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Distributed Lag Interaction Models with Two Pollutants

Yin-Hsiu Chen, Bhramar Mukherjee, and Veronica J. Berrocal
Department of Biostatistics, University of Michigan

Summary.

Distributed lag models (DLMs) have been widely used in environmental epidemiology to quantify 

the lagged effects of air pollution on a health outcome of interest such as mortality and morbidity. 

Most previous DLM approaches only consider one pollutant at a time. In this article, we propose 

distributed lag interaction model (DLIM) to characterize the joint lagged effect of two pollutants. 

One natural way to model the interaction surface is by assuming that the underlying basis 

functions are tensor products of the basis functions that generate the main-effect distributed lag 

functions. We extend Tukey’s one-degree-of-freedom interaction structure to the two-dimensional 

DLM context. We also consider shrinkage versions of the two to allow departure from the 

specified Tukey’s interaction structure and achieve bias-variance tradeoff. We derive the marginal 

lag effects of one pollutant when the other pollutant is fixed at certain quantiles. In a simulation 

study, we show that the shrinkage methods have better average performance in terms of mean 

squared error (MSE) across different scenarios. We illustrate the proposed methods by using the 

National Morbidity, Mortality, and Air Pollution Study (NMMAPS) data to model the joint effects 

of PM10 and O3 on mortality count in Chicago, Illinois, from 1987 to 2000.

Keywords

Shrinkage; Time series; Tukey’s single df test for non-additivity; Two-dimensional distributed lag 
interaction models

1. Introduction

The association between air pollution and adverse health outcomes has been an important 

public health concern and a topic of extensive research in environmental epidemiology 

(Pope and Dockery, 2006). The short-term, or acute effects, of air pollution exposure on 

health outcomes, such as mortality and cardiovascular events, have been widely studied 

(Pope et al., 1995; Dominici et al., 2006). However, most studies so far have considered 

adverse health effects of exposure to a single pollutant (Dominici et al., 2010). When 

ambient concentration data are available for multiple pollutants, it is standard practice to 

analyze their effects one at a time by fitting multiple single pollutant models. However, the 

health burden from simultaneous exposure to multiple pollutants may differ from the sum of 

individual effects and the mode of action can be synergistic or antagonistic (Mauderly, 

1993). A multi-pollutant approach that considers the joint effects of chemical mixtures of 

exposures is likely to yield more accurate assessment of health risk (Billionnet et al., 2012). 

A variety of approaches have been proposed to estimate the health effects of multiple 

pollutants (Sun et al., 2013), including least absolute shrinkage and selection operator 
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(LASSO) (Tibshirani, 1996), classification and regression tree (CART) (Hu et al., 2008), 

Bayesian kernel machine regression (BKMR) (Bobb et al., 2014). However, very few 

methods so far consider the problem of capturing the lagged effect of two pollutants and 

their potential interactions over a biologically meaningful time period. Single-day pollution 

measures might underestimate risk when there is a cumulative effect of air pollution over a 

time window preceding a health event (Roberts, 2005).

Distributed lag models (DLMs) are a class of models often used to simultaneously include 

lagged measures of concentration levels of an ambient air pollutant. Parametric DLM 

assumes that the lag effect coefficients are a function of the lags, such as lower-degree 

polynomials (Almon, 1965). Generalized additive DLM (Zanobetti et al., 2000) uses 

penalized regression splines (Marx and Eilers, 1998) to represent the distributed lag (DL) 

function in a more flexible manner. Bayesian DLM (BDLM) (Welty et al., 2009) was 

proposed to incorporate prior knowledge about the DL function through specification of the 

prior variance-covariance matrix of lag coefficients. Most of the discussion regarding DLM 

has been in the context of a single pollutant and only few distributed lag interaction models 

(DLIMs) with two pollutants have been attempted. Extensions to higher dimensions include 

bivariate constrained DLIM (Muggeo, 2007) (CDLIM) and high degree DLM (HDDLM) 

(Heaton and Peng, 2014). The CDLIM paper jointly models the temperature and air 

particular matter with aerodynamic diameter less than 10 microns (PM10) main effect in the 

same way as a parametric DLM with two separate sets of basis functions. Tensor products of 

the two are employed to characterize the joint DL surface for the temperature-PM10 

interaction. The HDDLM paper extended the DLM framework to incorporate higher-order 

interactions between lagged predictors corresponding to a single exposure, using a Gaussian 

process prior as a dimension reduction tool.

Tukey’s one degree-of-freedom test for non-additivity (Tukey, 1949) is a parsimonious 

approach to model the interaction term as a scaled product of its corresponding main effects 

(Chatterjee et al., 2006; Maity et al., 2009). In this paper, we extend Tukey’s model to 

DLIMs where the interaction is parameterized as a scaled product of two DLM main effects. 

We will consider estimation and inference under such an extension in both frequentist and 

Bayesian framework. We also propose a Bayesian constrained DLIM (BCDLIM) approach 

to characterize the joint effect of two pollutants. Instead of shrinking all main effects and 

interaction effects toward zero, we set a pre-specified parametric CDLIM as the shrinkage 

target in this approach. BCDLIM is able to strike a desirable bias-variance tradeoff in a data-

adaptive way.

The rest of the paper is organized as follows. In Section 2, we first review the existing 

methods, including (1) unconstrained DLIM (UDLIM) and (2) constrained DLIM (CDLIM). 

We then introduce the proposed new methods (1) Tukey’s DLIM (TDLIM), (2) Bayesian 

Tukey’s DLIM (BTDLIM), and (3) Bayesian constrained DLIM (BCDLIM). In Section 3, 

we conduct a simulation study to evaluate the operating characteristics of the five different 

methods. In Section 4, we illustrate the methods by analyzing data from the National, 

Morbidity, Mortality, and Air Pollution Study (NMMAPS) to estimate the lagged effects of 

particulate matter with diameter less than 10 microns (PM10) and ozone (O3) concentration 
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on mortality in Chicago, Illinois, from 1987 to 2000. We conclude with a discussion in 

Section 5.

There are several novel features of this article. First, we extend DLM to DLIM to handle two 

pollutants. We attempt to characterize the changes in a true DL function corresponding to 

one exposure when the other is fixed at different values. Extending the well-known Tukey’s 

model for interaction to DLIM is another innovation. Finally, using data adaptive shrinkage 

to allow for an unconstrained interaction model to shrink towards a parametric DLIM 

structure is a new contribution to the literature. More broadly, the paper posits new ideas for 

thinking about interaction structures between a pair of time-series predictors with potential 

lagged effects on an outcome. This approach bears relevance beyond air pollution 

epidemiology.

2. Methods

Let x1t denote the first exposure measured at time t (e.g. PM10), x2t denote the second 

exposure measured at time t (e.g. O3), yt denote the response measured at time t (e.g. daily 

mortality count), and zt denote the vector of covariates at time t, such as temperature and 

humidity, in addition to a constant 1 corresponding to the intercept parameter. Let T be the 

length of the time series, L1 and L2 be the maximum number of lags considered for the first 

and second exposure, respectively. In addition, we denote with X1t = x1t, ⋯, x1, t − L1

⊤
, 

X2t = x2t, ⋯, x2, t − L2

⊤
, the vector of lagged exposure and with XIt = X1t ⊗ X2t, where ⊗ is 

the Kronecker product, the (L1 + 1)(L2 + 1) elements that refer to the two-way interaction 

terms between the two exposures. The log-linear Poisson DLIM with all pairwise 

interactions between lagged measurements of the two exposures is described as

yt zt, X1t, X2t, XIt Poisson μt (1)

log μt = zt
⊤α + X1t

⊤ β1 + X2t
⊤ β2 + XIt

⊤γ

= zt
⊤α + ∑

i = 0

L1
x1, t − iβ1i + ∑

j = 0

L2
x2, t − jβ2 j + ∑

i = 0

L1
∑
j = 0

L2
γi jx1, t − ix2, t − j

(2)

where α represents the effect of covariates, β1 = β10, ⋯, β1L1

⊤
 is the (L1+1)-vector of 

lagged main effects of the first exposure, β2 = β20, ⋯, β2L2

⊤
 is the (L2 + 1)-vector of lagged 

main effects of the second exposure, and γ = vec Γ = γ00, γ01, ⋯, γL1L2

⊤
 where Γ is the (L1 

+ 1) × (L2 + 1) matrix of interaction effects. Our primary goal is to estimate the main effects 
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β1 and β2 and the interaction effects γ. For simplicity, we leave out zt
⊤α in subsequent 

presentations.

Remark: (1) and (2) model the conditional mean response at a time point t given the current 

and past measurements of the two exposures. Non-null interaction effect in (2) implies that 

the lagged effects of the first exposure depend on the level of the second exposure, and vice 

versa. It is noted that the interaction effects in (2) are not symmetric, namely γij ≠ γji for i ≠ 

j. A natural quantity of interest is the marginal effect of one exposure at a certain lag given 

the other exposure fixed at a certain level such as median or a specified quantile. 

Algebraically, if we fix the second exposure at x2* across all lags, the marginal lag effects of 

the first exposure at lag i can be written as β1i* = β1i + x2*∑ j = 0
L2 γi j for i = 0, ⋯·, L1. The 

vector representation is

β1
m x2* = β1 + x2* ⋅ Γ1 (3)

where 1 is a vector of 1s. Similarly, if we fix the first exposure at x1*, the marginal lag effects 

of the second exposure at lag j can be written as β2 j* = β2 j + x1*∑i = 0
L1 γi j for j = 0, ⋯·, L2 

with vector representation βm
2 x1* = β2 + x1* ⋅ Γ⊤1. Throughout the rest of this paper, we 

will summarize the estimates of β1, β2, and γ = vec(Γ) based on the above expressions.

2.1. Existing Methods

2.1.1. Unconstrained Distributed Lag Interaction Model (UDLIM)—UDLIM does 

not impose any constraints on coefficients ψ = β1
⊤, β2

⊤, γ⊤ ⊤
 in (2). The UDLIM coefficients 

can be simply estimated via maximum likelihood estimation (MLE).

ψUDLIM = arg max
ψ

∑
t = 1

T
[ytXt

⊤ψ − e
Xt

⊤ψ
− log yt! ],

where Xt = X1t
⊤ , X2t

⊤ , XIt
⊤ ⊤

. Standard frequentist inference based on large sample theory of 

MLEs can be drawn subsequently. However, due to the collinearity between serially 

measured exposure levels and the large number of parameters (i.e. L1+L2+2 main effect 

terms and (L1+1)(L2+1) interaction terms), the lagged effect estimates may be less efficient 

with inflated variance and the estimated DL functions could be highly variable.

2.1.2. Constrained Distributed Lag Interaction Model (CDLIM)—Parametric 

DLIM imposes a smooth structure on lagged effect coefficients by assuming each lag 

coefficient to be a linear combination of known basis functions measured at its lag index. 

CDLIM extends this configuration to two-dimensional scenarios. Assume B11 ⋅ , ⋯, B1p1
⋅

Chen et al. Page 4

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are the p1 basis functions applied to β1 and B21 ⋅ , ⋯, B2p2
⋅  are the p2 basis functions 

applied to β2. The main effects coefficients are assumed to be of the form 

β1i = ∑m = 1
p1 B1m i θ1m for i = 0, ⋯, L1 and β2 j = ∑n = 1

p2 B2n j θ2n for j = 0, ⋯, L1 where 

{β1i} and {β2j} are elements of β1 and β2, respectively, and {θ1m } and {θ2n} are free 

parameters to be estimated. In order to smooth the interaction surface, Muggeo (2007) 

utilizes tensor products of marginal basis functions. The element corresponding to the 

interaction between x1,t−i and x2,t−j can be expressed as 

γi j = ∑m = 1
p1 ∑n = 1

p2 B1m i B2n j θImn.

Define C1 as a (L1 + 1) × p1 transformation matrix (Gasparrini et al., 2010) where the 

element (i+1, m) is B1m(i) and similarly, define C2 as a (L2+1)×p2 transformation matrix 

where the element (j+1, n) is B2n(j). Denote θ1 = θ11, ⋯, θ1p1
, θ2 = θ21, ⋯, θ2p2

, and 

θI = θI11, θI12, ⋯, θI p1p2
 the CDLIM coefficients can be written in terms of the free 

parameters to be estimated as

β1 = C1θ1, β2 = C2θ2, γ = C1 ⊗ C2 θI . (4)

The free parameters θ1, θ2, and θI can be obtained by maximizing the log likelihood 

function

∑
t = 1

T
[yt[W1t

⊤θ1 + W2t
⊤θ2 + WIt

⊤θI]⊤ − e
W1t

⊤θ1 + W2t
⊤θ2 + WIt

⊤θI − log yt! ]

where W1t = C1
⊤X1t, W2t = C2

⊤X2t, and WIt = C1 ⊗ C2
⊤XIt. Let Θ = θ1

⊤, θ2
⊤, θI

⊤, ⊤
, a vector 

of length p1 + p2 + p1p2, and C = diag[C1, C2, C1 ⊗ C2]. The CDLIM estimator can be 

written as ψCDLIM = CΘ and Cov ψCDLIM = CCov Θ C⊤.

2.2. Proposed Methods

2.2.1. Tukey’s Distributed Lag Interaction Model (TDLIM)—The underlying 

foundation of Tukey’s model for interaction is a latent variable framework (Chatterjee et al., 

2006). Suppose we define a surrogate variable for each exposure that aggregates the 

temporal lagged effect of the exposure through weighted sum at time t. Namely,

s1t = ∑
i = 0

L1
w1ix1, t − i, s2t = ∑

i = 0

L1
w2 jx2, t − j . (5)

If we assume that the association between yt, X1t and X2t is through the interaction model
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log E[yt] = μ0 + μ1s1t + μ2s2t + μIs1ts2t . (6)

Substituting (5) in (6), we can obtain

log E[yt] = μ0 + ∑
i = 0

L1
μ1w1ix1, t − i + ∑

j = 0

L2
μ2w2 jx2, t − j + ∑

i = 0

L1
∑

j = 0

L2
μIw1iw2 jx1, t − ix2, t − j

= μ0 + ∑
i = 0

L1
β1x1, t − i + ∑

j = 0

L2
β2 jx2, t − j + ∑

i = 0

L1
∑

j = 0

L2
γi jx1, t − ix2, t − j

where β1i = μ1w1i, β2j = μ2w2j, and ij = μIw1iw2j. Note that we can express the interaction 

coefficient as γi j = β1iβ2 j
μI

μ1μ2
, a scaled product of the corresponding main-effect 

coefficients. This motivates the use of Tukey’s style interaction in our context. The surrogate 

variables s1t and s2t represent summary exposures over all the lags of the two exposures, 

respectively. Coefficients μ0, μ1, μ2, and μI characterize the overall combined effects of the 

two exposures in association with outcome measurement at lag 0. The lag measurements of 

the two exposures interact through the two surrogate variables in the simple pairwise 

interaction model described in (6). Estimating the lagged effects in this model is the same as 

estimating the relative weights to combine the exposure lagged measurements into a 

summary surrogate variable. To extend the classical Tukey interaction structure to DLIMs, 

we now assume that the main effects are specified in the same way as in CDLIM with 

constrained parameterization such that β1 = C1θ1 and β2 = C2θ2 as in (4). In matrix form, 

the interaction coefficients can be expressed under Tukey’s model as

γ = η ⋅ β1 ⊗ β2 = C1 ⊗ C2 η θ1 ⊗ θ2 .

Note that the interaction structure corresponding to TDLIM is a special case of CDLIM with 

θI = η(θ1 ⊗ θ2). The number of parameters used for modeling the interaction effect reduces 

from p1p2 to 1. The model without interaction is nested within the Tukey’s structure with the 

scalar parameter set to zero, assuming non-null main effects. The free parameters θ1, θ2, and 

η can be estimated by maximizing the log likelihood function

∑
t = 1

T
yt[W1t

⊤θ1 + W2t
⊤θ2 + η ⋅ WIt

⊤ θ1 ⊗ θ2 ] − e
W1t

⊤θ1 + W2t
⊤θ2 + η ⋅ WIt

⊤ θ1 ⊗ θ2 − log yt! . (7)

TDLIM is a nonlinear regression model where the objective function (7) involves products 

of the parameters. Linear approximation using first-order Taylor series expansion can be 

applied for parameter estimation and statistical inference. However, empirically, we found 

that the approximation accuracy using first-order approximation is poor and the asymptotic 

variance is far from the empirical variance. We therefore consider an iterative approach for 
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estimation (details provided in Supplementary Appendix A.1). The value of the objective 

function decreases at each step and the solution is guaranteed to converge. We recognize that 

the likelihood function (7) is non-convex in terms of the parameters so the convergence to a 

global maximum is not guaranteed by the iterative procedure. However, in our numerical 

studies, when the main effects are bounded away from zero, the choice of various initial 

values did not affect the final parameter estimates. When at least one of the main effects are 

close to the null value, the parameter η is not identifiable and estimation instability occurs in 

these cases. For statistical inference, we consider a standard vanilla bootstrap by resampling 

observations with replacement to obtain standard errors and confidence intervals.

2.2.2. Bayesian Tukey’s Distributed Lag Interaction Model (BTDLIM)—In the 

proposed BTDLIM, the main effects are parametrically specified in the same way as in (4) 

and the interaction effects are modelled in the spirit of TDLIM. The distinction from the 

presentation in the previous section is that BTDLIM allows departure from Tukey’s 

interaction structure in a data-adaptive way. BTDLIM assumes that the scalar parameter can 

vary across different interaction terms through the following prior specification

γ = η ⊙ β1 ⊗ β2 , η N 0, σ2∑ ω

where η = η00, η01, ⋯, ηL1L2

⊤
 is the vector of scalars, ⊙ is the operator denoting element-

wise multiplication, σ2 is the common variance, and Σ is the correlation matrix 

parameterized by a single parameter ω > 0. The correlation between ηij and ηi*j* is given by 

ω i − i* 2 + j − j* 2
 assuming exponential structure. The prior on η relaxes the strict 

specification of Tukey’s interaction structure. The amount of departure from Tukey’s model 

is controlled by the parameter ω. At one extreme, when ω = 0, no structure is imposed on 

the interaction effects. The interaction coefficients are simply a reparametrization of the 

UDLIM coefficients in (2). At the other extreme when ω = 1, the model degenerates to 

TDLIM and enforces the interaction coefficients to follow the Tukey’s structure exactly. 

When ω approaches 1, the correlation between neighboring coefficients is larger, resulting in 

a smoother interaction surface.

To complete the model specifications, we assign θ1 ~ N(0, 1002I) and θ2 ~ N(0, 1002I) as 

vague priors for the main effects coefficients. We assume a non-informative prior (Gelman et 

al., 2006) on the variance parameter σ2 ~ IG(a = 0.001, b = 0.001) where a and b are the 

shape and scale parameters of the Inverse-Gamma (IG) distribution. To alleviate 

computational burden and keep the prior uninformative, we let ω have a discrete uniform 

prior on {0.1, 0.2, ⋯, 1}. The marginal posterior density of β1, β2, and γ is not available in 

closed form. We use Metropolis-Hastings algorithm within a Gibbs sampler to approximate 

the posterior distribution and obtain the BTDLIM estimator as the posterior mean with the 

corresponding highest posterior density (HPD) interval as the corresponding credible 

interval. The full conditional distributions are presented in Supplementary Appendix A.2.
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2.2.3. Bayesian Constrained Distributed Lag Interaction Model (BCDLIM)—
CDLIM is a fully parametric model. The dimension reduction from (L1+1)+(L2+1)+(L1+1)

(L2+1) parameters to p1 + p2 + p1p2 parameters results in efficiency gain in estimation. 

However, the benefit can be counterbalanced by potential bias when the underlying structure 

for the DL functions/surface is mis-specified. We propose a Bayesian constrained DLIM 

(BCDLIM) to shrink UDLIM estimates in a smooth manner toward a pre-specified CDLIM.

Let B11
+ ⋅ , ⋯, B1, L1 + 1

+ ⋅  be L1 + 1 basis functions for the first exposure. For example, B-

spline basis functions of degree 3 (cubic) with intercept and L1 − 3 equispaced internal knots 

positioned between 0 and L1. Note that the basis functions describe the non-linearity in the 

DL function, but the exposure effect at each lag is still assumed to be linear. Let T1 be the 

corresponding (L1+1)×(L1+1) transformation matrix. Let T2 denote the square 

transformation matrix with dimension (L2 + 1) × (L2 + 1), constructed in a similar manner 

for the second exposure, and let the transformation matrix for the interaction parameter be TI 

= (T1 ⊗ T2) with dimension (L1 + 1)(L2 + 1) × (L1 + 1)(L2 + 1). If we apply the 

transformation operators T1, T2, and TI to CDLIM, the resulting estimator would be 

identical to UDLIM estimator since a full-rank transformation on the coefficients does not 

change the model fit. However, if we imposed shrinkage on the coefficients using a L2 

penalty, the CDLIM estimator and UDLIM estimators would be different since the shrinkage 

is employed in different parameter spaces. The UDLIM estimator can be viewed as choosing 

B1m
+ i = I m = i + 1  for m = 1, ⋯·, L1 + 1 and B2n

+ j = I n = j + 1  for n = 1, ⋯·, L2 + 1, 

where I(·) is an indicator function, corresponding to T1 = I and T2 = I. Although the two sets 

of estimates share the same shrinkage target (i.e. the zero line), the solution paths are 

different. If the basis functions selected for T1 and T2 are smooth, CDLIM with shrinkage 

leads to smooth estimates.

Instead of shrinking the model coefficients toward 0, we consider shrinking them to a non-

null target, determined by the transformation matrices C1, C2, and CI = (C1 ⊗ C2) for 

CDLIM defined in (4). Without loss of generality, we only describe how to construct the 

non-null shrinkage target for the first exposure. We first separate T1 into two parts – C1 and 

C1
c where C1

⊤C1
c = 0. We make use of this orthogonal decomposition to obtain C1

c whose 

columns span the complementary column space of C1. C1 and C1
c define the decomposition 

of the transformations corresponding to shrinkage toward a pre-specified target and 

shrinkage toward 0, respectively. The orthogonal projection of T1 onto the complementary 

column space of C1 is given by P1 = [I − C1(C1
⊤C1)−1

C1
⊤]T1. Using singular value 

decomposition (SVD), we can write P1 = U1D1V1
⊤ where U1 contains the columns of left-

singular vectors, D1 is a diagonal matrix with eigenvalues of P1, and V1 contains the 

columns of right-singular vectors. Since the rank of P1 is L1 + 1 − p1, we can write U1 = 

[U11 U12] where U11 is a (L1 + 1) × (L1 + 1 − p1) matrix with columns of singular vectors 

corresponding to nonzero eigenvalues in D1, while U12 is a (L1 + 1) × p1 matrix with 

columns of singular vectors corresponding to the eigenvalues of 0. We consider C1
c = U11. It 

is easy to show that C1
⊤C1

c = 0 and the p1 columns of C1 and the L1 + 1 − p1 columns of C1
c
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span the entire ℝ
L1 + 1

. In other words, shrinkage through the columns of C1
c defines CDLIM 

estimate as the shrinkage target. The complementary matrices C2
c and CI

c for the second 

exposure and interaction can be constructed using C2, T2 and CI, TI, respectively, in a 

similar way.

The likelihood corresponding to the above specification is given by

Y β1, β2, γ Poisson e
X1β1 + X2β2 + XIγ

where Y = (y1, ⋯·, yT)⊤, X1 = (X11, ⋯, X1T)⊤, X2 = (X21, ⋯, X2T)⊤, and XI = (XI1, ⋯, 

XIT)⊤. The prior specifications corresponding to the BCDLIM parameters are

β1 = C1θ1 + C1
cθ1

c, β2 = C2θ2 + C2
cθ2

c, γ = CIθI + CI
cθI

c

θ1 N 0, 1002I , θ2 N 0, 1002I , θI N 0, 1002I

θ1
c N 0, σ1

2I , θ2
c N 0, σ2

2I , θI
c N 0, σI

2I

where θ1, θ2, and θI are the coefficients without shrinkage and θ1
c, θ2

c, and θI
c are the 

coefficients to be shrunk toward 0. In other words, β1, β2, and γ, are shrunk toward C1θ1, 

C2θ2, and CIθI, respectively. To complete the model specification, we assign hyper-priors on 

the variance parameters as

σ1
2 IG a0, b0 , σ2

2 IG a0, b0 , σI
2 IG a0, b0 .

We fix a0 = b0 = 0.001 to assume a noninformative hyper-prior (Gelman et al., 2006). 

Metropolis Hastings algorithm within a Gibbs sampler can be used to approximate the 

posterior distribution of the model parameters. The full conditional distributions are 

provided in Supplementary Appendix A.3. The hyper-priors of BCDLIM can alternatively 

be viewed as penalty terms in penalized likelihood. The dual representation is presented in 

Supplementary Appendix A.4.

3. Simulation Study

We conducted a simulation study to compare the estimation performance of the five methods 

introduced in Section 2 under different settings. We implemented the three frequentist 

methods using the built-in R function glm and the two Bayesian methods by calling the 

software Just Another Gibbs Sampler (JAGS) using R package rjags (Lunn et al., 2009). The 
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average computation times for 1000 data sets under each method are provided in 

Supplementary Appendix A.5 Table 1. All simulations were performed in R version 3.3.1.

3.1. Simulation Settings

We generated two separate exposure time series (i = 1, 2) of length 1000 days with mean 3 

and first-order autocorrelation equal to 0.5 from the model xit = 0.5xit−1 + ϵit where ϵit ~ i.i.d 

N(0, 0.75) for i = 1, 2 and t = 1, ⋯·, 1000. We set L1 = L2 = 9 for both data generation and 

model fitting. The outcome yt is generated from a Poisson distribution with mean 

exp β0 + X1t
⊤ β1 + X2t

⊤ β2 + XIt
⊤γ  for t = 1, ⋯, 1000 where X1t, X2t, and XIt are defined as in 

Section 2. Let β0 = 3 and consider two DL functions for the main-effect coefficients β1 and 

β2 - (a) cubic and (b) a function with departure from cubic. We consider five different 

underlying true interaction structures for γ - (1) No interaction, (2) Tukey’s style interaction, 

(3) Kronecker product interaction, (4) Sparse interaction, and (5) Unstructured interaction. 

The exact specifications are available in Supplementary Appendix A.6. In total, nine 

simulation scenarios, including all combinations of the two main-effect coefficients (a-b) 

and five interaction-effect coefficients (1–5) except the combination of (b) and (3), are 

considered. Exclusion of the combination of (b) and (3) is due to the fact that the Kronecker 

product interaction cannot be constructed when the corresponding main effects are not fully 

parametric as their underlying basis functions are undefined. In all simulations, we assume 

the lag structure of CDLIM, TDLIM, BTDLIM, and BCDLIM to be a cubic polynomial in 

the lags for all model fitting purposes.

3.2. Evaluation Metrics

The marginal lagged effects of the first exposure defined in (3) depends on the level at which 

the second exposure is fixed. One way to eliminate the effect of the second exposure is to 

integrate it out. We consider to use finite Riemann sum to numerically approximate the 

integral given by β1* = ∫ β1* x2 dx2 ≈ 1
S ∑s = 1

S β1* x2
q s − 0.5 /S  where x2

q s − 0.5 /S  is the (s 

− 0.5)/S-th quantile of x2. The empirical bias and empirical relative efficiency of the above 

quantity with S = 20 are used to summarize the simulation results across different scenarios. 

The squared bias is computed as β1* − β1*
⊤

β1* − β1*  where β1* is the average of the estimates 

obtained from the 1000 simulated datasets. The empirical mean squared error (MSE) is 

computed as 1
1000 ∑ j = 1

1000 β1 j* − β1* 2
2. The relative efficiency is expressed with respect to the 

MSE of the UDLIM estimate, namely the MSE of UDLIM divided by the MSE of a certain 

method. We emphasize that the efficiency is defined defined through the MSE rather than 

the variance in this article. Because of the symmetry between x1 and x2, we only present 

results for the marginal lagged effects of x1.

3.3. Simulation Results

Results for the setting with main effects generated from a cubic DL function are summarized 

in Table 1. As we can observe in scenario (1), e.g. no interaction, all methods are more 

efficient than UDLIM with relative efficiency ranging from 6.27 to 19.24. The empirical 
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squared bias is minimal for UDLIM (0.02), CDLIM (0.00) and BCDLIM (0.00) and is 

moderately small for TDLIM (0.19) and BTDLIM (0.13). Null interaction is a special case 

of Tukey’s model with η = 0. Because TDLIM correctly specify the main effects and 

interaction effects with a smaller number of parameters, it achieves the highest efficiency 

(19.24). In scenario (2) where the non-null interaction effects are of Tukey’s form, all 

methods have similar, though slightly smaller, relative efficiency in comparison with 

scenario (1), ranging from 5.76 to 18.66. Again, TDLIM has the highest relative efficiency 

as expected. Scenario (3) represents the situation where the true interaction structure departs 

from Tukey’s form. We can see now that TDLIM (3.45) is less efficient than CDLIM (6.68) 

due to the bias introduced in estimating the interaction surface. However, TDLIM is still 

more efficient than UDLIM (1.00) and BTDLIM (2.77). CDLIM correctly specifies both 

main effects and interaction effects in this scenario and attains the highest efficiency.

Across scenarios (1)-(2), we note that the squared bias and relative efficiency of BTDLIM 

always fall between CDLIM and TDLIM, suggesting that BTDLIM successfully performs 

shrinkage and achieves a better average performance. In addition, we can observe that the 

BCDLIM (relative efficiency = 6.27, 5.76, 6.17) is slightly less efficient than CDLIM 

(relative efficiency = 6.82, 6.14, 6.68) across the three scenarios. The difference is due to the 

flexibility of BCDLIM that accounts for possible departure from Kronecker product type of 

interaction structure. Scenarios (4) and (5) are situations where UDLIM is the only method 

that can unbiasedly estimate the interaction surface. As expected, both CDLIM and TDLIM 

suffer from serious bias and the efficiency gains from dimension reduction diminish 

substantially. The class of interaction surfaces that CDLIM and TDLIM can describe is 

restricted. Note that all methods jointly estimate the main effects and interaction effects and 

thus mis-specifying the interaction effects could possibly distort the estimation of the main 

effects as they are not orthogonal. BCDLIM is less biased and more efficient than BTDLIM 

across the two scenarios. Across all scenarios when the main-effects are correctly specified, 

BCDLIM has the best average performance in terms of estimation efficiency.

We summarize the results where the main effects deviate from a cubic DL function in Table 

2. Both CDLIM and TDLIM are seriously biased, largely due to the mis-specification of the 

main-effect terms. These two methods are the least efficient. If we contrast scenarios (1) and 

(2), we can observe that misspecification of the main effects not only influences the 

estimation accuracy of the main-effect DL function, but also the interaction DL surface. 

BTDLIM is biased across the board as well, with squared bias ranging from 7.39 to 35.50, 

respectively. It is more efficient than UDLIM only in situations where there is no interaction. 

BCDLIM is slightly biased across different scenarios with squared bias ranging from 0.09 to 

0.52. The BCDLIM leads to gains in efficiency with reduced bias. The relative efficiencies 

are 3.25, 1.35, 1.78, and 1.34 across the four scenarios. Summarizing the results in Tables 1 

and 2, it is clear that the BCDLIM approach has desirable MSE properties across the 

scenarios, offering a robust and efficient solution to this problem.
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4. Application

4.1. Data Overview and Modeling

We apply the five methods compared in Section 3 to the National Morbidity, Mortality, and 

Air Pollution Study (NMMAPS) data. We jointly model daily time series of (1) PM10 and 

(2) O3 in association to all-cause nonaccidental mortality counts in Chicago, Illinois for the 

period between 1987 and 2000. Details with respect to data assembly are available at http://

www.ihapss.jhsph.edu/data/NMMAPS/. Zanobetti et al. (2000) indicated that it is unlikely 

that lags beyond two weeks would have substantial effect. We therefore set L1 = L2 = 14 for 

PM10 and O3, respectively.

Previous studies showed that it is crucial to account for meteorologic variables as potential 

confounders in the analysis of air pollution effects (Welty and Zeger, 2005). Dominici et al. 

(2005) and Dominici et al. (2007) highlight the need to carefully adjust for a broad set of 

confounders and explore their functional forms. We specify the adjustment covariates in the 

same way as Dominici et al. (2005) and focus on choice of the lag structure in our 

application. We acknowledge that there may be more optimal adjustment models when we 

introduce interaction effects. Let x1tk, x2tk, ytk, and ztk denote PM10 level, O3 level, 

mortality count, and vector of time-varying covariates, measured on day t for age group k for 

t = 1, …, 5114 and k = 1, 2, 3, respectively. The three age categories are “greater or equal to 

75 years old”, “between 65 and 74 years old”, and “less than 65 years old”. PM10 and O3 

were shared exposures across the three age groups so we have xℓtk ≡ xℓt for ℓ = 1, 2. For each 

group k, we assume that given PM10, O3, and other time-varying confounders, the mortality 

count in Chicago on day t is a Poisson random variable Ytk with mean μtk such that

log μtk = X1t
⊤ β1 + X2t

⊤ β2 + XIt
⊤γ + ztk

⊤α

= X1t
⊤ β1 + X2t

⊤ β2 + XIt
⊤γ + α0 + ∑

j = 1

2
α1 jI k = j

+ ∑
j = 1

6
α2 jI(dowt=j) + ns(tempt; 6 df, α3)

+ns(tempt
(3);6 df, α4) + ns(dptpt; 3 df, α5) + ns(dptpt

(3); 3 df, α6)

+ns(t; 98 df, α7) + ns(t; 14 df, α8)I(k = 1) + ns(t; 14 df, α9)I(k = 2)

where X1t = (x1t, …, x1,t−14)⊤, X2t = (x2t, …, x2,t−14)⊤, XIt = X1t ⊗ X2t, and ns(·) denotes 

the natural spline with specified degrees of freedom (df). Predictors dowt, tempt, tempt, dptpt, 

and dptpt represent the day of the week, current day’s temperature, adjusted average lag 1–3 

temperature, current day’s dewpoint temperature, and adjusted average lag 1–3 dewpoint 

temperatures for day t. The indicator variables allow different baseline mortality rates within 

each age group and within each day of the week. The smooth term for time (t) is to adjust 
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for long-term trends and seasonality and the choice of 98 df corresponds to 7 df per year 

over the 14-year time horizon. The last two product terms separate smooth functions of time 

with 2 df per year for each age group contrast. The primary goal is to estimate the 

coefficients β1, β2, and γ, while α is the set of covariate parameters. A four-degree 

polynomial DL function is applied to both β1 and β2 for CDLIM, TDLIM, BTDLIM, and 

BCDLIM. The analysis is performed in R version 3.3.1 and the source code is available at 

https://github.com/yinhsiuc/NMMAPS_DLIM. The computational times are provided in 

Supplementary Appendix A.4 Table 2 and the summary statistics corresponding to PM10 and 

O3 are provided in Supplementary Appendix A.7.

4.2. Estimating Marginal Distributed Lag Function

The quantity 100 exp[10(β1i + x2*∑n = 0
L2 γin)]  represents the percentage change in daily 

mortality associated with a 10 μg/m3 increase in PM10 at lag i when O3 is at x2* ppb. 

Similarly, the quantity 100 exp[10(β2 j + x1*∑m = 0
L1 γm j)]  represents the percentage change in 

daily mortality associated with 10 ppb increase in O3 at lag j when PM10 is set at x1* μg/m3. 

We present the marginal lagged effects of PM10 and O3 in Figures 1 and 2. If we look across 

the panels in Figure 1, we can observe that the fits of UDLIM is under-smoothed and fits of 

CDLIM and TDLIM are over-smoothed, while those of BTDLIM and BCDLIM are in 

between. When O3 is at the summer average level, the over-smoothing of CDLIM and 

TDLIM results in underestimation of the PM10 effect at lag 3. For instance, the estimated 

percentage increases in mortality associated with a 10μg/m3 increase in PM10 at lag 3 when 

O3 is at average summer level are 0.53%, 0.14%, 0.03%, 0.23%, and 0.36% for UDLIM, 

CDLIM, TDLIM, BTDLIM, and BCDLIM, respectively. The lower bounds of 95% 

confidence/credible intervals for the methods except TDLIM are appreciably above zero. In 

this situation, shrinkage methods are more desirable since CDLIM and TDLIM mis-specify 

the DL function and potentially underestimate the relative lag effects. Similarly, we observe 

slight over-smoothness of CDLIM and TDLIM on O3 effect in Figure 2. However, the 

degree of underestimation of O3 effect at early lags is smaller. More similar DL functions 

across all methods except UDLIM indicates that the potential misspecification of the DL 

function by using CDLIM and TDLIM is minimal.

We present the marginal DL functions of PM10 and O3 by integrating out the other pollutant 

in Figure 3. Similar to earlier findings, shrinkage is more needed for PM10 as CDLIM and 

TDLIM tend to oversmooth the DL function in this situation. In addition, we observe that 

the DL function for PM10 starts from negative, grows to zero and peaks at lag 3, while the 

DL function for O3 is greater than zero at lag 0 and peaks at lag 2. The earlier peak for O3 

compared to PM10 suggests a more acute effect of O3 than PM10 with an earlier window of 

susceptibility. We also observe that the UDLIM fits of O3 fluctuate more drastically than the 

UDLIM fits of PM10. This is explained by the stronger autocorrelation of the O3 time series 

and smoothing the DL function is certainly needed and preferred in this case. We can 

observe that some of the estimated lagged effects are negative at larger lags for PM10. This 

phenomenon is noted as mortality displacement (Zanobetti et al., 2000) and has been 

discovered in previous studies. Mortality displacement, also referred to as harvesting effect 
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(Zanobetti et al., 2002), is the temporal shift of mortality. Usually a higher mortality rate due 

to the deaths of frail individuals a couple of days after a high air pollution episode is 

followed by compensatory reduction in mortality rate due to the death of the more frail 

individuals.

4.3. Assessing Interaction Effects

Within each panel of Figures 1 and 2, we notice that the estimated DL functions of one 

pollutant vary with the level of the other pollutant, indicating that PM10 might moderate the 

effect of O3 and vice versa. For UDLIM, CDLIM, and TDLIM, we conducted likelihood 

ratio test to test for PM10-O3 interactions and the p-values are 1.65 × 10−11 (DF = 225), 5.33 

× 10−9 (DF = 25), and < 10−4 (DF = 1), respectively. The precision of the p-value of TDLIM 

is only up to 10−4 due to finite bootstrap samples. For the two shrinkage methods BTDLIM 

and BCDLIM, we computed the difference in deviance information criterion (DIC) 

(Spiegelhalter et al., 2002) between the models with and without interaction. The DIC 

differences are 25.56 and 68.35, respectively. It is difficult to determine a clear threshold of 

DIC difference for model selection (Plummer, 2008). However, models with smaller DIC are 

generally preferred when DIC differences are greater than 10. Coupled with the p-values 

obtained from the frequentist approaches, we conclude that the interaction between PM10 

and O3 is evident.

From Figures 1 and 2, we can see that the summer curves are above winter curves 

suggesting that PM10 and O3 have synergistic effects on each other. Furthermore, we 

observe that the gaps between the curves of the three quartiles decrease beyond lag 6 and 

that happens across the board. The interaction between PM10 and O3 occurs at early lags. 

We added a dotted blue curve in each panel for the estimated DL function from a single-

pollutant analysis (i.e. models with PM10 alone or O3 alone), representing the “average” DL 

effects if we disregard the interaction effect between the two pollutants. The evidence in 

favor of looking at PM10 and O3 jointly is compelling.

5. Discussion

In analyzing NMMAPS data, we demonstrated the importance of accounting for interaction 

between the PM10 and O3 time series when modeling the joint pollution effect on mortality. 

Two major pieces of evidence support the existence of pollutant-pollutant interaction - (1) 

the marginal DL function of one pollutant varies when the level of the other one changes, 

and (2) the small p-values from frequentist approaches and the large DICs from the Bayesian 

approaches suggest evidence in favor of PM10× O3 interaction. This adds to the finding of 

previous studies that supported the idea of a plausible synergism involving PM10 and O3 

(Mauderly and Samet, 2009).

In this article, we presented five different strategies to model lagged effects of two pollutants 

in a joint model. We reviewed two existing frequentist methods UDLIM and CDLIM, and 

we proposed frequentist TDLIM using Tukey’s interaction structure, its Bayesian version, 

and a Bayesian approach to perform shrinkage between UDLIM and CDLIM. There are two 

major novelties. We adopted Tukey’s one-degree-of-freedom interaction structure to 

parsimoniously model two-way interactions. The estimation is efficient and the interaction 
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testing is powerful. We also introduced the Bayesian version of TDLIM (i.e. BTDLIM) and 

the Bayesian version of CDLIM (i.e. BCDLIM). These Bayesian models allow for departure 

from a pre-specified structure of DL function/surface, and have been shown to be robust to 

mis-specification. They are data-adaptive and able to achieve bias-variance trade-off.

Each of the five approaches has some limitations that we discuss below. UDLIM is unbiased 

but potentially less efficient, especially when the autocorrelation between serial pollution 

measurement is large. CDLIM imposes some structure to constrain the lag coefficients and 

can potentially achieve greater estimation precision. In practice, we recommend a DL 

structure no more complex than a cubic polynomial as the default choice since it is usually 

sufficient to capture the observed non-linear patterns as a function of the lags. Nonetheless, 

when the DL structure is misspecified, the model-dependent CDLIM estimator can be 

seriously biased. Tukey’s type interaction is mostly used for hypothesis testing rather than 

estimation in previous research. Expressing interaction effects as a scaled product of the 

corresponding main effects implies that the interaction effects can be non-zero only when 

the main effects are non-zero. This hierarchical feature results in lack of identifiability for 

the scaled parameter in Tukey’s model when the main effects are not present. In addition, 

Tukey’s model is not invariant to location shifts. Different centering schemes lead to 

different estimates of the scaled parameter η and no universal remedy exists.

The hierarchical Bayesian model BCDLIM is robust to mis-specification of the DL 

structure. The data-adaptive shrinkage can be regarded as an automatic procedure to attain a 

balance between the more general UDLIM and the more constrained CDLIM. The full-rank 

transformation on UDLIM imposes smoothness on the shrinkage path and any a priori 
knowledge about the DL structure can be incorporated. It is important to note that BCDLIM 

can be extended to explore higher-order interaction and multiple-pollutant scenarios. We 

also tried to adapt HDDLM to two-pollutant scenarios. However, the unmodified predictive 

process interpolator (Banerjee et al., 2008), the major technique used in HDDLM for 

dimension reduction (Finley et al., 2009), leads to overly smooth DL functions/surfaces 

which result in seriously biased estimates. We therefore decided to not include HDDLM in 

this manuscript.

The two-pollutant DLIMs can be directly combined with DLNMs (Gasparrini et al., 2010) to 

flexibly capture non-linear exposure-outcome associations by replacing the linear terms in 

DLM specifications with some basis functions (e.g. B-spline). As indicated by He et al. 

(2015), failing to account for nonlinear main effects may lead to spurious detection of linear 

interaction terms. However, when the covariates are correlated as in our application, the 

signals from nonlinear main effects and linear interaction effects may be indistinguishable. 

In addition, some regularization may be needed in this high-dimensional situation to avoid 

overfitting. We consider this line of extension for future research.

The two-pollutant DLIM approaches introduced in this article can also be extended to multi-

pollutant situations where up to two-way interactions are considered. If one would like to 

consider higher-order interactions and/or nonlinear interactions, extension of tree-based 

approaches such as CART and Bayesian kernel machine regression (BKMR) can be 
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promising. In some situations, choosing the most important pollutants among multiple 

candidates that are associated with a health outcome is the primary goal.

In real-world settings, it is usually difficult to validate the underlying assumptions of a 

model-based estimator. The notion of data-adaptive shrinkage is attractive when no single 

estimator is universally optimal. When facing uncertainty, robust models such as BCDLIM 

that possesses better average performance are more desirable. BCDLIM can potentially be 

extended to areas outside environmental epidemiology. We hope our work will lead to more 

attempts in developing two-dimensional and multi-dimensional DLIM in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Estimated distributed lag functions up to 14 days for the effects of PM10 on mortality in 

Chicago, Illinois from 1987 to 2000 based on data from the National Morbidity, Mortality, 

and Air Pollution Study (NMMAPS) under five estimation methods. In all panels, O3 levels 

are fixed at the average series levels in winter (black) and the average series levels in 

summer (red). The blue curve represents the estimated DL function relative to PM10 when 

O3 is disregarded in a single-pollutant model for PM10. Lag effects are presented as the 

percentage change in mortality associated with an 10 μg/m3 increase in PM10. The five 

estimation methods are unconstrained distributed lag interaction model (UDLIM), 

constrained distributed lag interaction model (CDLIM), Tukey’s distributed lag interaction 

model (TDLIM), Bayesian Tukey’s distributed lag interaction model (BTDLIM), and 

Bayesian constrained distributed lag interaction model (BCDLIM).
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Fig. 2. 
Estimated distributed lag functions up to 14 days for the effects of O3 on mortality in 

Chicago, Illinois from 1987 to 2000 based on data from the National Morbidity, Mortality, 

and Air Pollution Study (NMMAPS) under five estimation methods. In all panels, PM10 

levels are fixed at the average series levels in winter (black) and the average series levels in 

summer (red). The blue curve represents the estimated DL function relative to O3 when 

PM10 is disregarded in a single-pollutant model for O3. Lag effects are presented as the 

percentage change in mortality associated with with an 10 ppb increase in O3. The five 

estimation methods are unconstrained distributed lag interaction model (UDLIM), 

constrained distributed lag interaction model (CDLIM), Tukey’s distributed lag interaction 

model (TDLIM), Bayesian Tukey’s distributed lag interaction model (BTDLIM), and 

Bayesian constrained distributed lag interaction model (BCDLIM).
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Fig. 3. 
Estimated distributed lag functions up to 14 days for the effects of PM10 (left) and O3 (right) 

on mortality in Chicago, Illinois from 1987 to 2000 based on data from the National 

Morbidity, Mortality, and Air Pollution Study (NMMAPS) under five estimation methods. 

The DL functions presented here are estimated by integrating out the other pollutant. Lag 

effects are presented as the percentage change in mortality associated with an 10 μg/m3 

increase in PM10 and a 10 ppb increase in O3, respectively. The five estimation methods are 

unconstrained distributed lag interaction model (UDLIM), constrained distributed lag 

interaction model (CDLIM), Tukey’s distributed lag interaction model (TDLIM), Bayesian 

Tukey’s distributed lag interaction model (BTDLIM), Bayesian constrained distributed lag 

interaction model (BCDLIM).
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Table 1.

Empirical squared bias and empirical relative efficiency (measured with respect to the mean squared error of 

UDLIM estimate) of marginal lagged effects across five different two-dimensional distributed lag interaction 

models based on 1000 simulation datasets. The lagged effects of the both exposures are generated from the 

same cubic DL function.

Interaction Structure Metric UDLIM CDLIM TDLIM BTDLIM BCDLIM

(1) No Interaction Squared Bias 0.02 0.00 0.19 0.13 0.00

Relative Efficiency 1.00 6.82 19.24 8.09 6.27

(2) Tukey’s Structure Squared Bias 0.01 0.00 0.01 0.01 0.00

Relative Efficiency 1.00 6.14 18.66 6.71 5.76

(3) Kronecker Product Squared Bias 0.02 0.00 1.05 0.90 0.00

Relative Efficiency 1.00 6.68 3.45 2.77 6.17

(4) Sparse Squared Bias 0.00 66.22 67.14 1.43 0.08

Relative Efficiency 1.00 0.07 0.07 1.71 2.80

(5) Unstructured Squared Bias 0.00 93.08 93.98 1.08 0.09

Relative Efficiency 1.00 0.05 0.05 1.88 2.70
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Table 2.

Empirical squared bias and empirical relative efficiency (measured with respect to the mean squared error of 

UDLIM estimate) of marginal lagged effects across five different two-dimensional distributed lag interaction 

models based on 1000 simulation datasets. The lagged effects of the both exposures are generated from the 

same cubic-like DL function (moderate departure from a cubic function).

Interaction Structure Metric UDLIM CDLIM TDLIM BTDLIM BCDLIM

(1) No Interaction Squared Bias 0.02 69.51 70.03 7.39 0.10

Relative Efficiency 1.00 0.24 0.25 1.59 3.25

(2) Tukey’s Structure Squared Bias 0.01 990.83 1023.84 35.50 0.09

Relative Efficiency 1.00 0.00 0.00 0.05 1.35

(4) Sparse Squared Bias 0.01 210.32 215.94 10.80 0.52

Relative Efficiency 1.00 0.02 0.02 0.35 1.78

(5) Unstructured Squared Bias 0.01 989.93 1019.06 31.83 0.10

Relative Efficiency 1.00 0.00 0.00 0.04 1.34
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