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Vorticitybased modeling of gravity currents penetrating into ambients with
arbitrary shear and density stratification

Mohamad M. NasrAzadani, Presenting Author and Eckart Meiburg

Department of Mechanical Engineering,
University of California Santa Barbara, Santa Barbara, CA 93106
mmnasr@engineering.ucsb.edu meiburg@engineering.ucsb.edu

Abstract

We develop a vorticity-based approach for modeling quasi-steady, supercritical gravity
currents propagating into a finite-height channel with arbitrary density and velocity strati-
fication. The model enforces the conservation of mass, horizontal and vertical momentum.
In contrast to previous approaches it does not rely on empirical, energy-based closure as-
sumptions. Instead, the effective energy loss of the flow can be calculated a posteriori.
The present model results in the formulation of a second order, nonlinear ODE that can
be solved in a straightforward fashion to determine the gravity current velocity, along
with the downstream ambient velocity and density profiles. Comparisons between model
predictions and DNS simulations show excellent agreement.

1 Introduction

Gravity currents are driven by horizontal gradients in the hydrostatic pressure as a result
of density differences (Benjamin (1968), Linden (2012)). Depending on the source of these
density differences, various types of gravity currents can be distinguished (cf. Moncrieff
(1992), Simpson (1997), Meiburg and Kneller (2010)). In the atmosphere, gravity currents
frequently interact with background shear and/or density stratification. For instance,
severe thunderstorms can produce gravity currents of cold air traveling along the ground
whose dynamics are affected by existing shear in the ambient atmosphere (Bryan and
Rotunno (2014)), thereby resulting in complex flow structures. Field observations and
measurements suggest that such thunderstorm outflows and their nonlinear coupling with
the ambient shear may produce long-lived squall lines.

The interaction of gravity currents with background shear has been the subject of several
previous studies. Some of these aim to extend the basic gravity current model of Benjamin
(1968) to idealized ambient conditions such as constant shear or discrete velocity jumps
(cf. Xu (1992), Liu and Moncrieff (1996)). Just like Benjamin’s original model, these
extensions usually require an empirical closure assumption for determining the gravity
current velocity, which can result in uncertainty regarding the model predictions. On
the other hand, Borden and Meiburg (2013) recently introduced an alternative model
for gravity currents propagating into quiescent, unstratified ambients that avoids the
need for an empirical closure assumption by enforcing the conservation of both horizontal
and vertical momentum, based on the vorticity equation. Most recently, Nasr-Azadani
and Meiburg (2015) extended this vorticity-based modeling approach to gravity currents
propagating into unstratified ambients with constant or two-layer shear and demonstrated
very good agreement with DNS results.

Realistic atmospheric gravity current models furthermore need to account for the effects
of density stratification, which can result in the formation of internal waves or bores,
as well as the thickening or thinning of the gravity current (cf. Rottman and Simpson



(1989), Liu and Moncrieff (1996), White and Helfrich (2012)). Consequently, the present
work aims to extend the vorticity-based modeling approach of Borden and Meiburg (2013)
to supercritical gravity currents interacting with arbitrary background shear and density
stratification, without the need for empirical closure assumptions.

Section 2 defines the problem and presents the model derivation. Section 3 presents
the energy and head loss analyses that provide insight into whether or not the model
predictions are physically feasible. In section 4 we present comparison between model
predictions and DNS simulation results.

2 Model derivation

We consider a gravity current of density ρ1 and given height h traveling from right to left
with unknown constant velocity Ug in a horizontal tank of height H, cf. figure 1a. The
tank is filled with ambient fluid that has a known continuous density stratification ρi(y)
and horizontal velocity Ui(y) far to the left of the current front. To ensure stably-stratified
conditions we demand ρi(y) ≤ ρ1 and dρi/dy ≤ 0.

Figure 1: Top: Configuration of a gravity current (shown in gray) propagating into sheared and stably-
stratified background fluid. Upstream of the gravity current front, density and horizontal velocity profiles
are given as general known functions ρi(y) and Ui(y). Bottom: Schematic of the defined control volume
IJKL for the problem of a gravity current running into ambient fluid. Conservation of mass and vorticity
are derived for this streamtube of width ∆yi, whose center at the inlet is known (yi) and is displaced at
the outlet to an unknown height (yo). See text for the discussion and derivations.

Without loss of generality, we can rewrite the density function as ρi(y) = ρa + δρi(y),
where ρa indicates the density at the top wall. In order to obtain a steady flow, we switch
to the reference frame moving with the gravity current velocity Ug. In this frame, the
upstream velocity reads ui(y) = Ui(y) + Ug.

Let us now consider the narrow streamtube IJKL in figure 1b with the dashed streamline
at its center. This streamline of width ∆yi originates from a given height yi far upstream
of the gravity current and is displaced vertically to yo far downstream of the current front.
To describe the unique relationship between these two heights, we introduce

yo = yi + ξ , (1)



where the vertical displacement ξ is only a function of the inlet height yi. For control
volume IJKL, the continuity equation takes the form

ui∆yi = uo∆yo . (2)

Here, ∆yi and ∆yo denote, respectively, the upstream and downstream width of the
streamtube. Next, let us consider the vorticity balance for the streamtube, based on the
two-dimensional, steady-state, inviscid vorticity equation in the Boussinesq approximation

u · ∇ω = −ĝ
∂ρ∗

∂x
. (3)

Here, ĝ (=g (ρ1 − ρa) /ρa) and ρ∗ (=(ρ− ρa) / (ρ1 − ρa)) represent the reduced gravity and
dimensionless density, respectively. Note that we do not assume the flow to be hydrostatic
in the vicinity of the gravity current front and the pressure does not appear in the vorticity
balance due to Boussinesq approximation. By applying Gauss’ divergence theorem to the
streamtube of width ∆yi, equation 3 yields

∮

Γ

ωu · n dΓ = −
∫∫

A

ĝ
∂ρ∗

∂x
dA . (4)

Here, Γ, A and n denote the boundary, area, and unit outer normal vector of the stream-
tube of width ∆yi, respectively. We assume that the density field is non-diffusive, so that
the density is constant along each streamline. Integrating the vorticity conservation equa-
tion 4 for control volume IJKL, applying the mass conservation equation 2, and letting
∆yi → 0 we arrive at

uiωi + ĝ
(yo − yi)

(ρ1 − ρa)

dρi
dyi

= uiωo . (5)

Since the flow is assumed to be horizontal far up- and downstream of the gravity current
front, the vorticity values in equation 5 take the form ωi = −dui/dyi , ωo = −duo/dyo.
To further simplify equation 5, streamline displacement ξ (equation 1) is used to relate
the derivative of any variable (·) w.r.t. the outlet height to its derivative w.r.t. the inlet
height

d(·)
dyo

=
d(·)
dyi

1

1 + ξ′
. (6)

Here, ξ′ denotes the derivate of ξ with respect to yi. In the remainder, a prime indicates
the derivative with respect to yi. In the limit as ∆yi → 0, thus, the mass conservation
equation 2 gives uo(yo) = ui(yi)/ (1 + ξ′). We further employ equation 1 to re-write the
vorticity conservation equation 5 and arrive at

ξ′′u2

i + ξ′(1 + ξ′)(2 + ξ′)uiu
′

i − ξ(1 + ξ′)3ĝρ′i/(ρ1 − ρa) = 0 . (7)

Equation 7 represents a second order nonlinear ODE for the vertical streamline displace-
ment ξ as a function of the upstream velocity and density profiles. The required two
boundary conditions are obtained from geometrical considerations, cf. figure 1

AOA′ : ξ(yi = 0) = h , BB′ : ξ(yi = H) = 0 . (8)

Since, in the reference frame moving with the front, the gravity current velocity Ug enters
into the upstream velocity, we require an additional equation to compute Ug. This can be



obtained by integrating the vorticity equation 4 for a thin control volume that includes
the vortex sheet separating the gravity current and the ambient fluid (OA′ in figure 1b)

u2

o

2

∣

∣

∣

∣

yo=h

= ĝh
ρ1 − ρi(yi = 0)

ρ1 − ρa
→ ξ′(0) =

Ui(0) + Ug
√

2ĝh · (ρ1 − ρi(0))/(ρ1 − ρa)
− 1 . (9)

Equation 9 provides us with an extra equation to obtain Ug, while solving equation 7 and
its two boundary conditions (see equation 8) for ξ(yi).

3 Energy loss and head loss analysis

For given upstream velocity and density profiles, equation 7 allows us to compute the
gravity current velocity Ug as a function of the current height, along with the downstream
density and velocity profiles. In order to check if the resulting flow is physically possible,
energy and/or head loss analysis can be utilized. Note that, unlike Benjamin (1968)
and Xu (1992) who enforce a zero head loss along a specific streamline for closure, our
assessment of the flow’s energy budget is performed a posteriori, and it is not required to
solve for the gravity current velocity Ug.

We begin by computing the head loss δBB′ along the top wall, cf. figure 1. Here Bernoulli’s
equation takes the form

pB +
1

2
ρau

2

i

∣

∣

∣

yi=H
= pB′ +

1

2
ρau

2

o

∣

∣

∣

yo=H
+ δBB′ . (10)

Evaluating the head loss δBB′ requires information on the pressure drop ∆p = pB′ − pB
along the top wall. This can be obtained from the Boussinesq form of the horizontal
momentum equation integrated across the entire channel

∫ H

0

(

pi + ρau
2

i

)

dy =

∫ H

0

(

po + ρau
2

o

)

dy . (11)

We assume stress-free conditions at the top and bottom walls and further compute ∆p by

pB′ − pB = − 1

H

{

1

2
(ρ1 − ρa) gh

2 + h

∫ H

0

δρig(1 + ξ′) dyi − ρa

∫ H

0

ξ′

1 + ξ′
u2

i dyi

+

∫ H

0

(1 + ξ′)

(
∫ H

yi

δρi(1 + ξ′)g dη

)

dyi −
∫ H

0

(
∫ H

yi

δρig dη

)

dyi

}

. (12)

Based on this pressure drop, we can now evaluate the head loss δBB′ along the top wall
from equation 10. However, we note that for stratified ambients the head loss will vary
across the streamlines, so that it is more informative to evaluate the energy loss in the
streamwise direction integrated over the entire channel height. Towards that end, we
write the energy equation for the entire control volume as

Ėi = Ėo + δĖ . (13)

Here, Ėi, Ėo and δĖ denote the up- and downstream energy fluxes, as well as the energy
loss across the gravity current front. To compute δĖ, we evaluate the up- and downstream
energy integrals

Ėi =

∫ H

0

ui

(

pi +
1

2
ρau

2

i + ρigy

)

dy , Ėo =

∫ H

h

uo

(

po +
1

2
ρau

2

o + ρogy

)

dy , (14)



and arrive at

δĖ = − (pB′ − pB)

∫ H

0

ui dyi +

∫ H

0

δρigξui dyi +

∫ H

0

ui

(
∫ H

yi

ξ′δρig dη

)

dyi

−1

2
ρa

∫ H

0

u3

i

(

1− 1

(1 + ξ′)2

)

dyi . (15)

For a detailed derivation of head loss and energy loss analyses, we refer the reader to
Nasr-Azadani and Meiburg (2016).

4 Model predictions vs. simulation results

For given upstream density and velocity profiles, this section discusses the properties of
a gravity current as a function of its height, and it compares model predictions with two-
dimensional Direct Numerical Simulation (DNS) results. The present framework allows us
to move beyond highly idealized models, and to consider more general nonlinear velocity
and density profiles. To illustrate this point, we will in the following focus on ambient
velocity and density profiles that decay exponentially across the channel height. As a
representative example we choose the profiles

ρ∗i (y
∗

i ) = 0.8149e−4y∗
i − 0.0149 , u∗

i (y
∗

i ) =
(

0.9027e−y∗
i − 0.5706

)

+ U∗

g . (16)

Hereafter, the ∗-symbol refers to a dimensionless quantity. We employ the channel height
H, buoyancy velocity

√
ĝH, and density difference (ρ1 − ρa) as the reference scales and

define the dimensionless quantities via x
∗ ≡ x/H ,u∗ ≡ u/

√
ĝH , ρ∗ ≡ (ρ − ρa)/(ρ1 −

ρa) , p
∗ ≡ p/(ρaĝH) , t∗ ≡ t/(H/

√
ĝH) , Ė∗ ≡ Ė/(ρaĝ

3/2H5/2). For the given upstream
velocity and density profiles (equation 16), we evaluate the displacement function ξ∗ and
the gravity current velocity U∗

g as functions of the current height.
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Figure 2: a) Gravity current velocity as a function of the current height. b) Energy loss (equation 15)
as a function of the current height. In both a) and b), the inflow density and horizontal velocity profiles
are given by equations 16. E0 indicates the zero energy loss case, with a current height h∗ = 0.61. To
the left of the vertical line, the energy loss is positive, so that the solutions are physically meaningful.

Figure 2a depicts the gravity current velocity U∗

g as a function of the current height h∗.
We observe a maximum at h∗ ≈ 0.4. The location of this maximum and its value strongly



depend on the ambient shear and stratification. To assess whether or not the obtained
solutions are physically feasible, figure 2b shows the corresponding energy loss δĖ∗ (see
equation 15). The zero energy loss case is indicated by the vertical dotted line. To the left
of this line, i.e. for h∗ ≤ 0.61, the energy loss is positive, which indicates that the solutions
are physically meaningful. For h∗ > 0.61, on the other hand, negative energy loss values
suggest that the corresponding flows cannot be realized without external energy supply.

We now proceed to compare the model predictions against DNS simulation results. To-
wards this end, we initialize the flow field with a current that has the height corresponding
to zero energy loss, as indicated by E0 in figure 2. This case corresponds to h∗ = 0.61
and U∗

g = 0.3. The initial conditions in the DNS simulations are based on the density
field and velocity field obtained from model predictions. The simulation is carried out in
the reference frame moving with the current velocity predicted by the model. Hence, the
agreement between simulation result and model prediction can be assessed by the degree
to which the current front remains in place throughout the simulation. We allow the flow
to develop in ‘time’ until a nearly steady state is reached.

Figure 3: Steady state streamlines along with the density field for a DNS simulation with Re∗ = 2, 500
(see figure 2). The quasisteady current height is close to the value 0.61 predicted by the model (dashed
line) for a flow with zero energy loss (case E0).

The simulation is performed by our in-house code TURBINS (Nasr-Azadani and Meiburg
(2011)). TURBINS is a finite-difference code which employs TVD-RK3 temporal integra-
tion along with a fractional-step projection method to solve the Navier-Stokes equations in
the Boussinesq approximation (see Nasr-Azadani and Meiburg (2011) and Nasr-Azadani
et al. (2013)).

The computational domain has dimensions L∗

x × L∗

y = 4.5 × 1, with prescribed inflow
and convective outflow boundaries in the horizontal direction. We refer the reader to
Nasr-Azadani and Meiburg (2016) for the details of numerical setup.

Figure 3 visualizes the steady-state density field along with the streamlines at time t∗ = 60.
Downstream of the frontal region, the gravity current height approaches the analytical
value corresponding to zero energy loss (shown by the dashed line) very closely. After
an initial transient period, the flow reaches quasi-steady conditions characterized by a
small, approximately constant velocity of u∗

f = dx∗

f/dt
∗ ≈ 0.005. This indicates that the

relative difference between the model prediction for zero energy loss (U∗

g = 0.3) and the
front velocity recorded in the viscous Navier-Stokes simulation (U∗

g = 0.3−u∗

f ) is close to
1.6%, suggesting good agreement between model prediction and simulation result.

Due to existence of viscous effects in the DNS simulation, a weak internal recirculation
inside the gravity current body forms, as shown in figure 3. Xu and Moncrieff (1994)
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Figure 4: Vertical distribution of a) horizontal velocity and b) density plotted at x∗ = 4 obtained from
simulation E0. Very good agreement is observed between the DNS findings (dashed lines) and theoretical
predictions (solid lines). Dashed lines depict the inlet density and velocity profiles.

demonstrate that the influence of the internal circulation on the frontal region and the
propagation velocity of the gravity current is small.

Figure 4 compares the quasi-steady density and velocity profiles near the downstream
boundary with the model predictions. For completeness, the prescribed inflow velocity
and density profiles are shown by dashed-dotted lines. Away from the interface, the
simulation results closely duplicate the model predictions. Near the interface, the dis-
continuities in u∗ and ρ∗ are smeared out by the presence of diffusion in the simulation.
Interestingly, the downstream velocity exhibits a local maximum value at y∗o = 0.93, which
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Figure 5: a) Vertical distribution of streamline displacement function ξ∗ and outlet streamline location
y∗
o
computed for case E0. b) Outlet to inlet velocity and vorticity ratio plotted for problem E0. With the

presence of background stratification and the resulting baroclinic vorticity, the outlet vorticity changes
sign at ξ∗ = 0.36 (y∗

i
= 0.57) which causes a maximum in the velocity at the outlet region. RK4 numerical

method is employed to solve the ODE in equation 7. Bullets and diamonds are computed from the DNS
results.

corresponds to ξ∗ = 0.36, cf. figure 5a. This height corresponds to the point where the



outflow to inflow vorticity ratio ω∗

o/ω
∗

i = 1 − ξ∗ρ∗
′

/{u∗u∗
′} reaches a zero value (see the

dashed line in figure 5b). This change in the sign of the outflow vorticity ratio, and
the corresponding outflow velocity maximum, are achievable only due to the existence of
background stratification.The bullets and diamonds shown in figure 5 are from the DNS
results. Despite slight differences at the interfacial region which is mainly due to the
viscous effects, our theoretical predictions follow the DNS results very closely.
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