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Abstract

Alzheimer’s disease (AD) is a complex genetic disorder with no effective treatments. More than 

20 common markers have been identified, which are associated with AD. Recently, several rare 

variants have been identified in APP, TREM2, and UNC5C that affect risk for AD. Despite the 

many successes, the genetic architecture of AD remains unsolved. We used Genome-wide 

Complex Trait Analysis to 1) estimate phenotypic variance explained by genetics, 2) calculate 

genetic variance explained by known AD SNPs, and 3) identify the genomic locations of variation 

that explain the remaining unexplained genetic variance. In total, 53.24% of phenotypic variance is 

explained by genetics, but known AD SNPs only explain 30.62% of the genetic variance. Of the 

unexplained genetic variance, approximately 41% is explained by unknown SNPs in regions 

adjacent to known AD SNPs, and the remaining unexplained genetic variance outside these 

regions.

Keywords

Alzheimer’s disease; Genetics; Genetic Variance

 1. Introduction

Alzheimer’s disease is the most common form of dementia, affects an estimated 5.3 million 

people in the United States, and is the only one of the top 10 causes-of-death with no 

disease-altering treatments (Ridge, et al., 2013a). The majority of affected individuals 

succumb to disease within seven years of diagnosis. As the disease progresses, affected 

individuals eventually require fulltime care, which exacts a substantial emotional and 

economic burden on families of affected individuals, and society at large. Currently, 

Alzheimer’s disease costs the health care system in the United States more than $200 billion 

annually (Alzheimer’s, 2015). As the population ages, Alzheimer’s disease incidence is 

expected to rapidly increase (projected to be 13.8 million affected individuals in 2050), 

which will cause tremendous suffering for affected individuals and their families, and health 

care systems worldwide (costs are expected to exceed $1 trillion annually by 2050 

(Alzheimer’s, 2015)).
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Alzheimer’s disease can be classified as either early or late-onset, with the majority (>99%) 

of cases being late-onset. Early-onset Alzheimer’s disease is characterized by autosomal 

dominant mutations in one of three genes (presenilin 1, presenilin 2, or amyloid precursor 

protein). The genetic architecture of late-onset Alzheimer’s disease (AD) is more complex. 

To date, more than 20 distinct genetic loci have been implicated in AD by genome-wide 

association studies (GWAS) and linkage studies (Lambert, et al., 2013), and additional rare 

variants in several genes have been identified (Cruchaga, et al., 2014, Guerreiro, et al., 2012, 

Jonsson, et al., 2012). Despite these successes, the combined effects of these variants only 

explain a fraction of the total estimated genetic variance of AD (Ridge, et al., 2013b).

Solving the genetic architecture of AD (i.e. identifying the genomic variation that explains 

the remaining genetic variance of AD) may provide the necessary insights into disease 

processes to lead to the development of effective therapeutics. We recently analyzed AD 

datasets to determine how much genetic variance remained to be identified (Ridge, et al., 

2013b). In this manuscript we report the results from an expanded analysis that improves our 

previous study in two ways. First, we used a more densely imputed dataset, and second, we 

incorporated common variants recently identified by GWAS and rare variants into the study 

design. We determined that approximately half of the estimated genetic variance of AD is 

unexplained by variants known to effect risk for Alzheimer’s disease, and that remaining 

important variation is located throughout the genome.

 2. Methods

 2.1 Dataset

In this work we used a SNP dataset from the Alzheimer’s Disease Genetics Consortium 

(ADGC). This dataset is the combination of 30 separate studies imputed by Naj et al. (Naj, 

et al., 2011) using the 1000 Genomes Project as reference panel (Genomes Project, et al., 

2012). We combined and prepared the data by the following: 1) converted IMPUTE2/

SNPTEST (Howie, et al., 2011,Howie, et al., 2009) format files to PLINK (Purcell, et al., 

2007) allele calls/best guess genotype (binary) format (uncertainty cutoff 0.1), 2) filtered 

SNPs imputed with low information (info<0.5) from each dataset, 3) used the default 

PLINK 1.9 (Purcell, et al., 2007) uncertainty cutoff of 0.1 (i.e. any imputed call with 

uncertainty greater than 0.1 was treated as missing), 4) removed duplicate SNPs from each 

dataset, 5) ensured each SNP had the same strand orientation and genomic coordinates in 

each dataset, 6) merged the datasets, 7) filtered the datasets using a minor allele frequency of 

0.01 to retain common SNPs, and 8) used directly genotyped (not imputed) SNPs for 

identifying cryptic relatedness and for calculating PCs to account for population structure. 

There were 17,146 directly genotyped SNPs in common across all 30 studies, none of which 

were symmetrical. We used PLINK to LD-prune these SNPs using the following settings: 

maf 0.01, geno 0.02, indep-pairwise 1500 150 0.2. These steps resulted in an LD-pruned, 

directly observed and non-ambiguous dataset with 14,675 SNPs. Finally, we used KING-

Robust to identify the 28,730 participants who were no more related than 3rd degree 

relatives (kinship coefficient 0.0442) and EIGENSTRAT (Price, et al., 2006) to calculate the 

first 10 principal components (PC) for the 28,730 unrelated participants using the QC’d, LD-

pruned directly observed set of SNPs common to all 32 studies. In summary, individuals 
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more closely related than third cousins were removed, 10 PCs calculated using 

EIGENSTRAT (Price, et al., 2006), and SNPs with a minor allele frequency (MAF) less 

than 0.01 were removed.

The initial dataset contained 28,730 samples. In order to perform these analyses, we applied 

additional strict filters, specific to this research, to this dataset. First, we removed any 

individuals missing case/control status. Next, we removed any individuals missing one or 

more covariates (age, sex, PCs). Finally, we removed any individuals missing data for any of 

the 21 known Alzheimer’s disease GWAS SNPs (Table 1, Supplementary Tables 1 and 2) or 

APOE. APOE ε2 and ε4 alleles were treated as a special case. The ε2 and ε4 alleles were 

directly genotyped for most of the individuals in the dataset, whereas others had imputed 

genotypes, and many had both. For these two alleles, if an individual was directly genotyped 

for these alleles, or if there was disagreement between the APOE genotypes by imputation 

and direct genotyping, we used the genotypes from direct genotyping. However, if only 

imputed genotypes were available for an individual then we used imputed genotypes. In 

summary, we removed any individual who was missing case/control status, age, sex, 

principal components, APOE genotype for the ε2 or ε4 allele, or genotype for any of the 21 

known AD genes listed in Table 1, which resulted in 19,031 samples being removed. The 

final filtered dataset consisted of 9,699 individuals and 8,712,879 SNPs (Table 2).

We created several additional datasets using PLINK (Purcell, et al., 2007), and covariate 

files using custom scripts, based on different partitions from the original filtered dataset 

described above. First, we created a dataset containing only the two APOE SNPs. Second, 

we created a dataset with only SNPs from genomic regions of known AD SNPs (Table 1). 

For the purposes of this research, we defined a genomic region as the 50 kilobases upstream 

and downstream of each gene named in the primary publication reporting the association of 

different GWAS SNPs. For two different SNPs, rs9271192 and rs10498633, the original 

publication named two genes, HLA-DRB5 and HLA-DRB1, and SLC24A4 and RIN3, 

respectively. For each of these SNPs, we included both named genes. In addition to GWAS 

SNPs, we included genes that contain rare variants that affect risk for AD and APP, PSEN1, 

and PSEN2, which contain functional variants that cause early-onset AD and possibly 

harbor additional variants that affect risk for late-onset AD (Table 1). Finally, we counted the 

number of minor alleles of known GWAS SNPs for each individual and included the 

genotype counts in covariate files to be used when we wanted to control for known GWAS 

SNPs. So an individual could have a count of 0 (indicating the individual is homozygous for 

the major allele), 1 (indicating the individual is heterozygous for the minor allele), or 2 

(indicating the individual is homozygous for the minor allele).

 2.2 Genetic Analyses

We used Genome-wide Complex Trait Analysis (GCTA) (Yang, et al., 2011) to estimate 

phenotypic and genetic variances for different partitions of SNPs as described above. For 

each analysis, we controlled for age, gender, and PCs. For some of the analyses we also 

controlled for dosage of known AD GWAS SNPs (as described in the Results). For all 

analyses, we used a population disease prevalence of 0.13 (Association, 2012).
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 3. Results

We estimated the proportion of the total phenotypic variance explained by all SNPs in the 

combined dataset to be 53.24%. In order to determine the phenotypic variance explained by 

known GWAS SNPs with the strongest evidence for association with AD and the two APOE 

alleles, we controlled for each of these SNPs, and created an additional dataset with only the 

APOE alleles. Based on these analyses, we estimated the phenotypic variance explained by 

known GWAS SNPs to be 16%, of which 13% was explained by APOE, and almost 3% 

explained by other genes.

A total of 37% of phenotypic variance is tagged by SNPs in our dataset, but unexplained by 

known AD SNPs. To determine whether the unexplained phenotypic variance tagged by 

genetics is located adjacent to known AD SNPs or throughout the genome, we created an 

additional dataset with all SNPs located in regions of known AD SNPs (Table 1). We 

defined a region as 50 kilobases upstream and downstream of the named GWAS gene, or the 

gene harboring a rare variant. We found that 15% and 22% of phenotypic variance tagged by 

known disease SNPs is located in regions adjacent to SNPs that affect risk for AD, and 

outside these regions, respectively. In summary, of the remaining phenotypic variance that 

can be explained unknown SNPs, approximately 41% is located adjacent to known AD 

SNPs, and 59% in other genomic regions. Results are summarized in Table 3.

 4. Discussion

Using data from 9,699 individuals and 8,712,879 SNPs we have carefully assessed the 

genetic variance for AD and the proportion of that variance that is accounted for by known 

markers and genes. Our results improve over previous studies in several ways. First, we have 

more than four times as many SNPs as the largest previous study (8.7 million vs. 2 million; 

(Ridge, et al., 2013b)). Second, we have been able to incorporate evaluation of additional 

recently discovered AD risk loci. Third, we have evaluated not just known markers, but gene 

regions associated with known markers to test the hypothesis that additional, possibly rare 

markers in regions of GWAS identified risk variants also impact risk for disease (Singleton 

and Hardy, 2011).

We report much higher genetic variance explained than previous reports. This is likely due to 

the significant increase in markers used in our analysis, including many more rare variants 

than previous work. Our estimate of the variance explained by APOE haplotypes is not 

significantly different from our previous report (p=0.17; 13.42% and 5.92%, respectively) 

(Ridge, et al., 2013b). However, inclusion of the recently reported markers from the IGAP 

GWAS (Lambert, et al., 2013) and rare variants discovered using other approaches has, as 

expected, accounted for a significant increase in variance explained by known markers 

(p=0.01; 16.3% compared to 7.78%) (Ridge, et al., 2013b).

By evaluating all SNPs in the regions surrounding known AD variants we have evaluated the 

hypothesis of the existence of pleomorphic risk loci proposed by Singleton and Hardy in 

2011 (Singleton and Hardy, 2011). Such loci harbor both common and rare variants that alter 

risk for common disease. Our results clearly demonstrate that variation in the regions 
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surrounding known AD variants, but not including known risk variants, accounts for 29% of 

all genetic variance in AD, and 41% of remaining unexplained genetic variance. This 

suggests that variants in these known AD risk regions, which are not detectable with the 

study designs that have been applied to date, contribute significantly to variance in AD risk.

 4.1 Conclusions

In summary, the results in Table 3 provide a clear assessment of our progress in 

understanding genetic variance in AD. The majority (69%) of genetic variance remains 

unexplained by known AD risk variants. Much of the remaining variance is accounted for by 

genetic variation near already identified AD risk variants, and other important genetic 

regions remain to be discovered. As we have discussed previously (Ridge, et al., 2013b) 

these are likely to be rare variants of varying effects and may also include gene*gene 

interactions. Novel approaches to leveraging whole genome and exome sequences in 

families (Cruchaga, et al., 2014, Guerreiro, et al., 2012, Kauwe, et al., 2013), or careful 

identification of candidate genes from other diseases (Guerreiro, et al., 2012) or biological 

work (Lu, et al., 2014), will also facilitate identification of additional variants. Such work is 

vital to the development of therapeutics and each gene represents a potential target for 

development.
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• The majority of Alzheimer’s disease is unexplained by known 

Alzheimer’s disease SNPs

• 41% of the remaining unexplained genetic variance is explained by 

SNPs located near known SNPs

• Known Alzheimer’s disease markers only explain 31% of genetic 

variance
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Table 1

Genes and/or SNPs that affect risk for Alzheimer’s disease.

Gene Disease SNP Effect of Minor Allele

GWAS SNPs with Strongest Evidence:

BIN1 (Biffi, et al., 2010,Naj, et al., 2011) rs744373 Risk

CLU (Lambert, et al., 2009) rs11136000 Protective

ABCA7 (Hollingworth, et al., 2011) rs3764650 Risk

CR1 (Lambert, et al., 2009) rs3818361 Risk

PICALM (Corneveaux, et al., 2010, Naj, et al., 2011) rs3851179 Protective

MS4A6A (Hollingworth, et al., 2011, Naj, et al., 2011) rs610932 Protective

CD33 (Hollingworth, et al., 2011, Naj, et al., 2011) rs3865444 Protective

MS4A4E (Hollingworth, et al., 2011, Naj, et al., 2011) rs670139 Risk

CD2AP (Hollingworth, et al., 2011, Naj, et al., 2011) rs9349407 Risk

HLA-DRB5/HLA-DRB1 (Lambert, et al., 2013) rs9271192 Risk

PTK2B (Lambert, et al., 2013) rs28834970 Risk

SORL1 (Lambert, et al., 2013) rs11218343 Protective

SLC24A4/RIN3 (Lambert, et al., 2013) rs10498633 Protective

DSG2 (Lambert, et al., 2013) rs8093731 Protective

INPP5D (Lambert, et al., 2013) rs35349669 Risk

MEF2C (Lambert, et al., 2013) rs190982 Protective

NME8 (Lambert, et al., 2013) rs2718058 Protective

ZCWPW1 (Lambert, et al., 2013) rs1476679 Protective

CELF1 (Lambert, et al., 2013) rs10838725 Risk

FERMT2 (Lambert, et al., 2013) rs17125944 Risk

CASS4 (Lambert, et al., 2013) rs7274581 Protective

Linkage Studies (Common SNPs only):

APOE (ε2 and ε4) (Corder, et al., 1994, Pericak-Vance, et al., 1991, Saunders, et al., 1993) rs7412/rs429358 Protective/Risk

Rare and Other SNPs:

APP (Goate, et al., 1991, Jonsson, et al., 2012) Multiple Both

PSEN1 (Sherrington, et al., 1995) Multiple Risk

PSEN2 (Levy-Lahad, et al., 1995) Multiple Risk

EPHA1 (Hollingworth, et al., 2011, Naj, et al., 2011) rs11771145 Protective

TREM2 (Guerreiro, et al., 2012) rs75932628 Risk

UNC5C (Wetzel-Smith, et al., 2014) rs137875858 Risk

GWAS SNPs in the top section of the table are described as “known GWAS SNPs” in the text. All SNPs in the table were included in analyses of 
phenotypic variance in regions of known AD SNPs.

Neurobiol Aging. Author manuscript; available in PMC 2017 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ridge et al. Page 15

Table 2

Demographics of the dataset used in this research.

Mean Age Cases Controls Totals

Male 77.79 1605 2358 3963

Female 77.57 2272 3464 5736

Totals 77.70 3877 5822 9699
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