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The Noisy-Logical Distribution and its Application to
Causal Inference

Abstract

We describe a novel noisy-logical distribution for representing the distribution of
a binary output variable conditioned on multiple binary input variables. The distri-
bution is represented in terms of noisy-or’s and noisy-and-not’s ofcausal features
which are conjunctions of the binary inputs. The standard noisy-or and noisy-and-
not models, used in causal reasoning and artificial intelligence, are special cases
of the noisy-logical distribution. We prove that the noisy-logical distribution is
complete in the sense that it can represent all conditional distributions provided a
sufficient number of causal factors are used. We illustrate the noisy-logical dis-
tribution by showing that it can account for new experimental findings on how
humans perform causal reasoning in more complex contexts. Finally, we specu-
late on the use of the noisy-logical distribution for causal reasoning and artificial
intelligence.

1 Introduction

The noisy-or and noisy-and-not conditional probability distributions are frequently studied in cog-
nitive science for modeling causal reasoning [1], [2],[3] and are also used as probabilistic models
for artificial intelligence [4]. It has been shown, for example, that human judgments of the power of
causal cues in certain experiments [1] can be interpreted in terms of maximum likelihood estimation
and model selection using these types of models [3].

But the noisy-or and noisy-and-not distributions are limited in the sense that they can only represent
a restricted set of all possible conditional distributions. This restriction is sometimes an advantage
because there may not be sufficient data to determine the full conditional distribution. Nevertheless it
would be better to have a representation that can expand to represent the full conditional distribution,
if sufficient data is available, but can be reduced to simpler forms (e.g. standard noisy-or) if only
limited data is available.

This motivates us to define the noisy-logical distribution. This is defined in terms of noisy-or’s
and noisy-and-not’s ofcausal featureswhich are conjunctions of the basic input variables. (The
use of conjunctive features to extend the noisy-or and noisy-and-not models was proposed in [2]).
By restricting the choice of causal features we can obtain the standard noisy-or and noisy-and-not
models. We prove that the noisy-logical distribution is complete in the sense that it can represent
any conditional distribution provided we use all the causal features. Overall, it gives a distribution
whose complexity can be adjusted by restricting the set of causal features.

To illustrate the noisy-logical distribution we apply it to modeling some recent human experiments
on causal reasoning in complex environments [5]. We show that noisy-logical distributions involv-
ing causal factors are able to account for human performance. By contrast, an alternative linear
model gives predictions which are the opposite of the observed trends in human causal judgments.
Section (2) presents the noisy-logical distribution for the case with two input causes (the case com-
monly studied in causal reasoning). In section (3) we specify the full noisy-logical distribution and
we prove its completeness in section (4). Section (5) illustrates the noisy-logical distribution by
showing that it accounts for recent experimental findings in causal reasoning.
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2 The Case withN = 2 causes

In this section we study the simple case when the binary output effectE depends only on two binary-
valued causesC1, C2. This covers most of the work reported in the cognitive science literature
[1],[3]. In this case, the probability distribution is specified by the four numbersP (E = 1|C1, C2),
for C1 ∈ {0, 1}, C2 ∈ {0, 1}.
To define the noisy-logical distribution over two variablesP (E = 1|C1, C2), we introduce three
concepts. Firstly, we define four binary-valued causal featuresΨ0(.),Ψ1(.), Ψ2(.),Ψ3(.) which are
functions of the input state~C = (C1, C2). They are defined byΨ0(~C) = 1, Ψ1( ~C) = C1, Ψ2(~C) =
C2,Ψ3(~C) = C1∧C2, where∧ denotes logical-and operation(i.e.C1∧C2 = 1 if C1 = C2 = 1 and
C1 ∧ C2 = 0 otherwise).Ψ3(~C) is the conjunction ofC1 andC2. Secondly, we introduce binary-
valued hidden statesE0, E1, E2, E3 which are caused by the corresponding featuresΨ0,Ψ1,Ψ2, Ψ3.
We defineP (Ei = 1|Ψi;ωi) = ωiΨi with ωi ∈ [0, 1], for i = 1, ..., 4 with ~ω = (ω1, ω2, ω3, ω4).
Thirdly, we define the output effectE to be a logical combination of the statesE0, E1, E2, E3

which we write in formδE,f(E0,E1,E2,E3), wheref(., ., ., .) is a logic function which is formed by a
combination of three logic operationsAND, OR, NOT . This induces thenoisy-logical distribution
Pnl(E|~C; ~ω) =

∑
E0,...,E3

δE,f(E0,E1,E2,E3)

∏3
i=0 P (Ei|Ψi(~C); ωi).

The noisy-logical distribution is characterized by the parametersω0, ..., ω3 and the choice of the
logic functionf(., ., ., .). We can represent the distribution by a circuit diagram where the outputE
is a logical function of the hidden statesE0, ..., E3 and each state is caused probabilistically by the
corresponding causal featuresΨ0, ..., Ψ3, as shown in Figure (1).

Figure 1: Circuit diagram in the case withN = 2 causes.

The noisy-logical distribution includes the commonly known distributions, noisy-or and noisy-and-
not, as special cases. To obtain the noisy-or, we setE = E1∨E2 (i.e. E1∨E2 = 0 if E1 = E2 = 0
andE1 ∧E2 = 1 otherwise). A simple calculation shows that the noisy-logical distribution reduces
to the noisy-orPnor(E|C1, C2; ω1, ω2) [4], [7]:

Pnl(E = 1|C1, C2; ω1, ω2) =
∑

E1,E2

δ1,E1∨E2P (E1|Ψ1( ~C); ω1)P (E2|Ψ2( ~C); ω2)

= ω1C1(1− ω2C2) + (1− ω1C1)ω2C2 + ω1ω2C1C2

= ω1C1 + ω2C2 − ω1ω2C1C2 = Pnor(E = 1|C1, C2; ω1, ω2).(1)

To obtain the noisy-and-not, we setE = E1 ∧ ¬E2 (i.e. E1 ∧ ¬E2 = 1 if E1 = 1, E2 = 0
and E1 ∧ ¬E2 = 0 otherwise). The noisy-logical distribution reduces to the noisy-and-not
Pn−and−not(E|C1, C2;ω1, ω2) [4],[7]:

Pnl(E = 1|C1, C2; ω1, ω2) =
∑

E1,E2

δ1,E1∧¬E2P (E1|Ψ1( ~C); ω1)P (E2|Ψ2(~C); ω2)

= ω1C1{1− ω2C2} = Pn−and−not(E = 1|C1, C2; ω1, ω2). (2)

We claim that noisy-logical distributions of this form can represent any conditional distribution
P (E|~C). The logical functionf(E0, E1, E2, E3) will be expressed as a combination of logic oper-
ations AND-NOT, OR. The parameters of the distribution are given byω0, ω1, ω2, ω3.
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The proof of this claim will be given for the general case in the next section. To get some insight,
we consider the special case where we only know the valuesP (E|C1 = 1, C2 = 0) andP (E|C1 =
1, C2 = 1). This situation is studied in cognitive science whereC1 is considered to be a background
cause which always takes value1, see [7] [6]. In this case, the only causal features are considered,
Ψ1( ~C) = C1 andΨ2(~C) = C2.

Result. The noisy-or and the noisy-and-not models, given by equations (1,2) are sufficient to fit any
values ofP (E = 1|1, 0) and P (E = 1|1, 1). (In this section we useP (E = 1|1, 0) to denote
P (E = 1|C1 = 1, C2 = 0) and useP (E = 1|1, 1) to denoteP (E = 1|C1 = 1, C2 = 1).)
The noisy-or and noisy-and-not fit the cases whenP (E = 1|1, 1) ≥ P (E = 1|1, 0) andP (E =
1|1, 1) ≤ P (E = 1|1, 0) respectively. (Equivalently,C2 is respectively a generative or preventative
cause).

Proof. We can fit both the noisy-or and noisy-and-not models toP (E|1, 0) by settingω1 = P (E =
1|1, 0), so it remains to fit the models toP (E|1, 1). There are three cases to consider: (i)P (E =
1|1, 1) > P (E = 1|1, 0), (ii) P (E = 1|1, 1) < P (E = 1|1, 0), and (iii) P (E = 1|1, 1) =
P (E = 1|1, 0). It follows directly from equations (1,2) thatPnor(E = 1|1, 1) ≥ Pnor(E =
1|1, 0) and Pn−and−not(E = 1|1, 1) ≤ Pn−and−not(E = 1|1, 0) with equality only ifP (E =
1|1, 1) = P (E = 1|1, 0). Hence we must fit a noisy-or and a noisy-and-not model to cases (i)
and (ii) respectively. For case (i), this requires solvingP (E = 1|1, 1) = ω1 + ω2 − ω1ω2 to
obtain ω2 = {P (E = 1|1, 1) − P (E = 1|1, 0)}/{1 − P (E = 1|1, 0)} (note that the condition
P (E = 1|1, 1) > P (E = 1|1, 0) ensures thatω2 ∈ [0, 1]). For case (ii), we must solveP (E =
1|1, 1) = ω1 − ω1ω2 which givesω2 = {P (E = 1|1, 0) − P (E = 1|1, 1)}/P (E = 1|1, 0) (the
conditionP (E = 1|1, 1) < P (E = 1|1, 0) ensures thatω2 ∈ [0, 1]). For case (iii), we can fit either
model by settingω2 = 0.

To anticipate terminology used in the general proof. We defineE1 = E1, and fit the dataP (E|1, 0)
by settingE = E1 andP (E1|Ψ1;ω1) = ω1Ψ1, with ω1 = P (E = 1|1, 0). If P (E = 1|1, 1) >
P (E = 1|1, 0), we defineE = E1 ∨ E2 andP (E2 = 1|Ψ2;ω2) = ω2Ψ2, with ω2 = {P (E =
1|1, 1) − P (E = 1|1, 0)}/{1 − P (E = 1|1, 0)}. If P (E = 1|1, 1) < P (E = 1|1, 0), then we
setE = E1∧ 6= E2 andP (E2 = 1|Ψ2;ω2) = ω2Ψ2, with ω2 = {P (E = 1|1, 0) − P (E =
1|1, 1)}/P (E = 1|1, 0). If P (E = 1|1, 1) = P (E = 1|1, 0), then we only defineE = E1.

3 The Noisy-Logical Distribution for N causes

We next consider representing probability distributions of formP (E|~C), whereE ∈ {0, 1} and
~C = (C1, ..., CN ) whereCi ∈ {0, 1}, ∀i = 1, .., N . These distributions can be characterized by
the values ofP (E = 1|~C) for all possible2N values of~C.

We define the set of2N binary-valued causal features{Ψi( ~C) : i = 0, ..., 2N − 1}. These features
are ordered so thatΨ0(~C) = 1, Ψi(~C) = Ci : i = 1, .., N , ΨN+1( ~C) = C1 ∧C2 is the conjunction
of C1 andC2, and so on. The featureΨ(~C) = Ca ∧ Cb ∧ ... ∧ Cg will take value1 if Ca = Cb =
... = Cg = 1 and value0 otherwise.

We define binary variables{Ei : i = 0, ..., 2N − 1} which are related to the causal features{Ψi :
i = 0, ..., 2N − 1} by distributionsP (Ei = 1|Ψi; ωi) = ωiΨi, specified by parameters{ωi : i =
0, ..., 2N − 1}. Then we define the output variableE to be a logical (i.e. deterministic) function
of the {Ei : i = 0, ..., 2N − 1}. This can be thought of as a circuit diagram. In particular, we
defineE = f(E0, ..., E2N−1) = (((((E1 ⊗ E2) ⊗ E3) ⊗ E4....) whereE1 ⊗ E2 can beE1 ∨ E2

or E1 ∧ ¬E2 (where¬E means logical negation). This means that we can define variablesEi

recursively, byEi+1 = Ei ⊗ Ei with E1 = E1. This gives the generalnoisy-logical distribution,
as shown in Figure (2).

P (E = 1|~C; ~ω) =
∑

~E

δE,f(E0,...,E2N−1)

2N−1∏

i=0

P (Ei = 1|Ψi; ωi). (3)
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Figure 2: Circuit diagram in the case with N causes.

4 The Completeness Result

This section proves that the noisy-logical distribution is capable of representing any conditional
distribution. This is the main theoretical result of this paper.

Result We can represent any conditional distributionP (E|~C) defined on binary variables in terms
of a noisy logical distribution given by equation (3).

Proof. The proof is constructive. We show that any distributionP (E|~C) can be expressed as a
noisy-logical distribution. The strategy is to use induction to build a noisy-logical distribution which
agrees withP (E|~C) for all values of~C.

We order the states~C0, ..., ~C2N−1. This ordering must obeyΨi( ~Ci) = 1 andΨi( ~Cj) = 0, ∀j < i.
This ordering can be obtained by setting~C0 = (0, ..., 0), then selecting the terms with a single
conjunction (i.e. only oneCi is non-zero), then those with two conjunctions (i.e. twoCi’s are
non-zero), then with three conjunctions, and so on.

We start the induction using featureΨ0(~C) = 1. SetE0 = E0 and ω0 = P (E|0, ..., 0). Then
P (E0|~C0; ω0) = P (E|~C0), so the noisy-logical distribution fits the data for input~C0.

Now proceed by induction. Assume we haveEM and ω0, ..., ωM such that P (EM =
1|~Ci; ω0, ..., ωM ) = P (E = 1|~Ci), for i = 0, ...,M . (EM is a logical function ofE0, ..., EM ).
There are three cases to consider which are analogous to the cases considered in the section with
two causes.

Case 1.If P (E = 1|~CM+1) > P (EM = 1|~CM+1; ω0, ..., ωM ) we needΨM+1(~C) to be a genera-
tive feature. SetEM+1 = EM ∨ EM+1 with P (EM+1 = 1|ΨM+1;ωM+1) = ωM+1ΨM+1. Then
we obtain:

P (EM+1 = 1|~CM+1;ω0, ..., ωM+1) = P (EM = 1|~CM+1; ω0, ..., ωM ) + P (EM+1|ΨM+1(~C); ωM+1)

−P (EM = 1|~CM+1; ω0, ..., ωM )P (EM+1 = 1|ΨM+1(~C); ωM+1)

= P (EM = 1|~CM+1; ω0, ..., ωM ) + ωM+1ΨM+1(~C)− P (EM = 1|~CM+1; ω0, ..., ωM )ωM+1ΨM+1(~C). (4)

In particular, we see thatP (EM+1 = 1|~Ci;ω0, ..., ωM+1) = P (EM = 1|~Ci;ω0, ..., ωM ) =
P (E = 1|~Ci) for i < M + 1 (usingΨM+1(~Ci) = 0, ∀i < M + 1). To determine the value
of ωM+1, we must solveP (E = 1|~CM+1) = P (EM = 1|~CM+1; ω0, ..., ωM ) + ωM+1 − P (EM =
1|~CM+1; ω0, ..., ωM )ωM+1 (usingΨM+1( ~CM+1) = 1). This givesωM+1 = {P (E = 1|~CM+1)−
P (EM = 1|~CM+1; ω0, ..., ωM )}/{1 − P (EM = 1|~CM+1; ω0, ..., ωM+1)} (the conditions ensure
thatωM+1 ∈ [0, 1]).

Case 2.If P (E = 1|~CM+1) < P (EM = 1|~CM+1; ω0, ..., ωM ) we needΨM+1( ~C) to be a preven-
tative feature. SetEM+1 = EM ∧ ¬EM+1 with P (EM+1 = 1|ΨM+1; ωM+1) = ωM+1ΨM+1.
Then we obtain:

P (EM+1 = 1|~CM+1;ω0, ..., ωM+1) = P (EM = 1|~CM+1; ω0, ..., ωM ){1− ωM+1ΨM+1(~C)}.
(5)
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As for the first case,P (EM+1 = 1|~Ci; ω0, ..., ωM+1) = P (EM = 1|~Ci; ω0, ..., ωM ) = P (E =
1|~Ci) for i < M + 1 (becauseΨM+1(~Ci) = 0, ∀i < M + 1). To determine the value of
ωM+1 we must solveP (E = 1|~CM+1) = P (EM = 1|~CM+1; ω0, ..., ωM ){1 − ωM+1} (us-
ing ΨM+1(~CM+1) = 1). This givesωM+1 = {P (EM = 1|~CM+1;ω0, ..., ωM ) − P (E =
1|~CM+1)}/P (EM = 1|~CM+1; ω0, ..., ωM ) (the conditions ensure thatωM+1 ∈ [0, 1]).

Case 3.If P (E = 1|~CM+1) = P (EM = 1|~CM+1; ω0, ..., ωM ), then we don’t need to do anything.

5 Cognitive Science Human Experiments

We illustrate the noisy-logical distribution by applying it to model two new experimental studies [5].
These studies involve several cues (i.e. more than the standard two causal cues used in typical studies
[1], [2],[3]). In addition, they can also involve conjunctions of basic causal cues. We compare the
predictions of the noisy-logical distribution to the experimental findings and, for comparison, to the
predictions of the linear model (a natural extension of the linear model also studied in [1],[3])

5.1 Experiment I: Multiple Causes

We tested the causal representation proposed in this paper by using the model to simulate human
causal judgments in complex situations involving multiple causes and causal interactions. Liljeholm
and Cheng [5] conducted innovative experiments on human causal judgment in complex environ-
ments. In Experiment 1 of [5], the cover story involved a set of allergy patients who either did or
did not have a headache (E), and either had or had not received allergy medicines A, B. Partici-
pants were informed that two independent studies were conducted in different labs using different
patient groups. In the first study patients were administered medicine A, whereas in the second
study patients were administered both medicines A and B. The query concerned whether medicine
B caused headache as a side effect. A simultaneous presentation format [6] was used to display spe-
cific contingency conditions used in each of the studies described to the participants in Experiment
1.

In this experimental setup, the output effect (E) is the headache;B1 andB2 is defined as back-
ground cause in the first and the second study, respectively;C1 andC2 correspond to two can-
didate causes, Medicine A and B. We useP (E = 1|B1 = 1, C1 = 0, C2 = 0) to indicate num-
ber of patients with headache out of number who had not received any medicine in study 1;
P (E = 1|B1 = 1, C1 = 1, C2 = 0) indicate number of patients with headache out of number
who had only received medicine A in study 1;P (E = 1|B2 = 1, C1 = 0, C2 = 0) indicate num-
ber of patients with headache out of number who had not received any medicine in study 2;
P (E = 1|B2 = 1, C1 = 1, C2 = 1) indicate number of patients with headache out of number who
had received both medicine A and B in study 2. Two conditions were included in Experiment 1.
(a)Power-constant condition: in study 1,P (E = 1|B1 = 1, C1 = 0, C2 = 0) = 16/24, P (E =
1|B1 = 1, C1 = 1, C2 = 0) = 22/24; in study 2,P (E = 1|B2 = 1, C1 = 0, C2 = 0) =
0/24, P (E = 1|B2 = 1, C1 = 1, C2 = 1) = 18/24. (b) ∆P-constant condition: in study 1,
P (E = 1|B1 = 1, C1 = 0, C2 = 0) = 0/24, P (E = 1|B1 = 1, C1 = 1, C2 = 0) = 6/24; in study
2, P (E = 1|B2 = 1, C1 = 0, C2 = 0) = 16/24, P (E = 1|B2 = 1, C1 = 1, C2 = 1) = 22/24.
The query was,′′ Based on the information from BOTH studies, what is your best bet on whether
or not medicine B causes headache?′′ The dependent measure was the proportion of participants
who judged that Medicine B caused headache. Data were based on responses from a total of 50
undergraduates (25 participants in each condition).

A Bayesian model can be formalized to infer causal structure, as shown in Figure (3), by assessing
whether a causal link exists between medicine B (C2) and headaches (E). The decision variable is
obtained from the log likelihood ratio of Graphs 2 and 1,log P (D|Graph2)

P (D|Graph1) , termedcausal support[3].
The likelihoods on graphs are computed by integrating out the unknown causal strengthsw1, w2, w3,
andw4, which are parameters in the range 0,1 associated with background cause in the first study
B1, medicine AC1, background cause in the second studyB2 and medicine BC2, respectively.
Human participants were informed that the two candidate causes, medicine A and B, generates the
side effect of headache in the experiment. Furthermore, there was no explicit statement indicating
the existence of a possible causal interaction between medicines A and B. We assume a noisy-or
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distribution in both causal graphs,E = E1 ∨ E2 in graph 1 andE = E2 ∨ E3 ∨ E4 in graph 2

P (D|Graph2) =
∫ 1

0

P (D|w1, w2, w3, w4, Graph2)P (w1, w2, w3, w4|Graph2)dw1dw2dw3dw4, (6)

P (D|Graph1) =
∫ 1

0

P (D|w1, w2, w3, Graph1)P (w1, w2, w3|Graph1)dw1dw2dw3, (7)

whereP (w1, w2, w3, w4|Graph2) andP (w1, w2, w3|Graph1) are assumed to follow uniform dis-
tributions.P (D|w1, w2, w3, w4, Graph2) andP (D|w1, w2, w3, Graph1) are the likelihood proba-
bilities of the observed data given specified causal strengthsωs and structures as shown Figure (3).
Likelihood distributions are modeled using the noisy-or representation,

P (D|w1, w2, w3, w4, Graph2) =
∑

~E

δE,(E1∨E2,E2∨E3∨E4)

4∏

i=1

P (Ei = 1|Ψi; ωi), (8)

P (D|w1, w2, w3, Graph1) =
∑

~E

δE,(E1∨E2,E2∨E3)

3∏

i=1

P (Ei = 1|Ψi;ωi). (9)

5.2 Results

The specific contingency conditions in each study are shown in the caption of Figure (3). The
left plot in Figure (3) depicts the proportion of participants who responded′′ Yes ′′ to the query
whether medicine B causes headaches in the two conditions, Power-constant condition (black bars)
and∆P-constant condition (white bars). In the first condition, causal powers remained the same
in the two studies (contexts) but∆P varied. In the second condition,∆P was constant in the two
studies but causal powers varied. The human data clearly indicate that change across contexts is
largely determined by variation in causal power rather than in∆P.

Figure 3: Model diagram and results in Experiment I. Left panel: Causal structure with multiple
causes. Right panel: Results in a causal link judgment. Two experimental conditions, Power-
constant condition and∆P-constant condition. Left plot depicts human data (proportion of par-
ticipants who responded Yes indicating medicine B caused headaches).Right plot depicts model
predictions of causal support, including the noisy-logical model and the linear model.

The right plot in Figure (3) depicts model predictions with respect to causal support for medicine
B (causeC2 in Figure (3) ) in the two experimental conditions. The noisy-logical model is based
on the model proposed in the previous section. An alternative model is the linear model, which
uses the same causal features as the noisy-logical model but rather than the logical function employs
an additive function with the constraint that conditional probability lies within the range of 0 to 1
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[8]. By comparing the two models, we find that human trend (higher rating for medicine B as a
cause of headache in the∆P-constant condition) is predicted by the Bayesian model with Noisy-
or representation usingcausal factors, but not with the linear representation using the same causal
factors.

5.3 Human Experiment II: Causal Interaction

Liljeholm and Cheng [5] developed another novel experimental paradigm to investigate causal in-
teraction. The experimental design was identical to that used in Experiment 1, except that partici-
pants were presented with three studies in which only one medicine (A) was tested. Participants
were asked to judge whether that medicine A interacts with background cause that might vary
across the three studies. We define background cause asB1,B2,B1 in the three studies, and can-
didate cause asC1 for medicine A. Two conditions were used in this experiment, (a)Power-constant
condition: in study 1,P (E = 1|B1 = 1, C1 = 0) = 16/24, P (E = 1|B1 = 1, C1 = 1) = 22/24;
in study 2,P (E = 1|B2 = 1, C1 = 0) = 8/24, P (E = 1|B2 = 1, C1 = 1) = 20/24; in study 3,
P (E = 1|B3 = 1, C1 = 0) = 0/24, P (E = 1|B3 = 1, C1 = 1) = 18/24; (b) Power-varying con-
dition: in study 1, P (E = 1|B1 = 1, C1 = 0) = 0/24, P (E = 1|B1 = 1, C1 = 1) = 6/24; in
study 2, P (E = 1|B2 = 1, C1 = 0) = 0/24, P (E = 1|B2 = 1, C1 = 1) = 12/24; in study 3,
P (E = 1|B3 = 1, C1 = 0) = 0/24, P (E = 1|B3 = 1, C1 = 1) = 18/24.

A Bayesian model can be formalized to assess whether a causal link exists between the conjunctive
causeB ∧C1 andE as shown in Figure (4). The decision variable in the model is causal support as
defined in equations (6,7). However, the causal direction of conjunctive causeB ∧ C1 is unknown,
which could be generative (e.g. produce headaches)or preventive (e.g. prevent headaches). Ac-
cordingly, the noisy-logical distribution in this experiment includes two possible logical functions
as shown in graph 2 of Figure (4).

5.4 Results

Figure (4) shows human and model performance in the two conditions, Power-constant condition
and Power-varying condition, with respect to causal support for causal interaction between candidate
cause and background cause (B∧C1 ). The noisy-logical model correctly predicts that human trend,
in which most participants responded No to the interaction query in the Power-constant condition,
and most participants responded Yes in the Power-varying condition. In contrast, the linear model
predicts that most participants responded Yes in both experimental conditions, which is opposite to
human trend.

Figure 4: Model diagram and results in Experiment II. Left panel(A): Causal structure with possible
causal interaction. Right panel (B): Results in a causal link judgment for interactive cause. Two
experimental conditions, Power-constant condition and Power-varying condition. Left plot depicts
human data (proportion of participants who responded Yes indicating the existence of causal inter-
action between background factors and medicine A). Right plot depicts model predictions of causal
support.
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6 Summary

The noisy-logical distribution gives a new way to represent conditional probability distributions
defined over binary variables. The complexity of the distribution can be adjusted by restricting the
set of causal factors. If all the causal factors are allowed, then the distribution can represent any
conditional distribution. At the other extreme, by restricting the set of causal factors we can obtain
standard distributions such as the noisy-or and noisy-and-not.

We illustrated the noisy-logical distribution by modeling experimental findings on causal reasoning.
Our results showed that this distribution fitted the experimental data and, in particular, accounted for
the major trends (unlike the linear model). This is consistent with the success of noisy-or and noisy-
and-not models for accounting for experiments involving two causes [1], [2],[3]. This suggests that
humans may make use of noisy-logical representations for causal reasoning.

One attraction of the noisy-logical representation is that it helps clarify the relationship between
logic and probabilities. Standard logical relationships between causes and effects arise in the limit
as theωi take values0 or 1. We can, for example, bias the data towards a logical form by using
a prior on the~ω. This may be useful, for example, when modeling human cognition – evidence
suggests that humans first learn logical relationships and, only later, move to probabilities.

In summary, the noisy-logical distribution is a novel way to represent conditional probability distri-
butions defined on binary variables. We hope this class of distributions will be useful for modeling
cognitive phenomena and for applications to artificial intelligence.
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