes some inputs 

and generates some outputs based on the inputs. Inside the black box it’s the control 

logic. It also can be put in this way, a control program answers “what-if” questions. If the 

program covers all possible operation scenarios it most likely will answer all the “what-

if” questions correctly. However this is a tough task. Often times, when a control system 

goes into an unknown condition or an unexpected condition the control program may not 

know how to react. It just sits there and does nothing instead of commanding the system 

to a safe state. This is very dangerous in safety-critical system. If the control program 

fails to handle a control scenario an accident could happen and that could cause hardware 

device damages and even human life loss. A control program in a safety-critical system 

must provide failure-free behavior by considering all possible operation scenarios. A 

simple example is a control program ignores the quality bit of an analog I/O point from a 

sensor. In this case, the control program will continue to use the I/O value of the analog 

point even after its quality bit became bad (due to a broken sensor). The control program 

will use the wrong reading for its control logic and eventually will make incorrect control 

decisions. For example, in a pump control scenario, the pump starts to fill water into a 

tank when the tank level is low and stops to fill water when the tank level is high. While 

the pump is running to fill water, the tank level sensor becomes defective. As a result the 
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tank level reading stops updating. But the actual tank level is still rising. Since the control 

program doesn’t check the quality bit of the tank level signal, it will continue to actuate 

the pump (instead of stopping the pump and generate a sensor failure alarm). Eventually 

the tank will overflow. This is a real example that shows why a control program should 

consider all possible operation scenarios and all possible device failures (broken sensors, 

jamming actuators) at the software development stage. The program must be tested 

against expected failures as well as unexpected failures at the testing stage in order to 

prove the correctness of handling system failures. Ensuring high reliability of a PLC 

program is critical in industrial control systems.
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Chapter 2. PLC Programming Languages 

The Allen Bradley CompactLogix PLC and ControlLogix PLC support four 

languages defined in the IEC61131-3 standard and they are Ladder Diagram (LD) [2], 

Function Block Diagram (FBD) [3], Sequential Function Charts (SFC) [4], and 

Structured Text (ST) [5]. 

2.1 Ladder Logic 

Ladder Logic is the most often used language in PLC programming because it 

was the first and only supported language when PLC was invented; it’s made to mimic 

the existing relay logic wiring schematics; it’s easy to debug. Using Ladder Logic 

reduces the training needs for electricians, technicians and engineers to learn how to 

program a PLC because they’re already familiar with the style of the Ladder Logic 

diagram. Figure 2.1 shows a hardware switch circuit diagram and a PLC Ladder Logic 

diagram for the same lamp control circuit. 

 

Figure 2.1: (a) Hardware switch circuit diagram. (b) PLC Ladder Logic diagram.
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2.2 Function Block Diagram (FBD) 

Function Block Diagram (FBD) is a graphical programming language. The basic 

element of FBD is called a block. A block describes a function between input variables 

and output variables. A set of function blocks can be connected together (like an 

electrical circuit) to form a new function. Inputs and outputs of blocks are connected by 

connection lines. A function block encapsulates its implementation and it makes it 

possible to develop modular programs and reuse them from one PLC project to another. 

Figure 2.2 shows a Function Block Diagram program that buffers the value of a digital 

input module and maps the buffered value to an internal pump structure. 

   

Figure 2.2: A sample Function Block Diagram program.  
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2.3 Sequential Function Charts (SFC) 

Sequential Function Charts (SFC) is another graphical language supported by 

Allen Bradley Logix PLCs. It’s designed for complex sequential process controls. The 

basic elements in SFC are step, action, and transition. A step defines a major function of 

the control process. It contains the actions that execute at this step. An action is one of the 

functions that a step performs. A transition is a condition that is checked before the SFC 

can go to the next step. Sequential Function Charts are similar to flowcharts and they are 

the industrial implementation of Petri Net. 

 

Figure 2.3: A sample Sequential Function Chart program. 

Figure 2.3 shows a 3-step SFC program. Each step has a single action. A transition is 

defined between two consecutive steps to determine when the process control can move 

to the next step. SFC simplifies the logic for a complex sequential control by a 
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graphical representation. With SFC It becomes very easy to design and troubleshoot a 

PLC program. You can easily see what the program is doing and locate the logic where 

the problem occurs during a process control sequence. SFC is self-documented.  

2.4 Structured Text (ST) 

Structured Text (ST) is a high-level procedural language that is similar to the 

Basic language or the Pascal language. Structured Text is very useful when developing 

complex functions in the PLC such as complicated math calculations or algorithms. 

People who are familiar with high-level programming languages will feel comfortable to 

program a PLC in Structured Text. Structured Text programs can be created and edited in 

any Text Editor. Most of the modern PLCs support Structured Text language. However, 

debugging a Structured Text program can be very hard because there is no any debugger 

available for Structured Text in the PLC program development environment. Therefore, 

Structured Text is not an ideal language for developing process control logics because in 

Structured Text you cannot track which stage the program is currently running at. Figure 

2.4 shows a Structured Text program that calculates pump runtimes. 
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Figure 2.4: A sample Structured Text program. 

Multiple programming languages can be used in the same PLC program. In order to 

choose an appropriate language, many factors need to be evaluated such as the 

programmers’ skill, the complexity, modularity, and structure of the programming task,
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the type of control logic of the application, who will troubleshoot and maintain the 

program, and how often the program needs to be modified. A right choice of the 

programming language will shorten both development time and troubleshooting time and 

deliver more efficient and reliable programs. 

An Allen Bradley Logix PLC controller is a preemptive, multitasking controller. 

A single PLC project runs in a PLC controller, which supports multiple tasks. Each task 

supports multiple programs and each program supports multiple routines. Logix PLC 

supports three types of tasks: Continuous, Periodic, and Event. A continuous task has the 

lowest priority so it can be interrupted by a periodic task or an event task. Figure 2.5 

shows an example of scheduling three tasks. T1 and T2 are periodic tasks and T1 has a 

higher priority than T2. T1 runs every 10ms and it takes 2ms to run. T2 runs every 7 

seconds and it takes 4ms to run. T3 is a continuous task. 

 

Figure 2.5: PLC project task scheduling example.
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1. It’s expensive and limited to the number of I/O channels it’s designed for 

2. It requires the physical presence of all the PLC I/O modules because the signals 

from the Test Stand will need to be wired to the PLC’s I/O modules. 

3. It requires user interaction during a test run. In a complex process control, it’s 

difficult to simulate multiple signals in a certain sequence or to simulate multiple 

signals simultaneously. 

4. It’s a manual simulation and cannot conduct automatic simulation. 

3.2 HMI Based Simulator 

Another approach that is often used for simulating the PLC I/Os is a HMI (Human 

Machine Interface) based software simulation. In this approach, a HMI control screen is 

developed and used for the PLC I/O simulation. The HMI control screen can be made as 

a SCADA system screen or a standalone Operator Terminal screen. Figure 3.2 shows an 

Allen Bradley Operator Terminal (called PanelView [6]) screen. Since this is a software 

simulator it eliminates the requirement of the PLC I/O modules. However, it is still a 

manual simulation and it’s time-consuming to make the I/O simulation screens 

themselves. A HMI based simulator can be used to test all functions of a PLC program. 

But the timing between a command and the response for the command is not automated. 

It requires user interaction to click a button on the screen to trigger each I/O simulation. 

So it cannot be used for automatic control sequence simulation and the accuracy of a test 

depends on the user’s actions too.  
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Chapter 4. LogixPlcTester 

To overcome the shortcomings of the hardware Test Stand and the HMI based 

simulator, this research presents a Windows based application called LogixPlcTester that 

can precisely simulate behaviors of hardware devices in the field. LogixPlcTester can 

automatically read the outputs of the PLC and simulate inputs to the PLC by sending 

values directly to the input memory of the PLC controller based on inputs’ trigger events 

(either time-based event or condition-based event). Unlike the other simulation methods, 

LogixPlcTester doesn’t require the presence of any PLC I/O module in order to simulate 

signals. LogixPlcTester is connected to the PLC that is being tested through “virtual” 

wires. LogixPlcTester doesn’t require user interaction in order to run the simulations. 

LogixPlcTester has the following main features: 

 Define test cases offline. 

 Run test cases against the PLC program. 

 Simulate incidents occurring in the production system. 

 Simulate “odd ball” cases that cannot be tested in the production system. 

 Verify bug fixes before applying the production system.  

 Good for both unit testing and system testing. 

 Can be also used as a good training system that can demonstrate how the 

system works in every scenario. 

 A good troubleshooting tool for debugging PLC programs when it’s set to 

monitor-only mode.
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4.1 Design Diagram 

In a typical PLC-based industrial control system, all the field hardware devices’ 

feedback signals are wired to the PLC’s input modules, and the PLC control output 

signals (sent from the PLC’s output modules) are wired to the actuators of the field 

hardware devices. The PLC knows the status of the field hardware devices by reading the 

input signals and the PLC control program runs based on the input signals and generates 

output signals to control the field hardware devices. The diagram at the left hand side of 

Figure 4.1 shows a typical industrial PLC control system. The diagram at the right hand 

side of Figure 4.1 shows the concept diagram of the automated testing tool presented in 

this research. Instead of connecting the real devices to the PLC using real wires, the 

presented testing tool acts as a virtual device or virtual devices and connects to the PLC 

through virtual wires. LogixPlcTester is the name of the automated testing tool 

application and is programmed with C# language in Visual Studio 2005. LogixPlcTester 

simulates the field hardware devices’ signals by sending the configured signals in the test 

case as sequence of events (time triggered simulation). LogixPlcTester can also read the 

PLC control output signals and based on the PLC output signals it can send the 

configured signals to the PLC (condition triggered simulation). The diagram at the 

bottom of Figure 4.1 shows the system diagram at the network level. LogixPlcTester 

communicates with the PLCs using Ethernet/IP protocol [7]. Ethernet/IP stands for 

Ethernet Industrial Protocol which was originally developed by Rockwell automation (the 

vendor of Allen Bradley PLCs). Ethernet/IP is an application layer protocol. Ethernet/IP 

uses all the transport and control protocols of standard Ethernet including Transport 
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Control Protocol (TCP), the User Datagram Protocol (UDP), the Internet Protocol (IP) 

and the media access and signaling technologies. Ethernet/IP protocol is transferred in a 

TCP/IP packet. Ethernet/IP uses an open application layer protocol called Common 

Industrial Protocol (CIP).          

 

Figure 4.1: LogixPlcTester design concept diagram. 
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As shown in Figure 4.1, Ethernet/IP protocol has been implemented in the PLC 

controller’s firmware, which allows direct read from and direct write to the PLC’s input 

and output memory. LogixPlcTester uses the corresponding packets of Ethernet/IP to 

read data from the PLC and write data to the PLC.  

4.2 Inhibit PLC I/O Modules 

In order for LogixPlcTester to work correctly, no code change is required in the PLC 

program that is being tested. However, a PLC I/O module configuration change (in the 

PLC project file) may be required in order to disable the communications between the 

PLC controller and its I/O modules. During testing, since LogixPlcTester will simulate 

values for all the PLC input modules by directly updating the PLC’s input memory, we 

need to make sure that the PLC controller won’t update its input memory with the 

hardware values read from the input modules. We can disable the communication 

between the PLC controller and an I/O module by inhibiting the module. Figure 4.2 

shows the I/O modules at slot 2 to 15 are inhibited in a PLC project. The communications 

between the PLC controller and the output modules can be left enabled as far as 

LogixPlcTester is concerned. However, we want to disable them as well from the safety 

standpoint. For example, if the PLC controller updates its output memory during a test it 

will energize the relay outputs based on the program execution results and that may 

accidently actuate the field hardware devices if they were wired to the PLC that is being 

tested and that may cause some unexpected incidents and damages to the hardware 

devices. The module inhibition step can be ignored if an I/O module is not physically 

present in the PLC rack because the PLC controller doesn’t update the I/O memory for a 
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4.3 Application Overview 

LogixPlcTester is a Windows .NET application developed with C# language in 

Microsoft Visual Studio 2005.  LogixPlcTester creates customized test cases in an 

Extensible Markup Language (XML) format. Test case XML files can be shared among 

QA engineers. LogixPlcTester displays a test case in a tree view structure. Users can edit 

a test case either online or offline. LogixPlcTester displays real-time values of PLC tags 

defined in a test case and it supports online changes on the fly while a test case is 

running. A log view feature is supported to log alarms, tag value change notifications, 

system operation messages online in a spreadsheet format. The logs can be exported from 

LogixPlcTester to a Comma-Separated Values (CSV) file for further review. Once 

initiated, a test case runs in LogixPlcTester automatically based on the time triggers and 

condition triggers in the test case. Figure 4.3 shows the main application window of 

LogixPlcTester. 
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Figure 4.3: LogixPlcTester application overview. 
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4.4 Test Case Structure 

In LogixPlcTester, a test case supports multiple PLCs and each PLC consists of 

three PLC tag lists that belong to different tag categories. Figure 4.4 shows a typical 

structure of a test case in LogixPlcTester. 

 

Figure 4.4: A typical test case structure. 

In Figure 4.4, the test case that is called “Test Case #1” defined two PLCs (Pump 

PLC and Tank PLC). Each PLC has Output Tags, Oracle Tags, and Alarm Tags. 
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An Output Tag is used to send a value to a tag in the PLC based on a time trigger 

or a condition trigger while the test case is running. Output tags are responsible for 

simulating field hardware devices by sending configured data to the PLC’s I/O channels 

in real-time. An Oracle Tag is used to monitor the value of a PLC tag. Oracle tags read 

values in a report-by-exception basis. Only changed values in the PLC are reported to 

LogixPlcTester. The report-by-exception mechanism dramatically reduces the network 

communication traffic between LogixPlcTester and the PLCs that are being tested. An 

Alarm Tag is used to define a system operation alarm or to define an event trigger. For 

example, you can use an Alarm Tag for a pump overload alarm. You can use an Alarm 

Tag to monitor a pump run command sent by the PLC and configure an Output Tag that 

uses the Alarm tag as a condition trigger to simulate a pump running signal once the 

pump run command is detected by LogixPlcTester.  

A tag name in LogixPlcTester must be identical to a tag name in the PLC. The 

definition of a LogixPlcTester tag name is referred to the same tag name in the PLC.          

4.5 Create Test Case 

There are two ways to create a test case. One is to manually create an XML file 

(using the elements and attributes definitions listed in Table 4.1) in any Editor and 

another is to create it in LogixPlcTester.  

As mentioned above, a test case definition is stored in a XML file. Table 4.1 

shows the element and attributes that are used to define a test case. Figure 4.5 shows the 

hierarchical structure of a test case XML file in Microsoft XML Notepad 2007 that is a 

free XML editor.  
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Table 4.1: Test case XML elements and attributes. 

Type Name Description 
Element Test_Case Test case element 
Attribute (of 
Test_Case) Name Test case name 

Attribute (of 
Test_Case) Duration Test case execution time (in seconds) 

Element PLC PLC element 
Attribute (of PLC) Name PLC name 
Attribute (of PLC) IP_Address PLC IP address 
Element Output_Tag Output tag element 
Element Oracle_Tag Oracle tag element 
Element Alarm_Tag Alarm tag element 
Element Tag Tag element 
Attribute (of Tag) Name PLC tag name (it must resides in PLC) 

Attribute (of Tag) Description PLC tag description (It should match the tag description 
in PLC) 

Attribute (of Tag) Active Enable/disable tag 
Attribute (of Tag) Data_Type Data type of PLC tag name. See Table 4.2 for details 

Attribute (of Tag) Write_Delay_Timer Time trigger (in seconds): time to elapse before the tag 
value is sent to PLC 

Attribute (of Tag) Output_Value Value to write to PLC tag 
Attribute (of Tag) Event_Trigger An alarm tag that is used as event trigger for a PLC tag 

Attribute (of Tag) Deadband Deadband for oracle tag. Tag value change within the 
deadband won't be logged in LogixPlcTester 

Attribute (of Tag) Enabled_Delay_Timer Event trigger is set to true after the condition has been 
active for the defined time (in seconds) 

Attribute (of Tag) Alarm_Expression Alarm or event trigger expression 
Attribute (of Tag) Log_Option Log as event (for event trigger) or log as alarm 

 

Table 4.2: Supported PLC data type. 

Data Type Description Memory Bits Range 
BOOL Boolean 1 0 or 1 
SINT Short Integer 8 0 
INT Integer 16 -128 to 127 
DINT Double Integer 32 -2,147,483,648 to +2,147,483,647 
REAL Floating Point 32 +/-3.402823E38 to +/-1.1754944E-38 
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Table 4.3: Supported operators for Alarm Expression. 

Math Operators Logical Operators 

+, -, *, /, ^, % !, ==, !=, ||, &&, >, < , >=, <= 

4.9 Online Edit 

Once a test case is loaded in LogixPlcTester, it can be edited online. Figure 4.16 

shows a Tag Details Window in which you can make change to the tag’s configuration. 

While a test case is running, you still can make tag configuration changes. The test case 

running process can automatically pick up the changes made on the fly and they will take 

effect immediately for the rest of the test case run process. You can click the Read button 

to read the real-time value of the selected tag in the PLC. Clicking the Write button (for 

Output Tag only) will write the configured Output Value to the selected tag in the PLC. 

The Read and Write buttons are helpful when doing a step-by-step testing. They can also 

be used for troubleshooting the PLC program. For instance, you can create an Output Tag 

for a pump reset command and then you can click the Write button to reset the pump 

alarms. You can create an Oracle Tag for the tank level tag in the PLC and then you can 

click the Read button to read the real-time value of the tank level in the PLC when you 

need it during the troubleshooting process. You can create an Alarm Tag to monitor a 

pump control output command in the PLC when debugging a pump control problem.     
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4.10 LogixPlcTester as a Training System 

Besides being an efficient tool for testing and troubleshooting purpose, 

LogixPlcTester can also be used as a training system. A training system basically needs 

to mimic all the activities that the production system has. In LogicPlcTester, a test case 

can simulate one or more system behaviors. By running a test case, the trainees will learn 

how the system works under the scenario that the test case presents. If the test case 

describes a system failure scenario, the trainees will learn what to do under that 

circumstance by watching the simulated actions by LogixPlcTester. This is an easy, 

efficient and safe way to conduct the system operation training without interfering with 

the production system. The scenario based test cases can be run over and over again 

without wearing out any hardware devices or causing any damage to hardware devices.            

4.11 Data flow Path 

Figure 4.17 shows the data flows between LogixPlcTester and the PLC that is 

being tested. LogixPlcTester simulates field hardware devices’ signals by writing values 

into the PLC using Output Tags. LogixPlcTester reads PLC output commands and PLC 

internal tags using Oracle Tags. Alarm Tags are similar to Oracle Tags and they’re used 

to generate alarms in LogixPlcTester. Alarm Tags can also be used as Condition Triggers 

for Output Tags. 
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Figure 4.17: LogixPlcTester data flow path. 

4.12 Test Case Example 

The following example uses LogixPlcTester to test a typical Pump-Tank control 

logic (Figure 4.18). The control logic is defined as follows: 

 Call the pump to start filling water to the tank when the tank level is below 15 

feet. 

 Call the pump to stop filling water to the tank if the tank level is above 28 feet. 

 The PLC generates a “pump failed to start” alarm if it hasn’t received the pump 

running signal for 5 seconds after the pump start command is issued. 

 The PLC generates a “pump failed to stop” alarm if it hasn’t received the pump 

stopped signal for 5 seconds after the pump stop command is issued. 
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Figure 4.18: Pump-Tank control scenario overview. 

Table 4.4: PLC tags for pump-tank control logic. 

PLC Tag  Description Data Type 
Pump_Running 1: running  0:stopped Boolean 
Pump_Start_Cmd PLC call pump to start Boolean 
Pump_Stop_Cmd PLC call pump to stop Boolean 
Pump_Fail_To_Start Pump failed to start alarm Boolean 
Pump_Fail_To_Stop Pump failed to stop alarm Boolean 
Tank_Level Tank level real-time reading Floating Point 
Pump_Reset_Cmd Reset pump alarms Boolean 

 

 

 

 

 

 

 

 

 

 

 



   

38

Table 4.5: Pump-Tank control test case definition. 

Test Case Tag  Type Description 
Trigger 

Type 
Condition Tag Value 

Pump_Running   Note 1 
Output 
Tag 

Write pump running 
signal to PLC Condition Pump_Start_Cmd 1 

Pump_Running   Note 1 
Output 
Tag 

Write pump stopped 
signal to PLC Condition Pump_Stop_Cmd 0 

Tank_Level        Note 2 
Output 
Tag 

Write tank level to PLC 
to simulate tank is above 
the Pump_OFF threshold 
(Write Delay Time is set 
to 2s) 

Time   28.1 

Pump_Reset_Cmd Output 
Tag 

Write pump alarm reset 
command to PLC (Write 
Delay Time is set to 1s) 

Time   1 

Tank_Level        Note 2 
Output 
Tag 

Write tank level to PLC 
to simulate tank level is 
below the Pump_ON 
threshold (Write Delay 
Time is set to 3s) 

Time   14.9 

Pump_Running   Note 3 
Oracle 
Tag 

Monitor real-time pump 
running status in PLC       

Tank_Level         Note 3 
Oracle 
Tag 

Monitor real-time tank 
level reading in PLC       

Pump_Fail_To_Start Alarm 
Tag 

Monitor pump failed to 
start alarm in PLC       

Pump_Fail_To_Stop Alarm 
Tag 

Monitor pump failed to 
stop alarm in PLC       

Pump_Start_Cmd Alarm 
Tag 

PLC output command to 
start pump       

Pump_Stop_Cmd Alarm 
Tag 

PLC output command to 
stop pump       

 

Notes: 

1. In LogixPlcTester, a same tag name can be defined multiple times with different 

functions. The tag Pump_Running is defined twice. One is to simulate pump 

running signal and another is to simulate pump stopped signal. 

2. The tag tank_Level is defined twice. One is to simulate high tank level and 

another is to simulate low tank level. 
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3.  In LogixPlcTester, the same PLC tag can be used multiple times in different tag 

lists. The tag Pump_Running and the tag Tank_level are defined in both the 

Output Tag list and the Oracle Tag list. 

4. The order of the Output Tags in Table 4.5 won’t affect the test. The write 

operation sequences are defined by the Write_Delay_Timer parameter of each tag 

when using Timer Trigger.  

 Table 4.4 shows the tags used in the PLC program for the Pump-Tank control 

logic. Table 4.5 shows the tags used in the test case. Based on the settings in Table 4.5, 

this test case is used to verify if the PLC control program sends an output command to 

stop the pump when the tank level rises higher the upper limit (28 feet) and verify if the 

PLC control program sends an output command to start the pump when the tank level 

drops below the lower limit (15 feet). After the test case is initiated, at the first second, 

LogixPlcTester sends a pump reset command to the PLC to reset the pump alarms if there 

is any. At the third second, LogixPlcTester writes 14.9 (feet) to the Tank_Level tag in the 

PLC. If the PLC control logic is correctly implemented then it will send an output 

command to start the pump as soon as it sees the tank level (14.9 feet) written by 

LogixPlcTester. If the PLC sends an output command to start the pump then 

LogixPlcTester will read this command through the alarm tag (Pump_Start_Cmd) defined 

in the test case. Since the Alarm Tag (Pump_Start_Cmd) was configured as a Condition 

Trigger to initiate the write operation of the Output Tag (Pump_Running), 

LogixPlcTester will write 1 to the Pump_Running tag in the PLC. Once this is done, the 

PLC gets the pump running signal feedback so its logic is satisfied in this scenario. 

Figure 4.19 shows the log messages in LogixPlcTester after the execution of the test case 
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defined in Table 4.5 is complete. In Figure 4.19, green color indicates snapshot values of 

Oracle Tags before the test case starts to run; blue color indicates writing Output Tag 

values to the PLC; wheat color indicates updated Oracle Tag values; white color indicates 

updated Alarm Tag (or Condition Tag) values. 

1
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11
12
13
14
15
16

 

Figure 4.19: Log messages of a test case for the Pump-Tank control logic. 
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There are 16 log messages generated while the test case defined in Table 4.5 was 

running.  

1. Snapshot of the Oracle Tag “Pump_Running” before the test case was started. 

The pump was running. 

2. Snapshot of Oracle Tag “Tank_Level” before the test case was started. The tank 

level was 12.7 feet. 

3. Status of the Alarm/Event Tag “Pump_Start_Cmd”. The PLC command for 

running the pump was active. 

4. LogixPlcTester sent the value (1) of the Output Tag “Pump_Reset_cmd” to the 

PLC. This command reset the pump alarms (if there is any). 

5. LogixPlcTester sent the value (28.1 feet) of the Output Tag “Tank_Level” to the 

PLC. 

6. LogixPlcTester read the value of Oracle Tag “Tank_Level” tank level from the 

PLC. The tank level in the PLC was 28.1 feet. So Step 5 was successful.   

7. Status of the Alarm/Event Tag “Pump_Start_Cmd”. The PLC command for 

running the pump was inactive. 

8. Status of the Alarm/Event Tag “Pump_Stop_Cmd”. The PLC command for 

stopping the pump was active. 

9. LogixPlcTester sent the value (0) of the Output Tag “Pump_Running” to the PLC 

to simulate the pump was stopped because the trigger event “Pump_Stop_Cmd” 

was active. 

10. LogixPlcTester read the value of Oracle Tag “Pump_Running” from the PLC. 

The pump was shown stopped in the PLC. So Step 9 was successful. 
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11. LogixPlcTester sent the value (14.9 feet) of the Output Tag “Tank_Level” to the 

PLC. 

12. LogixPlcTester read the value of Oracle Tag “Tank_Level” tank level from the 

PLC. The tank level in the PLC was 14.9 feet. So Step 11 was successful. 

13. Status of the Alarm/Event Tag “Pump_Stop_Cmd”. The PLC command for 

stopping the pump was inactive. 

14. Status of the Alarm/Event Tag “Pump_Start_Cmd”. The PLC command for 

starting the pump was active. 

15. LogixPlcTester sent the value (1) of the Output Tag “Pump_Running” to the PLC 

to simulate the pump was running because the trigger event “Pump_Start_Cmd” 

was active. 

16. LogixPlcTester read the value of Oracle Tag “Pump_Running” from the PLC. 

The pump was shown running in the PLC. So Step 15 was successful. 

Actually, more test cases can be derived from the test case described in Table 4.5. 

The following are some example test cases that are derived from the base test case in 

Table 4.5. 

1. Add a time trigger (with the Write Delay Time as 6s) based Output Tag to write 

28.2 to the Tank_Level tag in the PLC. This will verify if the PLC issues an 

output command to stop the pump when the tank level rises higher than the upper 

limit (28 feet). This will complete a pump stop-running-stop control cycle. 

2. Change the Condition On_Delay Time of Pump_Running (Output Tag to simulate 

pump running) to be greater than 5 seconds or completely deactivate the Output 
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Tag and verify if the PLC drops the pump start output command and generates a 

“pump failed to start” alarm. 

3. In item #1 above, change the Condition On_Delay Time of Pump_Running 

(Output Tag to simulate pump stop) to be greater than 5 seconds or completely 

deactivate the Output Tag and verify if the PLC drops the pump stop output 

command and generates a “pump failed to stop” alarm. 

4. Add a time trigger based Output Tag to simulate tank level reading becomes 

invalid while the pump is running and verify how the PLC reacts to it. (In this 

case, the PLC should drop the pump start output command and generate an 

invalid tank level alarm.) 

5.  Add a time trigger based Output Tag to write a value (between 15 and 28) to the 

Tank_Level tag in the PLC while the pump is running and verify the PLC 

continues to run the pump. (The pump should only stop when the tank level is 

above 28 feet in this case). 

6. In item #1 above, add another time trigger based Output Tag to write a value 

(between 15 and 28) to the Tank_Level tag in the PLC while the pump is stopped 

and verify the PLC won’t issue an output command to start the pump. (The pump 

should only start when the tank level is below 15 feet in this case). 

7. Add a time trigger based Output Tag to simulate pump stopped signal while the 

pump start command is active and the pump is running and then verify how the 

PLC reacts to it. (In this case, the PLC should drop the pump start output 

command and generate a “pump stopped without a PLC command” alarm.) 
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8. Add a time trigger based Output Tag to write a value (not in the range of between 

15 and 28) to the Tank_Level tag in the PLC and verify how the PLC reacts to it. 

(In this case, the PLC should seize control of the pump and generate a tank level 

out-of-range alarm.) 

If we deactivate the Output Tag “Pump_running” to stop simulating the pump 

stopped signal (Figure 4.20) when the trigger event (PLC output command to stop the 

pump) is active, then we have a test case for the example #3 above.  Figure 4.21 shows 

the generated log messages while running the test case in example #3. In Figure 4.21, a 

“pump failed to stop” alarm was generated after the PLC has energized the pump stop 

command for 5 seconds. This test case was passed because the PLC did generate a “pump 

failed to stop” alarm when it hadn’t received the pump stopped feedback signal for 5 

seconds.  

 

Figure 4.20: Deactivate an Output Tag.  
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Figure 4.21: “Pump failed to stop” alarm log message. 

The above example illustrates that after you have created the first test case for a 

PLC program, it’s very easy to build more test cases based on the previous ones. 

LogixPlcTester is a method neutral test tool that can be used with a variety testing 

methods including Random Testing, Black-Box Testing, Combinational Testing, 

Bounded Exhaustive Testing, Model Based Testing, and Error-Based Testing.     

4.13 Validate and Run Test Case 

After a test case has been created, the existence of the tags in the Output Tag list, 

Oracle Tag list, and Alarm Tag list need to be verified in the PLC. The execution of a test 

case is prohibited if any of its tags is not verified or is verified with error. All the tags 

defined in a test case must exist in the PLC and defined as controller scoped tags 

(accessible to all routines). (Note: An Alarm Tag itself may not be in the PLC. But the 

tags used in an Alarm Tag’s expression must exist in the PLC.) LogixPlcTester cannot 

access a program scoped tag (accessible to only the routines within a single program). 

This is specified by the PLC CIP protocol. This won’t be an issue in common PLC based 

control systems. A PLC in a production system is normally on a plant-level Ethernet 
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network so that it can exchange data with the Human Machine Interface (HMI) such as 

Supervisory Control and Data Acquisition (SCADA) systems or Distributed Control 

Systems (DCS). In order for SCADA or DCS to access the tags in the PLC, they must 

have existed in the PLC as controller scoped tags. To verify the tags of a test case in 

LogixPlcTester, click Tools > Validate. The tags that are validated successfully will be 

changed to green color in the tag lists and the tags that cannot be validated will be 

changed to magenta color in the tag lists so they can be easily identified. If all the tags are 

validated successfully then the test case can run. To run a test case in LogixPlcTester, 

click Tools > Run. While a test case is running, the log messages will be filled in the Log 

View window as they occur. A running test case can be terminated at any time by 

clicking Tools > Stop. Figure 4.22 shows a test case that is running. The tags in the left 

panel are all in green color indicating they are validated. The Log View window shows 

the log messages generated by the test case. The Status Strip bar at the bottom of the 

application shows various information about the test case including tag validation status, 

test case running status, test case running progress bar, the number of PLCs defined in the 

test case, statistics of the Output Tag list, Oracle Tag list and alarm Tag list.   
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4.15 Import and Export 

A test case defined in LogixPlcTester can be saved as a XML file. A test case 

created externally by using a Text Editor can be imported into LogixPlcTester. Figure 

4.28 shows how to import/export a test case.  

LogixPlcTester can generate a report for a test case. A report lists a summary of 

the test case definitions. Compared to a test case XML file, a report is easy to read and 

understand because the information presented in a report is in spreadsheet formats. A 

report itself is in a PDF format. Figure 4.29 shows a sample report generated by 

LogixPlcTester.  
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Import test case

Export test case

Export test case report

 
Figure 4.28: Import/Export a test case. 
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Figure 4.29: Test case sample report. 
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Chapter 5. Experiment 

LogixPlcTester was used to test the functions of a PLC application program for a 

real industrial control system. The PLC program runs in a development system that 

consists of a computer that runs LogixPlcTester, a computer that runs the PLC 

programming software, a PLC with no I/O modules, and a network switch that connects 

the computers and the PLC to the same network. LogixPlcTester was used to test the PLC 

program as it was developed.   

5.1 System Overview 

The application, the Emergency Power System was built for a water treatment 

plant in Southern California. The plant utility power is supplied via two main switchgear 

buses by two Southern California Edison feeders. The two main buses can be tied 

together so one feeder can power both of the buses in the event of a power outage or 

scheduled maintenance. The Emergency Power System is comprised of a separate 

switchgear bus and two generators. The emergency power switchgear bus connects the 

two generators to both main buses via circuit breakers so that the two main buses can be 

powered by the two generators during either a loss of both utility feeders, a malfunction 

of specific circuit breakers, or scheduled maintenance.  

An Allen Bradley ControlLogix PLC is utilized in this system to monitor the 

utility power feeder status, switchgear status, circuit breaker status and control the circuit 

breakers and the generators to feed power to the plant when an abnormal condition occurs 

in the system such as a utility power failure or a circuit breaker failure. For example, if 
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the utility power is lost to one of the two main switchgears the PLC shall operate circuit 

breakers to feed power to this switchgear from the other switchgear that has normal 

power. If both main switchgears lose utility power at same time the PLC shall operate 

circuit breakers and start both generators and transfer power from the generators to both 

main switchgears. The PLC program for the Emergency Power System is a mission-

critical program. If the PLC program fails to deliver power to the water treatment plant in 

a certain amount of time, then the water treatment process conducted at the plant will 

stop. As a result, untreated water could flow into the distribution water system and some 

residential area could be delivered with untreated water as drinkable water. In order to 

prevent such incident from happening, the PLC program must be tested thoroughly 

against all possible scenarios to verify it can deliver power to the plant within an allowed 

time period in every scenario. That is, both logical correctness and temporal correctness 

of the PLC program must be validated in order to meet the system operation 

requirements. Figure 5.1 shows the Emergency Power System diagram.        

5.2 Software Design 

The system specification lists over 200 operation scenarios in which the PLC 

program must respond correctly. Every scenario is triggered by an external event. The 

PLC program is designed as an event driven program. When an external event occurs 

(such as utility power loss, utility power return, or circuit breaker failure) the PLC will 

run a sequence (a series of hardware operations such as open breaker 1, close breaker 2) 

to respond to the event. Every sequence is defined by a subroutine, which is called in the 

main routine. In a sequence subroutine, there are some conditions (trigger events) that 
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must be met before the sequence can be actually started. Once a sequence is running, 

other sequences are not allowed to run. Only one sequence is allowed to run at any time. 

Table 5.1 shows an example of a sequence (sequence 9 in Figure 5.2). As a result, the 

switchgear configuration will change accordingly. An example scenario, suppose that the 

utility power A is failed (the utility power B is still normal) while the switchgear is in 

Normal. In this scenario, the PLC needs to open CB102 and then close CB2604 to power 

the bus A from the bus B. After the sequence is complete, the switchgear’s state will 

change to BFeedA under normal power. So the system state changes from Normal to 

Normal BFeedA in this scenario. Another example scenario, both the utility power A and 

B are failed while the switchgear is in Normal. In this scenario, the PLC needs to open 

CB102 and CB202 first, then starts both generators, after CB2704 and CB2804 are closed 

the PLC should close both CB302 and CB403 to feed the plant with the generator power. 

After the sequence is complete, the system state will change to Split_Feed under 

generator power.  

LogixPlcTester Logview captures all the log messages while a sequence is 

running. The log messages show the logical order of a series of actions that the sequence 

executes. The log messages are the main evidence used to verify the correctness of a 

sequence. To visually monitor the entire switchgear status and the progress of a running 

sequence, a control graph (Figure 5.1) is developed in LogixPlcTester. Figure 5.1 shows 

the control graph for system overview. The status of circuit breakers and generators in 

Figure 5.1 reflects the switchgear state while it’s in normal mode in which the plant is fed 

with both utility power feeders. Appendix A shows the PLC program structure diagram. 
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from wearing out by massive number of repeated operations during software 

development. So running tests in a simulation system will extend the lifetime of the 

hardware equipment. LogixPlcTester is utilized as both a simulation tool that simulates 

the hardware equipment’s behaviors and a testing tool that tests the PLC program against 

every scenario of the Emergency Power System. To reduce the software development 

cycle by finding and fixing bugs at an early stage, the software tests were conducted as 

the PLC program was being developed. When a scenario becomes available in the PLC 

program a test case was created for the scenario and executed in LogixPlcTester to test 

the scenario.     

To capture all the features and behaviors of the system, three Finite State Machine 

(FSM) models were established. The test cases are created according to the FSM models. 

Figure 5.2 shows a FSM model for power transfer and retransfer operations under normal 

conditions (no device failures) in the system. (There are two more models created in this 

system: the Circuit Breaker Failure Model and the Lockout Relay Failure Model. These 

two models define more than 150 scenarios.) As in Figure 5.2, each scenario has a trigger 

event and a sequence. The sequence will be initiated when the trigger event occurs. When 

the sequence is complete the system state (switchgear configuration) will change. A test 

case is created for each scenario. In some cases, a power transfer scenario and a power 

retransfer scenario are combined in the same test case. For example, scenario 1 (transfer 

upon utility power A failure) and scenario 6 (retransfer upon utility power A return) are 

combined in a same test case. The logical structure of a test case is illustrated in Figure 

5.3. 
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Figure 5.2: a FSM model for the Emergency Power system. 
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Figure 5.3: Logical structure of a LogixPlcTester test case.  

For example, scenario 5 (in Figure 5.4) defines a transition from NP_AFeedB 

(bus A feed bus B under normal power) to GP_SplitFeed (generator power feed both bus 

A and bus B) when utility power source A is failed. The test case for scenario 5 consists 

of the following four major steps (corresponding to the four steps in Figure 5.3). 

1. Use Output Tags to set the system to plant normal mode. Set CB102, CB202, 

CB2504, CB502, CB602 to the closed state by simulating the circuit breakers’ 

feedback signals to the PLC. Use the same way to set the other circuit 

breakers to the open state and to set both generators (G1 and G2) to the off 

state.     
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2. Set the system to the initial state of scenario 5. NP-AFeedB (bus A feed bus B 

under normal power) is the initial state of scenario 5. The reason that the 

system is in NP-AFeedB mode is because utility power source B was failed. 

So at this step, we need to run scenario 2 first (by simulating a utility power 

source B failure) to get to the initial state of scenario 5. 

3. Use an Output Tag to simulate the trigger event of scenario 5 which is utility 

power source A failure. This will initiate the sequence associated with 

scenario 5. 

4. Use Oracle Tags and Alarm Tags to log necessary events in order to monitor 

and validate the sequence of scenario 5. 

 
Figure 5.4: Scenario 5 for the Emergency Power System. 
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Unlike most general purpose systems, the test result of a scenario in a PLC 

program is usually a sequence of events (including the sequential relationship between 

the events) that determines the logical correctness of the test result. The timestamps of 

the events determine the temporal correctness of the test result. For example, in scenario 

1, after utility power A is lost, the PLC shall open CB102 first and then close CB 2604. 

The sequence between actions is very important. Verifying the state of CB102 and 

CB2604 at the end of the test is not sufficient to verify the logical correctness of the 

result. You must also verify that CB102 open operation occurred before CB2604 close 

operation. To verify if a sequence was completed within the allowed time period, the 

timestamp of each action executed in the sequence must be inspected. Figure 5.5 shows 

the test results of the test case for scenario 1 and 6. 
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Every time after a major change was made in the PLC program, a regression 

testing process was conducted by LogixPlcTester. Basically all the tests that were 

verified before must be retested again because a major code change could potentially 

introduce new bugs in the PLC program. The functions of the PLC program that worked 

before might not work again in the new code. There are around 200 test cases created for 

the Emergency Power System. It will take at least a week to run all the tests if using a 

hardware test stand or testing against the real equipment. But with LogixPlcTester, it only 

takes a day to run all the tests. Because all the test cases were saved in XML files there is 

no preparation for a test before running it. Once a test case XML file is loaded, 

LogixPlcTester will automatically read the test instructions from the XML file and 

execute them in the pre-defined orders. 

The PLC program was written by a programmer and the author did a code review 

for most parts of the code resulting in familiarizing with the internal data structure and 

program structure. The author also had a complete knowledge of how the system should 

work. Most of the test cases were created based on the FSM model. There were some test 

cases that were created based on knowledge of the internal structure of the program. For 

example, by code reviewing it was found that there was a operation mode selector switch 

that sends two hardware signals to a PLC digital input module. The two signals are 

Automatic mode and Manual mode.  In normal operation, only one of the two signals is 

active. Two test cases were created to test the mode switch logic under abnormal 

conditions. One is used to simulate both hardware signals are active and another is used 

to simulate both hardware signals are inactive. These two test cases help the operators 

understand how the PLC will react to the mode selector switch hardware failure. Another 
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example is I knew the PLC feedback timer (the time that the PLC waits for a feedback 

signal after it issues a control command) which is set to 3 seconds for the circuit breaker 

open and close commands. Two test cases were created to test the feedback timer logic. 

One is to simulate the feedback signal 4 seconds after the PLC issued a circuit breaker 

open command and another is to send no feedback. These two test cases test how the 

PLC handles the circuit breaker control failures. 

5.4 Results 

The PLC program has 52 subroutines and around 2500 rungs of ladder logic code 

in total. There are around 220 test cases created in LogixPlcTester to cover all operation 

scenarios specified in the system specification. The entire testing process took one month 

to finish due to the availability of the PLC software functions. The software tests were 

conducted as the PLC software was developed. Sometimes the testing process had to stop 

to wait for the new functions or bug fixes to be available. The time spent on actual 

software testing and troubleshooting was about 20 days and over 1000 tests were 

conducted in LogixPlcTester. There were 23 bugs detected in the PLC program by 

LogixPlcTester during the entire testing process and the following 10 bugs represent 

them. Table 5.2 shows the PLC instructions used in the bug examples. Table 5.3 shows 

the system states used in the bug examples. Table 5.4 shows the abbreviations used in the 

bug examples. 

Because of the bugs were detected and fixed during the simulation tests by 

LogixPlcTester, there was not a single bug reported during the final tests in the 
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production system besides few scenarios that were missed in the original design 

document. 

Table 5.2: PLC ladder instructions used in the bug examples. 

Ladder Instruction Description 
-] [- 

(Examine if closed) The instruction tests the data bit to see if it is set. 

-]\[- 
(Examine if open) The instruction tests the data bit to see if it is cleared. 

-( )- 
(Output energize) 

When the instruction is enabled, the controller sets the data bit. When 
the instruction is disabled, the controller clears the data bit. 

-(L)- 
(Output latch) 

When enabled, the instruction sets the data bit. The data bit remains 
set until it is cleared, typically by an -(U)- instruction. When disabled, 
the instruction does not change the status of the data bit. 

-(U)- 
(Output unlatch) 

When enabled, the instruction clears the data bit. When disabled, the 
instruction does not change the status of the data bit. 

-]ONS[- 
(One-shot bit) 

When enabled and the storage bit is cleared, the instruction enables 
the remainder of the rung. When disabled or when the storage bit is 
set, the instruction disables the remainder of the rung. 

JSR 
(Jump to subroutine ) The instruction jumps execution to a different routine 

TON 
(Timer on delay) 

The instruction is a non-retentive timer that accumulates time when 
the instruction is enabled. A timer’s enable bit (.EN) indicates the 
timer is enabled. A timer’s done bit (.DN) indicates the timer times 
out.  

RES 
(Reset) The instruction resets a timer. 
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Table 5.3: System states used in the bug examples. 
System 
State 

CB102 
Status 

CB202 
Status 

CB2604 
Status 

CB302 
Status 

CB402 
Status Description 

NP-BFeedA Open Closed Closed Open Open 

Utility power B feeds both 
A-side and B-side of the 
plant. Utility power A is not 
available. 

NP-AFeedB Closed Open Closed Open Open 

Utility power A feeds both 
A-side and B-side of the 
plant. Utility power B is not 
available. 

GP-SplitFeed Open Open Open Closed Closed 
Generators feed the plant. 
Both utility power A and B 
are not available. 

Plant Normal Closed Closed Open Open Open 
Utility power A feeds A-side 
of the plant and Utility power 
B feeds B-side of the plant.  

NP-AOnly Closed Open Open Open Open 
Utility power A feeds A-side 
of the plant. B-side of the 
plant has no power. 

NP-BOnly Open Closed Open Open Open 
Utility power B feeds B-side 
of the plant. A-side of the 
plant has no power. 

Plant Dark N/A N/A N/A N/A N/A The plant has no power. 

 

Table 5.4: PLC variable name abbreviations used in the bug examples. 

Abbreviation Description 
Alm Alarm 
CB Circuit Breaker 
Cmd Output Command 
DI Digital Input 
DN Timer is done 
DO Digital Output 
GP Generator Power 
In Input 
NP Normal Power 
Seq Sequence 
Seqx Sequence x 
Stat Status 
Step.x Step x of a sequence (x starts from 0) 
SwGear Switchgear 
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The following examples illuminate the common variable names that are used in 

the code examples in this chapter. 

Example 1: SwGear.Cmd.SetupNP_B_Feed_A means the switchgear sequence NP-
BFeedA is running. 
 
Example 2: CB102.In.OpenDI means the circuit breaker 102 is open. 

Example 3: CB102.Cmd.OpenDO means the circuit breaker 102 open command is active. 

Example 4: Sq1_NP_BFeedA.Step.0 means the sequence 1 (NP-BFeedA) is running at 
the first step. 
 
Example 5: CB2604.Alm.FailToClose means the circuit breaker 2604 has a “failed to 
close” alarm. 
 
Example 6: SwGear.Stat.NP_BOnly means the switchgear’s current system state is NP-
BOnly. 
 

1. Incorrect permissive conditions 

Overview 

Permissive conditions are a PLC programming idiom. A permissive is a process 

condition that must be met before hardware equipment is allowed to operate. Permissive 

conditions can protect the equipment from unsafe or illegal operations. Usually there are 

multiple permissive conditions that need to be met in order to operator on equipment. In 

process control PLC programs, almost all the output commands to equipment have 

associated with permissive conditions. The permissive conditions must be set accurately 

in order for PLC to send the right command to the right equipment at the right time. If a 

permissive condition is missing for an output command then the output command might 

be sent to the equipment when it shouldn’t be sent. If unnecessary or unrelated 
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After removing “SwGear.Stat.B_LineAvail” from the above code, the same test 

case was rerun and the expected result was observed by reviewing the log messages in 

LogixPlcTester. Figure 5.6 shows the log messages while running the sequence after the 

bug was fixed. The green circle shows the initial state of the sequence and the blue circle 

shows the trigger event of the sequence. The log messages in the red rectangle show the 

“Normal power A feed B” sequence was called after the trigger event had been initiated. 

When the bug was present in the ladder code, the log messages in the red rectangle were 

not seen and that was how the bug was detected by LogixPlcTester. 

 

Figure 5.6: Log messages of the NP-AFeedB sequence.  

Error Analysis 

Since every transition in the FSM models is covered in a test case, every sequence 

is covered by at least one test case. (Some transitions share one sequence. See Figure 

5.2.) For this particular bug, it can be uncovered during the system tests because of the 

mutual exclusive property of this bug. General speaking, the incorrect permissive 

conditions related bugs could be detected by a test because if a bug exists in a transition 
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then the test case that tests that transition will fail due to a control sequence failure (such 

as an output command is not issued or an output command is issued unexpectedly). But 

it’s not always the case. For example, in the above bug, if the permissive “Line_B_OK” 

is independent and it has no logical relationship with the rest of the permissive conditions 

in the ladder rung and its value is true by coincidence during the test, then this bug may 

be missed. In this example, code review may be more efficient to reveal this kind of bug. 

Permissive conditions for the equipment control commands may not be available 

or may be only partially available in the system specification because the people who 

wrote the system specification may not have the information. As a result, the programmer 

may make some assumptions during the software development and at the end of the 

development those assumptions were not verified with the operators who know all the 

permissive conditions for operating the equipment. Considering all the possible 

combinations of the permissive condition a model such as a truth table could be used to 

help to create test cases to cover all the possibilities. At the software development stage, 

the programmer may not have a full view of the permissive conditions. It’s common and 

reasonable to make some assumptions in order to continue the software development. 

However, at a later time these assumptions muse be revisited and verified with the 

domain expert.          

2. Typo 

Overview 

In the PLC program, there are many tags that are similar to each other. For 

example, when you create two instances of a generator type, the two new instances will 

have similar names such as G1 and G2. The similar names in the PLC program are 
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Error Analysis 

The bug actually led to a permissive condition problem and it was caught by a test 

case that was testing a system state transition. The kind of typo bug can be discovered by 

the tests because similar tags in the PLC program usually are mutually exclusive of each 

other. One possible earlier error-oriented detection mechanism for this kind of bugs is to 

add detailed comments in the code that specify the function of each tag and function. 

When doing code review, this kind of bug can be easily identified. Another possibility is 

to use assertion based formal verification in the code to inspect the input conditions of the 

logic. This kind of bug is easy to fix but is difficult to prevent in the code unless using 

names, comments, or assertions to make a distinction between similar names.     

3. One-shot related problem 

Overview 

In PLC programming, one-shot bit is a mechanism which is used to only execute 

the ladder rung once when the condition becomes true. The following structured text code 

demonstrates how one-shot works. A, B, C are Boolean type variables. B is a one-shot 

bit. The initial value of B is false. When A becomes true, “C := 1” will be executed. In 

the next scan cycle “C := 1” won’t be executed because B is true. “C := 1” will only be 

executed again when A goes through a transition of 1 to 0 to 1.  

IF A  AND (NOT B) THEN C := 1; 

B = A; 

In PLC ladder logic, there is an instruction called -[ONS]- for the one-shot bit 

function. The following ladder code has the same function as the structured text code 

above.  
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tests. If the intermediate system states showed in the Control system operator terminal 

then it will confuse the operator. The system state should be updated at the end of a 

sequence but not while a sequence is running. To detect one-shot bit problems in the PLC 

program at an early stage, a one-shot bit rule can be added to the programmer’s checklist, 

which should be followed during code review.   

4. Early update of system state  

Overview 

When an external event occurs (such as one utility power source becomes 

unavailable), a sequence will be called in the PLC code to run a series of commands 

(open/close some breakers) to transit to a new system state. Once the sequence is 

completed the system will be in a new state that is usually different from its original state 

before the sequence was called. When a sequence finishes, it must update the system state 

(described by a PLC internal variable) at the last rung of the sequence subroutine. If this 

is done earlier (meaning the system state is updated while a sequence is still running), the 

PLC program will be confused by the intermediate system states, which will lead to an 

unexpected termination of the running sequence. Figure 5.6 shows a system state update 

diagram. 
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Figure 5.7: System state update diagram. 

 In Figure 5.7, there are three sequence subroutines and one System State Update 

subroutine and the arrows indicate the sequence that the subroutines are scanned in the 

PLC program. In the left chart of Figure 5.7, the System State Update subroutine is called 

in every PLC scan cycle regardless of the running status of the sequences and this will 

generate all the intermediate system states as a sequence is running. The intermediate 

system states will cause unexpected early termination of the running sequence. If the 

code is structured as in the right chart of Figure 5.7 this kind of bug won’t appear because 

the system state is only updated at the end of every sequence.  

Detection 

The following ladder code shows the bug discovered during a system test. The 

initial system state of the test is NP-AFeedB, the first trigger event is the utility power A 

failure, the second trigger event is the CB2604 “failed to open” alarm, and the expected 
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5. Sequence conflict 

Overview 

In the PLC code, a sequence is a series of commands (in a sequential order) to 

execute a system state transition. In the original design, there were 7 sequences. Later 6 

more sequences were added as the development progressed to cover some new scenarios 

that were missed in the system specification. As the new sequences were added, some of 

them conflicted with the original sequences. For example, when a certain condition 

occurs, a new sequence was called unexpectedly instead of calling some original 

sequence. A sequence is called based on conditions (trigger events). When a new 

sequence was added the programmer didn’t define the trigger event (for the new 

sequence) to be strict enough to distinguish from the existing sequences’ trigger events. 

As a result, a system state may satisfy multiple sequences’ trigger events. In this case, 

which sequence will be called when such trigger events occur only depends on the 

locations where the sequence subroutines are called in main routine. The PLC scans the 

code from top to bottom so the first sequence subroutine that has satisfied trigger 

condition(s) will be called and the other sequence subroutines that also have their trigger 

conditions met won’t be called because at any time there is only one sequence that can 

run. Due to the fact that all the condition variables are very similar in the code, it’s easy 

for the programmer to get confused and use the wrong conditions. 

Detection 

The original bug was very complicated because it involves multiple subroutines 

and needs more industrial power operation background to understand. To simplify it, a 

simple model for the bug is described by the following ladder code to explain the bug. 
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and the expected system state is Plant Dark. During the test, after the first trigger event 

was initiated, the sequence 3 (in scenario 4 of Figure 5.2) was called. In the sequence, the 

first step was to open CB202 and CB2604, and the second step was to start both 

generators. At the first step, LogixPlcTester didn’t simulate the CB202 open signal to the 

PLC resulting in a CB202 “failed to open” alarm (this is the second trigger event). When 

this alarm was active, the sequence should terminate and the system state should be 

“Plant Dark”. But due to the bug, the wrong system state NB-BOnly was observed in the 

LogixPlcTester Log Viewer at the end of the test. Since the system state is monitored by 

an Oracle Tag, any wrong state can be detected in LogixPlcTester.    

Error Analysis 

A system state variable is maintained to reflect the current system state. The state 

variable is updated based on various conditions. In some cases the programmer does not 

know all the information for a correct state because it is not in the system specifications.  

It could simply be a case of additional details that need to be added as the system is 

developed. The operators who are familiar with the system know the details that affect 

the state. During the system development, the programmer should work with the 

operators to determine for missing information from the system specification. 

This kind of bug can be caught early if the programmer asks the operators "what 

if" questions concerning the additional details.  It may not be constructive to do this 

during the system design or programming. But after the basic system can be constructed, 

the programmer can revisit and deal with details and unspecified cases. To facilitate this, 

the programmer needs to document the additional information that is required for 

programming so that it will not be forgotten later. 
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Sometimes the programmers need to make some assumptions to push through an 

initial solution. However, after the initial solution has been acquired, all the assumptions 

made during the development must be revisited and reexamined. Any wrong assumptions 

must be fixed. 

7. PLC scan direction related error 

Overview 

There are two different scan styles that PLCs use to scan their programs. One is 

called Rung Scan, which scans the code form left to right, top to bottom. Another is 

called Column Scan, which scans the code from top to bottom, left to right. Different 

scan direction can result in different output from a same code. Figure 5.8 shows a sample 

code on which the two PLC scan methods lead to different results. 

 

Figure 5.8: A code example for demonstrating scan methods. 
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 The equivalent function in Structured Text language is as follows: 

if tag_A = true then tag_B := true; 
if tag_C = true then tag_B := false; 
if tag_B = true then tag_D := true; 

Table 5.5 lists the results of the above logic when using Rung Scan and Column 

Scan. If we scan the code with the Rung Scan method the result of the variable D is 0. 

But if we scan the code with the Column Scan method the result of the variable D is 1. 

However, if the initial values for (A,B,C,D) changes from (1,1,1,0) to (1,0,1,0) the results 

of Rung Scan and Column Scan will be the same. So this bug will only reveal when 

specific inputs are used for testing. A possible test method is to construct a truth table that 

lists every logical condition as an entry and test all the entries, as in Table 5.5. 

Table 5.5: Truth table for Figure 5.5. 

  A B C D 

Initial Value 1 1 1 0 
Rung Scan Result 1 0 1 0 
Column Scan Result 1 0 1 1 

 

The bug was in the follow ladder code which is from the sequence 1 (NP-

BFeedA) subroutine. The code was written so when the CB2604 “failed to close” alarm 

is generated at the step 2 of the sequence it will terminate and call another sequence (GP-

SplitFeed). When the test case that is designed to test this scenario was running, it was 

observed in LogixPlcTester that the sequence GP-SplitFeed was never called by the PLC. 

After checking the code for the permissive conditions for calling the sequence GP-

SplitFeed, the bug was identified. Because the PLC uses the Rung Scan method for 

scanning the ladder code, the first rung is always examined before the second rung. That 
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during the code development. Before starting to test on real hardware equipment, the 

programmer was told to increase the feedback timer setting for a generator based on the 

circuit breaker’s response time to control commands. After the change was made, the 

feedback timer was longer than the step timer. (The programmer forgot to change the step 

timer’s value to be greater than the new feedback timer’s value. That caused any 

sequence in which that particular feedback timer was used to fail every time. In 

LogixPlcTester, the sequence failure message was logged. The ladder code in Figure 5.9 

shows the bug. The first rung defines a 1-second step timer. The second rung sets the 

sequence failure alarm if the step timer times out. The third rung resets the step timer if 

the CB102 open feedback signal is received by the PLC while neither the step timer nor 

the feedback timer has timed out. The last rung defines a 2-second feedback timer for 

waiting for the CB102 open signal. The feedback timer was set to 0.5 second originally. 

After it was adjusted to 2 seconds, the programmer forgot to adjust the step timer to be 

greater than 2 seconds. This bug always led to a failure at this step of the NP-BFeedA 

sequence. 
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Figure 5.9: A timer related bug in the sequence NP-BFeedA. 

Error Analysis 

This is a regression error because the same sequence was tested with the same test 

case and it was working. This kind of bug can be detected by LogixPlcTester because it 

causes multiple scenarios (that use the defect sequence) to fail and there is at least one 

test case designed to test each scenario for correctness.  This could be labeled as a 

disturbed invariant error. When any logical relationship involves quantities that are 

changed, the logical relationship must be analyzed and tested to see if the invariant of the 

logical relationship has been altered by the change. A PLC programming rule can be 

added to the checklist to verify the timers’ preset values in the PLC program and the 
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logical relationship between timers. The timer related bugs are very common in PLC 

programming and some of them are not easy to detect. For example, a hardware device’s 

response time is 10 seconds but it was set to 5 seconds in the PLC program. During the 

simulation tests, this may not be found because the response time simulated by 

LogixPlcTester could be always within the threshold (5 seconds). But when conducting 

the real tests against the hardware device, this bug will reveal because the actual response 

time from this device is between 5 seconds and 10 seconds. By preparing a checklist with 

all known PLC issues and using it during the system tests, the known common bugs can 

be easily sweep out of the PLC code.     

9. Confusion between logical AND and logical OR 

Overview 

In PLC programing, there are two bit instructions called logical AND and logical 

OR. They perform bitwise AND or OR operations.  For example, AND instructions 

should be used between permission conditions, and OR instructions should be used 

between alarm conditions. Figure 5.10 shows an example of AND instructions and an 

example of OR instructions. 
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Figure 5.10: Examples of AND and OR instructions. 

According to Demorgan's Laws, the logic in Figure 5.10 can also be represented 

as in Figure 5.11. 

 

Figure 5.11: Equivalent logic of Figure 5.6 according to Demorgan's Laws.   

Detection 

Figure 5.12 shows the bug that was discovered during system tests. This logic is 

meant to set the Boolean variable “SwGear.Stat.SeqRunning” when any of the sequences 
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is running. (When this variable is set, no new sequence is allowed to run until the current 

running sequence is done.)  However the code in Figure 5.12 obviously violated 

Demorgan's Laws. Figure 5.13 shows two possible solutions to the problem. 

 
Figure 5.12: A logic that violated Demorgan's Laws. 

 

 
Figure 5.13: Fixes for the ladder code in Figure 5.12. 



   

92

This bug was detected by both test cases and code review. Because the function 

represented by the logic is fundamental and it’s used by all the sequence subroutines, it 

was detected by multiple test cases that test the system state transitions. Due to this bug, 

when a sequence’s trigger event was enabled by LogixPlcTester, the sequence couldn’t 

be started because the variable “SwGear.Stat.SeqRunning” was always true, which was 

indicating there was a running sequence. As a result, no log messages were observed in 

LogixPlcTester to indicate the expected sequence was called to run by the PLC. 

Error Analysis 

Because breaking Demorgan's Laws in PLC programs results in wrong logics in 

system functions, they are easy to be discovered by some test cases that rely on the 

system function. Code review method was used in this project to perform an initial 

screening for bugs in the code and it did find this bug. Code review is usually performed 

during the software development prior the black-box testing and it’s usually performed 

by another programmer who’s familiar with the system specification, the overall structure 

of the program and its objectives. During code review, the programmer will carefully 

inspect the logic implemented in the source code rung by rung in order to find errors. A 

mental simulation of a code execution is helpful to verify the correctness of the functions. 

Code review will show the location of a bug found so there is no debug process required. 

Because of the native characteristics of the PLC ladder logic program, it’s proved that 

code review is quite efficient for detecting bugs in PLC programs. However, code review 

doesn’t tend to find more subtle problems in the code because it can only deal with 

certain level of complexity of the code. Most likely, it won’t be able to find a bug that is 

buried in a complex code such as an algorithm. Code review can be improved with an 
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Detection 

The above interlock was missing when a test was conducted. The test that found 

the missing interlock was actually required by a field operator. The test is to verify how 

the PLC reacts in the scenario where the system state is NP-BFeedA (initial state) and the 

utility power A is normal (trigger event). It’s similar to the scenario 6 of Figure 5.2. But 

in this scenario, CB302 was simulated to have a lockout relay alarm. It was observed in 

LogixPlcTester Log Viewer that the PLC called the sequence 9 to close CB102, which 

was correct if there was no lockout relay alarm on CB302 or CB2504. In this test, the 

actual expected result was no action from the PLC.    

Error Analysis 

At the software development and testing stage, the programmer should ask the 

domain expert – the operator for the hardware interlocks and implement them in the 

program. For the missed interlocks, most likely they will show themselves during the 

final acceptance test in the production system. The interlocks should be added in the 

software program as permissive conditions as they reveal during the final test. Software 

interlocks and hardware interlocks complement each other. If one fails the hardware is 

still protected by the other one. 

Another lesson learnt from this project is “Difference between designer’s mind 

and equipment’s mind”. The system designer writes the system specification based on 

what he knows about the system and what he thinks the system should work. However, 

the physical equipment may work differently than what says in the specification. As a 

result, there will be some code changes at the site to remedy the misunderstanding. When 

you are making changes at the site (with people looking over your shoulder), sometimes 
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you do not think it through and just patch the code for the current issue. You may 

introduce some more bugs into the code while patching the code. The sequence conflict 

bug is a typical example in here. The programmer added a new sequence at the site 

without considering the impact on the existing sequences resulting in a sequence conflict 

defect.  

In this project, there were three parties involved (engineer/designer, operator, and 

programmer/tester). The engineer designs the system and writes the system specification. 

The programmer/tester writes and tests the program based on the system specification. 

Once the development and testing are done, the operator will test the program against the 

real equipment to verify if the program works in the production system and meets 

operation standards. At this step, some discrepancies between the system design and the 

way the real equipment actually works will be exposed. In this case, onsite code changes 

are inevitable. As a result, a regression test has to be conducted. Sometimes the engineer 

and the operator may make contradictory demands to the programmer for changes to the 

code and in that case the same code can be changed back and forth multiple times. 
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Chapter 6. Related Work 

Allen Bradley has a software product called RSTestStand [9], which enables 

control system developers to create virtual control system scenarios that can be used to 

test design configurations and programs. RSTestStand allows you to develop and test 

your control program in an offline system by simulating the field inputs and outputs 

signals. RSTestStand uses industry standard OPC (OLE for Process Control) protocol to 

communicate with Allen-Bradley PLCs using RSLinx. RSLinx is another software 

product from Allen Bradley that is a communication server providing plant floor device 

connectivity to support Allen Bradley software applications such as RSLogix 5000 (the 

Allen Bradley Logix PLC programming software). In addition, RSLinx is an OPC 

compliant data server supporting the OPC Data Access 2.05 specifications. In order for 

RSTestStand to work, RSLinx must be installed on the same computer where 

RSTestStand resides. In the communication link between RSTestStand and the PLC, 

RSTestStand acts as an OPC client and RSLinx acts as an OPC server. RSTestStand 

reads and writes PLC tag values by inquiring the OPC server (RSLinx) 

Similar to a hardware test stand, RSTestStand provides you with a range of 

devices like push buttons and pilot lights to interact with your logic program. Figure 6.1 

shows the RSTestStand operator console, which is the runtime interface equipped with 

buttons, selector switches, and pilot lights used by an operator to interact with the logic 

program test. The operator console is similar to the Control Graph feature in LogixTester. 
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a real PLC has. You can debug your program in the software simulator. They are very 

useful when you want to develop and debug programs without the PLC hardware. But 

they don’t provide any automated mechanism for I/O simulation. The only way you can 

simulate I/O points in them is to manually change values in the System Data Reference 

Table. However, when the PLC controller simulators [10][11] are used with 

LogixPlcTester together, a pure software testing environment is formed, which requires 

no PLCs during the entire software testing process. It will be extremely beneficial in 

terms of costs when multiple testers are working in the system. With this solution, every 

tester can have a dedicated test environment (a virtual PLC and a virtual test stand for I/O 

simulation) other than sharing one test environment with others. This will eliminate the 

interference between testers and their ongoing tests.        
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Chapter 7. Conclusion and Future Work 

7.1 CONCLUSION 

The automated testing tool, LogixPlcTester, was designed to test software 

programs running in Allen Bradley Logix PLCs based on test cases. It acts as a virtual 

device that can respond to the PLC’s commands by writing feedbacks to the PLC. With 

LogixPlcTester, the testing process can start early in the software development cycle. As 

a result, software bugs can be discovered at an earlier stage than usual and this makes bug 

fixing easier and faster. The project development costs can be greatly reduced and stable 

and high quality programs can be produced. A control program that has been precisely 

tested by LogixPlcTester in a development environment will make the final onsite testing 

easier and faster in the production system. Unnecessary hardware equipment damage due 

to software bugs can be prevented. And the system startup process will become much 

smoother. Since all the tests can be conducted in a simulation system using 

LogixPlcTester, only the final acceptance test need to be run on the real hardware system. 

As a result, the hardware equipment’s operation life time can be extended. 

LogixPlcTester is a powerful and easy to use automated PLC testing tool that helps 

building and assuring quality into industrial control programs. LogixPlcTester allows 

testers to build test cases quickly with a built-in configurator that requires no 

programming for building test cases. The goal of LogixPlcTester is to provide an 

effective and time-saving test environment for testing PLC programs to identify potential 

problems with the PLC programs and eliminate the identified bugs with regression tests  
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so that high quality programs can be attained before they are downloaded into production 

systems and start controlling hardware equipment. The goal was achieved in the 

Emergency Generator Control project. 

7.2 Future Work 

Currently the time resolution that LogixPlcTester supports is 250 milliseconds 

meaning any signal changes in the PLC that are faster than 250 milliseconds won’t be 

captured by LogixPlcTester. A time resolution of 250 milliseconds is actually good 

enough for most of the PLC control programs because the field devices normally have a 

response time longer than 250 milliseconds. However in some time-critical systems 

where higher time resolution is required, LogixPlcTester may not produce feedbacks to 

the PLC fast enough in order to meet the response time requirement. A temporary work-

around for this is to enlarge the feedback timers in the PLC so that the LogixPlcTester 

test cases can be passed as far as the response time is concerned. The work of improving 

LogixPlcTester’s time solution has been started. The code for reading tag values from 

PLC is being rewritten to improve efficiency. The optimal goal of time resolution for 

LogixPlcTester is 100 milliseconds. 

Hardware interlocks are usually overlooked during software simulation testing. In 

industrial control systems’ testing, hardware interlocks should be put as a rule in the 

checklist. Testers should always check with domain experts about hardware interlock 

while creating test cases. All hardware interlocks should be implemented in software for 

redundant protection. 
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In the current version of LogixPlcTester, log messages are the only way to verify 

a test result. Timestamped log messages show the sequence of actions issued by the PLC 

and the sequence of responses sent from LogixPlcTester. Testers need to review the log 

messages in order to determine if the test is passed. Although the log messages clearly 

record the entire test process, sometimes testers misread the log messages resulting in 

incorrect test results. Even with a graphical control screen supported by LogixPlcTester, 

testers’ interactions are still required. A potential solution is to have LogixPlcTester be 

able to read a temporal logic specification and use it to automatically verify the result of a 

test while it’s running. This temporal logic specification will act as a “oracle” for the test 

case. With this feature, LogixPlcTester will generate an explicit result of a test case 

(either passed or failed). Currently this new feature is under feasibility evaluation. 

A batch test mode will be added to process multiple test cases in a predefined 

sequential order automatically. Currently a test case is loaded manually in 

LogixPlcTester. When a test case is done, a new test case has to be loaded in 

LogixPlcTester manually. With the batch mode support, testers just need to specify the 

location of the test cases that need to run and then initiate the start of tests. After that, 

LogixPlcTester will automatically execute the tests in the following order: load a test, run 

the test, unload the test, load a new test, run the new test… until all the tests are done. 

Testers only need to review the log messages after all test cases are complete. With the 

temporal logic specification feature, this would become even easier. Basically what 

testers would get is the final test reports. They would no longer review the log messages 

from the tests because LogixPlcTester already verified the test results by using the 

temporal logic specifications.  
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