UC San Diego

UC San Diego Electronic Theses and Dissertations

Title
Automated testing tool for PLC based industrial applications

Permalink
https://escholarship.org/uc/item/Obwlm6émp

Author
Zhang, Feng

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/0bw1m6mp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

AUTOMATED TESTING TOOL FOR PLC BASED INDUSTRIAL APPLICATIONS

A Thesis submitted in partial satisfaction of the requirements
for the degree Master of Science

Computer Science

Feng Zhang

Committee in charge:
Professor Bill Howden, Chair

Professor Rajesh Gupta
Professor Ingolf Krueger

2011



Copyright
Feng Zhang, 2011

All rights reserved.



The Thesis of Feng Zhang is approved and it is acceptable in quality and form for
publication on microfilm and electronically:

Chair

University of California, San Diego

2011



DEDICATION

To my wife, Yinghui, who gave me unconditional support throughout the course
of this thesis.



TABLE OF CONTENTS

SIGNATUIE PAJE ...evveieeeii ettt ettt et e te e e e se e beesaesseenteeneeaneesaeeneenreenseenne e iii
DT [ oF: 1 0] o H TP PR PR TPOPPTPTURPRORON iv
TADIE OF CONTENTS ...ttt bbbt ebeeneas %
I A0 0 0L Vi
LISE OF TADIES ...t bbbttt vii
ACKNOWIEAGEMENTS. ...ttt e st e e e nte e e sre e aeeneenneenes viii
ADSTTACT ...ttt iX
Chapter 1. INTrOQUCTION .....cvveieiicie ettt sta e ae e e e nraesneeneesneeeeas 1
1.1 PLC iN CONLrOl SYSIEMS....cueiiiiiiiiiestieie sttt sttt sttt 1
1.2 Software Testing in CoNtrol SYSIEMS .......c.coviiiiieiice e 4
Chapter 2. PLC Programming LANQUAGJES ........cccueeuererrieeieneenieeiesieesieesiesiessseeseessesssessessesseeas 7
20 I - Vo [0 1= o T o ST TS 7
2.2 Function Block Diagram (FBD) .......cccceiuiiiiiiiieiie et 8
2.3 Sequential FUNCtion Charts (SFC) ....ccviiiiiiiiee e 9
2.4 STIUCKUIEA TEXE (ST) cueeiieeitieie sttt ettt sneers 10
Chapter 3. Review of PLC Testing Methods.........cccvcveiiereiiieseee e 13
3.1 Hardware TeSt STANG........c.ooiiiieiiie e e 13
3.2 HMI Based SIMUIBLOT ........coviiieieiie e 14
3.3 New Approach: “Virtual” SImUulator ...........cccooe i 15
Chapter 4. LOGIXPICTESIEN ......oviitiieiieiee ettt 16
O = o T DT Vo - SO 17
4.2 INNIDIT PLC 1/O MOUUIES ...ttt 19
AN o o] [Tor: Lo I @ AT AV T PSP 21
A4 TESE CASE SIIUCTUIE ...ttt s e bt snb e et e e nnee e 23
4.5 Create TESE CASE ..c.uvieieeiiieeitie ettt ettt b e e et e sn e e nne e e b e e sneeennee e 24



4.6 Create an OULPUL TaQ .. .covieeeiiieeie ettt sttt s e et e sse e e sbeesnee e 28

4.7 Create an OrACIE TAQG ...ccveeeereeieiiesieeieseesie et e et e e e ste e reeste e sreesaeeneesreeneeeneenes 30
4.8 Create an AlQIM TG . ...c.oieerieiieiieie ettt e et nres 31
4.9 ONEING BNttt 33
4.10 LogixPIcTester as an Operator Console / @ LOGQer.......c.covvererierernieeieneenieeie e 34
4.11 Data FlOW Path........ccoiiiiiiiieiee e 35
4.12 TeSt Case EXAMPIE........ooieiieieiieee e e 36
4.13 Validate and RUN TESE CaSE......ccuuiuiriiriiriisiesieie ettt 45
414 CONLIOL Graph .. ettt ene e 47
RS [ ] o Yol A U Lo b oTo] o (S PR 52
Chapter 5. EXPEITMENT ......ccuiiiiiieieeie ettt e e beesbeenee b e e sreenee e 55
5.1 SYSEM OVEIVIEW ....c.eieieeie et stee et et e et e e e neesseeaeaneesreeteaneesseenseeneennes 55
5.2 SOTIWAIE DESION ...ttt sttt sre e sbe e et e e nbeenbesreenrs 56
5.3 Testing With LOGIXPICTESIEN ......cveiieieerie e 58
5.4 RESUITS ...ttt r e b a e be b nneers 66
Chapter 6. REIAtEA WOIK..........cccveiieieiiece ettt sra e 96
Chapter 7. Conclusion and FULUIe WOTK ..........cocoiiiiiiiiiieese e 100
7. L CONCIUSION ...ttt bbbttt ettt bbbt neeneas 100
T2 FULUIE WOTK ... ettt sttt 101
RETEIEINCES ...ttt bbbttt bbbt 103
Appendix A. PLC Program Structure DIAgram ........cccoceererieieerieniie e e e seee e 104

Vi



LIST OF FIGURES

Figure 1.1: Typical PLC cONfiguIation. .........cccooiiiieiiie e 2
FIgUre 1.2: PLC SCAN CYCIE. ..ottt bttt 3
Figure 2.1: (a) Hardware switch circuit diagram. (b) PLC Ladder Logic diagram. .................. 7
Figure 2.2: A sample Function Block Diagram program. ........ccccceeereereeneeiiesienseenieseeseeneenns 8
Figure 2.3: A sample Sequential Function Chart program. ...........cccceeevieereniiesieeseese e seesnens 9
Figure 2.4: A sample Structured TeXt Program. .......cccoeeueieereriienee e nie e siee e see e ses 11
Figure 2.5: PLC project task scheduling eXxample. ..........ccccoveiieiiiieiiese e 12
Figure 3.1: Typical hardware Test StANG. .........cccoriiiieiiiie e 13
Figure 3.2: Allen Bradley PanelView /O simulation SCreen. .........cccccovvvveieeieseesesieseenn 15
Figure 4.1: LogixPlcTester design concept diagram. ...........ccoooeeerernienenenseenesee e 18
Figure 4.2: INhibit PLC 1/O MOAUIES. .......oiieieee et 20
Figure 4.3: LogixPIcTester appliCation OVEIVIEW. .........cccoviiiriiieiesie et 22
Figure 4.4: A typical teSt CaSe SIUCIUIE. .......ccviieeie e 23
Figure 4.5: A test case XML file in Microsoft XML Notepad 2007. .........cccoevereniieniiniennnns 26
Figure 4.6: Create a new test case in LOGIXPICTESIEN. .........ccevveiieiieiieie e 27
Figure 4.7: New TesSt CaSE QHAl0Q. . ....iiuriiieiiiiiiiee e 27
Figure 4.8: Define a new PLC in LOGIXPICTESIEN.......cciuiiie e 27
Figure 4.9: NeW PLC dIal0g. .....cooiiiiiiiiiie e 28
Figure 4.10: A PLC with three empty tag lists in LOQIXPICTESter.........cccvvvevvereiieieeie e 28
Figure 4.11: Create a new output tag in LOGIXPICTESLEr. .......coeiiiiiiiiiie e 29
Figure 4.12: New Output Tag dialog (for Time Trigger). ....cccveeeeereereseeseese e see e 29
Figure 4.13: New Output Tag dialog (for Condition Trigger).......cccevvvererieeieniesienesie e 30
Figure 4.14: New Oracle Tag dialog.........cccueiveieiieiiee e 31
Figure 4.15: New Alarm Tag dialog. .....ccoouiiiiiiiiiiie et 32
Figure 4.16: Tag Details Window in LOGIXPICTESIEN . .........cceieiiiiiiiieieieiee e 34
Figure 4.17: LogixPlcTester data flow path. .........c.ccooeiviiiiiiiece e 36
Figure 4.18: Pump-Tank control SCENArio OVEIVIEW............cceririiriiinieieiesie e 37
Figure 4.19: Log messages of a test case for the Pump-Tank control logic. ...........ccccevvenenee. 40

vii



Figure 4.20: Deactivate an OULPUL TaG. ....ooeerierieiieieee et 44

Figure 4.21: “Pump failed to stop” alarm 10g Message. .......c.cccvevvvrveriveiesieseeie e 45
Figure 4.22: A running test case window in LOGIXPICTESEr..........cccovveviiiiiinieiie e 47
Figure 4.23: GLG Graphics EITOr. .......cccviiiiiiieciesiese e 48
Figure 4.24: Animate a tank object in GLG. ..o e 49
Figure 4.25: A pump CONEIOI tESE CASE. ...vvivvieireieeiece et ns 50
Figure 4.26: Open a GLG graphical display in LOgiXPICTESLEr. .......cccooveiieienieiieninie e 51
Figure 4.27 Graphical display for a pump control SyStem...........cccocveeevinviieieeie s 51
Figure 4.28: IMPOIrt/EXPOIt @ tESE CASE. .. .eeiveeiirieerieeiteeie ettt ees 53
Figure 4.29: Test Case SAMPIE FEPOM. ...cc.veviiieieee e ens 54
Figure 5.1: Emergency Power System overview in a LogixPlcTester graph. .........c.ccccveenee. 58
Figure 5.2: a FSM model for the Emergency POWer SYStem. ........cccocveveiieieeresieseesie e 60
Figure 5.3: Logical structure of a LOgiXPICTeSter teSt CaSE.......cccuvrerrieiiriieieeee e 61
Figure 5.4: Scenario 5 for the Emergency POWer SYStem. ..........cccccveievieeiieiesic s 62
Figure 5.5: Log messages of running scenario 1 and 6 in LogiXPICTester..........c.ccovvvevvrienee. 64
Figure 5.6: Log messages of the NP-AFeedB SEQUENCE. ........cceivereerieiieieeie e seesie e 71
Figure 5.7: System state update diagram. .........ccevieiirieiie e 77
Figure 5.8: A code example for demonstrating scan methods.............cccocceviveveeieiienesce s, 84
Figure 5.9: A timer related bug in the sequence NP-BFeedA. ..........ccooviiinenicinneecee 88
Figure 5.10: Examples of AND and OR INStFUCHIONS. ......c.cccveieeieiieineie e 90
Figure 5.11: Equivalent logic of Figure 5.6 according to Demorgan's Laws. ...........ccccceeueenee. 90
Figure 5.12: A logic that violated Demorgan’s LaWS. ..........cccovvervrrierieeresrieseeseeee e seeeeeens 91
Figure 5.13: Fixes for the ladder code in FIQUIe 5.12.........cccoiiiiiiiiienine e 91
Figure 6.1: RSTestStand operator CONSOIE. ........cvciiiieiiee e 97
Figure 6.2: RSTestStand fIOWCHAIT. ..........ooiiiii s 98

viii



Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:

LIST OF TABLES

Test case XML elements and attribULes. ..., 25
SUPPOrted PLC data tyPe. ..ccveeeieie ettt 25
Supported operators for Alarm EXPression. .......cccccveivereiieeseenesieeseesee e e 33
PLC tags for pump-tank control 10giC. .......cccooviiiiiiniiiiee e 37
Pump-Tank control test case definition. .........ccovevivereiievie e 38
A SEQUENCE EXAMPIE. .o s 58
PLC ladder instructions used in the bug examples. ..........ccccovvvevieieiceieesc e 67
System states used in the bug examples. ... 68
PLC variable name abbreviations used in the bug examples. ..........cccccceevvevvrnnnen. 68
Truth table for FIQUIE 5.5, s 85



ACKNOWLEDGEMENTS

I would like to acknowledge Professor Bill Howden for advising my thesis and
for his support as the chair of my committee.
I would also like to acknowledge Professor Rajesh Gupta and Professor Ingolf

Krueger for their supports as the members of my committee.



ABSTRACT OF THE THESIS

AUTOMATED TESTING TOOL FOR PLC BASED INDUSTRIAL APPLICATIONS
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PLCs (Programmable Logic Controllers) are the work horse of industrial control
systems. Industrial control systems are usually both mission-critical and safety-critical
systems. A single software bug in a control system program could cause hardware
equipment damage and human life loss. The PLC programs in control systems must
provide bug-free and failure-free behaviors in order to avoid accidents. A PLC program
must be completely tested for correctness in functionality, reliability, predictability, and

safety before it’s released for production systems. At a PLC program development stage,

Xi



hardware devices in the industrial control system are usually not available for testing the
PLC program for safety reasons. The often used solution is to use a simulator to simulate
the hardware devices’ behaviors. The simulator is usually built as a hardware test stand
which consists of toggle switches, lamp indicators, and analog signal generators. The
shortcoming of this kind of simulators is they are not automated and require lots of user
interactions. As a result, they cannot guarantee the accuracy of behaviors of the hardware
devices being simulated.

This research presents an automated testing tool which automates the hardware
device simulation process by using “virtual” wires. The hardware device simulation is
part of a test case which is defined in the presented testing tool and downloaded to the
PLC controller. This testing tool requires no user interaction during a test run so it
reduces the testing cost and time and it can precisely simulate the behaviors of hardware

devices.
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Chapter 1. Introduction

1.1 PLC in Control Systems

PLC stands for Programmable Logic Controller. A PLC is essentially an
embedded system which consists of a programmable microcontroller and a variable
number of 1/0 modules. An I/0 module has a variable number of 1/0 channels which are
wired to the hardware devices in the field. A PLC is designed as a hard real-time system
that monitors the inputs (which are wired to sensors like level sensor, pressure sensor, pH
sensor, or temperature sensor) and controls output actuators such as pumps, valves,
generators, or boat locks in real-time. Figure 1.1 shows a typical PLC hardware
configuration. PLC controllers are usually RISC (reduced instruction set computer)
microprocessor. PLC was invented to replace hardware relay logic circuits. When it was
first invented in 1960s, a PLC could only be programmed by a specialized program called
ladder logic which is similar to a schematic of relay logic. Now the modern PLCs support
multiple languages defined by IEC61131 standard (which is an international standard for
PLC programming languages). The five languages defined in IEC61131-3 standard are
Ladder Diagram (LD), Instruction List (IL), Structured Text (ST), Function Block
Diagram (FBD), and Sequential Function Charts (SFC). Allen Bradley’s Logix PLCs
support all languages but IL. IL is mostly used in European PLCs like Siemens PLC. IL
is the European counterpart of LD. A PLC program consists of multiple routines and each
routine can be programmed in any language supported by the PLC. This allows the PLC
programmer to choose the language that is best suited for each individual task. Only one

program can be downloaded to a PLC. A PLC executes its program repeatedly. Each



execution iteration is called a scan cycle. The time consumed for a PLC scan cycle is
very fast, in the units of milliseconds. Figure 1.2 shows the major steps of a PLC scan
cycle. At the Scan Input step, the PLC reads the real-time values of the sensors that are
connected to the PLC input modules and records the values in memory. At the Execute
Program step, the PLC executes the program synchronously (from left to right and top to
bottom) based on the real-time input values recorded in memory. At the Update Outputs
step, the PLC updates the outputs (to the actuators) based on the results of executing the

program in the current scan cycle. The 1/0 values are updated asynchronously.

Controller Input Modules Output Modules

Sensors Actuators

Figure 1.1: Typical PLC configuration.
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Scan Inputs

l

Execute Program
Update Outputs

Figure 1.2: PLC scan cycle.

PLCs have made major contributions to industrial automation and they are widely
used in the industrial automation control systems. As mentioned earlier, PLCs were
originally invented to replace the hardware relays. But as the PLC technology advanced,
PLCs provide more and more functionality and play more important roles in industrial
automation control systems. Today’s PLCs provide faster scan cycle time by using high
performance CPU chips, drive high-density 1/0 systems including wireless 1/Os, support
more popular industrial communication protocols such as DNP3.0, Modbus, Ethernet/IP,
and Profibus, provide redundancy for CPU and 1/O, and support various /O signal types
such as discrete, analog (current/voltage), RTD (Resistance Temperature Detector), high
speed pulse, and SOE (Sequence of Events) [1]. All these new PLC features allow them

to accommodate more complex applications. PLCs are widely used as the reliable plant-



level controllers and deliver a wide range of functionality for relay control, motion
control, process control in Distributed Control Systems (DCS) and Supervisory Control
and Data Acquisition (SCADA\) systems in various of industries including water/waste

water, power, automotive, packing, food, and pharmaceutical.

1.2 Software Testing in Control Systems

Industrial control systems are usually mission-critical and safety-critical real-time
systems. A real-time system must guarantee both logical correctness and temporal
correctness. A PLC program should be designed and developed as a hard real-time
application that must guarantee the response time to handle all events even in the worst
case scenarios. If a signal process is delayed by a PLC then a system failure could occur.
For example, a PLC is used in a power generation system to control a power generator.
The PLC must verify that the generator’s frequency, voltage and phase angle are
synchronized with the power grid before it can output a command to close the main
breaker to connect the generator to the power grid. If the PLC closes the main breaker
when the frequency, voltage, or power phase angle is not synchronized between the
generator and the power grid the hardware equipment such as circuit breakers could be
damaged. Nevertheless, if the PLC has a one-second delay for outputting the main
breaker close command after it confirms the generator and the grid are synchronized it
will also cause the same problem due to a temporal failure.

Software Testing is a very important stage in the software development life cycle
in general-purpose systems. It’s even more important in industrial control systems. In

software development for an industrial control system application, you want to find as



many bugs as possible before you release the application program for the control system.
As mentioned before, control systems are usually mission-critical and safety-critical
systems. A bug in a production control system could damage the controlled hardware
devices and could even cause human life loss. So testing is extremely important and
critical in control systems vs. in general-purpose systems.

A program in a control system is essentially a black box which takes some inputs
and generates some outputs based on the inputs. Inside the black box it’s the control
logic. It also can be put in this way, a control program answers “what-if” questions. If the
program covers all possible operation scenarios it most likely will answer all the “what-
if” questions correctly. However this is a tough task. Often times, when a control system
goes into an unknown condition or an unexpected condition the control program may not
know how to react. It just sits there and does nothing instead of commanding the system
to a safe state. This is very dangerous in safety-critical system. If the control program
fails to handle a control scenario an accident could happen and that could cause hardware
device damages and even human life loss. A control program in a safety-critical system
must provide failure-free behavior by considering all possible operation scenarios. A
simple example is a control program ignores the quality bit of an analog 1/0 point from a
sensor. In this case, the control program will continue to use the 1/0 value of the analog
point even after its quality bit became bad (due to a broken sensor). The control program
will use the wrong reading for its control logic and eventually will make incorrect control
decisions. For example, in a pump control scenario, the pump starts to fill water into a
tank when the tank level is low and stops to fill water when the tank level is high. While

the pump is running to fill water, the tank level sensor becomes defective. As a result the



tank level reading stops updating. But the actual tank level is still rising. Since the control
program doesn’t check the quality bit of the tank level signal, it will continue to actuate
the pump (instead of stopping the pump and generate a sensor failure alarm). Eventually
the tank will overflow. This is a real example that shows why a control program should
consider all possible operation scenarios and all possible device failures (broken sensors,
jamming actuators) at the software development stage. The program must be tested
against expected failures as well as unexpected failures at the testing stage in order to
prove the correctness of handling system failures. Ensuring high reliability of a PLC

program is critical in industrial control systems.



Chapter 2. PLC Programming Languages

The Allen Bradley CompactLogix PLC and ControlLogix PLC support four
languages defined in the IEC61131-3 standard and they are Ladder Diagram (LD) [2],
Function Block Diagram (FBD) [3], Sequential Function Charts (SFC) [4], and

Structured Text (ST) [5].

2.1 Ladder Logic

Ladder Logic is the most often used language in PLC programming because it
was the first and only supported language when PLC was invented; it’s made to mimic
the existing relay logic wiring schematics; it’s easy to debug. Using Ladder Logic
reduces the training needs for electricians, technicians and engineers to learn how to
program a PLC because they’re already familiar with the style of the Ladder Logic
diagram. Figure 2.1 shows a hardware switch circuit diagram and a PLC Ladder Logic

diagram for the same lamp control circuit.

Switch_ A Switch B
DC(D @ Lamp
(a)
Switch_ A Switch B Lamp
| | | | (
| | \
(b)

Figure 2.1: (a) Hardware switch circuit diagram. (b) PLC Ladder Logic diagram.



2.2 Function Block Diagram (FBD)

Function Block Diagram (FBD) is a graphical programming language. The basic
element of FBD is called a block. A block describes a function between input variables
and output variables. A set of function blocks can be connected together (like an
electrical circuit) to form a new function. Inputs and outputs of blocks are connected by
connection lines. A function block encapsulates its implementation and it makes it
possible to develop modular programs and reuse them from one PLC project to another.
Figure 2.2 shows a Function Block Diagram program that buffers the value of a digital

input module and maps the buffered value to an internal pump structure.

DI_Mapping_01 o
—_—_————— Pump[].Status HOA_Hand

DI_Mapping 0
0 :LD S Pump[0].5ta tusHOA_Auto

—— Dl_Module_Value  Outputd 2 i
0 —|— — @ Pumpl0]-Status.Not_In_Em ergeney_Stoy
Dutput! [oe 0
0| |— — —& Fumpln) StatusHigh_Discharg e_Pressure
Outputz [oe— | o
0 | — — — Pumpl0]Ststushlotor Dwer_Temperature
Outputs [ow —
0 — —«;( Fumpl].5ta s, Ot _Valve_Closed
Cutputd [Te -’—
TALCULATE B VALUE (FOR 32 CHARNE LS 0N DNE BT MODULE) Outpuis [ E( PumpPl. Statuz. Cil_Power_Availab|e
BASED ON THE SIMULATION M ODE SELECTION OF EACH CHANNEL o — — — — — — & Pumpll.Ftat=Running]
Outputs 3+
o
= Cutput? e a
-——— Fump(1].5tatus HOA_Ha nd
2#0000_0000_0000_0000_0000_00 00_1000_0000 Dutpus [
- Fump[1].5ta tusHEA_Autel
Outputa o
P——— —E< Fump[1].5tatus.No LIn_Em e ige noy_Stop]
Di_Buter_01 Output1a
— — —43( Fump[1].5tatus Hig h_Discharg e_Fressure
Dl_Buffe ) Outputt1 [
o 0 —— —e< Pu mpl1]. StatusMotor Over_Temperature
0 Hardware_Dl_Value  Dl_Value [— Outputt2 [oh
bL1.0vRD Mode [ = —E|< Fump(1].5ta tus. Ct_Walve_Clozed
o Simulation_Ma de Dutputtz ¢
i - _€< Pump[1]. Status. Cir|_Powe _fv ailable
Simulation_Value Outputta [or
- Fump(1].5tatus Running
Dutputts b
Dutputts o . 0
L Fump].5tatus HOA_Ha nd
Dutput’? D i
DI_1.0vRD Data T i — Pumpl2]. 3tatusHOLA_Auts|
Dutputts e
i —«;( Fumpl2]. Status.Na LIn_Em 2192 noy_Stof]
Sutputts [ |
ol — —E< Pump[2].Status High_Discharg e_Pressure
Output2d o |
0 ———@< Fumpl2].Slatus hiotor_Ouer_Temperatur
Dutput2? [y
i —E( Pumpl2]. 5ta s, Ct _Valve_Closed
Sutputz2 [
ol — — — —E|< Pump ] Status, G| Power fwailable
Dutputz? [
i & Fumpl.$tatsRunning
Dutputzd [y
i o
Dutpui2s [ | — 0
e FumpE].Status HOA_Ha nd
Dutputzt o i
T - Fump[E. Bt tusHOA_Aute|
Dutput2? [ | [
ol L — — —a Pumpistats NoLin_Emergency_stop

Dutputzz [on 0
D—’:-I— —U<;< Pump[3].Status High_Discharge_Pressure

Outputza
i 0 | — —@’\' Pump[2]. StatusMotor Over_Temperature
Outputan o
0l —13( Pump(3]. Status. Ct|_Valve_Closed

Outputat

Pt —— 0

—— —E( Pump[E]. Status. Ctil_Powar_Awailable
L

WAF 32 DI CHANNLE S TO THEIR INTERNAL VARIABLES | Pump(¥ Statis Ru

THE INTERNAL YARIABLES ARE USED IN THE ENTIRE
PROGRAM. IF THE CHANNEL ASSIGHNMENT OF A& DIF OINT 15
CHANGED DURING FIELD WIRIN G THEN OHLY THIS
DI_MAPPING BLOCK NEEDS TOBE UPDATED

Rl

Figure 2.2: A sample Function Block Diagram program.



2.3 Sequential Function Charts (SFC)

Sequential Function Charts (SFC) is another graphical language supported by
Allen Bradley Logix PLCs. It’s designed for complex sequential process controls. The
basic elements in SFC are step, action, and transition. A step defines a major function of
the control process. It contains the actions that execute at this step. An action is one of the
functions that a step performs. A transition is a condition that is checked before the SFC
can go to the next step. Sequential Function Charts are similar to flowcharts and they are

the industrial implementation of Petri Net.

a

Step_000

.| | Tran_oon
{t2 = 77) & {Step_000.T = Step_000.PRE}

Step_004

.|| Tran_oo1
b4 = 6) & {Step 001.T » Step 001.PRE}

Step_002

.|| Tran_ooz
(tE = 9) & (Etep O0Z.T » Step O0Z.PRE}

Stop_000

Figure 2.3: A sample Sequential Function Chart program.

Figure 2.3 shows a 3-step SFC program. Each step has a single action. A transition is
defined between two consecutive steps to determine when the process control can move

to the next step. SFC simplifies the logic for a complex sequential control by a



10

graphical representation. With SFC It becomes very easy to design and troubleshoot a
PLC program. You can easily see what the program is doing and locate the logic where

the problem occurs during a process control sequence. SFC is self-documented.

2.4 Structured Text (ST)

Structured Text (ST) is a high-level procedural language that is similar to the
Basic language or the Pascal language. Structured Text is very useful when developing
complex functions in the PLC such as complicated math calculations or algorithms.
People who are familiar with high-level programming languages will feel comfortable to
program a PLC in Structured Text. Structured Text programs can be created and edited in
any Text Editor. Most of the modern PLCs support Structured Text language. However,
debugging a Structured Text program can be very hard because there is no any debugger
available for Structured Text in the PLC program development environment. Therefore,
Structured Text is not an ideal language for developing process control logics because in
Structured Text you cannot track which stage the program is currently running at. Figure

2.4 shows a Structured Text program that calculates pump runtimes.



FOR PET TIndex := 0 TO 4 BY 1 DO
f¢ Btart of a new day
IF PLC DateTime.Hour = 0 THEN

Punp_ Puntime [FRT_ Index].Tewp Bit = 1;

ELZE
Punp_ Puntime [FRT_ Index].Tewp Bit = 0O;

END_IF;:
IF Pump Puntime [PRT_Index].Tenp Eit AND (NOT Pump RPuntime [PRT_Index)].One_ Shot Bic 1) THEN
Pump IPuntime [PRT_Index].Prewvious Day Puntime := Pump Puntime [PRT Index].Current Day Puntime;
Punp  Puntime [PRT_Index].Current Day Puntime = 0;
Pump Puntime [PRT_ Index].Previcous Day Pump Starts = Pump Puntime [PRT_Index].Current Day Pump Starts;
Punp Puntime [PRT Tndex].Current Day Pump Starts -= 0;

END_IF;

Tump Puntime [PRT_Index].One Zhot Bit_1 := Pump Puntime [PRT_Index].Temp Bit;

ff Btart of a new week
IF DOW.DAY OF _WEEEK = 1 THEN

Pump_Puntime [PRT_Index]. Temp_Bit := 1;
ELEE

Pump_Puntime [PRT_Index]. Temp_Bit := 0;
END_IF;

IF Pump_ Puntime [PRT_Index]. Temp Eit AND (NOT Pump Puntime [PRT_Inde:x].0One_Shot_Bit_Z) THEN
Pump Muntime [PRT_Index] . Current Week Pump Starts = 0;

END_IF;

Pump_Puntime [FRT_TIndex].0One_Shot Eit_Z := Pump Puntime [PRT_Index].Temp Eit;

SF Btart of a new month

IF PLC_DateTime.Day = 1 THEN

Pump_ Puntime [PRT_Index] . Temp Eit = 1;
ELZE

Pump_ Puntime [PRT_Index] . Temp Eit = 0;
END_IF:

IF Pump Puntime [PRT_Index]. Temp Eit AND (NOT Punp Puntime [PRT_Index].One_Shot Eic_ 2) THEN

Punp Puntime [PRT Tndex)].Current Month Puntime -= 0;
Punp Puntime [PRT_Index].Current Month Pump Starts -= 0;
END_IF;:
Pump Puntime [PRT_Index].One Shot Bit 32 := Pump_Runtime[PRT_Index].Temp_Bitd

IF Pump Puntime [PRT_Index]. Temp Eit AND (NOT Pump Puntime [PRT_Index].One_Shot Eic_ <) THEN
Punp_ Puntime [PRT_ Tndex].Current Tear Puntime 5= 0;
END_IF:
Tump Puntime [PRT_Index].One Zhot Bit_4 := Pump Puntime [PRT_Index].Temp EBit;
IF Sixty Zecond TME.DMN AND (MOT Pump Funtime [PRT_ Tndex].One Shot _Eic_ 5y THEN
IF Pump Puntime [PRT_Indeax]. Punning THEN
Punp Puntime [PRT_Index].Current Day Puntime
Pump Puntime [PRT_Index].Current Month Muntime
Punp_ Puntime [PRT_Index].Current_Tear Puntime
Pump Puntime [PRT_Index] . Accumulative Puntime
ENL_IF;
END_IF;
Tump_Puntime [PRT_Index].One_Shot_Bit_§

= Pump Puntime [PRT Index]. Current Day Puntime + 1/60;

= Pump_ Puntime [PRT_Index].Current Month Iuntime + 17607
= Pump_ Puntime [PRT_Index].Current_Year Puntime + 1/60;
:= Pump Puntine [PRT_Index]  Accumualatiwve RPuntime + 1/60;

1= Bixty_ Second TME.DN;

IF Pump_ Puntime [PRT_Index]. Punning AND (NOT Pump Runtime [PRT_Index].One_Shot_Bit_&) THEN

Pump_ Muntime [PRT_Index] . Current _Day Punp Starts
Punp_Puntime [PRT_Index].Current_Week Mump Starts
Pump Puntime [PRT_Index] . Current Month Pump Starts

= Pump_ Puntime [PRT_Index].Current Day Punp Starts + 1;

= Pump Puntime [PRT_Index] . Current Week Pump_ Starts + 1;
o= Pump_ Puntime [PRT_Index].Current Month Pump Starts + 1

END_IF;
Pump_Puntime [FRT_TIndex].0One_Shot_Eit &
ENI:_FOL;

= Pump Puntine [PRT_Index] . Punning;

COP{Pump Puntime[2], Stormwater Pump Puntime[0], 3);

Figure 2.4: A sample Structured Text program.

Multiple programming languages can be used in the same PLC program. In order to
choose an appropriate language, many factors need to be evaluated such as the

programmers’ skill, the complexity, modularity, and structure of the programming task,

11
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the type of control logic of the application, who will troubleshoot and maintain the
program, and how often the program needs to be modified. A right choice of the
programming language will shorten both development time and troubleshooting time and
deliver more efficient and reliable programs.

An Allen Bradley Logix PLC controller is a preemptive, multitasking controller.
A single PLC project runs in a PLC controller, which supports multiple tasks. Each task
supports multiple programs and each program supports multiple routines. Logix PLC
supports three types of tasks: Continuous, Periodic, and Event. A continuous task has the
lowest priority so it can be interrupted by a periodic task or an event task. Figure 2.5
shows an example of scheduling three tasks. T1 and T2 are periodic tasks and T1 has a
higher priority than T2. T1 runs every 10ms and it takes 2ms to run. T2 runs every 7

seconds and it takes 4ms to run. T3 is a continuous task.
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Figure 2.5: PLC project task scheduling example.



Chapter 3. Review of PLC Testing Methods

3.1 Hardware Test Stand

Since PLC programs control massive hardware devices such as pumps, valves,
generators in the field, it’s almost impossible to physically move the hardware devices
from the field to the test environment. The hardware devices are usually very expensive
and they may be still working in the production systems, it’s impossible to test the PLC
programs in such production systems. Therefore, a PLC 1/O simulation system is required
to help develop the PLC program during the development stage and test the PLC program
in the testing stage. A hardware Test Stand is often used to simulate the 1/0s of hardware

devices in the field. Figure 3.1 shows a picture of a typical Hardware Test Stand.

®eveman
-8
b A LT

Figure 3.1: Typical hardware Test Stand.

The Test Stand is made by many LED indicators, toggle switches, analog signal
generators, and meters that are wired to the PLC’s input and output modules. The toggle
switches and the analog signal generators are used to simulate the sensor inputs and the
LED indicators and the meters are used to indicate the PLC outputs. The Test Stand has

the following disadvantages and limitations:

13



1. It’s expensive and limited to the number of 1/O channels it’s designed for

2. It requires the physical presence of all the PLC 1/0O modules because the signals
from the Test Stand will need to be wired to the PLC’s 1/0 modules.

3. It requires user interaction during a test run. In a complex process control, it’s
difficult to simulate multiple signals in a certain sequence or to simulate multiple
signals simultaneously.

4. It’s a manual simulation and cannot conduct automatic simulation.

3.2 HMI Based Simulator

Another approach that is often used for simulating the PLC 1/Os is a HMI (Human
Machine Interface) based software simulation. In this approach, a HMI control screen is
developed and used for the PLC I/O simulation. The HMI control screen can be made as
a SCADA system screen or a standalone Operator Terminal screen. Figure 3.2 shows an
Allen Bradley Operator Terminal (called PanelView [6]) screen. Since this is a software
simulator it eliminates the requirement of the PLC 1/0O modules. However, it is still a
manual simulation and it’s time-consuming to make the 1/0 simulation screens
themselves. A HMI based simulator can be used to test all functions of a PLC program.
But the timing between a command and the response for the command is not automated.
It requires user interaction to click a button on the screen to trigger each 1/O simulation.
So it cannot be used for automatic control sequence simulation and the accuracy of a test

depends on the user’s actions too.

14



MainFlex Digital Output (Slot 0) | | MainFlex Digital O | | MainFlex Digital Input (Slot 2)

Figure 3.2: Allen Bradley PanelView I/O simulation screen.

3.3 New Approach: “Virtual” Simulator

This research proposes an automated testing tool that can simulate the PLC 1/O
signals via “virtual” wires and automate the test execution. There are no physical hard
wires connected between LogixPlcTester and the PLC being tested. This tool helps PLC
software developers and testers test PLC programs during the entire software
development stage and the testing stage. It can be used for both unit testing and system
testing. The goal of this tool is to assure quality of PLC programs and to deliver reliable

PLC programs for industrial control systems.
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Chapter 4. LogixPlcTester

To overcome the shortcomings of the hardware Test Stand and the HMI based
simulator, this research presents a Windows based application called LogixPIcTester that
can precisely simulate behaviors of hardware devices in the field. LogixPlcTester can
automatically read the outputs of the PLC and simulate inputs to the PLC by sending
values directly to the input memory of the PLC controller based on inputs’ trigger events
(either time-based event or condition-based event). Unlike the other simulation methods,
LogixPlIcTester doesn’t require the presence of any PLC I/O module in order to simulate
signals. LogixPlcTester is connected to the PLC that is being tested through “virtual”
wires. LogixPIcTester doesn’t require user interaction in order to run the simulations.
LogixPlIcTester has the following main features:

= Define test cases offline.

Run test cases against the PLC program.

= Simulate incidents occurring in the production system.

= Simulate “odd ball” cases that cannot be tested in the production system.

= Verify bug fixes before applying the production system.

= Good for both unit testing and system testing.

= Can be also used as a good training system that can demonstrate how the
system works in every scenario.

= A good troubleshooting tool for debugging PLC programs when it’s set to

monitor-only mode.
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4.1 Design Diagram

In a typical PLC-based industrial control system, all the field hardware devices’
feedback signals are wired to the PLC’s input modules, and the PLC control output
signals (sent from the PLC’s output modules) are wired to the actuators of the field
hardware devices. The PLC knows the status of the field hardware devices by reading the
input signals and the PLC control program runs based on the input signals and generates
output signals to control the field hardware devices. The diagram at the left hand side of
Figure 4.1 shows a typical industrial PLC control system. The diagram at the right hand
side of Figure 4.1 shows the concept diagram of the automated testing tool presented in
this research. Instead of connecting the real devices to the PLC using real wires, the
presented testing tool acts as a virtual device or virtual devices and connects to the PLC
through virtual wires. LogixPlIcTester is the name of the automated testing tool
application and is programmed with C# language in Visual Studio 2005. LogixPlcTester
simulates the field hardware devices’ signals by sending the configured signals in the test
case as sequence of events (time triggered simulation). LogixPIcTester can also read the
PLC control output signals and based on the PLC output signals it can send the
configured signals to the PLC (condition triggered simulation). The diagram at the
bottom of Figure 4.1 shows the system diagram at the network level. LogixPlcTester
communicates with the PLCs using Ethernet/IP protocol [7]. Ethernet/IP stands for
Ethernet Industrial Protocol which was originally developed by Rockwell automation (the
vendor of Allen Bradley PLCs). Ethernet/IP is an application layer protocol. Ethernet/IP

uses all the transport and control protocols of standard Ethernet including Transport
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Control Protocol (TCP), the User Datagram Protocol (UDP), the Internet Protocol (IP)
and the media access and signaling technologies. Ethernet/IP protocol is transferred in a
TCP/IP packet. Ethernet/IP uses an open application layer protocol called Common

Industrial Protocol (CIP).

Programmable Logic Controller (PLC) Programmable Logic Controller (PLC)

L
< % S %
Virtual Devices
. =

Ethernet/IP Protocol

( )

EthernetNetwork

Figure 4.1: LogixPIcTester design concept diagram.



As shown in Figure 4.1, Ethernet/IP protocol has been implemented in the PLC
controller’s firmware, which allows direct read from and direct write to the PLC’s input
and output memory. LogixPlcTester uses the corresponding packets of Ethernet/IP to

read data from the PLC and write data to the PLC.

4.2 Inhibit PLC 1/0 Modules

In order for LogixPlcTester to work correctly, no code change is required in the PLC
program that is being tested. However, a PLC I/0O module configuration change (in the
PLC project file) may be required in order to disable the communications between the
PLC controller and its I/0 modules. During testing, since LogixPlcTester will simulate
values for all the PLC input modules by directly updating the PLC’s input memory, we
need to make sure that the PLC controller won’t update its input memory with the
hardware values read from the input modules. We can disable the communication
between the PLC controller and an I/0 module by inhibiting the module. Figure 4.2
shows the 1/0 modules at slot 2 to 15 are inhibited in a PLC project. The communications
between the PLC controller and the output modules can be left enabled as far as
LogixPlIcTester is concerned. However, we want to disable them as well from the safety
standpoint. For example, if the PLC controller updates its output memory during a test it
will energize the relay outputs based on the program execution results and that may
accidently actuate the field hardware devices if they were wired to the PLC that is being
tested and that may cause some unexpected incidents and damages to the hardware
devices. The module inhibition step can be ignored if an I/0 module is not physically

present in the PLC rack because the PLC controller doesn’t update the 1/0 memory for a
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module if it cannot communicate with the module. Because the module inhibition is a
configuration change (not a code change) it won’t reduce the level of truthfulness of the
tests in LogixPlcTester. After all the tests are complete, before installing the program in
the production system, the Inhibit Module checkboxes must be unchecked in the PLC
project in order to allow the PLC controller to update its I/O memory with the real-time

hardware values while running in the production system.

{5l /0 Configuration I ]
(=@ 1756 Backplane, 1756-A17 # | Medule Properties: Local:2 (1756-1A41613.1) ==
2 [0]1756-L62 pump_station - .
& § [111756-ENET/B Ethernet General Connection | Module Info | Conlfiguration | Backplane |
&5 Ethernet
[2] 1756-1A161 PLCPS1_DI0 Requested Packet Interval [RPI): I 'IUUE: ms (0.2 - 750.0 ms)
[3]1756-1A161 PLCPSL_DI
[4]1756-1a161 PLCPS1_DL2
[511756-14161 PLCPS1_DB [ Major Fault On Controller If Connection Fails \While in Run Mode
(6] 1756-1A161 PLCPS1_DI4 -
[7]1756-1A161 PLCPS1_DIS
[8] 1756-1A161 PLCPS1_DI6
(9] 1756-1A161 PLCPS1_DI7
[10] 1756-1A161 PLCPS1_DI8
[11] 1756-1A161 PLCPS1_DIB
(12] 1756-OA161 PLCPS1_DOY.
[13] 1756-IF61 PLCPS1_ALL
[14] 1756-IF61 PLCPS1_AL
[15]1756-OF4 PLCPS1_AO1 Status Offive | OK__|  Cancel Hebp

Module Fault

m

[FRFR TR R R R 8 R R 8 R L8 R 2|

Figure 4.2: Inhibit PLC 1/0 modules.
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4.3 Application Overview

LogixPlIcTester is a Windows .NET application developed with C# language in
Microsoft Visual Studio 2005. LogixPlcTester creates customized test cases in an
Extensible Markup Language (XML) format. Test case XML files can be shared among
QA engineers. LogixPlcTester displays a test case in a tree view structure. Users can edit
a test case either online or offline. LogixPlcTester displays real-time values of PLC tags
defined in a test case and it supports online changes on the fly while a test case is
running. A log view feature is supported to log alarms, tag value change notifications,
system operation messages online in a spreadsheet format. The logs can be exported from
LogixPlcTester to a Comma-Separated Values (CSV) file for further review. Once
initiated, a test case runs in LogixPIcTester automatically based on the time triggers and
condition triggers in the test case. Figure 4.3 shows the main application window of

LogixPlIcTester.
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Figure 4.3: LogixPIcTester application overview.



4.4 Test Case Structure

In LogixPIcTester, a test case supports multiple PLCs and each PLC consists of
three PLC tag lists that belong to different tag categories. Figure 4.4 shows a typical

structure of a test case in LogixPIcTester.

/ Test case name

First PLC

I
c
3
=
T
=
]
g
0
r2
—
or,
o2
—
'_|.
—h
o
ol
(@]
=
5
=
S
S

=8 Output Tags
;’ Local131.ChiData ,— =
\=| LocalB:l.Data5
83 Oracle Tags
i-| Local5:l.Data.0
i-| Local 7:1.Data.0
89 Alarm Tags
LL WFDZ2_START_CMD
LL WFD4_START_CMD Second PLC
= [E Tank PLC [192.168.1.117]
=8 Output Tags
= Local13:1.ChiD ata
—-f8 Oracle Tags
2| Local13:1 ChiD ata
=83 Alarm Tags
LL RWS3 START_CMD
LL RWS1_START_CMD

Figure 4.4: A typical test case structure.

In Figure 4.4, the test case that is called “Test Case #1” defined two PLCs (Pump

PLC and Tank PLC). Each PLC has Output Tags, Oracle Tags, and Alarm Tags.



An Output Tag is used to send a value to a tag in the PLC based on a time trigger
or a condition trigger while the test case is running. Output tags are responsible for
simulating field hardware devices by sending configured data to the PLC’s 1/0 channels
in real-time. An Oracle Tag is used to monitor the value of a PLC tag. Oracle tags read
values in a report-by-exception basis. Only changed values in the PLC are reported to
LogixPlIcTester. The report-by-exception mechanism dramatically reduces the network
communication traffic between LogixPlcTester and the PLCs that are being tested. An
Alarm Tag is used to define a system operation alarm or to define an event trigger. For
example, you can use an Alarm Tag for a pump overload alarm. You can use an Alarm
Tag to monitor a pump run command sent by the PLC and configure an Output Tag that
uses the Alarm tag as a condition trigger to simulate a pump running signal once the
pump run command is detected by LogixPlcTester.

A tag name in LogixPIcTester must be identical to a tag name in the PLC. The

definition of a LogixPIcTester tag name is referred to the same tag name in the PLC.

4.5 Create Test Case

There are two ways to create a test case. One is to manually create an XML file
(using the elements and attributes definitions listed in Table 4.1) in any Editor and
another is to create it in LogixPlcTester.

As mentioned above, a test case definition is stored in a XML file. Table 4.1
shows the element and attributes that are used to define a test case. Figure 4.5 shows the
hierarchical structure of a test case XML file in Microsoft XML Notepad 2007 that is a

free XML editor.
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Table 4.1: Test case XML elements and attributes.

25

Type Name Description

Element Test_Case Test case element

Attribute (of

Test Case) Name Test case name

Attribute (of Duration Test case execution time (in seconds)

Test_Case)

Element PLC PLC element

Attribute (of PLC) | Name PLC name

Attribute (of PLC) | IP_Address PLC IP address

Element Output_Tag Output tag element

Element Oracle_Tag Oracle tag element

Element Alarm_Tag Alarm tag element

Element Tag Tag element

Attribute (of Tag) | Name PLC tag name (it must resides in PLC)

Attribute (of Tag) | Description rnLF?Lté? description (It should match the tag description

Attribute (of Tag) | Active Enable/disable tag

Attribute (of Tag) | Data_Type Data type of PLC tag name. See Table 4.2 for details

Attribute (of Tag) | Write_Delay_Timer Time t_rlgger (in seconds): time to elapse before the tag

value is sent to PLC

Attribute (of Tag) | Output_Value Value to write to PLC tag

Attribute (of Tag) | Event_Trigger An alarm tag that is used as event trigger for a PLC tag
. Deadband for oracle tag. Tag value change within the

Attribute (of Tag) | Deadband deadband won't be logged in LogixPlcTester
. . Event trigger is set to true after the condition has been

Attribute (of Tag) | Enabled_Delay_Timer active for the defined time (in seconds)

Attribute (of Tag) | Alarm_Expression Alarm or event trigger expression

Attribute (of Tag) | Log_Option Log as event (for event trigger) or log as alarm

Table 4.2: Supported PLC data type.

Data Type | Description Memory Bits | Range

BOOL Boolean 1 Oorl

SINT Short Integer 8 0

INT Integer 16 -128 to 127

DINT Double Integer | 32 -2,147,483,648 to +2,147,483,647
REAL Floating Point | 32 +/-3.402823E38 to +/-1.1754944E-38
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12 XML Notepad - C:\exampled.aml

GBS Yew et Wedew  Hep
RN R W S oo =] |
Tree View || XSL Outout |

9 XBLT Location

+Your XML document contains no xml-stylesheat processing instruction. To provide an XSLT transform, add the following to the top of your file and edit the href attribute accordingly:
i<?xml-stylesheet type="text/xsl" href="stylesheet.xsl":>

t¥ou can also enter the XSLT file name using the above text box, but this will not persist with your XML document.

EThe following HTML is provided by the default XSLT transform which is designed to pretty print youwr XML document.

Local:13:1.ChOData" De

Local:6:1.Data.5" Descriptior
</Output_Tag>

<Oracle_Tag>

dnit> Pone level® Active="True" Data_Type="REAL" Write_Delay_Timer
1="clnit> VFOR Discharge valve clesed” Active="True® Data_Typa="BOOL" Wri

ue="3587.41" Event
="0" Output_Value="

VFD2_START_CMD" Descri
VFD4_START_CMD" Des

sn="Srart VFD2 command® Enable

n="Local:12:0.Data.2 == 1
="Start VFD4 command® En

n="Local:12:0.Data.6 == 1

="Log As Event”/>
="Log As Event’/>

</alarm_Tag>
</PLC>

<PLC Name="Tank PLC" IP_Address="192.168.1.117">

ne="Local:13:1.ChOData” Description="Fone level" Active="True" Dita_Type="REAL" Write_Delsy_Timer="10" Output_Walse="1588.11" Event_Trigger="Time"/>

ne="Local: 13:1.ChOData" Descripbion="Fone level" Deadband="0.1" Active="True" Data_Type="REAL"/>

"RVS3_START_CMD" Description="Szart RVS3 command"® Enabled_D
"RVS1_START_CMD" Description="S:art rvsl command" Enablec

Timer="0"
Tumer="0" Al

n="Local:12:0.Data.4 == 1" Active="True" Log
\="Local: 12:0.Data.7 == 1" Active="True" Log

ton="Log As Event"/>
on="Log As Event”/>

</Test_Case>

Figure 4.5: A test case XML file in Microsoft XML Notepad 2007.

The following basic steps show how to create a new test case in LogixPlcTester:
1. Click File > New... > Test Case as in Figure 4.6. The New Test Case dialog

appears as shown in Figure 4.7.

2. Inthe New Test Case dialog, type in the test case name and the execution duration
(in seconds) of the test case then click OK. The execution duration specifies how

long the test case will run.

3. Click File > New... > PLC as shown in Figure 4.8. The New PLC dialog appears as

shown in Figure 4.9.

4. Inthe New PLC dialog, type in the PLC name and the PLC IP address then click
OK.



5. Atest case with one PLC is created. Under the PLC, there are three empty tag lists

that are created automatically as shown in Figure 4.10.

= Logix PLC Tester

e
o
Timestamp Log Meszage [Greern: Initial Oracle Tag vahue snapshot, Blue: Wite Output Tag value to PLC. Wheat Up

| Page Setup...
4l Print...
L Generate Report

Exit
Taq ksts are not validated | Test case is nok running PLC: L Outpuk Tags: 32 Inactive: 0 Invalid: O Oracle Tags: 6 Inactive: 0 Invald: 0 Alsn Tags: 6 Inactive: 0 Invalid: 0

Figure 4.6: Create a new test case in LogixPIcTester.

% New Test Case

Test Case Name |

Execution Duration [Secs) |

Figure 4.7: New Test case dialog.

= Logix PLC Tester

T mew...
& Open..
Close Test Case Status
7 Delete QD
Test Case Name | Test Case #1
B seve s
(Ees Timestamp Log Message [Greer: Intisl Oracle Tag value snapshot. Blus: Wite Output Tag valus to PLC. Wheat: Up
| Page Setup...
4| Print...
|l Generate Report
!
Bt kcaseisnotrunning | PLCIO Output Tags: 0 Inactive: O Trvabd: 0 Oracle Tags: 0 Inactive: 0 Invabd: 0 ‘Alarm Tags: 0 Inactive: 0 Invakd: 0

Figure 4.8: Define a new PLC in LogixPlcTester.
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New PLC =

PLC Name |

PLCIP Address |

Figure 4.9: New PLC dialog.

= Logix PLC Tester E”EEI

Fle Edt View Took Hep
= i= TestCase #1
SR | Fure PLC (192.168.1.116)

i Output Tags PLC Status

@ Oracle Tage b

W Alam Tags

PLC Mame |Purnp PLC PLC Status | Disconnected
Timestamp Log Message [Greer: Initial Oracle Tag value snapshot. Blue: Wite Dulput Tag value to PLC. ‘Wheat: Up

Taq ksts are not validated | Test case is nok running PLC: 1 Output Tags: 0 Inactive: 0 Irvald: 0 Oracle Tags: 0 Inactive: 0 Irvalid: 0 Alarm Tags: 0 Inactive: 0 Invald: 0

Figure 4.10: A PLC with three empty tag lists in LogixPlcTester.

4.6 Create an Output Tag

Output Tags can be added to the Output Tag list. Right click on Output Tags
then click Add as shown in Figure 4.11. The New Output Tag dialog appears as shown
in Figure 4.12 (for time triggered Output Tag). When the Condition Trigger is selected,
the New Output Tag dialog changes its appearance as shown in Figure 4.13. When Time
Trigger is selected, the output value will be written to the tag in the PLC as soon as the
Write Delay Time has elapsed after the test case is initiated. For example, if 30 is
specified as the Write Delay Time, then the value will be written to the PLC tag after the

test case has been running for 30 seconds. When Condition Trigger is selected, the
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output value will be written to the tag in the PLC after the Condition Tag has become

active for the amount of time defined in the Condition On_Delay Time parameter.

= Logix PLC Tester

Fle Edt View Took Help
= i= TestCase i1
= [ PumpPLC (1921681.116)

a

@0 Add

Al

Timestamp Log Message [Green: Irstial Oracle Tag value snapshot.  Blue: Wite Output Tag valus to PLC. Wheat: Up

Taqg ksts are not validated | Test case is not running PLC: 1 Output Tags: 0 Inactive: 0 Invabd: 0 Oracke Tags: O Inactive: 0 Invald: O Alarn Tags: 0 Inactive: 0 Irvabd: 0

Figure 4.11: Create a new output tag in LogixPlcTester.

&% New Output Tag E]@

New T ag Configuration

Active

Tag Name
Description
Data Type ¥

Deadband |

Output Yalue

Event Trigger Configuration

() Time Trigger (O Condition Trigger

‘Write Delay Time [secs)

Condition Tag

Figure 4.12: New Output Tag dialog (for Time Trigger).
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New Output Tag Q@@

New T ag Configuration

Active

TagName
Description
Data Type . v

Deadband

Output Yalue

Event Trigger Configuration

O Time Trigger (%) Condition Trigger
Condition On_Delay Time [secs)

Condition Tag v

Figure 4.13: New Output Tag dialog (for Condition Trigger).

4.7 Create an Oracle Tag

Oracle tags can be added to the Oracle Tag list. Right click on Oracle Tags then
click Add. The New Oracle Tag dialog appears as shown in Figure 4.14. Oracle Tags are
used to monitor PLC tags. For example, you can create oracle tags to monitor pump
running status, tank level, or device health status. Deadband is used to eliminate similar
readings of a tag so only the values outside of the deadband will be reported and logged

in LogixPlIcTester. For example, if the deadband of a pipeline pressure is set to 1 PSI,



then only values that are at least 1 PSI higher than (or less than) the current reading will

be seen in LogixPlcTester.

New Oracle Tag Q@@

New T ag Configuration

Active

Tag Name
Description
Data Type v
Deadband

Output Value

Figure 4.14: New Oracle Tag dialog.

4.8 Create an Alarm Tag

Alarm tags can be added to the Alarm Tag list. Right click on Alarm Tags then
click Add. The New Alarm Tag dialog appears as shown in Figure 4.15. Alarm Tags are
used to define alarms or Condition Triggers for Output Tags. A lexical analyzer and a

math parser have been implemented in the application to parse the alarm expression. The
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parser evaluates an alarm expression and returns the value of the alarm expression. Table
4.3 shows the math and logical operators supported in an Alarm Expression.

Example 1: To detect if a pump running.

Pump_Running ==

Pump_Running is a Boolean tag in the PLC.

Example 2: To detect if there is a pressure is greater than 80 PSI while a pump is

running.

Pump_Running == 1 && Pressure > 80

Pressure is a floating point tag in the PLC.

New Alarm Q@@

New Alarm Configuration
Active []

Tag Name .
Description
Enabled Delay Time [secs) _
Log Option
(®) Log As Alam (O Log As Event () Disable Log

Alarm Expression

Figure 4.15: New Alarm Tag dialog.



Table 4.3: Supported operators for Alarm Expression.

Math Operators Logical Operators
+l _1 *1 /1 Al % !l ::1 !:! ||’ &&1 >1 < H >:1 <:
4.9 Online Edit

Once a test case is loaded in LogixPlIcTester, it can be edited online. Figure 4.16
shows a Tag Details Window in which you can make change to the tag’s configuration.
While a test case is running, you still can make tag configuration changes. The test case
running process can automatically pick up the changes made on the fly and they will take
effect immediately for the rest of the test case run process. You can click the Read button
to read the real-time value of the selected tag in the PLC. Clicking the Write button (for
Output Tag only) will write the configured Output Value to the selected tag in the PLC.
The Read and Write buttons are helpful when doing a step-by-step testing. They can also
be used for troubleshooting the PLC program. For instance, you can create an Output Tag
for a pump reset command and then you can click the Write button to reset the pump
alarms. You can create an Oracle Tag for the tank level tag in the PLC and then you can
click the Read button to read the real-time value of the tank level in the PLC when you
need it during the troubleshooting process. You can create an Alarm Tag to monitor a

pump control output command in the PLC when debugging a pump control problem.
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= Logix PLC Tester = | =
File Edit View Tools Help
=-{= Diemer EPS Reset -
ﬂ EG_PLC (10.165.85.172) Tag Configuration Tag Verfication
@ Output Tags Active [V
B BorchTestOn
ot ¥ Tag Name MainFlexc2| Data 22 Daia Type  DINT - Sttus  QUALITY GOOD (SUCCESS)
Description  <init> System in Manual mode Deadband Vaoe 0
Output Valve 0

Timestamp  05/17/2011 09:10:03.803 PM
Event Trigger Corfiguration

@ Time Trigger Condition Trigger
Wiite Delay Timer (Secs) 1
Condtion Tag

[ Wirte

CIERENENR IR ENEYEN RN ETEA

Figure 4.16: Tag Details Window in LogixPlcTester.

4.10 LogixPlcTester as an Operator Console / a Logger

When there are only tags in the Oracle Tag list and/or the Alarm Tag list,
LogixPlIcTester will turn into an Operator Terminal which is similar to a control system
control console (a HMI terminal). In this case, LogixPlcTester will only read Oracle Tags
and/or Alarm Tags from the PLC and won’t execute any write operations. It can be
connected to the production control system to perform a monitoring function. You can
create your customized configuration in LogixPlcTester for a specific purpose. For
example, if you want to monitor a hydro-electric generator startup sequence and log the
entire sequence for further study or analysis, then you can create a test case in
LogixPlcTester with only Oracle Tags and Alarm tags associated with the generator
startup sequence. The test case shall be started before the hydro-electric generator startup
sequence is initiated in the production system. Once the generator startup sequence is
complete you can export the LogixPlcTester log messages to a flat file for future
reference. Compared to a formal control console or a formal logger, LogixPlcTester is

more cheaper, flexible, customized and quicker to setup.
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4.10 LogixPlcTester as a Training System

Besides being an efficient tool for testing and troubleshooting purpose,
LogixPlIcTester can also be used as a training system. A training system basically needs
to mimic all the activities that the production system has. In LogicPIcTester, a test case
can simulate one or more system behaviors. By running a test case, the trainees will learn
how the system works under the scenario that the test case presents. If the test case
describes a system failure scenario, the trainees will learn what to do under that
circumstance by watching the simulated actions by LogixPlcTester. This is an easy,
efficient and safe way to conduct the system operation training without interfering with
the production system. The scenario based test cases can be run over and over again

without wearing out any hardware devices or causing any damage to hardware devices.

4.11 Data flow Path

Figure 4.17 shows the data flows between LogixPlcTester and the PLC that is
being tested. LogixPlcTester simulates field hardware devices’ signals by writing values
into the PLC using Output Tags. LogixPlcTester reads PLC output commands and PLC
internal tags using Oracle Tags. Alarm Tags are similar to Oracle Tags and they’re used
to generate alarms in LogixPlcTester. Alarm Tags can also be used as Condition Triggers

for Output Tags.
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Figure 4.17: LogixPlcTester data flow path.

4.12 Test Case Example

The following example uses LogixPlcTester to test a typical Pump-Tank control
logic (Figure 4.18). The control logic is defined as follows:

= Call the pump to start filling water to the tank when the tank level is below 15
feet.

= Call the pump to stop filling water to the tank if the tank level is above 28 feet.

= The PLC generates a “pump failed to start” alarm if it hasn’t received the pump
running signal for 5 seconds after the pump start command is issued.

= The PLC generates a “pump failed to stop” alarm if it hasn’t received the pump

stopped signal for 5 seconds after the pump stop command is issued.



— 28 Feet
— 15 Feet
Tank (0-30 Feet)
Pump
Figure 4.18: Pump-Tank control scenario overview.
Table 4.4: PLC tags for pump-tank control logic.
PLC Tag Description Data Type
Pump_Running 1: running 0:stopped Boolean
Pump_ Start Cmd PLC call pump to start Boolean
Pump_Stop Cmd PLC call pump to stop Boolean
Pump_Fail To Start | Pump failed to start alarm Boolean
Pump Fail To Stop | Pump failed to stop alarm Boolean
Tank Level Tank level real-time reading Floating Point
Pump_Reset Cmd Reset pump alarms Boolean
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Table 4.5: Pump-Tank control test case definition.

- Trigger -
Test Case Tag Type | Description Condition Tag Value

Type

Output | Write pump running

Pump_RUnNing o 1 Tag signal to PLC

Condition | Pump_Start Cmd | 1

Output | Write pump stopped

Pump_Running - noe 1 Tag signal to PLC

Condition | Pump_Stop Cmd | 0

Write tank level to PLC
to simulate tank is above

Tank_Level Note 2 _?;tput the Pump_OFF threshold | Time 28.1
g (Write Delay Time is set
to 23)
Output Write pump alarm reset
Pump_Reset_Cmd Tag command to PLC (Write | Time 1

Delay Time is set to 1s)

Write tank level to PLC
to simulate tank level is
below the Pump_ON Time 14.9
threshold (Write Delay
Time is set to 3s)

Output

Tank_Level Note2 | g

Oracle | Monitor real-time pump

PUmMp_RUNNING - note 3 Tag running status in PLC

Oracle | Monitor real-time tank

Tank_Level Note3 | Tag level reading in PLC

Alarm | Monitor pump failed to

Pump_Fail_To_Start Tag start alarm in PLC

Alarm | Monitor pump failed to

Pump_Fail_To_Stop Tag stop alarm in PLC

Alarm | PLC output command to

Pump_Start Cmd Tag start pump

Alarm | PLC output command to

Pump_Stop_Cmd Tag stop pump

Notes:

1. In LogixPIcTester, a same tag name can be defined multiple times with different
functions. The tag Pump_Running is defined twice. One is to simulate pump
running signal and another is to simulate pump stopped signal.

2. The tag tank_Level is defined twice. One is to simulate high tank level and

another is to simulate low tank level.



3. In LogixPIcTester, the same PLC tag can be used multiple times in different tag
lists. The tag Pump_Running and the tag Tank_level are defined in both the
Output Tag list and the Oracle Tag list.

4. The order of the Output Tags in Table 4.5 won’t affect the test. The write
operation sequences are defined by the Write_Delay_ Timer parameter of each tag
when using Timer Trigger.

Table 4.4 shows the tags used in the PLC program for the Pump-Tank control
logic. Table 4.5 shows the tags used in the test case. Based on the settings in Table 4.5,
this test case is used to verify if the PLC control program sends an output command to
stop the pump when the tank level rises higher the upper limit (28 feet) and verify if the
PLC control program sends an output command to start the pump when the tank level
drops below the lower limit (15 feet). After the test case is initiated, at the first second,
LogixPlIcTester sends a pump reset command to the PLC to reset the pump alarms if there
is any. At the third second, LogixPlcTester writes 14.9 (feet) to the Tank_Level tag in the
PLC. If the PLC control logic is correctly implemented then it will send an output
command to start the pump as soon as it sees the tank level (14.9 feet) written by
LogixPlIcTester. If the PLC sends an output command to start the pump then
LogixPlIcTester will read this command through the alarm tag (Pump_Start Cmd) defined
in the test case. Since the Alarm Tag (Pump_Start Cmd) was configured as a Condition
Trigger to initiate the write operation of the Output Tag (Pump_Running),
LogixPlcTester will write 1 to the Pump_Running tag in the PLC. Once this is done, the
PLC gets the pump running signal feedback so its logic is satisfied in this scenario.

Figure 4.19 shows the log messages in LogixPlcTester after the execution of the test case
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defined in Table 4.5 is complete. In Figure 4.19, green color indicates snapshot values of
Oracle Tags before the test case starts to run; blue color indicates writing Output Tag
values to the PLC; wheat color indicates updated Oracle Tag values; white color indicates

updated Alarm Tag (or Condition Tag) values.

Z= Logix PLC Tester

File  Edt Wew Tools Help

= i= Thesis_Example

= | TesPLC(1921681.116) Tag Configuration Tag Verffication

= @ Output Tags Active
£l s Crnd
TagMame |Tank_Level Data Type |REAL ~ Status | Unknown
Description | Wiite tank level to PLC Deadband o B
Output Value (14,9
Timestamp
Ewent Trigger Configuration
@ Time Trigger © Condition Trigger
Wiite Delay Timer (Secs) |5
Condition Tag
Timestamp Log Message (Green: Initial Oracle Tag valus snapshot. Blue: Wiite Dutput Tag value to PLC. ‘Wheat: Updated Oracle Tag valu

05/22/2011 02:52:21.296 PM
05/22/2011 025221234 PM
05/22/2071 025220875 M PLE oulput command to stat pump: <Activer
05/22/2011 0252:20.484 PM_ PLC output command ta stop pump: <Inactive>
05/22/2011 025220.421 PM_ Morstor tank level reading in PLC = 14.9
05/22/2011 0252.20.375PM | Wiite tank level to PLC —> 14.9

05/22/2011 025218.250PM  Monitor pump running status in PLC = 0
05/22/2011 025218187 PM | Send pump stopped signal to PLC > Fakse
05/22/2011 025217.828PM  PLC oulput command to stop pump: <Actives

05/22/2011 025217.703PM  PLL output command to start pump: <inactive>
05/22/2011 02:52:17.406 PM  Monitor tank level reading in PLC = 28.1

05/22/2011 025217.312PM  Wiite tark level to PLC -5 281

05/22/2011 026215875FPM  Send pump reset alarm command to PLE —> True

05/22/2011 0252-15.781 PM_ PLC output command to start pump: <Actives

05/22/2011 025215656 PM  Monitor tank level reading in PLC = 12.7

05/22/2011 0256215656 P Monitor pump running status in PLC = 1

Tag lists are validated Testcaseisrunning [B6 _ |Tags: 5 Inactive: O m; 0 Oracle Tags: 2 Inactive: 0 Invalid: 0

Alarm Tags: 4 Inactive: 0 Invalid: 0

Timestamp
16 05/22/2011 02:52:21.296 P
15 08/22/2011 02:52:21.234 P
14 05/22/2011 02:52:20.875 PM
13 05/22/2011 0D2:52:20.424 P
12 05/22/2011 02:52:20 421 Pr
11 05/22/42011 02:52:20.375 P
05/22/2011 02:52:18.250 P
05/22/20011 02:52:18.187 P
05/22/20011 02:52:17.828 PM
05/22/200171 02:52:17.703 P
0542242001 02:52:17. 406 P
05/22/20171 02:52:17.212 P
05/22/20171 02:52:15.875 P
05/22/20171 02:52:15.781 PM
05/22/2011 02:52:15.656 P
05/22/2011 02:52:15.656 P

=
o

P NDW P~ OO N0 o

Log Meszage [Green: Initial Oracle Tag value znapshe
k oritor purp runking statug in PLC =1

Send pump running signal ko PLE - True

PLC output command to start pump; <dctives
PLC output command to stop pump: <Inactive:

b omitar tank level reading in PLC =14.9

Wirite tank, level to PLC ---» 14.9

b omitar pump running status in PLC =0

Send pump stopped zignal to PLC --» Falze

PLC output command to stop pump; <gctives
PLC output command to start pump: <lnactive:

b onitar tank level reading in PLC = 281

Write tank, level to PLC > 28.1

Send purp reset alarm command to PLEC > True
PLC output cormmand to start pump: <Achives
konitar tank level reading in PLC =127

b onitar pump runking statug in PLC =1

Figure 4.19: Log messages of a test case for the Pump-Tank control logic.



There are 16 log messages generated while the test case defined in Table 4.5 was

running.

1.

10.

Snapshot of the Oracle Tag “Pump_Running” before the test case was started.
The pump was running.

Snapshot of Oracle Tag “Tank_Level” before the test case was started. The tank
level was 12.7 feet.

Status of the Alarm/Event Tag “Pump_Start Cmd”. The PLC command for
running the pump was active.

LogixPlcTester sent the value (1) of the Output Tag “Pump_Reset_cmd” to the
PLC. This command reset the pump alarms (if there is any).

LogixPlcTester sent the value (28.1 feet) of the Output Tag “Tank_Level” to the
PLC.

LogixPIcTester read the value of Oracle Tag “Tank_Level” tank level from the
PLC. The tank level in the PLC was 28.1 feet. So Step 5 was successful.

Status of the Alarm/Event Tag “Pump_Start Cmd”. The PLC command for
running the pump was inactive.

Status of the Alarm/Event Tag “Pump_Stop_Cmd”. The PLC command for
stopping the pump was active.

LogixPlIcTester sent the value (0) of the Output Tag “Pump_Running” to the PLC
to simulate the pump was stopped because the trigger event “Pump_Stop_Cmd”
was active.

LogixPlIcTester read the value of Oracle Tag “Pump_Running” from the PLC.

The pump was shown stopped in the PLC. So Step 9 was successful.
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11. LogixPIcTester sent the value (14.9 feet) of the Output Tag “Tank_Level” to the
PLC.

12. LogixPIcTester read the value of Oracle Tag “Tank_Level” tank level from the
PLC. The tank level in the PLC was 14.9 feet. So Step 11 was successful.

13. Status of the Alarm/Event Tag “Pump_Stop_Cmd”. The PLC command for
stopping the pump was inactive.

14. Status of the Alarm/Event Tag “Pump_Start_ Cmd”. The PLC command for
starting the pump was active.

15. LogixPIcTester sent the value (1) of the Output Tag “Pump_Running” to the PLC
to simulate the pump was running because the trigger event “Pump_Start Cmd”
was active.

16. LogixPIcTester read the value of Oracle Tag “Pump_Running” from the PLC.
The pump was shown running in the PLC. So Step 15 was successful.

Actually, more test cases can be derived from the test case described in Table 4.5.
The following are some example test cases that are derived from the base test case in
Table 4.5.

1. Add atime trigger (with the Write Delay Time as 6s) based Output Tag to write
28.2 to the Tank_Level tag in the PLC. This will verify if the PLC issues an
output command to stop the pump when the tank level rises higher than the upper
limit (28 feet). This will complete a pump stop-running-stop control cycle.

2. Change the Condition On_Delay Time of Pump_Running (Output Tag to simulate

pump running) to be greater than 5 seconds or completely deactivate the Output



Tag and verify if the PLC drops the pump start output command and generates a
“pump failed to start” alarm.

In item #1 above, change the Condition On_Delay Time of Pump_Running
(Output Tag to simulate pump stop) to be greater than 5 seconds or completely
deactivate the Output Tag and verify if the PLC drops the pump stop output
command and generates a “pump failed to stop” alarm.

. Add a time trigger based Output Tag to simulate tank level reading becomes
invalid while the pump is running and verify how the PLC reacts to it. (In this
case, the PLC should drop the pump start output command and generate an
invalid tank level alarm.)

Add a time trigger based Output Tag to write a value (between 15 and 28) to the
Tank_Level tag in the PLC while the pump is running and verify the PLC
continues to run the pump. (The pump should only stop when the tank level is
above 28 feet in this case).

In item #1 above, add another time trigger based Output Tag to write a value
(between 15 and 28) to the Tank_Level tag in the PLC while the pump is stopped
and verify the PLC won’t issue an output command to start the pump. (The pump
should only start when the tank level is below 15 feet in this case).

. Add a time trigger based Output Tag to simulate pump stopped signal while the
pump start command is active and the pump is running and then verify how the
PLC reacts to it. (In this case, the PLC should drop the pump start output

command and generate a “pump stopped without a PLC command” alarm.)
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8. Add a time trigger based Output Tag to write a value (not in the range of between

15 and 28) to the Tank_Level tag in the PLC and verify how the PLC reacts to it.

(In this case, the PLC should seize control of the pump and generate a tank level

out-of-range alarm.)

If we deactivate the Output Tag “Pump_running” to stop simulating the pump
stopped signal (Figure 4.20) when the trigger event (PLC output command to stop the
pump) is active, then we have a test case for the example #3 above. Figure 4.21 shows
the generated log messages while running the test case in example #3. In Figure 4.21, a
“pump failed to stop” alarm was generated after the PLC has energized the pump stop
command for 5 seconds. This test case was passed because the PLC did generate a “pump

failed to stop” alarm when it hadn’t received the pump stopped feedback signal for 5

seconds.
Tag Configuration } Tag Werification
Active [

TagMame |Pump_Running Data Type |BOOL - Statuz |QUALITY GOOD [SUCCESS)

Description | Send pump stopped signal ko F Deadband Value |0
Output Yalue |0

Timestamp  |05/22/2011 02:52:20.562 PM
Ewent Trigger Configuration
() Time Trigger (%) Condition Trigger
Candition On_Delay Time [zecs] (0
Condition Tag | Pump_Stop_Cmd v

Figure 4.20: Deactivate an Output Tag.



Timesztamp Log Message [Green: Initial Oracle Tag value snapshaot.

LU 0222017 022115812 P Monitor pump failed to stop alamm in PLC: <Actives
05222011 02:21:10921 P PLC output command to stop pump: <Actives
05222011 022110736 P PLC output command to start pump: <Inactive:
05/22/2011 032110406 Pt Monitar tank, level reading in PLC = 281
05/22/2011 03:21:10. 342 P wihite tank level to PLC > 28.1
05/22/2011 03:21:08.296 Pk Send pump reset alarm command o PLE > True
05/22/2011 03:21:08.078 P PLC output command bo gtart pumps <actives
05/22/2011 03:21:08.046 P Maonitor tank level reading in PLC = 127
05/22/2011 03:21:08.046 P Monitor pump running statug in PLC =1

Figure 4.21: “Pump failed to stop” alarm log message.

The above example illustrates that after you have created the first test case for a
PLC program, it’s very easy to build more test cases based on the previous ones.
LogixPlIcTester is a method neutral test tool that can be used with a variety testing
methods including Random Testing, Black-Box Testing, Combinational Testing,

Bounded Exhaustive Testing, Model Based Testing, and Error-Based Testing.

4.13 Validate and Run Test Case

After a test case has been created, the existence of the tags in the Output Tag list,
Oracle Tag list, and Alarm Tag list need to be verified in the PLC. The execution of a test
case is prohibited if any of its tags is not verified or is verified with error. All the tags
defined in a test case must exist in the PLC and defined as controller scoped tags
(accessible to all routines). (Note: An Alarm Tag itself may not be in the PLC. But the
tags used in an Alarm Tag’s expression must exist in the PLC.) LogixPlcTester cannot
access a program scoped tag (accessible to only the routines within a single program).
This is specified by the PLC CIP protocol. This won’t be an issue in common PLC based

control systems. A PLC in a production system is normally on a plant-level Ethernet
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network so that it can exchange data with the Human Machine Interface (HMI) such as
Supervisory Control and Data Acquisition (SCADA) systems or Distributed Control
Systems (DCS). In order for SCADA or DCS to access the tags in the PLC, they must
have existed in the PLC as controller scoped tags. To verify the tags of a test case in
LogixPlIcTester, click Tools > Validate. The tags that are validated successfully will be
changed to green color in the tag lists and the tags that cannot be validated will be
changed to magenta color in the tag lists so they can be easily identified. If all the tags are
validated successfully then the test case can run. To run a test case in LogixPlcTester,
click Tools > Run. While a test case is running, the log messages will be filled in the Log
View window as they occur. A running test case can be terminated at any time by
clicking Tools > Stop. Figure 4.22 shows a test case that is running. The tags in the left
panel are all in green color indicating they are validated. The Log View window shows
the log messages generated by the test case. The Status Strip bar at the bottom of the
application shows various information about the test case including tag validation status,
test case running status, test case running progress bar, the number of PLCs defined in the

test case, statistics of the Output Tag list, Oracle Tag list and alarm Tag list.
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| 5 Loga PLC Tester [7=3 fon x|
File Edt View Tooclk Help

M Ciermer EPS Peset]
H EG_PLC(10.166.85172)

Tex Case Name  Dhamer EPS Resst

Execution Timer (Secs)
Exscution Durstion (Secs) 60

Tinestamp Log Message (Green: intial Orscle Tag value snapshot. Blue: Wite Output Tag value to PLC. Wheat: Updated Oracle Tag vaue )

0517/2011 091011 461 PM  Reset ganerator 1 ML registen —>

05717/2011 03:10:10.552 FM  Reset generator 1 ML regstens —> 0

05/17/2011 03-10:09876 PM  CB402 closed [NC] = 1

05/17/2011 05:10:09.631 PM  <int> CB402 closed [NC] —> 1

05/17/2011 03:10:08 961 PM  CE2604 closed [NC] = 1

05172011 091008 700 PM <inkt> CB2604 closed [NC] —>1

05/17/2011 09:10:08 554 PM  Generator 2 stop command: <Actives

0S17/2011 09:10:07.756 PM  <int> Set Dl module value for Gen3Fec0] Data —> 8388612
051772011 03 10:07 639 PM  Generator 1 stop command: <Active>

05/17/2011 031006 848 PM  <int> Set Dl module value for Gen2Rme (1 Data —> 8716485
0517201 0510:05918 PM | cinit> Set Dl module value for Gen1Flex: (1 Data —> 8454341
0517/2011 03:10:05213 P CB2604 closed [NC] = 0

05/17/2011 05:10:05.204 PM  CB402 closed [NC] = 0

05172011 05:10:04. 954 PM | cin> Set DI modkule value for MainFlecd | Data —> 65563
D517/2011 03:10:04 742 PM <int> Set D moduls value for MainFlesc211 Data —> 2430084
051772011 03:10:03 803 PM  <int> System in Manual mode —> 0

05172011 05:10:02 876 PM | cinit> System in PLC mode —> 1

05717/2011 01002015 PM  <int> Set to PLC Ramote Manmode —> 0

051772011 051001156 PM | <init> Set to bench testing mode —> True

05/17/2011 05:10:00.425PM  CB2504 closed [NC] =0

R 05/17/201109:10:00 335 PM  CB302 closed [NC] = 1

Tag lists are validated | Test caseisrunning e PLC:1 Output Tags: 36 Inactive: 0 Invalid: 0 Oracle Tags: 15 Inactive: 0 Invalic: 0 Alarm Tags: 78 Inactive: 0 Invalid: 0

Figure 4.22: A running test case window in LogixPlcTester.

4.14 Control Graph

In order to help testers observe the test process and results graphically,
LogixPlcTester has developed its own HMI interface that can edit and run control graphs.
The GLG Toolkit from Generic Logic [8] was embedded in LogixPlcTester to support
graphical displays. The GLG Graphics Builder (Figure 4.23) is used to create and edit
graphical drawings. The GLG Graphics builder has a graphical objects library that
includes tanks, pumps, dials, meters and other industrial symbols that can be used directly
on a display. The API (Application Program Interface) functions provided by the GLG
Toolkit were called in LogixPlIcTester to incorporate a GLG drawing into the application
and update the drawing with real-time data (from Oracle Tags or Alarm Tags). Figure

4.24 shows a tank level animation in GLG.



L

3

Name: [Ne name

\Type: [

No cbject !XhmlthtlDlhIAliul I

I

Figure 4.23: GLG Graphics Editor.
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Figure 4.24: Animate a tank object in GLG.

To animate an object in a GLG drawing, a tag source is needed. A tag source is a
string that defines a link to a tag in the PLC. The custom syntax of a tag source used in
LogixPlcTester is PlIcName/Tagname. The PIcName is the same PLC name specified in a
LogixPIcTester test case. The Tagname is a valid Oracle Tag or alarm Tag in a
LogixPlcTester test case. Figure 4.25 shows the test case to which the GLG drawing in

Figure 4.23 is linked.



File Edit View Tools Help

B e Cove 1
&- | Pump PLC (192.168.1.116)
@@ Output Tags
=-§83 Oracle Tags
-3 Local:13:.Ch0Data
{3 Local:5:1.Data.0
i .EJ Local:6:1.Data. 12
3] Local:6:1.Data.5
3] Local:7:1.Data.0
3] Local:8:1.Data.12
=i Aam Tags
& VFD2_START_CMD
£ RVS3_START_CMD
-& VFD4_START_CMD
£ RVS1_START_CMD
-A VFD2_FAILED
£ VFD4_FAILED

Tag lists are not validated | Test case is not running

Figure 4.25: A pump control test case.

To run a graphical display in LogixPlcTester, click Tools > Open Contorl

Graph. (Figure 4.26). Figure 4.27 shows the runtime graphical display for a pump

control system.
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Figure 4.26: Open a GLG graphical display in LogixPlcTester.

(% ControlGraph

Figure 4.27 Graphical display for a pump control system.
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4.15 Import and Export

A test case defined in LogixPlcTester can be saved as a XML file. A test case
created externally by using a Text Editor can be imported into LogixPlcTester. Figure
4.28 shows how to import/export a test case.

LogixPlcTester can generate a report for a test case. A report lists a summary of
the test case definitions. Compared to a test case XML file, a report is easy to read and
understand because the information presented in a report is in spreadsheet formats. A
report itself is in a PDF format. Figure 4.29 shows a sample report generated by

LogixPlIcTester.



Logix PLC Tester
File | Edit View Teols Help
! L‘] Mew... b
= Open.. Ctrl+0 = 118) Import test case
Cloze
X Delete  Ctrl+D 0Dtz
8.0
E Save Ctr+S <*g37 Export test case
Save Ac... -]
8.0
0 Page Setup... ",
=4 Print..
T_CMD
Jé Generate Report WD Export test case report
Exit T_CMD
— - T_CMD
----- & VFD2_FAILED
e I WFDA_FAILED

Figure 4.28: Import/Export a test case.



Test Case 1
Tag Summary
Total Tags Invalid Tags Inactive Tags

Output Taq 5 0 a

Oracle Tag 2 0 0

Alarm Tag 4 0 0

Test PLC (192.168.1.116) Output Tag List
Tag Mame Description 'IQ:;: %-";T[ﬂg‘ ?ﬂi‘: Tiy;;:r Condition Tag
Pump_Resst_cma Sand pump reset 3ianm command b PLC BOOL 1 o Time
Tank Level Wirite @k kevel to PLC REAL | 8.1 2 Time
Tank_Leval \inta Nk ievel 1o PLC REAL 149 5 Time
Pump_Running Sand pump running signa io PLC BOOL 1 1 Condltion Pump_Stari_Cmd
Pump_Rureing Sand pump swopped signal 1o PLC BOOL g 0 | condrion Pump_Stop_Cma
Test PLC (192.168.1.116) Oracle Tag List
Tag Mame Diescription Data Type | Dead Band | Delay Timer
Tank_Level Monior tank leved reading In PLE REAL 0.1 [
Pump_Ruring Monitor pump runing Status in PLC BOOL 0 o
Test PLC (192.168.1.116) Alarm/Event Tag List
Tag Hame Description Delay Timer Expression

Pump_Start_Cmd PLC output command o stal pump a Pump_Stan_Cmd == 1
Pump_Stop_Cmd PLC output command i stop pump Pump_Siop Cmd == 1

Pump_Fall_To_Stan

Monitor pump Talled to stan aiam in PLC

]

ump_Fall_To_Star == 1

Pump_Fall_To_Stop

Monitor pump falled to stop 3ianm in PLC

a
a
a

=

ump_Fad_Ta Stop == 1

Page 1

Figure 4.29: Test case sample report.
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Chapter 5. Experiment

LogixPlcTester was used to test the functions of a PLC application program for a
real industrial control system. The PLC program runs in a development system that
consists of a computer that runs LogixPlcTester, a computer that runs the PLC
programming software, a PLC with no 1/0 modules, and a network switch that connects
the computers and the PLC to the same network. LogixPlcTester was used to test the PLC

program as it was developed.

5.1 System Overview

The application, the Emergency Power System was built for a water treatment
plant in Southern California. The plant utility power is supplied via two main switchgear
buses by two Southern California Edison feeders. The two main buses can be tied
together so one feeder can power both of the buses in the event of a power outage or
scheduled maintenance. The Emergency Power System is comprised of a separate
switchgear bus and two generators. The emergency power switchgear bus connects the
two generators to both main buses via circuit breakers so that the two main buses can be
powered by the two generators during either a loss of both utility feeders, a malfunction
of specific circuit breakers, or scheduled maintenance.

An Allen Bradley ControlLogix PLC is utilized in this system to monitor the
utility power feeder status, switchgear status, circuit breaker status and control the circuit
breakers and the generators to feed power to the plant when an abnormal condition occurs

in the system such as a utility power failure or a circuit breaker failure. For example, if
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the utility power is lost to one of the two main switchgears the PLC shall operate circuit
breakers to feed power to this switchgear from the other switchgear that has normal
power. If both main switchgears lose utility power at same time the PLC shall operate
circuit breakers and start both generators and transfer power from the generators to both
main switchgears. The PLC program for the Emergency Power System is a mission-
critical program. If the PLC program fails to deliver power to the water treatment plant in
a certain amount of time, then the water treatment process conducted at the plant will
stop. As a result, untreated water could flow into the distribution water system and some
residential area could be delivered with untreated water as drinkable water. In order to
prevent such incident from happening, the PLC program must be tested thoroughly
against all possible scenarios to verify it can deliver power to the plant within an allowed
time period in every scenario. That is, both logical correctness and temporal correctness
of the PLC program must be validated in order to meet the system operation

requirements. Figure 5.1 shows the Emergency Power System diagram.

5.2 Software Design

The system specification lists over 200 operation scenarios in which the PLC
program must respond correctly. Every scenario is triggered by an external event. The
PLC program is designed as an event driven program. When an external event occurs
(such as utility power loss, utility power return, or circuit breaker failure) the PLC will
run a sequence (a series of hardware operations such as open breaker 1, close breaker 2)
to respond to the event. Every sequence is defined by a subroutine, which is called in the

main routine. In a sequence subroutine, there are some conditions (trigger events) that



must be met before the sequence can be actually started. Once a sequence is running,
other sequences are not allowed to run. Only one sequence is allowed to run at any time.
Table 5.1 shows an example of a sequence (sequence 9 in Figure 5.2). As a result, the
switchgear configuration will change accordingly. An example scenario, suppose that the
utility power A is failed (the utility power B is still normal) while the switchgear is in
Normal. In this scenario, the PLC needs to open CB102 and then close CB2604 to power
the bus A from the bus B. After the sequence is complete, the switchgear’s state will
change to BFeedA under normal power. So the system state changes from Normal to
Normal BFeedA in this scenario. Another example scenario, both the utility power A and
B are failed while the switchgear is in Normal. In this scenario, the PLC needs to open
CB102 and CB202 first, then starts both generators, after CB2704 and CB2804 are closed
the PLC should close both CB302 and CB403 to feed the plant with the generator power.
After the sequence is complete, the system state will change to Split_Feed under
generator power.

LogixPIcTester Logview captures all the log messages while a sequence is
running. The log messages show the logical order of a series of actions that the sequence
executes. The log messages are the main evidence used to verify the correctness of a
sequence. To visually monitor the entire switchgear status and the progress of a running
sequence, a control graph (Figure 5.1) is developed in LogixPlcTester. Figure 5.1 shows
the control graph for system overview. The status of circuit breakers and generators in
Figure 5.1 reflects the switchgear state while it’s in normal mode in which the plant is fed

with both utility power feeders. Appendix A shows the PLC program structure diagram.
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Table 5.1: A sequence example.

Sequence 9: Retransfer to Plant Normal State

Step 0 Open 302, 402, 2604 (Feedback time: 2 seconds)

Step 1 Close 102 (Feedback time: 2 seconds)

Step 2 Close 202 (Feedback time: 2 seconds)

Step 3 Shutdown both generators (Feedback time: 2 seconds)

{® ControlGraph

__RE
~ ]

B

Emergency Power System Overview

Utility Power A

®

Litility Power B
b v

|

-

Bus A

2704 2804
| |
BusE
3104
rzs‘m 402
| | |
BusB

Figure 5.1: Emergency Power System overview in a LogixPlcTester graph.

5.3 Testing with LogixPlcTester

Since the hardware equipment is very expensive and is impossible to be relocated

to the location where the software development/testing team works, all software tests

must be conducted in a simulation system except the final acceptance test. The final

acceptance test has to be conducted on the real hardware equipment after all the

simulation tests are passed. Testing the PLC program in a simulation system will protect

the hardware from being damaged by software bugs and it will also prevent the hardware
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from wearing out by massive number of repeated operations during software
development. So running tests in a simulation system will extend the lifetime of the
hardware equipment. LogixPlcTester is utilized as both a simulation tool that simulates
the hardware equipment’s behaviors and a testing tool that tests the PLC program against
every scenario of the Emergency Power System. To reduce the software development
cycle by finding and fixing bugs at an early stage, the software tests were conducted as
the PLC program was being developed. When a scenario becomes available in the PLC
program a test case was created for the scenario and executed in LogixPlcTester to test
the scenario.

To capture all the features and behaviors of the system, three Finite State Machine
(FSM) models were established. The test cases are created according to the FSM models.
Figure 5.2 shows a FSM model for power transfer and retransfer operations under normal
conditions (no device failures) in the system. (There are two more models created in this
system: the Circuit Breaker Failure Model and the Lockout Relay Failure Model. These
two models define more than 150 scenarios.) As in Figure 5.2, each scenario has a trigger
event and a sequence. The sequence will be initiated when the trigger event occurs. When
the sequence is complete the system state (switchgear configuration) will change. A test
case is created for each scenario. In some cases, a power transfer scenario and a power
retransfer scenario are combined in the same test case. For example, scenario 1 (transfer
upon utility power A failure) and scenario 6 (retransfer upon utility power A return) are
combined in a same test case. The logical structure of a test case is illustrated in Figure

5.3.
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Test case logical structure Definitions in test case XML file

+ — » Use Output Tags to set the system normal state

A

Use Output Tags to initiate the trigger event(s)
to set initial state of the scenario

A

Use Output Tags to initiate the trigger event(s)
of the scenario

Y

Use Oracle Tags and Alarm Tags to monitor
and verify the logged events as the test case
executes
(Logged events are the test result)

Figure 5.3: Logical structure of a LogixPIcTester test case.

For example, scenario 5 (in Figure 5.4) defines a transition from NP_AFeedB
(bus A feed bus B under normal power) to GP_SplitFeed (generator power feed both bus
A and bus B) when utility power source A is failed. The test case for scenario 5 consists
of the following four major steps (corresponding to the four steps in Figure 5.3).

1. Use Output Tags to set the system to plant normal mode. Set CB102, CB202,
CB2504, CB502, CB602 to the closed state by simulating the circuit breakers’
feedback signals to the PLC. Use the same way to set the other circuit
breakers to the open state and to set both generators (G1 and G2) to the off

state.
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2. Set the system to the initial state of scenario 5. NP-AFeedB (bus A feed bus B
under normal power) is the initial state of scenario 5. The reason that the
system is in NP-AFeedB mode is because utility power source B was failed.
So at this step, we need to run scenario 2 first (by simulating a utility power
source B failure) to get to the initial state of scenario 5.

3. Use an Output Tag to simulate the trigger event of scenario 5 which is utility
power source A failure. This will initiate the sequence associated with
scenario 5.

4. Use Oracle Tags and Alarm Tags to log necessary events in order to monitor

and validate the sequence of scenario 5.

Plant Normal GP-SplitFeed

CB CB CB 12,13
2604 | 302 | 402 |4

G1 G2

NP-AFeedB

Figure 5.4: Scenario 5 for the Emergency Power System.
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Unlike most general purpose systems, the test result of a scenario in a PLC
program is usually a sequence of events (including the sequential relationship between
the events) that determines the logical correctness of the test result. The timestamps of
the events determine the temporal correctness of the test result. For example, in scenario
1, after utility power A is lost, the PLC shall open CB102 first and then close CB 2604.
The sequence between actions is very important. Verifying the state of CB102 and
CB2604 at the end of the test is not sufficient to verify the logical correctness of the
result. You must also verify that CB102 open operation occurred before CB2604 close
operation. To verify if a sequence was completed within the allowed time period, the
timestamp of each action executed in the sequence must be inspected. Figure 5.5 shows

the test results of the test case for scenario 1 and 6.



Timestamp

06/05/2011 02:32:01.609 PM
06/05/2011 02:32:01.500 PM
06/05/2011 02:31:57.125 PM
06/05/2011 02:31:57.078 PM
06/05/2011 02:31:56.984 PM
06/05/2011 02:31:53.406 PM
06/05/2011 02:31:52.734 PM
06/05/2011 02:31:52.687 PM
06/05/2011 02:31:52.656 PM
06/05/2011 02:31:52.603 PM
06/05/2011 02:31:51.921 PM
06/05/2011 02:31:51.890 PM
06/05/2011 02:31:51.853 PM
06/05/2011 02:31:51.603 PM
06/05/2011 02:31:51.531 PM
06/05/2011 02:31:51.281 PM
06/05/2011 02:31:51.218 PM
06/05/2011 02:31:48.203 PM
06/05/2011 02:31:43.453 PM
06/05/2011 02:31:43.296 PM
06/05/2011 02:31:43.281 PM
06/05/2011 02:31:42.937 PM
06/05/2011 02:31:42.875 PM
06/05/2011 02:31:42.828 PM
06/05/2011 02:31:42.687 PM
06/05/2011 02:31:42.640 PM
06/05/2011 02:31:41.937 PM
06/05/2011 02:31:41.906 PM
06/05/2011 02:31:41.859 PM
06/05/2011 02:31:41.640 PM
06/05/2011 02:31:38.218 PM
06/05/2011 02:31:28.656 PM
06/05/2011 02:31:28.343 PM
06/05/2011 02:31:28.328 PM
06/05/2011 02:31:28.171 PM
06/05/2011 02:31:28.171 PM
06/05/2011 02:31:28.156 PM
06/05/2011 02:31:28.156 PM
06/05/2011 02:31:28.156 PM
06/05/2011 02:31:28.156 PM
06/05/2011 02:31:28.156 PM
06/05/2011 02:31:28.140 PM
06/05/2011 02:31:28.140 PM
06/05/2011 02:31:28.140 PM
06/05/2011 02:31:28.140 PM
06/05/2011 02:31:28.140 PM
06/05/2011 02:31:28.140 PM
06/05/2011 02:31:28.140 PM
06/05/2011 02:31:28.140 PM

Log Message (Green: Initial Oracle Tag value snapshot. Blue: Write Output Tag value to PLC. ‘WH

* Sequence-9 Re-Transfer to Narmal Power Setup Was called to Rurt <Inactive>
’’’’’ Sequence-3 Re-Transfer to Normal Power Setup Completed: <Inactive>
=== NP_BFeed4 ¢===: <Inactive>

===> NP_Nomal <=== <Active>

e Sequence-9 Re-Transfer to Normal Power Setup Completed: <Active>
CB102 close command: <Inactive>

CB102close =1

CB102 closed > 1

CB2604 open command: <Inactive>

CB102 close command: <Active>

CB2604 closed [NC] =1

CB2604 closed [NC] --> 1

CB2604 open command: <Active>

e Sequence-9 Re-Transfer to Normal Power Setup Was called to Rurt <Active>
“““ Sequence-1 NP_BFeed4 Setup Was Called to Run: <Inactive>

“““““ Sequence-1 NP_BFeedd Setup Completed: <Inactive>

it EMERGENCY to NORMAL countdown timer is up > 3593000
HUHBHE Transition Trigger: Utility power & resumed (Scenario 6 Active) > 0
CB2604 close command: <Inactive>

===> NP_BFeedd ¢<=== <Active>

===» NP_Nomal ¢<===: <Inactive>

o Sequence-1 NP_BFeed4 Setup Completed: <Active>

CB2604 closed [NC]=0

CB2604 closed [NC]---> 0

CB2604 close command: <Active>

CB102 open command: <Inactive>

CB102close =0

CB102 closed > 0

CB102 open command: <Active>

“““ * Sequence-1 NP_BFeedd Setup Was Called to Run: <Active>
HUHHUH Transition Trigger: Utilty power A failed [Scenario 1 Active) > 1
===> NP_Nommal {===; <Active>

Generator 2 stop command: <Active>

Generator 1 stop command: <Active>

CB2504 closed [NC] =0

CB302 closed [NC] = 1

CB2604 closed [NC] =1

CB402 closed [NC] =1

CB202 closed =1

CB102close =1

CBB02 closed [NC] =0

CB3104 closed [NC] =1

CB502 closed [NC] =0

Generator 2 running = 0

Generator 2 off = 1

CB2804 closed [NC] =1

Generator 1 running =0

Generator 1 off = 1

CB2704 closed [NC] =1

Figure 5.5: Log messages of running scenario 1 and 6 in L.ogixPlcTester.
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Every time after a major change was made in the PLC program, a regression
testing process was conducted by LogixPlcTester. Basically all the tests that were
verified before must be retested again because a major code change could potentially
introduce new bugs in the PLC program. The functions of the PLC program that worked
before might not work again in the new code. There are around 200 test cases created for
the Emergency Power System. It will take at least a week to run all the tests if using a
hardware test stand or testing against the real equipment. But with LogixPlcTester, it only
takes a day to run all the tests. Because all the test cases were saved in XML files there is
no preparation for a test before running it. Once a test case XML file is loaded,
LogixPlcTester will automatically read the test instructions from the XML file and
execute them in the pre-defined orders.

The PLC program was written by a programmer and the author did a code review
for most parts of the code resulting in familiarizing with the internal data structure and
program structure. The author also had a complete knowledge of how the system should
work. Most of the test cases were created based on the FSM model. There were some test
cases that were created based on knowledge of the internal structure of the program. For
example, by code reviewing it was found that there was a operation mode selector switch
that sends two hardware signals to a PLC digital input module. The two signals are
Automatic mode and Manual mode. In normal operation, only one of the two signals is
active. Two test cases were created to test the mode switch logic under abnormal
conditions. One is used to simulate both hardware signals are active and another is used
to simulate both hardware signals are inactive. These two test cases help the operators

understand how the PLC will react to the mode selector switch hardware failure. Another



example is | knew the PLC feedback timer (the time that the PLC waits for a feedback
signal after it issues a control command) which is set to 3 seconds for the circuit breaker
open and close commands. Two test cases were created to test the feedback timer logic.
One is to simulate the feedback signal 4 seconds after the PLC issued a circuit breaker
open command and another is to send no feedback. These two test cases test how the

PLC handles the circuit breaker control failures.

5.4 Results

The PLC program has 52 subroutines and around 2500 rungs of ladder logic code
in total. There are around 220 test cases created in LogixPlcTester to cover all operation
scenarios specified in the system specification. The entire testing process took one month
to finish due to the availability of the PLC software functions. The software tests were
conducted as the PLC software was developed. Sometimes the testing process had to stop
to wait for the new functions or bug fixes to be available. The time spent on actual
software testing and troubleshooting was about 20 days and over 1000 tests were
conducted in LogixPlcTester. There were 23 bugs detected in the PLC program by
LogixPIcTester during the entire testing process and the following 10 bugs represent
them. Table 5.2 shows the PLC instructions used in the bug examples. Table 5.3 shows
the system states used in the bug examples. Table 5.4 shows the abbreviations used in the
bug examples.

Because of the bugs were detected and fixed during the simulation tests by

LogixPlcTester, there was not a single bug reported during the final tests in the
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production system besides few scenarios that were missed in the original design

document.

Table 5.2: PLC ladder instructions used in the bug examples.
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Ladder Instruction

Description

I The instruction tests the data bit to see if it is set.
(Examine if closed)
M- The instruction tests the data bit to see if it is cleared.
(Examine if open)
-()- When the instruction is enabled, the controller sets the data bit. When
(Output energize) the instruction is disabled, the controller clears the data bit.
(L)- When enabled, the instruction sets the data bit. The data bit remains
(Output latch) set until it is cleared, typically by an -(U)- instruction. When disabled,
P the instruction does not change the status of the data bit.
-(U)- When enabled, the instruction clears the data bit. When disabled, the
(Output unlatch) instruction does not change the status of the data bit.
-JONS[- When enabled and the storage bit is cleared, the instruction enables
(One-shot bit) the remainder of the rung. When disabled or when the storage bit is
set, the instruction disables the remainder of the rung.
JSR

(Jump to subroutine )

The instruction jumps execution to a different routine

TON
(Timer on delay)

The instruction is a non-retentive timer that accumulates time when
the instruction is enabled. A timer’s enable bit (.EN) indicates the
timer is enabled. A timer’s done bit (.DN) indicates the timer times
out.

RES
(Reset)

The instruction resets a timer.




Table 5.3: System states used in the bug examples.
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System
State

CB102
Status

CB202
Status

CB2604
Status

CB302
Status

CB402
Status

Description

NP-BFeedA

Open

Closed

Closed

Open

Open

Utility power B feeds both
A-side and B-side of the
plant. Utility power A is not
available.

NP-AFeedB

Closed

Open

Closed

Open

Open

Utility power A feeds both
A-side and B-side of the
plant. Utility power B is not
available.

GP-SplitFeed

Open

Open

Open

Closed

Closed

Generators feed the plant.
Both utility power A and B
are not available.

Plant Normal

Closed

Closed

Open

Open

Open

Utility power A feeds A-side
of the plant and Utility power
B feeds B-side of the plant.

NP-AOnly

Closed

Open

Open

Open

Open

Utility power A feeds A-side
of the plant. B-side of the
plant has no power.

NP-BOnly

Open

Closed

Open

Open

Open

Utility power B feeds B-side
of the plant. A-side of the
plant has no power.

Plant Dark

N/A

N/A

N/A

N/A

N/A

The plant has no power.

Table 5.4: PLC variable name abbreviations used in the bug examples.

Abbreviation | Description
Alm Alarm

CB Circuit Breaker
Cmd Output Command
DI Digital Input

DN Timer is done

DO Digital Output
GP Generator Power
In Input

NP Normal Power
Seq Sequence

Segx Sequence X

Stat Status

Step.Xx Step x of a sequence (x starts from 0)
SwGear Switchgear
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The following examples illuminate the common variable names that are used in
the code examples in this chapter.

Example 1: SwGear.Cmd.SetupNP_B_Feed_A means the switchgear sequence NP-
BFeedA is running.

Example 2: CB102.In.OpenDI means the circuit breaker 102 is open.
Example 3: CB102.Cmd.OpenDO means the circuit breaker 102 open command is active.

Example 4: Sg1_NP_BFeedA.Step.0 means the sequence 1 (NP-BFeedA) is running at
the first step.

Example 5: CB2604.Alm.FailToClose means the circuit breaker 2604 has a “failed to
close” alarm.

Example 6: SwGear.Stat.NP_BOnly means the switchgear’s current system state is NP-
BOnly.
1. Incorrect permissive conditions
Overview

Permissive conditions are a PLC programming idiom. A permissive is a process
condition that must be met before hardware equipment is allowed to operate. Permissive
conditions can protect the equipment from unsafe or illegal operations. Usually there are
multiple permissive conditions that need to be met in order to operator on equipment. In
process control PLC programs, almost all the output commands to equipment have
associated with permissive conditions. The permissive conditions must be set accurately
in order for PLC to send the right command to the right equipment at the right time. If a
permissive condition is missing for an output command then the output command might

be sent to the equipment when it shouldn’t be sent. If unnecessary or unrelated



permissive conditions are set for an output command then the output command won’t be
sent to the equipment or the command will be sent to the equipment unexpectedly.
Detection

The test case that detected the bug is the test case designed for the system state
transition scenario #2 of the FSM model described in Figure 5.2. The initial system state
of this scenario is Plant Normal, the trigger event is the utility power B failure, and the
expected system state is NP-AFeedB. During the test, after the trigger event was initiated
there was no indication that showed the NP-AFeedB sequence was called in the
LogixPlcTester logs. This implied that the permissive conditions for the sequence may
not be setup correctly. After debugging the PLC program, a bug was found in this

following ladder code. The code lists 6 permissive conditions for calling the NP-AFeedB

sequence.
‘ SwGear Alm LossOfUtiPowers  SwGear Alm LossOfUtiPowerB  CB102InCloseDl  SwGear Stat A_BusAvall  SwGear Stat. B_BusAvail
WE 1E 1E AE TE
JL 4L JL J L R j
SwGear Stat B_LineAvail SwGear Cmd SetupNP_A_Feed B
JE L

It was found that the permissive condition “SwGear.Stat.B_LineAvail” (a PLC
variable) was not related to the sequence and its value was false during the test. This
resulted in an unsatisfied permissive condition for the sequence. In this bug, the
permissive “SwGear.Alm.LossOfUtilPowerB” and the permissive
“SwGear.Stat.B_LineAvail” are mutually exclusive. (“SwGear.Stat.B_LineAvail” is true
only when “SwGear.Alm.LossOfUtilPowerB” is false and CB202 is closed.) When the
NP-AFeedB sequence is ready to run (the first 5 permissives are met), the permissive

“SwGear.Stat.B_LineAvail” is always false. So the sequence will never run.
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After removing “SwGear.Stat.B_LineAvail” from the above code, the same test
case was rerun and the expected result was observed by reviewing the log messages in
LogixPIcTester. Figure 5.6 shows the log messages while running the sequence after the
bug was fixed. The green circle shows the initial state of the sequence and the blue circle
shows the trigger event of the sequence. The log messages in the red rectangle show the
“Normal power A feed B” sequence was called after the trigger event had been initiated.
When the bug was present in the ladder code, the log messages in the red rectangle were

not seen and that was how the bug was detected by LogixPlcTester.

Timestamp Log Message [Green: Initial Oracle Tag value shapshot. Blue: YWiite Dutput Tag «

06/25/2017 DB:35:38.812 PM
06/25/2017 05:35:38.603 PM
06/25/20171 05:35:30.750 PM
0B/25/2017 D6:35:30.578 PM
06/25/20171 05:35:30.562 PM
06/25/2017 05:35:30.250 PM
06/25/2017 05:35:30.140 P
0E/25/2017 0k:35:30.1039 PM
0B/25/2017 DE:35:30.031 PM
06/25/20171 05:35:23.965 PM
06/25/2017 05:35:29.330 PM
06/25/2017 0F:35:29.343 PM
0B/25/2017 D6:35:29.265 PM
06/25/2011 06:35:28.953 PM

FEE Qequence-2 MP_AFeedB Setup ‘W as Called to Run: <Inactives
”””””” Sequence-2 NP_AFeedB Setup Completed: <Inactive:
CB2604 cloze command: <Inactives

=== MP_AFeedB <=== <Achve:

=== MP_Momal ¢<===: <Inactive>

”””””” Sequence-2 NFP_AFeedB Setup Completed: <Active:
CB2604 clozed [MC] =0

CB2604 clozed [NC] -+ O

CB202 open command: <lnactive:

CB2604 cloze command: <Actives

CB202 cloged =0

CB202 closed —: O

CB202 open command: <Active:

“EE G eguence-2 MP_AFeedB Setup 'was Called to Run: <bchives

06/25/2017 0F:35:25.500 P
06/25/20171 06:35:16.075 PM

K Tranzition Trigger: Utility power B failed [Scenanio 2 Active] > 1 .

===} MP_MNormal <===; <Activer

Figure 5.6: Log messages of the NP-AFeedB sequence.

Error Analysis

Since every transition in the FSM models is covered in a test case, every sequence
is covered by at least one test case. (Some transitions share one sequence. See Figure
5.2.) For this particular bug, it can be uncovered during the system tests because of the
mutual exclusive property of this bug. General speaking, the incorrect permissive

conditions related bugs could be detected by a test because if a bug exists in a transition
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then the test case that tests that transition will fail due to a control sequence failure (such
as an output command is not issued or an output command is issued unexpectedly). But
it’s not always the case. For example, in the above bug, if the permissive “Line_B_OK”
is independent and it has no logical relationship with the rest of the permissive conditions
in the ladder rung and its value is true by coincidence during the test, then this bug may
be missed. In this example, code review may be more efficient to reveal this kind of bug.

Permissive conditions for the equipment control commands may not be available
or may be only partially available in the system specification because the people who
wrote the system specification may not have the information. As a result, the programmer
may make some assumptions during the software development and at the end of the
development those assumptions were not verified with the operators who know all the
permissive conditions for operating the equipment. Considering all the possible
combinations of the permissive condition a model such as a truth table could be used to
help to create test cases to cover all the possibilities. At the software development stage,
the programmer may not have a full view of the permissive conditions. I1t’s common and
reasonable to make some assumptions in order to continue the software development.
However, at a later time these assumptions muse be revisited and verified with the
domain expert.
2. Typo
Overview

In the PLC program, there are many tags that are similar to each other. For
example, when you create two instances of a generator type, the two new instances will

have similar names such as G1 and G2. The similar names in the PLC program are



73

logical. If an incorrect tag is used in the program due to a typo then the program most
likely will behave unexpectedly and the unexpected behavior could be revealed during a
system state transition test in which the ladder rung (where the typo resides) is checked.
Detection

The typo bug found by a test was that the system state variable
SwGear.Stat.NP_AFeedB was mistakenly written as SwGear.Stat. NP_BFeedA in the

following ladder code.

| Sg9_NormalPower Step.2  SwGear Stat NP_BFeedd  CB202.Alm FailToClose SwGear Cmd SetupNP_A_Feed_B
e [ ALC - = A
I 3k s i 3k L 1

The test case that detected the bug is one of the test cases that test the system
failures. In the test, the initial system state is NP-AFeedB, the first trigger event is the
utility power B is normal, the second trigger event is CB202 “failed to close” alarm, and
the expected system state is the same as the initial state - NP-AFeedB. The sequence that
was called to run the transition was the sequence 9 (in scenario 7 of Figure 5.2). At the
step 2 (Sq9_NormalPower.Step.2 is true) of the sequence 9, CB202 was commanded to
close but it was failed to close (simulated by LogixPlcTester). The ladder code was
supposed call the sequence 2 (the NP-AFeedB sequence). But due to the typo, this rung
was never executed because the system state SwGear.Stat.NP_AFeedB was one of the
permissives to run the NP-AFeedB sequence. During the test, SwGear.Stat.NP_BFeedA
was false because it wasn’t the current system state. (The current system state was NP-
AFeedB and the system state variable SwGear.Stat.NP_AFeedB was true.) As a result,
after observing the CB202 “failed to close” log message in the LogixPlcTester Log
Viewer, there was no further PLC action observed and the system state was left at NP-

AOnly because the bus tie breaker CB2604 was opened at the step 1 of the sequence 9.



Error Analysis

The bug actually led to a permissive condition problem and it was caught by a test
case that was testing a system state transition. The kind of typo bug can be discovered by
the tests because similar tags in the PLC program usually are mutually exclusive of each
other. One possible earlier error-oriented detection mechanism for this kind of bugs is to
add detailed comments in the code that specify the function of each tag and function.
When doing code review, this kind of bug can be easily identified. Another possibility is
to use assertion based formal verification in the code to inspect the input conditions of the
logic. This kind of bug is easy to fix but is difficult to prevent in the code unless using
names, comments, or assertions to make a distinction between similar names.
3. One-shot related problem
Overview

In PLC programming, one-shot bit is a mechanism which is used to only execute
the ladder rung once when the condition becomes true. The following structured text code
demonstrates how one-shot works. A, B, C are Boolean type variables. B is a one-shot
bit. The initial value of B is false. When A becomes true, “C := 1” will be executed. In
the next scan cycle “C := 1” won’t be executed because B is true. “C := 1” will only be
executed again when A goes through a transition of 1 to 0 to 1.

IFA AND (NOT B) THEN C :=1;
B=A

In PLC ladder logic, there is an instruction called -[ONS]- for the one-shot bit

function. The following ladder code has the same function as the structured text code

above.
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A B C
= il = I |
3¢ {ONS J {2

In ladder code, a one-shot bit is controlled by the controller automatically. If the
one-shot bit (B) is manually set or reset by the code then the one-shot function won’t
work correctly and that will cause the program to behave unexpectedly.

Detection

The one-shot bug was found in the following ladder rungs.

SwGear Cmd NormalPowerSeq  On_Shot_Bit_1 JSR
3.5 EONSJ Jump To Subroutine
Routine Name ReadSystemState

Swiear Cmd NormalPowerSeq On_Shot_Bit_1
A E )
F L - |

The code is supposed to run a subroutine called ReadSystemState only once when
the “Return to Normal Power” sequence (sequence 9 in Figure 5.2) is completed.
However the subroutine ReadSystemState was continuously called in every PLC scan
cycle resulting in the system state capturing all the intermediate states while other
sequences were running. The bug was detected in multiple test cases. For instance, in the
“Early update of system state” example, the intermediate system state — “Plant Dark” was
shown in the LogixPIcTester Log Viewer because it was monitored by an Oracle Tag and
it caused the sequence to terminate early.

Error Analysis

The ladder rung that contains the one-shot bit problem will be executed during the
tests because the test cases that cover all transitions will cover all the branches in the
code. In a PLC ladder program, every rung of the program is essentially a branch. Since a
one-shot problem definitely changes the system’s behaviors and all the system

behaviors/scenarios are covered by the test cases, it would be captured during the system
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tests. If the intermediate system states showed in the Control system operator terminal
then it will confuse the operator. The system state should be updated at the end of a
sequence but not while a sequence is running. To detect one-shot bit problems in the PLC
program at an early stage, a one-shot bit rule can be added to the programmer’s checklist,
which should be followed during code review.
4. Early update of system state
Overview

When an external event occurs (such as one utility power source becomes
unavailable), a sequence will be called in the PLC code to run a series of commands
(open/close some breakers) to transit to a new system state. Once the sequence is
completed the system will be in a new state that is usually different from its original state
before the sequence was called. When a sequence finishes, it must update the system state
(described by a PLC internal variable) at the last rung of the sequence subroutine. If this
is done earlier (meaning the system state is updated while a sequence is still running), the
PLC program will be confused by the intermediate system states, which will lead to an
unexpected termination of the running sequence. Figure 5.6 shows a system state update

diagram.



\ 4
A 4
Update System State Seamezs 1
Y Update System State
Sequence 1 !
Sequence 2
Sequence 2 Update System State
\ 4
A 4
Sequence 3
Sequence 3
Update System State

Figure 5.7: System state update diagram.

In Figure 5.7, there are three sequence subroutines and one System State Update
subroutine and the arrows indicate the sequence that the subroutines are scanned in the
PLC program. In the left chart of Figure 5.7, the System State Update subroutine is called
in every PLC scan cycle regardless of the running status of the sequences and this will
generate all the intermediate system states as a sequence is running. The intermediate
system states will cause unexpected early termination of the running sequence. If the
code is structured as in the right chart of Figure 5.7 this kind of bug won’t appear because
the system state is only updated at the end of every sequence.

Detection
The following ladder code shows the bug discovered during a system test. The
initial system state of the test is NP-AFeedB, the first trigger event is the utility power A

failure, the second trigger event is the CB2604 “failed to open” alarm, and the expected

7
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system state is GP-AFeedB. When the first trigger event was enabled by LogixPlcTester,
the PLC called the sequence 3 (in scenario 5 of Figure 5.2) as it supposed to. In this
sequence, the first step was to open CB102 and CB2604. LogixPlcTester simulated the
CB102 open signal but not the CB2604 open signal. As a result, CB2604 was failed to
open (this is the second trigger event in this test case). As soon as CB102 was opened, the
system state was updated and the new (intermediate) system state was “Plant Dark”. This
caused the sequence to be stopped at this step because the following ladder rung in the
sequence 3’s subroutine expected the system state to be NP-AFeedB (the system state
variable is SwGear.Stat.NP_AFeedB) before it could continue. (The following ladder
code is supposed to close CB302 to transit to GP-AFeedB after CB2604 fails to open.) So
the system was left as “Plant Dark when the test was done. This means the plant had no

power, which is a serious operation incident in the plant.

l SwiGear Cmd SetupGP_Spiit_Feed Sq3_GP_SpitFeed Stepd  SwGear Stat NF_AFeedB  CB2604.AIm FaiToOpen CB302.Cmd CloseCO
JE JE AE AE
{L
I d C o = JC JC d 1

Error Analysis

As shown in this example, this kind of defect will be revealed by one of the
system model transition tests because the problem caused by the defect is obvious and
LogixPlIcTester can always capture it by monitoring the System State by an Oracle Tag.
This kind of bug could be classified as an iconic error of the type of Early State Update.
It can occur in different ways and cause different problems. To prevent it, any system
state must be only updated when a sequence is completed so the code will always use the

stable and final real-time system state.
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5. Sequence conflict
Overview

In the PLC code, a sequence is a series of commands (in a sequential order) to
execute a system state transition. In the original design, there were 7 sequences. Later 6
more sequences were added as the development progressed to cover some new scenarios
that were missed in the system specification. As the new sequences were added, some of
them conflicted with the original sequences. For example, when a certain condition
occurs, a new sequence was called unexpectedly instead of calling some original
sequence. A sequence is called based on conditions (trigger events). When a new
sequence was added the programmer didn’t define the trigger event (for the new
sequence) to be strict enough to distinguish from the existing sequences’ trigger events.
As a result, a system state may satisfy multiple sequences’ trigger events. In this case,
which sequence will be called when such trigger events occur only depends on the
locations where the sequence subroutines are called in main routine. The PLC scans the
code from top to bottom so the first sequence subroutine that has satisfied trigger
condition(s) will be called and the other sequence subroutines that also have their trigger
conditions met won’t be called because at any time there is only one sequence that can
run. Due to the fact that all the condition variables are very similar in the code, it’s easy
for the programmer to get confused and use the wrong conditions.
Detection

The original bug was very complicated because it involves multiple subroutines
and needs more industrial power operation background to understand. To simplify it, a

simple model for the bug is described by the following ladder code to explain the bug.



The variable “SeqlsCalled” is set when there is a running sequence. The variable
“CallSeq2” and the variable “CallSeq8” indicate the respective sequence is called to run.
The original sequence (the sequence 2) is called when Condition 1 through Condition 5
are met. The new sequence (the sequence 8) is called when Condition 1 through
Condition 4 are met and Condition 6 is met. During the test (designed to verify the
system transition done by the sequence 2), Condition 1 through Condition 6 are all met.
In the test case that tests the sequence 2, the rung of the sequence 8 was examined by the
PLC first because its occurrence was earlier than the sequence 2’s occurrence in the
ladder code. So the sequence 8 was called and the sequence 2 was not. But the purpose of
the test is to exercise the sequence 2. As a result, the wrong sequence was observed in the

LogixPlIcTester Log Viewer.

SeqisCalled Cond! Cond2 Cond3 Condd Conct CallSeqd
I E dE 3 E i [ dE 3 E e
= o 4 L 4L m [ 4 L
: SeqlsCalled

-—(L

.
L]
L]

SeqisCalled Condl Cond2 Cond3 Condd CondS CallSeq2

u ]

dE
FL 4L 4 L 40 a2 N e JL
SeqlsCalled

The bug in the above ladder code is introduced by a weak trigger condition for a

sequence. A possible solution is to tighten the trigger condition for Sequence 8 as

follows:
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SeglsCalled Cond! Cond2 Cond3 Condd4 CondS Condb CallSeqs
I E 1E 1E 2L 1E W E 1E 5
E A s 4L J L e [ 7 J L 3 L ~
: SeqlsCalled
p L g )J
]
]
SeqglsCalled Cond! Cond2 Cond3 Cond4 CondS CallSeq2
T E 1E 1E = 3 1E AE P o
e - & J L J L J L 3L »~a
SeqlsCalled
—{L)—[

Error Analysis

Sequences get called under certain conditions. At any time there is only one
sequence that gets executed. Since every sequence is tested by at least one test case, the
presence of a sequence with a wrong trigger condition will be revealed during the system
state transition tests. The defect is made worse since it may occur during site testing, with
changes being made in real time. It may be a regression error in which there is a solution
and a change is made. The old code needs to be completely reanalyzed and tested because
of the change, not just the new code. This is an example of how subtle a change is that is
made by new code. It looks more like a code addition rather than a change, but the
effects can be subtle.
6. Wrong system state
Overview

In the PLC program, the switchgear’s system state is the most important variable
in the system. All the sequences rely on it to execute successfully. Therefore, the ladder
rungs in the “system state update” subroutine are critical. A wrong system state generated
form this subroutine can cause the entire system to fail. Since this subroutine handles the

calculation of the system state, all the system assets (such as circuit breakers, generators,
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and alarms) must be examined to conclude the correct system state. A wrong system state
can be produced when an asset is overlooked during the system state calculation.
Detection

The following ladder code is in the subroutine for updating the system state. The
subroutine runs once when a sequence is completed. The code has a bug in it. It should
have taken a wider and bigger snapshot of the system in order to determine the new state
correctly. In this bug, the PLC was only checking the (open/close) states of the breakers
to determine the next system state. There are other properties that also affect the system
state such as breakers’ availabilities, utility power status, generator status, and switchgear

alarms.

CB102InOpenDl  CB202In.CloseDl  CBZ02In.OpenDl  CB402in.OpenDi CB2604 In OpenDl SwiGear Stat NP_BOnly

JAE AL JE JE JE
20 JC AL = Hn JC
CB2504 In OpenDI

In order to determine if the switchgear is in the NP_BOnly state, checking the

circuit beakers’ states is necessary but not sufficient. You also need to check CB202’s
failure condition in this case. If CB202 “failed to open” alarm is active then the
switchgear should be in the Plant Dark state instead of in the NP_BOnly state. The

correct version of the ladder code is as follows:

| CB102inCpenDl  CB202InCloseDl  CB202 Alm FailToOpen CBE302In.OpenDl  CB402.In.OpenDl CB2604 In.OpenDi Swiear Stat NP_BOnly |
" i o IE I1E u [ u f§ o 3

4L 4L JL J L 4L 4L 4
CB2504 In.OpenDl
—3 YJ

The test that found the bug is designed to test one of the system failure scenarios.

The initial system state of this scenario is NP-BFeedA, the first trigger event is the utility

power B failure, the second trigger event in this test is the CB202 “failed to open” alarm,



and the expected system state is Plant Dark. During the test, after the first trigger event
was initiated, the sequence 3 (in scenario 4 of Figure 5.2) was called. In the sequence, the
first step was to open CB202 and CB2604, and the second step was to start both
generators. At the first step, LogixPlcTester didn’t simulate the CB202 open signal to the
PLC resulting in a CB202 “failed to open” alarm (this is the second trigger event). When
this alarm was active, the sequence should terminate and the system state should be
“Plant Dark”. But due to the bug, the wrong system state NB-BOnly was observed in the
LogixPlIcTester Log Viewer at the end of the test. Since the system state is monitored by
an Oracle Tag, any wrong state can be detected in LogixPlcTester.

Error Analysis

A system state variable is maintained to reflect the current system state. The state
variable is updated based on various conditions. In some cases the programmer does not
know all the information for a correct state because it is not in the system specifications.
It could simply be a case of additional details that need to be added as the system is
developed. The operators who are familiar with the system know the details that affect
the state. During the system development, the programmer should work with the
operators to determine for missing information from the system specification.

This kind of bug can be caught early if the programmer asks the operators "what
if" questions concerning the additional details. It may not be constructive to do this
during the system design or programming. But after the basic system can be constructed,
the programmer can revisit and deal with details and unspecified cases. To facilitate this,
the programmer needs to document the additional information that is required for

programming so that it will not be forgotten later.
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Sometimes the programmers need to make some assumptions to push through an
initial solution. However, after the initial solution has been acquired, all the assumptions
made during the development must be revisited and reexamined. Any wrong assumptions
must be fixed.

7. PLC scan direction related error

Overview

There are two different scan styles that PLCs use to scan their programs. One is
called Rung Scan, which scans the code form left to right, top to bottom. Another is
called Column Scan, which scans the code from top to bottom, left to right. Different
scan direction can result in different output from a same code. Figure 5.8 shows a sample

code on which the two PLC scan methods lead to different results.

A B
- IF L—
c 2]
- JF —
B ]
—3E L —
Rung Scan
& /_z B
B [N €

C B

B ]
—F > (L —

& Column Scan B
—JF / ]

. / B
—3E il

] / D —

Figure 5.8: A code example for demonstrating scan methods.
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The equivalent function in Structured Text language is as follows:

if tag_A = true then tag_B :=true;

if tag_C = true then tag_B := false;

if tag_B = true then tag_D := true;

Table 5.5 lists the results of the above logic when using Rung Scan and Column
Scan. If we scan the code with the Rung Scan method the result of the variable D is 0.
But if we scan the code with the Column Scan method the result of the variable D is 1.
However, if the initial values for (A,B,C,D) changes from (1,1,1,0) to (1,0,1,0) the results
of Rung Scan and Column Scan will be the same. So this bug will only reveal when

specific inputs are used for testing. A possible test method is to construct a truth table that

lists every logical condition as an entry and test all the entries, as in Table 5.5.

Table 5.5: Truth table for Figure 5.5.

A B C D
Initial Value 1 1 1 0
Rung Scan Result 1 0 1 0
Column Scan Result 1 0 1 1

The bug was in the follow ladder code which is from the sequence 1 (NP-
BFeedA) subroutine. The code was written so when the CB2604 “failed to close” alarm
is generated at the step 2 of the sequence it will terminate and call another sequence (GP-
SplitFeed). When the test case that is designed to test this scenario was running, it was
observed in LogixPlcTester that the sequence GP-SplitFeed was never called by the PLC.
After checking the code for the permissive conditions for calling the sequence GP-
SplitFeed, the bug was identified. Because the PLC uses the Rung Scan method for

scanning the ladder code, the first rung is always examined before the second rung. That



means when CB2604 failed to close, the variable “SwGear.Cmd.SetupNP_B_Feed A”
was set to false by the first rung and when the second rung was examined it wouldn’t

execute due to the false permissive condition.

SwiGear Cmd SetupNP_B_Feed_A CB2604 Alm FailToClose SwiGear Cnd SetupNP_B_Feed_A
JE E >
SwGear.Cmd.SetupNP_B_Feed_A Sq1_NP_BFeedA Step.2 CB2604 Alm FaillToClose SwiGear Cmd SetupGP_Spit_Feed
1E 1E ol o a4y
4 L a4 & 4 L b

Error Analysis

If the PLC scans with the Column Scan method, then this wouldn’t be an issue
because in any PLC scan cycle both rungs will read and use the same value for the
variable “SwGear.Cmd.SetupNP_B_Feed_A”. This type of bug can be detected during
system tests because it usually causes a serious problem in terms of system behaviors and
all system behaviors are monitored as Oracle Tags in LogixPIcTester during the tests.
8. Wrong logical relation between timers
Overview

In a sequence, there are usually multiple steps and each step will output several
commands to different hardware devices. Each step has a timer to ensure that the step
won’t take longer than an allowed time for that step. There is also a timer per hardware
device that is used for waiting the feedback from the field hardware device before the
PLC sets the “device failed to respond” alarm. The step timer should be always set to be
longer than the feedback timer.
Detection

The defect was found during a regression test after a change was made in the

code. The programmer made assumptions on the preset values of the feedback timers
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during the code development. Before starting to test on real hardware equipment, the
programmer was told to increase the feedback timer setting for a generator based on the
circuit breaker’s response time to control commands. After the change was made, the
feedback timer was longer than the step timer. (The programmer forgot to change the step
timer’s value to be greater than the new feedback timer’s value. That caused any
sequence in which that particular feedback timer was used to fail every time. In
LogixPIcTester, the sequence failure message was logged. The ladder code in Figure 5.9
shows the bug. The first rung defines a 1-second step timer. The second rung sets the
sequence failure alarm if the step timer times out. The third rung resets the step timer if
the CB102 open feedback signal is received by the PLC while neither the step timer nor
the feedback timer has timed out. The last rung defines a 2-second feedback timer for
waiting for the CB102 open signal. The feedback timer was set to 0.5 second originally.
After it was adjusted to 2 seconds, the programmer forgot to adjust the step timer to be
greater than 2 seconds. This bug always led to a failure at this step of the NP-BFeedA

sequence.
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Figure 5.9: A timer related bug in the sequence NP-BFeedA.

Error Analysis

This is a regression error because the same sequence was tested with the same test
case and it was working. This kind of bug can be detected by LogixPlcTester because it
causes multiple scenarios (that use the defect sequence) to fail and there is at least one
test case designed to test each scenario for correctness. This could be labeled as a
disturbed invariant error. When any logical relationship involves quantities that are
changed, the logical relationship must be analyzed and tested to see if the invariant of the
logical relationship has been altered by the change. A PLC programming rule can be

added to the checklist to verify the timers’ preset values in the PLC program and the



logical relationship between timers. The timer related bugs are very common in PLC
programming and some of them are not easy to detect. For example, a hardware device’s
response time is 10 seconds but it was set to 5 seconds in the PLC program. During the
simulation tests, this may not be found because the response time simulated by
LogixPlIcTester could be always within the threshold (5 seconds). But when conducting
the real tests against the hardware device, this bug will reveal because the actual response
time from this device is between 5 seconds and 10 seconds. By preparing a checklist with
all known PLC issues and using it during the system tests, the known common bugs can
be easily sweep out of the PLC code.
9. Confusion between logical AND and logical OR
Overview

In PLC programing, there are two bit instructions called logical AND and logical
OR. They perform bitwise AND or OR operations. For example, AND instructions
should be used between permission conditions, and OR instructions should be used
between alarm conditions. Figure 5.10 shows an example of AND instructions and an

example of OR instructions.
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Figure 5.10: Examples of AND and OR instructions.

According to Demorgan's Laws, the logic in Figure 5.10 can also be represented

as in Figure 5.11.
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Figure 5.11: Equivalent logic of Figure 5.6 according to Demorgan's Laws.

Detection

Figure 5.12 shows the bug that was discovered during system tests. This logic is

meant to set the Boolean variable “SwGear.Stat.SeqRunning” when any of the sequences
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is running. (When this variable is set, no new sequence is allowed to run until the current
running sequence is done.) However the code in Figure 5.12 obviously violated

Demorgan's Laws. Figure 5.13 shows two possible solutions to the problem.
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Figure 5.12: A logic that violated Demorgan's Laws.
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Figure 5.13: Fixes for the ladder code in Figure 5.12.



This bug was detected by both test cases and code review. Because the function
represented by the logic is fundamental and it’s used by all the sequence subroutines, it
was detected by multiple test cases that test the system state transitions. Due to this bug,
when a sequence’s trigger event was enabled by LogixPlcTester, the sequence couldn’t
be started because the variable “SwGear.Stat.SeqRunning” was always true, which was
indicating there was a running sequence. As a result, no log messages were observed in
LogixPIcTester to indicate the expected sequence was called to run by the PLC.

Error Analysis

Because breaking Demorgan's Laws in PLC programs results in wrong logics in
system functions, they are easy to be discovered by some test cases that rely on the
system function. Code review method was used in this project to perform an initial
screening for bugs in the code and it did find this bug. Code review is usually performed
during the software development prior the black-box testing and it’s usually performed
by another programmer who’s familiar with the system specification, the overall structure
of the program and its objectives. During code review, the programmer will carefully
inspect the logic implemented in the source code rung by rung in order to find errors. A
mental simulation of a code execution is helpful to verify the correctness of the functions.
Code review will show the location of a bug found so there is no debug process required.
Because of the native characteristics of the PLC ladder logic program, it’s proved that
code review is quite efficient for detecting bugs in PLC programs. However, code review
doesn’t tend to find more subtle problems in the code because it can only deal with
certain level of complexity of the code. Most likely, it won’t be able to find a bug that is

buried in a complex code such as an algorithm. Code review can be improved with an
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error oriented approach. For example, when you’re walking through the code you can
miss things over and over again such as wrong tag names, wrong comments, counter
overflow, incorrect timer presets, etc. But if you do it in iterations, focusing on one type
of error at a time, then you may see the errors.
10. Hardware interlock
Overview

There are usually some interlocks built in the hardware to prevent illegal
operations (to protect the hardware). The hardware interlocks could be overlooked in the
original simulation tests. This is due to the unawareness of the hardware interlocks at the
beginning of the tests. They are usually discovered when running the same tests against
the real hardware equipment. If we know the interlocks before we start to design the test
cases then we can integrate them in the test cases. Missing hardware interlocks could
correspond to missing permissive conditions. For instance, the PLC shouldn’t try to close
a circuit breaker when certain conditions exist. This is an interlock built in the hardware
for protective purpose. In the program, this acts as a permissive condition for the
breaker’s close command. The following ladder code shows a hardware interlock for
CB102 close operation. The interlock prevents CB102 from closing when either CB302
lock out relay alarm is active or CB2504 lock out relay alarm is active. Without the
interlock, it could potentially cause some hardware damages because it may cause a

power loop in the system.

| CB302.Alm LockOutRelay  CB2504 .Alm LockOutRelay CB102 Stat CloseHardwarelnterlockOK
'IIIT -1y f N
| = = = = A 1
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Detection

The above interlock was missing when a test was conducted. The test that found
the missing interlock was actually required by a field operator. The test is to verify how
the PLC reacts in the scenario where the system state is NP-BFeedA (initial state) and the
utility power A is normal (trigger event). It’s similar to the scenario 6 of Figure 5.2. But
in this scenario, CB302 was simulated to have a lockout relay alarm. It was observed in
LogixPIcTester Log Viewer that the PLC called the sequence 9 to close CB102, which
was correct if there was no lockout relay alarm on CB302 or CB2504. In this test, the
actual expected result was no action from the PLC.

Error Analysis

At the software development and testing stage, the programmer should ask the
domain expert — the operator for the hardware interlocks and implement them in the
program. For the missed interlocks, most likely they will show themselves during the
final acceptance test in the production system. The interlocks should be added in the
software program as permissive conditions as they reveal during the final test. Software
interlocks and hardware interlocks complement each other. If one fails the hardware is
still protected by the other one.

Another lesson learnt from this project is “Difference between designer’s mind
and equipment’s mind”. The system designer writes the system specification based on
what he knows about the system and what he thinks the system should work. However,
the physical equipment may work differently than what says in the specification. As a
result, there will be some code changes at the site to remedy the misunderstanding. When

you are making changes at the site (with people looking over your shoulder), sometimes



you do not think it through and just patch the code for the current issue. You may
introduce some more bugs into the code while patching the code. The sequence conflict
bug is a typical example in here. The programmer added a new sequence at the site
without considering the impact on the existing sequences resulting in a sequence conflict
defect.

In this project, there were three parties involved (engineer/designer, operator, and
programmer/tester). The engineer designs the system and writes the system specification.
The programmer/tester writes and tests the program based on the system specification.
Once the development and testing are done, the operator will test the program against the
real equipment to verify if the program works in the production system and meets
operation standards. At this step, some discrepancies between the system design and the
way the real equipment actually works will be exposed. In this case, onsite code changes
are inevitable. As a result, a regression test has to be conducted. Sometimes the engineer
and the operator may make contradictory demands to the programmer for changes to the

code and in that case the same code can be changed back and forth multiple times.
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Chapter 6. Related Work

Allen Bradley has a software product called RSTestStand [9], which enables
control system developers to create virtual control system scenarios that can be used to
test design configurations and programs. RSTestStand allows you to develop and test
your control program in an offline system by simulating the field inputs and outputs
signals. RSTestStand uses industry standard OPC (OLE for Process Control) protocol to
communicate with Allen-Bradley PLCs using RSLinx. RSLinx is another software
product from Allen Bradley that is a communication server providing plant floor device
connectivity to support Allen Bradley software applications such as RSLogix 5000 (the
Allen Bradley Logix PLC programming software). In addition, RSLinx is an OPC
compliant data server supporting the OPC Data Access 2.05 specifications. In order for
RSTestStand to work, RSLinx must be installed on the same computer where
RSTestStand resides. In the communication link between RSTestStand and the PLC,
RSTestStand acts as an OPC client and RSLinx acts as an OPC server. RSTestStand
reads and writes PLC tag values by inquiring the OPC server (RSLinx)

Similar to a hardware test stand, RSTestStand provides you with a range of
devices like push buttons and pilot lights to interact with your logic program. Figure 6.1
shows the RSTestStand operator console, which is the runtime interface equipped with
buttons, selector switches, and pilot lights used by an operator to interact with the logic

program test. The operator console is similar to the Control Graph feature in LogixTester.
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Figure 6.1: RSTestStand operator console.

Like in LogixPlcTester, RSTestStand also uses tags to exchange information with
the PLC. RSTestStand uses flowcharts to control the behaviors of the tags. A flowchart is
a graphical interface for programming RSTestStand. Figure 6.2 shows an example of
RSTestStand flowchart. A test case can be created using a flowchart in RSTestStand. But
it won’t give users the flexibility of defining time based triggers or condition based
triggers as in LogixPlIcTester. RSTestStand doesn’t provide an explicit log viewer that
shows the sequence of events while a test case is running. Since RSTestStand uses OPC
as its communication protocol, its communication resolution is limited by the OPC

standard. The typical OPC resolution is 1 second. LogixPlcTester uses the PLC’s native
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communication protocol (Ethernet/IP) to communicate with the PLC so that its resolution

is optimal.

This chart executes the Exdend MotorCommand.
Every pass through it recalculates "pos" based on
the time value of the capability "Extend". It also sets
a complementary value, using the verk "Fosition", in
the "Retract" capability.

Extend Motor and
not Return_Motor and
os <> 100

pos = MoveLinear(" Extend")
Position "Retract", 100-pcs

I

Figure 6.2: RSTestStand flowchart.

Similar to LogixPlcTester, RSTestStand can train operators and technicians in a
virtual environment. This approach doesn't require expensive equipment in the plant and
it provides a cost-effective and system-safe way to understand the system operations prior
to installation.

Siemens’ S7-PLCSIM [10] and Allen Bradley’s RSLogix Emulate 5000 [11] are
another type of PLC simulator tool. They both focus on PLC controller hardware
simulation rather than 1/O simulation. They can run PLC programs in their software

simulators without the actual PLC hardware. They can simulate most of the functions that



a real PLC has. You can debug your program in the software simulator. They are very
useful when you want to develop and debug programs without the PLC hardware. But
they don’t provide any automated mechanism for 1/O simulation. The only way you can
simulate 1/0 points in them is to manually change values in the System Data Reference
Table. However, when the PLC controller simulators [10][11] are used with
LogixPlIcTester together, a pure software testing environment is formed, which requires
no PLCs during the entire software testing process. It will be extremely beneficial in
terms of costs when multiple testers are working in the system. With this solution, every
tester can have a dedicated test environment (a virtual PLC and a virtual test stand for 1/0
simulation) other than sharing one test environment with others. This will eliminate the

interference between testers and their ongoing tests.
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Chapter 7. Conclusion and Future Work
7.1 CONCLUSION

The automated testing tool, LogixPlcTester, was designed to test software
programs running in Allen Bradley Logix PLCs based on test cases. It acts as a virtual
device that can respond to the PLC’s commands by writing feedbacks to the PLC. With
LogixPlcTester, the testing process can start early in the software development cycle. As
a result, software bugs can be discovered at an earlier stage than usual and this makes bug
fixing easier and faster. The project development costs can be greatly reduced and stable
and high quality programs can be produced. A control program that has been precisely
tested by LogixPlcTester in a development environment will make the final onsite testing
easier and faster in the production system. Unnecessary hardware equipment damage due
to software bugs can be prevented. And the system startup process will become much
smoother. Since all the tests can be conducted in a simulation system using
LogixPlIcTester, only the final acceptance test need to be run on the real hardware system.
As a result, the hardware equipment’s operation life time can be extended.
LogixPlIcTester is a powerful and easy to use automated PLC testing tool that helps
building and assuring quality into industrial control programs. LogixPlcTester allows
testers to build test cases quickly with a built-in configurator that requires no
programming for building test cases. The goal of LogixPIcTester is to provide an
effective and time-saving test environment for testing PLC programs to identify potential

problems with the PLC programs and eliminate the identified bugs with regression tests
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so that high quality programs can be attained before they are downloaded into production
systems and start controlling hardware equipment. The goal was achieved in the

Emergency Generator Control project.

7.2 Future Work

Currently the time resolution that LogixPlcTester supports is 250 milliseconds
meaning any signal changes in the PLC that are faster than 250 milliseconds won’t be
captured by LogixPlcTester. A time resolution of 250 milliseconds is actually good
enough for most of the PLC control programs because the field devices normally have a
response time longer than 250 milliseconds. However in some time-critical systems
where higher time resolution is required, LogixPlcTester may not produce feedbacks to
the PLC fast enough in order to meet the response time requirement. A temporary work-
around for this is to enlarge the feedback timers in the PLC so that the LogixPlcTester
test cases can be passed as far as the response time is concerned. The work of improving
LogixPlIcTester’s time solution has been started. The code for reading tag values from
PLC is being rewritten to improve efficiency. The optimal goal of time resolution for
LogixPlIcTester is 100 milliseconds.

Hardware interlocks are usually overlooked during software simulation testing. In
industrial control systems’ testing, hardware interlocks should be put as a rule in the
checklist. Testers should always check with domain experts about hardware interlock
while creating test cases. All hardware interlocks should be implemented in software for

redundant protection.



In the current version of LogixPlcTester, log messages are the only way to verify
a test result. Timestamped log messages show the sequence of actions issued by the PLC
and the sequence of responses sent from LogixPlcTester. Testers need to review the log
messages in order to determine if the test is passed. Although the log messages clearly
record the entire test process, sometimes testers misread the log messages resulting in
incorrect test results. Even with a graphical control screen supported by LogixPlcTester,
testers’ interactions are still required. A potential solution is to have LogixPlcTester be
able to read a temporal logic specification and use it to automatically verify the result of a
test while it’s running. This temporal logic specification will act as a “oracle” for the test
case. With this feature, LogixPlcTester will generate an explicit result of a test case
(either passed or failed). Currently this new feature is under feasibility evaluation.

A batch test mode will be added to process multiple test cases in a predefined
sequential order automatically. Currently a test case is loaded manually in
LogixPIcTester. When a test case is done, a new test case has to be loaded in
LogixPIcTester manually. With the batch mode support, testers just need to specify the
location of the test cases that need to run and then initiate the start of tests. After that,
LogixPlcTester will automatically execute the tests in the following order: load a test, run
the test, unload the test, load a new test, run the new test... until all the tests are done.
Testers only need to review the log messages after all test cases are complete. With the
temporal logic specification feature, this would become even easier. Basically what
testers would get is the final test reports. They would no longer review the log messages
from the tests because LogixPlcTester already verified the test results by using the

temporal logic specifications.
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Appendix A. PLC Program Structure Diagram
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