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INTRODUCTION:

Low back pain is a common condition that affects 65–85% of the general population at some 

point in their lifetime(1). Although the causes of low back pain are complex and 

multifactorial, individuals with this condition demonstrate degenerative changes in the 

paraspinal muscles(2, 3). Most of these changes have been characterized on a whole-muscle 

level using imaging methods such as magnetic resonance imaging (MRI), or computed 

tomography (CT), and have described both atrophy of the paraspinal muscles in the form of 

reduced cross sectional area (CSA), as well as increased fatty infiltration throughout the 

muscles(3-6). On a microstructural scale, histological analyses of paraspinal muscle biopsies 

in both animal and human studies of lumbar spine degeneration also corroborate these 

findings(7, 8), with the addition of observations of muscle fiber degeneration(2, 7), fibrotic 

deposition(2, 9), inflammation(2, 10), and reduced vascularity(2, 11). It is not unusual to see 

more than 50% of the muscle compartment or sample replaced by fat and/or fibrotic tissue in 

these studies(2, 3), which is thought to have important implications regarding paraspinal 

muscle function in its role as a spinal stabilizer. Importantly, the presence of these muscle-

specific changes has been associated with reduced patient function, higher levels of 

disability, higher likelihood of symptom recurrence, and poor post-surgical prognosis(8, 

12-16).

These observations have led to additional questions about what is driving the tissue 

compositional changes of fat and fibrotic infiltration in this population. Some hypothesize 

that these compositional changes are a secondary consequence of disuse-related atrophy, in 

which non-muscle tissue fills in the area that used to be occupied by muscle. Alternatively, 

there is evidence that muscle cells actively degenerate as opposed to simple atrophy, a 

process that may be facilitated by inflammation or denervation(2, 17). As such, information 
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on the molecular pathways that drive tissue compositional change may provide key 

information on the mechanisms of muscle loss in this population, and ultimately guide more 

effective treatment strategies.

For example, with the clinical assumption that muscle-specific changes are driven by disuse-

related atrophy, the primary approach towards mitigating these processes has been to reverse 

this using treatment such as targeted rehabilitation to facilitate muscle hypertrophy and 

ultimately restore strength and function. However, if the processes that are driving changes 

in muscle structure and function change and become more complex over the course of 

disease progression, then identifying and incorporating treatments that target these specific 

rate-limiting factors is important in restoring muscle function and ultimately improving 

clinical prognosis in this patient population.

One of the tools that has been used to investigate molecular drivers of chronic degenerative 

changes in tissues from a variety of musculoskeletal conditions is gene expression(18). As a 

tool, gene expression allows for an investigation of individual genes within functional 

pathways that are thought to contribute to a pathological phenotype. However, expression of 

a single gene in isolation often oversimplifies a complex process that likely involves several 

regulatory and feedback pathways. As such, investigations of single genes in the absence of 

their regulators often provides incomplete information regarding the impact of a single gene 

on a pathological phenotype. An additional challenge to performing gene expression in 

human muscle tissue is that profound tissue heterogeneity exists in samples, which can 

confound transcript abundance, making interpretation difficult (18, 19). Additionally, these 

tissue compositional changes are thought to progress with chronicity of disease, introducing 

an additional component of variability to human studies (2).

Currently, most literature utilizing gene expression as a tool for understanding muscle 

degenerative changes in the spine has utilized animal models such as rabbit and sheep(10, 

20, 21), and only one other study exists investigating gene expression of paraspinal muscle 

in adults with lumbar spine pathology(22). In the aforementioned human study, gene 

expression from individuals with and without lumbar kyphosis was compared, and was 

limited to 3 genes primarily related to inflammation.

In light of the paucity of literature investigating molecular pathways of muscle degeneration 

over the course of human lumbar spine disease, the goal of this study was to investigate gene 

expression of functional groups of genes that were empirically consistent with the observed 

morphological phenotypes commonly observed in lumbar spine muscle degeneration. 

Therefore, multiple genes within the atrophic, myogenic, fibrogenic, adipogenic, and 

inflammatory pathways were compared between paraspinal muscle biopsies from 

individuals with acute and chronic lumbar spine pathology. We hypothesized that in 

atrophic, fibrogenic, and adipogenic pathways would be upregulated, and inflammatory and 

myogenic pathways would be downregulated in individuals with chronic pathology as 

compared to acute pathology. The clinical implication of these findings would help identify 

molecular pathways that are rate-limiting to recovery in this population in order to more 

appropriately prevent maladaptive changes in muscle as disease progresses.
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METHODS:

This was a cross-sectional prospective observational study (Level I) of thirty-three muscle 

samples (N=8 acute, and 25 chronic) obtained from patients undergoing posterior approach 

lumbar spine surgery for degenerative lumbar spine pathology. Patients were categorized 

into the acute group if their duration of symptoms was less than 6 months, and they were 

categorized into the chronic group if their duration of symptoms was greater than 6 months. 

All patients underwent an informed consent process to obtain an intraoperative biopsy of the 

multifidus muscle in the lumbar spine and were included if they were undergoing surgery 

including decompressions, laminoforaminotomies, discectomies, or fusions. Patients with 

any diagnosed myopathy or systemic neurological condition were excluded. This study was 

performed in accordance with Declaration of Helsinki and under approval of the UC San 

Diego Institutional Review Board (IRB111647). Samples were obtained from a standardized 

location as previously described (2), split in half upon retrieval, and immediately flash 

frozen in liquid nitrogen cooled isopentane and stored at −80 degrees until processing. From 

one half of the sample, ten-micron sections were obtained from OCT-embedded frozen 

sample using a Leica (CM3050S , Buffalo Grove) cryostat. Gomori Trichrome stains were 

used to visualize gross muscle morphology and quantify tissue content using ImageJ (http://

imagej.nih.gov/ij) as previously described(2). The other half of the tissue sample was 

homogenized and used for RNA extraction and subsequent gene expression analyses.

RNA isolation and quantitative PCR

For gene expression analysis, approximately 30–50 mg of the muscle biopsy was 

homogenized in bead tubes (Navy, NextAdvance) with TRIZOL (Ambion). RNeasy spin 

columns (Qiagen) were used to extract RNA using the manufacturer’s protocol. One 

microgram of complimentary DNA (cDNA) was reverse transcribed with iScript cDNA 

Synthesis kits (Biorad). Quantitative PCR was carried out on custom plates on a BioRad 

CFX384 Touch qPCR analyzer for a panel of 42 genes associated with myogenic, atrophic, 

adipogenic, fibrogenic, and inflammatory pathways (Supplementary Table 1), with a cycle 

threshold determined using a SYBR green fluorophore. On-plate quality assessment was 

performed to assess gDNA contamination and RNA quality.

Statistical analysis

To determine the influence of tissue composition on RNA yield, concentration values (ng/ul) 

for yield were regressed against proportions of muscle, fat, and connective tissue from each 

biopsy sample. Raw cycle-threshold values (Ct values) were obtained from all samples and 

read into a qPCR expression set using the R Bioconductor package HTqPCR(23), and were 

quantile normalized to the mean Ct value to obtain gene expression values. A maximum Ct 

value of 39 was applied to all genes of interest to allow for statistical comparison, with lower 

values indicating higher expression in this method(23). Tissue composition was included in 

a linear regression model with normalized gene expression values to account for the 

potential influence of different tissue types on the genes of interest. Unsupervised 

hierarchical clustering using Euclidean distance was applied to the normalized expression 

values to determine the ability of gene expression patterns to differentiate between acute and 

chronic patient groups, and to identify potential sub-clustering within groups. Differential 
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expression values (delta-delta-Ct) were calculated with the limmaCtData wrapper in 

HTqPCR for the Bioconductor package limma using a moderated t-test. All raw p-values 

were adjusted for within-gene group multiple comparisons using the Benjamini & Hochberg 

method(24). Significance was set at an adjusted p-value threshold of p<0.05, and trends 

were defined as adjusted p-values of <0.08.

RESULTS:

Tissue composition of the muscle biopsies obtained was heterogeneous, with muscle making 

up a mean (SD) of approximately 49.6 (18.0)%, adipose tissue making up 14.3 (12.3)%, and 

connective tissue (fibrosis) making up 21.2 (12.7)% of the tissue based on cross sectional 

analyses. There were no significant differences in tissue composition or RNA yield between 

acute and chronic biopsies (Table 1). Similarly, there was no relationship between tissue 

composition and gene expression values (p>0.134) Unsupervised hierarchical clustering of 

normalized expression values resulted in two primary clusters that did not differentiate acute 

samples from chronic samples. There was no obvious sub-clustering segregating functional 

gene groups (Figure 1). There were no significant differences in gene expression patterns for 

genes within the atrophic (p>0.635), adipogenic (p>0.317), inflammatory (p>0.413), or 

myogenic (p>0.320) pathways, however, within the fibrosis gene group, CTGF was 

significantly upregulated (p=0.046) in the chronic patients as compared to the acute patients. 

Similarly, the COL1A1 gene trended towards upregulation (p=0.061), whereas MMP1 and 

MMP9 both trended towards downregulation in the chronic patients as compared to the 

acute patients (p=0.061) (Figure 2).

DISCUSSION:

The broad aim of this study was to investigate the gene expression patterns for functional 

gene groups related to histomorphologic changes in muscle observed in acute and chronic 

lumbar spine pathology. Secondarily, we wanted to ensure that these patterns were not 

confounded by tissue compositional heterogeneity within muscle samples, given that this is 

a common feature in this patient population, and has been shown to influence gene 

expression patterns in other musculoskeletal conditions(18). Although gene expression 

patterns for the majority of gene groups did not differentiate patients with acute versus 

chronic disease, several genes in the fibrosis category were significant or trended towards 

significance, suggesting that fibrosis remains an active biological process in the chronic 

disease state in contrast to adipogenesis, atrophy, or inflammation. Specifically, CTGF and 

COL1A1 were both upregulated in the chronic group as compared to the acute group, 

whereas MMP1 and MMP9 were downregulated. CTGF and COL1A1 are both related to 

activation and distribution of collagen networks. CTGF is a matricellular protein and is 

involved in extracellular matrix production (25, 26), and COL1A1 is a gene related to 

production of type I collagen. MMP1 and MMP9 are both matrix metalloproteinases, which 

are involved in the breakdown of extracellular matrix in normal physiological processes of 

tissue remodeling. MMP1 has the ability to cleave interstitial collagen types I, II, and II, and 

MMP9 is a gelatinase that degrades denatured collagen types IV, VII and X in many 

tissues(27). Together, the upregulation of collagen deposition and downregulation of 
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extracellular matrix breakdown is consistent with the fibrotic phenotype seen in chronically 

diseased paraspinal muscle.

Contrary to our hypothesis, we did not see any differential expression in the other gene 

pathways of atrophy, adipogenesis, myogenesis, or inflammation. These findings are 

interesting given that prior literature has suggested that atrophy and fatty infiltration are the 

primary phenotypic indications of declining muscle health in this population(5, 28-30). 

However, these observations have historically been informed by observations of decreased 

muscle cross sectional area and increased fatty deposition in magnetic resonance imaging 

(MRI)(5, 31, 32), where fibrosis or connective tissue would not be distinguishable from 

muscle in most clinically utilized imaging protocols (T1 or T2-weighted images), and 

therefore may not have been recognized as an obvious feature of disease. Together, along 

with prior literature, these findings suggest that the relationship between atrophy and fatty 

infiltration with chronicity could be overestimated, while the fibrogenic processes may have 

been underestimated. This may also indicate that the current treatment paradigm of reducing 

inflammation and reversing atrophy may have reduced efficacy in chronic stages of disease 

because these pathways are no longer active, as compared to fibrogenic processes.

The lack of differential expression in the inflammatory gene group is also in contradiction to 

the only other investigation of gene expression in the lumbar paraspinal muscle of 

individuals with lumbar spine pathology. However, the small number of genes studied, the 

small sample size, and the group of patients compared in this study may explain this 

discrepancy. In the aforementioned study, gene expression was compared between 

individuals with low back pain who had lumbar kyphosis (N=7) and those who had normal 

lumbar alignment (N=5). Their analysis was limited to TNFα, and IL6 as inflammatory 

biomarkers, and PGC-1a as a marker of mitochondrial biogenesis. Although they reported 

roughly a two-fold increase in TNFα and a 4-fold increase in IL6 in the patient group with 

kyphotic posture as compared to the normal posture group, they reported p-values of 0.048 

for both genes with no reported statistical corrections for multiple comparisons(22). 

Duration of symptoms was also not described in this study. These analytical strategies may 

have resulted in an overestimation of differential expression in comparison with the methods 

used in the current study, in which no significant differential expression was observed 

between acute and chronic patients. This also highlights the potential for overinterpretation 

of results when investigating a single gene as opposed to a cluster of genes within a pathway 

of interest.

The upregulation of fibrogenic genes has also been reported in muscle samples from patients 

with adolescent idiopathic scoliosis. A study investigating TGFβ gene expression between 

concave and convex sides of the scoliotic curve found that TGFβ was upregulated on the 

side of the concavity, which may suggest that chronic unloading plays a role in fibrogenic 

pathways in paraspinal muscle, although TGFβ is a gene that is implicated in multiple 

physiological processes (33). In a sheep model of intervertebral disc degeneration in which 

gene expression and histology were performed on the multifidus muscle pre- and post- 

injury, the multifidus muscle demonstrated no histologic signs of muscle atrophy, but 

exhibited increased connective tissue and fat proportions 6 months post injury as compared 

to pre-injury. In parallel, collagen-1 was upregulated after injury(9). Interestingly, gene 
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expression for inflammatory cytokines, such as TNFα, and IL1β were also upregulated in 

this study, whereas TGFβ was not significantly changed relative to baseline. Additionally, 

genes related to atrophy were also unchanged relative to baseline.

This study had some limitations. Primarily, our group definitions may have contributed to 

the lack of differential expression in the hypothesized pathways. In our study, we defined 

individuals with lumbar spine pathology of <6-month duration as being “acute”, and those 

with >6-month symptom duration as being “chronic”. However, clinical definitions of acute 

and chronic often use a more conservative threshold of 3 months due to the assumption that 

most musculoskeletal tissues (including muscle, bone, ligament, and tendon) should have 

had sufficient time to heal from an injury within this timeframe(34). However, it is 

reasonable that gene expression changes in muscle tissue may occur on an even shorter 

timeline given the high adaptive capacity of muscle relative to other musculoskeletal 

tissues(35-37). This is supported by the fact that even at the 6 -month timepoint, changes in 

tissue composition (high levels of fat and fibrosis) have already manifested, suggesting that 

the majority of gene expression in the pathways of interest have already occurred. Although 

we recognize this limitation, redefining our “acute” group with a more conservative timeline 

was not feasible due to the infrequency of surgically managed acute low back pain. Since 

standard of care for treatment of low back pain often includes weeks or months of 

conservative management in the form of pain medications, physical therapy, and injections, 

obtaining muscle samples from individuals undergoing surgical treatment with symptom 

durations of <3 months that have not been exposed to an acute trauma is rare. Given this 

limitation, the differential expression from these analyses may be more appropriately 

interpreted as a representation of processes associated with late-stage disease progression.

CONCLUSIONS:

This study is the first to evaluate a comprehensive set of atrophic, myogenic, fibrogenic, 

inflammatory, and adipogenic gene groups in paraspinal muscle of individuals with acute 

compared to chronic lumbar spine pathology. Our results demonstrate that an increase in 

fibrogenic gene expression is observed in individuals with late stage disease, whereas 

atrophic, adipogenic, and inflammatory programs are less predominant. These results 

provide important information in understanding muscle degeneration in human 

musculoskeletal disease and highlights the importance of studying functional groups of 

genes associated with phenotypes of interest. The lack of atrophic and inflammatory 

processes and upregulation of fibrogenic processes in the chronic stage of disease suggests 

that prevention or reversal of fibrogenesis may be a feasible treatment target for future 

research toward the goal of improved patient function and prognosis in this population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Hierarchical cluster analysis of multifidus muscle biopsies from acute and chronic patients. 

The patient group (Acute or Chronic) is indicated on the bottom axis of the heatmap, and 

gene abbreviations are indicated on the right side. Highly expressed genes are denoted by 

red coloring, and low-expressed genes are denoted by yellow coloring.
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Figure 2. 
Delta-delta Ct ratios of expression between chronic and acute patient groups (acute group is 

the reference group). Bars with a solid outline indicate a significant comparison (P<0.05), 

whereas hatched bars indicate a trend (P<0.08). Solid bars with no outline are not 

significantly different.
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Table 1.

Demographic and biopsy characteristics

Acute Chronic

Age (years) 62.5 (5.6) 61.1 (16.9)

Gender (M:F) 4:4 16:9

Fat (%) 16.3 (16.2) 14.2 (11.7)

Muscle (%) 46.2 (22.5) 50.9 (17.4)

Collagen (%) 21.2 (14.1) 20.1 (11.6)

RNA yield (ng/μl) 124.1 (57.6) 122.9 (55.3)
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