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Abstract

Flexible Dynamic Quantile Linear Models

by

Raquel A. Barata

Motivated by the problem of modeling time-varying quantiles in a way that

provides rich quantitative information, we consider a class of models to describe

the dynamics of a specific quantile for both univariate and multivariate time se-

ries data. This prompts us to present several methodological and computational

contributions to dynamic quantile modeling, and, more generally, non-Gaussian

time-varying models.

We begin with a discussion of the existing quantile estimation literature and

the scope to which our methods contribute to the statistical community. We

also discuss background on methods for atmospheric river characterization, an

application that in part motivated this work and resurfaces throughout.

In the second chapter, we develop a flexible dynamic quantile linear model

(exDQLM) utilizing a recently developed family of parametric distributions for

quantile regression. A simulation study illustrates our exDQLM to be more ro-

bust than the standard Bayesian parametric quantile regression approach for non-

standard distributions, performing better in both quantile estimation and predic-

tive accuracy. In addition to a Markov chain Monte Carlo (MCMC) algorithm, we

develop an efficient importance sampling variational Bayes (ISVB) algorithm for

fast approximate Bayesian inference which is found to produce comparable results

to the MCMC in a fraction of the computation time.

In the third chapter, we apply the exDQLM to the analysis of the integrated

water vapor transport (IVT) magnitude quantile threshold, a primary component
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of many atmospheric river detection schemes. In contrast to current estimation

methods, our methodology enables versatile, structured, and informative estima-

tion of the threshold. Further, we develop a transfer function extension to our

exDQLM as a method for quantifying non-linear relationships between a quantile

of a climatological response and an input. The utility of our transfer function

exDQLM is demonstrated in capturing both the immediate and lagged effects

of El Niño Southern Oscillation Longitude Index on the estimation of the 0.85

quantile IVT.

In the fourth chapter, we present the R package exdqlm as a tool for dynamic

quantile regression. The main focus of the package is to provide a framework for

Bayesian inference and forecasting of exDQLMs by implementing the methods de-

tailed in the previous two chapters. Non-time-varying quantile regression models,

which comprise a majority of the current statistical software, are discussed as a

special case of our methods. The software provides the choice of two different

algorithms, MCMC or ISVB, for posterior inference. Routines for estimation of a

nonlinear relationship via a transfer function model are available as well as rou-

tines for forecasting and model evaluation. We illustrate the implementation of

the functions and algorithms in the exdqlm package with a step-by-step guide for

the analysis of several real data sets.

In the fifth chapter, we develop a multivariate extended dynamic quantile lin-

ear model to consider multiple time series simultaneously and jointly estimate a

specified quantile for each series. To do this, we first develop a multivariate exAL

distribution. We then present the details of multivariate MCMC and ISVB algo-

rithms for exact and approximate posterior inference, respectively. The utility of

the multivariate model is illustrated via application to two real datasets, including

an IVT dataset spanning all of CA.

xix



Finally, we conclude with a brief review of the methodological and computa-

tional contributions presented, and discuss possible future work.
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Chapter 1

Introduction

Quantile estimation has been established as a robust alternative to traditional

mean-centric approaches. In general, quantiles provide more comprehensive in-

formation about the shape of a distribution, which is of particular importance

in climatological and environmental applications where changes in variability and

extreme events are expect. Nevertheless, methods for quantile estimation in the

dynamic setting remain limited as estimation of non-Gaussian time-evolving quan-

tiles is a non-trival task. This work combines well-known quantile regression and

dynamic modeling techniques to develop several methodological and computa-

tional contributions for dynamic quantile modeling, and, more generally, non-

Gaussian time-varying models.

This work is in part motivated by the need to describe and quantify atmo-

spheric rivers (ARs) in global climate and weather models. ARs are elongated

regions of water vapor in the atmosphere that transport water from the tropics

around the globe. Typically carrying 7-15 Mississippi Rivers worth of water, ARs

play a key role in the global water cycle and regional weather (Ralph and Det-

tinger, 2011). When these events make landfall, they often release water vapor in

the form of rain or snow. While they have the ability to cause extreme rainfall
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and floods, atmospheric rivers are crucial to alleviate drought conditions and con-

tribute to beneficial increases in the fresh water supply for water-stressed areas

such as California (Guan et al., 2010; Dettinger, 2013). Several techniques have

been developed with the objective of detecting ARs (Rutz et al., 2014; Backes

et al., 2015). In particular, an effective approach is to focus on the integrated

water vapor transport (IVT), a vector representing the total amount of water va-

por being transported in an atmospheric column. This is increasingly used in the

study of ARs because of its direct relationship with orographically induced precip-

itation (Neiman et al., 2009). One study in particular by Guan and Waliser (2015)

presents a method for detection of ARs based on characteristics of the magnitude

of the IVT vector. A key component of this and many other AR detection schemes

is the thresholding of IVT magnitude at a specified quantile, specifically the 0.85

quantile in Guan and Waliser (2015). A sensitivity study found their AR detection

scheme to be sensitive to the choice of quantile, thus accurate estimation of IVT

threshold is crucial. However, the current approach for calculating the 0.85 quan-

tile is unstructured, invariant from year to year, unable to incorporate information

between locations, and incapable of including relevant climatological information.

Motivated by the problem of modeling time-varying IVT thresholds in a way that

provides richer quantitative information, we consider a class of models to describe

the dynamics of a specific quantile of both univariate and multivariate time series

data.

The first contribution of this work is a novel model referred to as the extended

dynamic quantile linear model (exDQLM). Our exDQLM utilizes a recently devel-

oped family of parametric error distributions for quantile regression, the extended

asymmetric Laplace distribution (exAL; Yan and Kottas, 2017). In the Bayesian

setting, parametric quantile regression models are almost exclusively based on the
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asymmetric Laplace (AL) distribution, a special case of the exAL. However the

AL is known to have several drawbacks, which we discuss in detail in Section

2.1. For example, the skewness of the distribution as well as the location of the

mode are fully dictated by the choice of the fixed quantile. More flexible error

distributions for a single quantile have been considered extensively in the Bayesian

non-parametric literature. The median regression case has been considered in the

semi-parametric setting by Walker and Mallick (1999), Kottas and Gelfand (2001)

and Hanson and Johnson (2002), with general quantile regression seen in Kottas

and Krnjajić (2009) and Reich et al. (2009). Fully non-parametric nonlinear mod-

eling of a single quantile regression functions is seen in Taddy and Kottas (2010)

and Kottas and Krnjajić (2009). The literature on parametric approaches that

lead to flexible quantile regression models is much less extensive. Wichitaksorn

et al. (2014) presents a new class of skew distributions with the AL as a special

case, however the skewness remains fully determined by the fixed quantile. Zhu

and Zinde-Walsh (2009) and Zhu and Galbraith (2011) present a four parameter

family of asymmetric exponential power distributions for a fixed quantile, how-

ever, the mode of the distribution remains fixed at the quantile of interest. The

exAL presented in Yan and Kottas (2017) overcomes these shortcomings in the

current parametric methods. A detailed discussion of the properties of the exAL

can be found Section 2.1. Our methods generalize the utility of the exAL to the

time series setting and allow for time-varying quantile inference.

It is important to mention our exDQLM is not exempt to the possibility of

quantile crossing for settings in which multiple quantiles are of interest. This is

a well known challenge for the majority of models which provide inference for

a single quantile at a time. Nonparametric methods for simultaneous analysis

of several quantiles can be found in Reich and Smith (2013) and Tokdar et al.
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(2012), however these nonparametric methods are computationally taxing and

do not scale well to the time-varying setting. In the context of our application,

quantile crossing is not a concern as we are interested in a single fixed quantile.

The second contribution of this work is our importance sampling variational

Bayes (ISVB) algorithm for fast, flexible inference of a time-varying quantile.

Current methods for quantile regression with time-evolving parameters in both

the parametric and semi-parametric approaches are almost exclusively based on

the AL likelihood and check loss function, respectively (Gonçalves et al., 2020;

Bernardi et al., 2016; Paraschiv et al., 2016; Koenker and Xiao, 2006). Nonpara-

metric approaches are even more limited in the time series setting as defining

likelihood functions for quantile-function-valued data is a non-trivial task (Chen

et al., 2017). Further, a majority of these approaches, both parametric and non-

parametric, are computationally expensive. This has prompted the development

of approximate estimation algorithms. Although these alternative algorithms are

faster computationally, many compromise the true underlying estimation problem

in their original models. Our ISVB algorithm relieves the computational bur-

den while preserving the underlying model structure, thus not compromising the

interpretability of the resulting estimated quantiles.

Although variational methods are becoming more widespread in the statistical

community (for a comprehensive review see Blei et al. (2017)), the literature on

variational inference in the time-varying setting remains limited. There has been

some work on linear Gaussian state-space models (Barber and Chiappa, 2007;

Penny et al., 2003), dynamic generalized linear models (Quiroz et al., 2018; Berry

and West, 2020), and hidden Markov models (Johnson and Willsky, 2014; Foti

et al., 2014), however the application of variational inference to non-conjugate non-

linear state-space models is not seen in the literature. Further, the parameteric
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quantile regression methods found in Kozumi and Kobayashi (2011) and Yan and

Kottas (2017) are special cases of our exDQLM, thus our ISVB can be applied

to these non-time-varying models as well. Until this point, variational inference

has not been applied in the quantile regression setting. Our ISVB algorithm

contributes to both the quantile regression and time-series literature a simple

and straightforward method for estimation of the true high-dimensional posterior

distribution.

The third contribution of this work is the development of a transfer function

exDQLM as a method for quantifying associations that account for the cumu-

lative effect of a time-varying input on a quantile of a response variable, e.g., a

given climatological response. Most studies associating climate indices to specific

atmospheric phenomena focus on simple linear associations, when in reality the

relationships are much more complex. Numerous climate indices have been exten-

sively studied as potential sources of predictability for precipitation and ARs. A

few examples include the Arctic Oscillation (AO) index (Guan et al., 2013), the

“Pineapple Express” (PE) index (Weller et al., 2012), the Madden-Julian Oscilla-

tion (MJO) (Guan et al., 2012), the Niño3.4 index (Tziperman et al., 1998), as

well as the recently developed El Niño Southern Oscillation (ENSO) Longitude

Index (ELI; Williams and Patricola, 2018). In this work, we demonstrate the

practical utility of our transfer function exDQLM in capturing both immediate

and lagged effects of ELI on the 0.85 quantile IVT magnitude.

The fourth contribution of this work is the R (R Core Team, 2013) package

exdqlm which implements the contributions discussed thus far. Although quantile

regression has gained popularity, software implementations remain limited, par-

ticularly for time-varying methods. Well-developed software implementations of a

non-time-varying quantile regression models which utilize the AL are available in
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the Bayesian R package bayesQR (Benoit et al., 2011) and, equivalently, a classi-

cal version, which utilizes the check-loss function (Koenker, 2005), is available in

the package quantreg (Koenker, 2021). As a result of the AL being a special case

of the exAL, the methods used in the Bayesian package bayesQR are a special

case of the exDQLM implemented in exdqlm. Further, there are many established

packages for dynamic modeling including dlm (Petris and Gilks, 2018) and dynr

(Ou et al., 2021), however, implementations of dynamic quantile modeling are

much more limited. To our knowledge, the package quantreg includes a routine

which allows for a time-evolving structure in the regression coefficients (a special

case of the routines in the package), but this is the extent of the software available

for dynamic quantile regression. Our exdqlm package provides a powerful and

versatile tool for dynamic quantile modeling.

The final contribution of this work is the development of the multivariate

exDQLM (MVexDQLM). This model considers multiple time series simultane-

ously and jointly estimates a specified quantile for each series. Non-time-varying

multivariate and spatial quantile regression has been considered in this literature

non-parametrically (Reich et al., 2011) and parametrically (Lum et al., 2012).

Some work has also been done in the spatio-temporal setting, both paramet-

ric (Neelon et al., 2015) and semi-paramteric (Reich, 2012), however again, the

parametric approaches are exclusively based on the AL. We develop a multivari-

ate exAL distribution (MVexAL) to facilitate the extension of our more flexible

methods to the multivariate time-varying setting. Our methodology, including our

variational approach for fast, accurate, approximate estimation, naturally scales

to the higher dimension, thus providing a computationally feasible method for

estimating conditional quantiles of multivariate time-series.

The details of these topics are presented in the following chapters, organized
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as follows. In Chapter 2, we begin with background on the exAL distribution and

develop the exDQLM. We present both a Markov chain Monte Carlo (MCMC)

algorithm and the ISVB algorithm for Bayesian inference. In Chapter 3, we de-

velop our transfer function exDQLM with details on MCMC and ISVB algorithm

augmentations for this new model. We apply the transfer function exDQLM to

the estimation of the 0.85 quantile IVT threshold. In Chapter 4, we present the

capabilities of the R package exdqlm and illustrate its implementation on several

real datasets. In Chapter 5, we develop the MVexDQLM as well as the corre-

sponding MCMC and ISVB algorithms. The utility of MVexDQLM is illustrated

via application to two real datasets, including an IVT dataset spanning all of CA.

Lastly, we conclude in Chapter 6 with a brief review of the methods covered, and

discuss possible future work.
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Chapter 2

Fast Inference for Time-Varying

Quantiles via Flexible Dynamic

Models

We begin by developing a flexible dynamic quantile linear model utilizing a

recently developed family of parametric distributions for quantile regression. In

addition to a Markov chain Monte Carlo algorithm, we develop an efficient vari-

ational Bayes algorithm for fast approximate Bayesian inference. A simulation

study illustrates the advantages of the exDQLM over the standard Bayesian para-

metric quantile regression approach, performing better in both quantile estimation

and predictive accuracy.
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2.1 Introduction and Background

As mentioned previously, Bayesian parametric quantile regression models are

almost exclusively based around the asymmetric Laplace (AL) likelihood,

ALp(y|µ, σ) = p(1− p)
σ

exp
{
−ρp(y − µ)

σ

}
(2.1)

where ρp(u) = u[p − I(u < 0)] is the check loss function and I(·) denotes the

indicator function. σ > 0 is a scale parameter, p ∈ (0, 1) is a skewness parameter

typically fixed to be the quantile of interest, and the mode µ is the corresponding

value of that p-th quantile. More explicitly,
∫ µ
−∞ALp(y|µ, σ)dy = p. A model for

quantile regression can be developed by allowing µ to be a function of covariates

x, such as µ = xTβp which yields a linear quantile regression structure. Maxi-

mization of the AL likelihood with respect to βp is equivalent to the minimization

of the check loss function, a common approach in classical quantile regression

(Koenker, 2005). For a time-evolving yt, a time-evolving mode µt = F′tθ
p
t yields a

dynamic linear regression structure where Ft is the regression vector of the covari-

ates corresponding to the parameter vector θpt at time t. In quantile regression, the

parameter vectors are dependent on the fixed quantile p, however for notational

simplicity we will omit the superscript p going forward.

The AL was first used for Bayesian quantile regression by Yu and Moyeed

(2001) and Tsionas (2003). Kotz et al. (2001) presents several representations of

the AL, one of which is a location-scale mixture which easily facilitates posterior

simulation (Kozumi and Kobayashi, 2011). That is,

ALp(y|µ, σ) =
∫
R+

N(y|µ+ A(p)v, σB(p)v)Exp(v|σ)dv (2.2)

where A(p) = 1−2p
p(1−p) , B(p) = 2

p(1−p) and Exp(v|σ) denotes the exponential distri-
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bution with mean σ. Although the representation enables closed form posterior

conditional distributions, the AL is known to have several limitations. Most no-

tably, the skewness and quantile are fully dictated by choice of p, thus for a fixed

quantile the skewness of the distribution is fully determined. In particular, when

p = 0.5 the distribution is symmetric. Further, for any quantile, the mode of the

distribution occurs at µ resulting in rigid tails for extreme percentiles.

To address the shortcomings of the AL parametrically, Yan and Kottas (2017)

develop an extension of the AL which overcomes the restrictive aspects of the

distribution. The new family of error distributions is constructed from an ex-

tension of the location-scale mixture representation of the AL in Equation (2.2).

More specifically, replacing the Gaussian kernel in the mixture with a skew-normal

distribution introduces an additional skewness parameter γ. When γ = 0, the

model reduces to the AL. The skew-normal density can also be written as a lo-

cation normal mixture with mixing distribution given by the standard normal

truncated to the positive real numbers, facilitating posterior simulation (Henze,

1986). Thus, the full mixture representation of the proposed family of error den-

sities, exAL(y|µ, σ, γ), is

∫ ∫
R+×R+

N(y|µ+ C(p, γ)σ|γ|s+ A(p)v, σB(p)v)Exp(v|σ)N+(s|0, 1)dvds (2.3)

where N+(s|0, 1) denotes a normal distribution truncated to the positive reals

with mean 0 and variance 1. Note that in this parameterization µ no longer

corresponds to the p-th quantile of the distribution. To preserve the ability to

fix the quantile of interest, which we will now denote to as p0, Yan and Kottas

(2017) define the previously fixed parameter p such that p = p(p0, γ) = I(γ <

0)+{[p0− I(γ < 0)]/g(γ)} where g(γ) = 2Φ(−|γ|)exp(γ2/2) and Φ(·) denotes the

standard normal CDF. The parameter γ has bounded support over the interval
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(L,U) where L is the negative root of g(γ) = 1− p0 and U is the positive root of

g(γ) = p0. Further, A(p) and B(p) are functions of p as defined in Equation (2.2)

and C(p, γ) = [I(γ > 0)− p]−1. Thus, by construction µ corresponds to the fixed

quantile p0 such that
∫ µ
−∞ exAL(y|µ, σ, γ)dy = p0.

Figure 2.1: Density functions of exALp0(y|γ, µ, σ) defined in Equation (2.3) with
µ = 0, σ = 1 and different values of γ for fixed quantiles p0 = 0.05, 0.5, and 0.85.
The black solid line corresponds to the AL density, which is a special case when
γ = 0.

Figure 2.1 illustrates the flexibility induced by the additional skewness pa-

rameter γ for fixed quantiles p0 = 0.05, 0.5, and 0.85. Recall γ has bounded

support on the interval (L,U) which is dependent on γ, thus γ = 0 is the only

skewness parameter which appears in all fixed quantiles of Figure 2.1. It can be

seen that, when the median is fixed, γ enables both left and right skewness. The

additional parameter controls the tail behavior allowing both heavier and lighter

tails than the AL. Flexibility is also seen in the mode, which is no longer fixed at

µ. Thus, the exAL is substantially more versatile than the AL while the hierarchi-

cal mixture representation preserves straight-forward posterior inference, making

it a robust error distribution for our dynamic quantile model. While the exAL

improves upon current methods which are well known to suffer from model mis-

specification (Komunjer, 2005), it remains important that we caution the reader

of utilizing the exDQLM beyond quantile estimation. For closed form representa-
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tion as well as other properties of the new family of error distributions, see Yan

and Kottas (2017). Note also that Yan and Kottas (2017) refers to the extension

as the generalized asymmetric Laplace distribution, however we will refer to the

distribution as the extended AL (exAL) to avoid confusion with the generalized

asymmetric Laplace distribution defined in Kotz et al. (2001).

2.2 The exDQLM

Consider a set of time-evolving responses, yt, for times t = 1, . . . , T . For each

t, a general dynamic model can be defined by

Observation equation: yt = F′tθt + εt (2.4)

System Equation: θt = Gtθt−1 + ωt. (2.5)

Here Ft is the q× 1 regression vector of the covariates corresponding to the q× 1

regression parameter vector θt at time t, and Gt is the q-dimensional evolution

matrix defining the structure of the parameter vector evolution in time. We pro-

pose an extended dynamic quantile linear model (exDQLM) for inference on a

single p0-th quantile by specifying the observational errors of a dynamic linear

model to be distributed from the exAL, which we denote exALp0 . That is, εt in

Equation (2.4) are distributed independently from the exAL with quantile p0 fixed

such that
∫ 0
−∞ exALp0(εt|0, σ, γ)dεt = p0. Utilizing a Gaussian time-evolving struc-

ture on the system error vector, i.e. ωt ∼ N(0,Wt) where Wt is the evolution

variance matrix, our exDQLM model can be written

yt|θt, γ, σ ∼ exALp0(F′tθt, σ, γ) (2.6)

θt|θt−1,Wt ∼ N(Gtθt−1,Wt) (2.7)
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where the normal distribution according to which θt evolves is q-variate. The

mixture representation of the exAL in Equation (2.3) can be exploited to rewrite

the exDQLM as the following hierarchical model for t = 1, . . . , T :

yt|θt, σ, γ, vt, st ∼ N(yt|F′tθt + C(p, γ)σ|γ|st + A(p)vt, σB(p)vt) (2.8)

vt, st|σ ∼ Exp(vt|σ)N+(st|0, 1) (2.9)

θt|θt−1,Wt ∼ N(Gtθt−1,Wt). (2.10)

Here, A(p), B(p), C(p, γ) are the functions of p and γ defined with Equation (2.3).

A q-variate prior θ0 ∼ N(m0,C0) is used at the initial stage. It is possible to place

an inverse Wishart prior on the evolution covariance matrix Wt, however for our

analyses we utilize discount factors, which we discuss in Section 2.2.4. Yan and

Kottas (2017) suggest a inverse-gamma prior for σ denoted IG(aσ, bσ) and uniform

prior for γ over the interval (L,U) denoted Uni(L,U). Further discussion of the

prior selection and posterior inference of σ and γ can be found in Section 2.2.5.

2.2.1 Markov chain Monte Carlo algorithm

The construction of the exAL through a structured mixture of normal distribu-

tions facilitates Bayesian posterior simulation using Markov Chain Monte Carlo

(MCMC) with a Metropolis-Hastings (MH) step for the skewness parameter γ.

Conditional on the latent variables v = {v1, . . . , vT} and s = {s1, . . . , sT}, scale

parameter σ and skewness parameter γ, the dynamic regression coefficients can be

sampled using a forward filtering backwards sampling (FFBS) algorithm (Carter

and Kohn, 1994; Frühwirth-Schnatter, 1994). Full details of our FFBS can be

found in Appendix A. MCMC posterior simulation is summarized in Algorithm 1.

Note that if a point mass prior at zero is used for skewness parameter γ, the
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Algorithm 1: exDQLM MCMC

Initialize σ(0), γ(0),v(0), s(0), θ
(0)
1:T ;

for i = 0, . . . , I-1 do

1. Sample σ(i+1)|θ(i)
1:T ,v

(i), s(i), γ(i) from a generalized inverse Gaussian, denoted GIG(λσ , χσ , ψσ)
where

λσ = −(aσ + 1.5T ), χσ = 2bσ + 2
T∑
t=1

v
(i)
t +

T∑
t=1

(yt − F′tθ
(i)
t −A(p)(i)v

(i)
t )2

B(p)(i)v
(i)
t

,

ψσ =
T∑
t=1

(C(p)(i)|γ(i)|s(i)
t )2

B(p)(i)v
(i)
t

.

2. Sample γ(i+1)|θ(i)
t ,v(i), s(i), σ(i) using a Metropolis-Hastings step with a Gaussian random walk

proposal on the logit scale.

3. for t=1,. . . ,T do

Sample v
(i+1)
t |θ(i)

t , s
(i)
t , σ(i), γ(i) ∼ GIG(λvt , χvt , ψvt ) where λvt = 1/2,

χvt =
(yt − F′tθ

(i)
t − σC(p)(i)|γ(i)|s(i)

t ))2

σ(i)B(p)(i) , ψvt =
2
σ(i) +

A(p)(i)2

σ(i)B(p)(i) .

end

4. for t=1,. . . ,T do

Sample s
(i)
t |θ

(i)
t , v

(i)
t , σ(i), γ(i) ∼ N+(µst , σ

2
st

), where

σ2
st

=
[
C(p)(i)2

γ(i)2
σ(i)

B(p)(i)v
(i)
t

+ 1
]−1

,

µst = σ2
st

[
C(p)(i)|γ(i)|(yt − F′tθ

(i)
t −A(p)(i)v

(i)
t )

B(p)(i)v
(i)
t

]
.

end

5. for t=1,. . . ,T do

Sample θt|v(i), s(i), γ(i), σ(i) via FFBS. The forward part of the FFBS algorithm uses the
forecast distribution p(yt|Dt−1) = N(ft, Qt) where Dt−1 = {y1, . . . , yt−1},

ft = F′tat + C(p)(i)σ(i)|γ(i)|s(i)
t +A(p)(i)v

(i)
t , Qt = F′tRtFt + σ(i)B(p)(i)v

(i)
t .

end

end

model simplifies to the DQLM with fixed quantile p = p0. The DQLM models the

p-th quantile alternatively by specifying the observational errors εt in Equation

(2.4) to be distributed independently from an AL (Gonçalves et al., 2020). Similar
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to the exDQLM, a mixture representation can be exploited to rewrite the DQLM

a hierarchical model to facilitate a MCMC algorithm for posterior inference. Such

algorithm will follow very closely Algorithm 1 with a few changes: the posterior

of σ reduces to an inverse gamma and all terms with skewness γ will simplify to

0. We compare the exDQLM with this special case in Section 2.3.

2.2.2 Importance sampling variational Bayes algorithm

The addition of two latent parameters per observation in the hierarchical rep-

resentation of the exDQLM elicits both high computational and memory costs. In

particular, any sort of model selection is completely intractable when using only

the MCMC algorithm. For example, a daily IVT magnitude time series at a single

location from 1979 through 2019 consist of 14965 time points. For this length of

time series, the personal laptop used for computations in Chapter 3 was not able

to produce results when using the MCMC algorithm due to the significant mem-

ory storage required. Further, even with enough memory, model selection with

the MCMC algorithm is not a realistic option as it can take a full day or more

for the algorithm to converge for each model configuration. Amidst our efforts to

address these issues, we found many of the standard methods for fast inference of

a non-Gaussian state space model (i.e., an expectation maximization algorithm,

or state-space augmentation scheme) were unable to provide accurate inference or

compromised the ability to fix the quantile of interest due to the complex struc-

ture of our exDQLM. To relieve the computational burden and memory storage

requirements induced by the MCMC algorithm while preserving the underlying

parameter estimation problem, we present an efficient importance sampling vari-

ational Bayes (ISVB) algorithm.

Variational Bayes (VB) is an optimization method for fast, approximate poste-
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rior inference (Ostwald et al., 2014). Let ξ = {θ1:T , σ, γ,v, s} denote the set of all

parameters in the exDQLM. Within the VB framework, we approximate the pos-

terior distribution f(ξ|y1:T ) with an arbitrary variational distribution r(ξ) which

minimizes the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951). In

particular,

r(ξ) := argminr∗KL(r∗(ξ), f(ξ|y1:T )) (2.11)

where

KL(r(ξ), f(ξ|y1:T )) =
∫
r(ξ) log r(ξ)

f(ξ|y1:T )dξ (2.12)

=
∫
r(ξ) log r(ξ)f(y1:T )

f(ξ,y1:T ) dξ (2.13)

= f(y1:T )−
∫
r(ξ) log f(ξ,y1:T )

r(ξ) dξ. (2.14)

This form of the KL divergence leads to the following composition of the log

marginal likelihood, or log evidence, which is at the core of the VB approach

(Ostwald et al., 2014),

f(y1:T ) =
∫
r(ξ) log f(ξ,y1:T )

r(ξ) dξ + KL(r(ξ), f(ξ|y1:T )). (2.15)

The first term in this composition is often referred to as the evidence lower bound

(ELBO). Because the KL divergence is non-negative, the variation distribution

r(ξ) which minimizes the KL divergence in Equation (2.11) also maximizes the

ELBO, that is

r(ξ) := argmaxr∗ELBO(r∗(ξ), f(ξ|y1:T )). (2.16)

For a full review of the VB approach, see Ostwald et al. (2014).

A common choice for the family of variational distributions over which we

16



optimize the ELBO is a factorization over different sets of variables known as a

mean-field approximation (Beal, 2003). In our particular model, we factorize as

follows

r(ξ) = r(θ1:T )r(σ, γ)r(v)r(s). (2.17)

Note, this reflects an assumption of stochastic independence between sets of vari-

ables. It has been shown that for each component of the factorization, the ELBO

is maximized by the following

r(ξc) ∝ exp
{∫

log f(y1:T , ξ−c)r(ξ−c)dξ−c
}

(2.18)

where ξc denotes the set of variables in the component being maximized and ξ−c

the variables not in that component of the partition (Tuckerman, 2010).

To implement this VB approach, we initialize the partitioned variational distri-

butions seen in Equation (2.17) and iteratively maximize the ELBO using Equa-

tion (2.18) until convergence. For the exDQLM, the variational distribution up-

dates at each iteration are recognizable, closed-form distributions with the excep-

tion of r(σ, γ). Therefore, we propose to approximate the update of r(σ, γ) at

each iteration using importance sampling (IS). ISVB posterior inference for the

exDQLM is summarized in Algorithm 2. For simplicity, we will use the following

short-hand notation where ξc and ξ−c are as defined in Equation (2.18)

〈g(ξc)〉 =
∫

log g(ξc)r(ξ−c)dξ−c.

The resulting closed form integrals as well as complete details of the Forward

Filtering Backwards Smoothing (FFBSm) and IS algorithms used to update the

variational distributions can be found in Appendix A.
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Algorithm 2: exDQLM ISVB
Set k = 0 and initialize r0(st), r0(vt), r0(θt) and r0(σ, γ);
while convergence has not been achieved do

1. for t=1,. . . ,T do

Update r(k+1)(vt) = GIG(λ(k+1)
vt , χ

(k+1)
vt , ψ

(k+1)
vt ) where λvt = 1/2

χvt =
〈 1
σB(p)

〉(k)
(y2
t − 2yt〈F′tθt〉(k) + 〈(F′tθt)2〉(k))

− 2〈st〉(k+1)
〈
C(p)|γ|
B(p)

〉(k)
(yt − 〈F′tθt〉(k))

+ 〈s2
t 〉(k+1)

〈
C(p)2σ|γ|2

B(p)

〉(k)

ψvt = 2
〈 1
σ

〉(k)
+
〈
A(p)2

σB(p)

〉(k)

.

end

2. for t=1,. . . ,T do

Update r(k+1)(st) = N+(µ(k+1)
st , σ2

st

(k+1)), where

σ2(k+1)
st

=

[〈
C(p)2σγ2

B(p)

〉(k) 〈 1
vt

〉(k)
+ 1

]−1

µ
(k+1)
st = σ2

st

[
(yt − 〈F′tθt〉(k))

〈 1
vt

〉(k) 〈C(p)|γ|
B(p)

〉(k)
−
〈
C(p)|γ|A(p))

B(p)

〉(k)
]
.

end

3. for t=1,. . . ,T do

Update the smoothed distribution r(k+1)(θt) = N(ms
t ,Cs

t ) using a FFBSm algorithm with

forecast distribution r(k+1)(yt|Dt−1) = N(ft, Qt) where Dt−1 = {y1, . . . , yt−1},

ft = F′tat +
[〈

C(p)|γ|
B(p)

〉(k)
〈st〉(k+1) +

〈
A(p)
σB(p)

〉(k)/〈 1
vt

〉(k+1)
]/〈 1

σB(p)

〉(k)

Qt = F′tRtFt +
[〈 1

vt

〉(k+1)〈 1
σB(p)

〉(k)
]−1

.

end

4. Update r(k+1)(σ, γ) using IS with proposal distributions t(L,U)(0, 1) and t(0,∞)(mσ , vσ)
for γ and σ, respectively, where mσ and vσ denote the mean and variance of the prior
distribution on σ. Further details of this IS step can be found in Appendix A.

5. Set k = k + 1.

end
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2.2.3 Comparison criteria

To evaluate the quantile inference and predictive performance of the exDQLM,

we define several measures for comparison. Consider first the setting in which we

know the true p0 quantile, µtruet , for all t. To measure the fit of the quantile

estimates, we compute the 95% credible interval (CrI) for the mean check loss

(MCL),

∑
t

ρp0(µtruet − F′tθ̃t)/T, (2.19)

where θ̃t is a sample from the posterior distribution.

To evaluate the predictive ability of the exDQLM, we consider the Gelfand and

Ghosh (1998) posterior predictive loss criterion (pplc) with check loss function ρp0 .

Given the posterior replicate distribution of yt, p(yrept |DT ),

pplc =
∑
t

E[ρp0(yobst − y
rep
t )|DT ] (2.20)

where DT = {y1, . . . , yT}.

Lastly, as in Huerta et al. (2003) and Prado et al. (2006) we use the one-step-

ahead predictive distribution function introduced by Rosenblatt (1952) as a model

diagnostic tool. If we define ξ−θ1:T = {v, s, σ, γ}, this distribution is given by

ut = Φ(yt|Dt−1, ξ−θ1:T ) = Pr(Yt ≤ yt|Dt−1, ξ−θ1:T ). (2.21)

Here ut defines an independent sequence which is uniformly distributed on the in-

terval (0, 1) (Rosenblatt, 1952). Conditional on ξ−θ1:T , the predictive distribution

of yt is normally distributed with mean ft and variance Qt seen in Algorithms 1

and 2, thus ut = Φ(yt|ft, Qt) where Φ denotes the normal CDF. We can obtain

19



a point estimate for ut conditionally on a posterior summary of ξ−θ1:T from the

MCMC or ISVB posterior samples. A diagnosis of the model performance can be

done through the correlation of the estimated sequence {ût} and their distribution

shape. More specifically, transforming the values with a standard normal inverse

CDF allows for examination of the distribution shape with a normal QQ-plot.

To quantify the divergence from the standard normal distribution, we consider

the KL divergence KL(h, φ) =
∫∞
−∞ h(x) log h(x)

φ(x)dx. We estimate the integrals us-

ing the numerically approximated densities of our transformed sample, which we

denote h, and the standard normal density, φ.

2.2.4 Discount factor selection

A standard approach which allows us to specify the time-evolving covariance

matrices Wt is the use of discount factors. (West and Harrison, 2006). The

structure and magnitude of Wt controls stochastic variation and stability of the

evolution of the model over time. More precisely, if the posterior variance of the

state vector θt−1 at time t − 1 is denoted as Var(θt−1|Dt−1) = Ct−1, the sequen-

tial updating equations produce the prior variance of θt, Rt = Var(θt|Dt−1) =

GtCt−1G′t + Wt. Between observations, the addition of the error leads to an

additive increase in the initial uncertainty GtCt−1G′t of the system variance.

Thus it is natural to write Rt as a fixed proportion of GtCt−1G′t such that

Rt = GtCt−1G′t/δ ≥ GtCt−1G′t. Here δ is defined to be a discount factor

such that 0 < δ ≤ 1. This suggests an evolution variance matrix of the form

Wt = 1−δ
δ

GtCt−1G′t, where the δ = 1 results in a static model with non time-

varying parameters.

Selection of discount factors is typically done by optimizing some model check-

ing criterion. This criterion-based selection approach requires posterior inference
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for each set of discount factors which can become computationally expensive very

quickly especially for large T . The ISVB algorithm makes this criterion-based

selection approach computationally feasible. We propose selecting the discount

factor, or combination of discount factors (see West and Harrison (2006) for de-

tails on component discounting), that minimize the KL divergence calculated from

the one-step-ahead predictive distribution functions ut estimated using the MAP

estimates of ξ−θ1:T from the ISVB algorithm, as discussed in Section 2.2.3. Fixing

the discount factors within each quantile ensures consistent signal-to-noise ratios

between differing models and algorithms.

2.2.5 Comments on prior selection and inference of σ and γ

We find that using a weakly informative prior distribution on the skewness

parameter γ facilitates reliable posterior inference by alleviating some of the in-

ferential problems known to arise when utilizing the skew-normal family (Liseo

and Loperfido, 2006), particularly within the ISVB algorithm. More specifically,

for several datasets we find using a flat prior results in the ISVB estimates of γ

going to the boundary of its support, resulting in a host of numerical and infer-

ential problems. To this end, we implement a Student-t distribution truncated

to the interval (L,U) as the prior for γ, i.e. γ ∼ t(L,U)(0, 1) with one degree of

freedom, in contrast to the uniform prior suggest by Yan and Kottas (2017).

Interaction between the parameters σ and γ can complicate posterior inference,

particularly for extreme quantiles. Joint sampling of σ and γ with a random-walk

MH step facilitates mixing and convergence within the MCMC algorithm. The

interaction between σ and γ is also prevalent within the ISVB algorithm, which

commonly results in the variational distributions getting stuck in local optima.

To facilitate fast posterior estimation with the ISVB algorithm, we place a point-
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mass prior on σ. For the simulation study in Section 2.3, we set the point-mass of

this prior to the posterior mode of σ estimated from the DQLM. That is, for any

fixed quantile of interest p0, the prior on σ is set to δσ̂p0
γ=0

(σ) where δ denotes the

Dirac delta function and σ̂p0
γ=0 is the posterior mode of σ under the DQLM for the

p0 quantile. If convergence still proves difficult, a smaller scale can be helpful and

we suggest decreasing the location of the point-mass by approximately twenty-

five percent, as seen in the IVT analysis of Chapter 3. Although this approach

results in different posterior summaries for the skewness parameter γ obtained

from the ISVB algorithm and the MCMC algorithm, we find that the posterior

error distributions and modes (and therefore quantile estimates) are robust with

respect to the prior placed on σ.

2.3 Simulation study

Figure 2.2: Simulation study datasets. From left to right are the data simu-
lated from the Stochastic Volatility (SV) model, exDQLM, and generalized DLM
(gDLM) described in Section 2.3.

We present results from a simulation study to examine the exDQLM for

three different quantiles; 0.05, 0.50 and 0.85. We compare the flexibility of

the model to the special case of the DQLM as well as the standard DLM, for
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which we can estimate posterior quantiles from the Gaussian observation equa-

tion using the smoothed estimates (West and Harrison, 2006). That is, sample

F′θ̃DLMt + σ̃DLMΦ−1(p0) where θ̃DLMt denotes a sample from the smoothed dis-

tributions of the DLM state vector, σ̃DLM denotes a sample from the smoothed

distribution of the observational standard deviation, and Φ−1 denotes the stan-

dard normal inverse CDF. For the true underlying data-generating distributions

of the simulated datasets, we consider three scenarios with different types of tail

behavior and skewness.

Dataset 1: Stochastic Volatility. Stochastic Volatility (SV) models are com-

monly used to analyze returns (Kastner, 2016). These models are stochastic

processes in which the log-variance is randomly distributed and follows an au-

toregressive structure. The SV model for t = 1, . . . , 1000, where yt denotes the

return at time t, can be written as follows,

yt|xt ∼ N(0, xt) (2.22)

log xt| log xt−1, µ, φ, σ ∼ N(µ+ φ{log xt−1 − µ}, σ2) (2.23)

log x0|µ, φ, σ ∼ N(µ, σ2/(1− φ)) (2.24)

Under SV models, posterior inference of the return distributions requires simula-

tion of a latent time-varying process which can sometimes be difficult. To explore

the posterior performance of our exDQLM with respect to this more complexly

structured data, we generate time series of length 1000 from a SV model using the

stochvol package in R with the level (µ), persistence (φ), and volatility (σ) of the

log-variance to be 0, 0.95 and 0.5 (Hosszejni and Kastner, 2018), respectively. We

will utilize the exDQLM to model the p0 = 0.05, 0.5, and 0.85 posterior quantiles
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with a first-order polynomial evolution structure,

yt ∼ exALp0(θt, σ, γ)

θt ∼ N(θt−1,Wt).

Dataset 2: exDQLM. Next, we consider synthetic data from an exDQLM, for

t = 1, . . . , 1000,

yt ∼ exAL0.85(F′θt, σ, γ)

θt ∼ N2(Gθt−1,W).

With a slight abuse of notation, here F′θt denotes the p0 = 0.85 quantile of

the synthetic dataset at time t. The components F and G are specified with a

second-order polynomial trend (West and Harrison, 2006),

F = (1, 0)′, G =

1 1

0 1



with

W =

 0.01 0.001

0.001 0.001

 ,
σ = 1, and skewness parameter γ = −2.5 causing the mode to be below the p0 =

0.85 quantile for all t. We model the p0 = 0.05, 0.5, 0.85 quantiles of this dataset

(simulated with p0 fixed at 0.85) with the second-order polynomial evolutionary

structure seen above. We expect to recover the values of σ and γ used to simulate

the data for only the estimated 0.85 quantile.

Dataset 3: Generalized DLM. For a dataset with extreme observations, we

generate data from a non-Gaussian DLM (West and Harrison, 2006), for t =
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1, . . . , 1000,

yt ∼ Cauchy(F′θt, τ 2)

θt ∼ N4(Gθt−1,W).

Again, with a slight abuse of notation, here F′θt denotes the mean of the synthetic

dataset at time t. The components F and G are specified with a second-order

polynomial and Fourier form represented seasonality at frequency ω = 2π/75

(West and Harrison, 2006),

F = (1, 0, 1, 0)′, G = block-diag


1 1

0 1

 ,
 cos(ω) sin(ω)

− sin(ω) cos(ω)




with τ 2 = 4 and evolution covariance

W = block-diag


0.05 0.01

0.01 0.001

 ,
2 0

0 2


 .

Again, we model the quantiles with the same trend and seasonal evolution struc-

ture.

2.3.1 Results

For all models, we set conjugate prior θ0 ∼ N(m0,C0) and priors for σ and

γ as discussed in Section 2.2.5. Table 2.1 reports the posterior results, with bold

text indicating the model supported by the comparison criteria detailed in Section

2.2.3.

Overall, the exDQLM out-performs the standard DLM and DQLM. The

exDQLM is favored with a lower MCL for all cases in which the true quantile
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DLM DQLM exDQLM

Figure 2.3: MCMC results. Smoothed posterior distributions of dynamic quan-
tiles p0 = 0.05, 0.5, 0.85. exDQLM estimates in blue, DQLM in red, and DLM
in orange. Dotted lines indicate the 95% CrI from the smoothed posterior dis-
tributions and solid lines indicate posterior mean estimates. Due to the scale of
the gDLM data, we focus on time periods which highlight the similarities and/or
differences of the models at the three different quantiles.

is known with two exceptions where the MCL of the exDQLM is comparable to

the MCL of the DQLM: the medians of the Stochastic Volatility and generalized

26



exDQLM/MCMC exDQLM/ISVB

Figure 2.4: ISVB and MCMC comparison results. Posterior distributions of
dynamic quantiles p0 = 0.05, 0.5, 0.85. MCMC exDQLM estimates in blue,
ISVB exDQLM estimates in purple. Dotted lines indicate the 95% CrI from the
smoothed posterior distributions and solid lines indicate posterior mean estimates.
Due to the scale of the gDLM data, we focus on period of only 100 time points
and omit the median estimates for visual clarity.

DLM, both symmetric datasets. The one-step-ahead predictions assessed using

the KL divergence also overwhelmingly favor the exDQLM for all quantiles ex-

cept 0.5 of the symmetric datasets, in which the exDQLM is again comparable

to the DQLM. Similarly, the Gelfand and Ghosh pplc favors the exDQLM for all

extreme quantiles (0.05 and 0.85), and again is comparable to the DQLM for the

median in the two cases for which the data is symmetric. This parallel between

the DQLM and exDQLM for the median of the symmetric datasets is unsurpris-

ing, as the exAL reduces to the AL at the 0.5 quantile when the distribution is

symmetric. However, we find the pplc for the 0.5 quantile of the exDQLM dataset

is also comparable between all three models and even slightly favors the DLM.

The exAL distribution used to generate the dataset (seen in Figure 2.1) is only

slightly left-skewed around the median with thin tails, therefore it is not unrea-

sonable a normal observational distribution is able to produce equitable predictive

results. With this exception, the exDQLM outperforms the other models in all
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cases for which the underlying distribution is skewed or the quantile of interest

does not align with the mode. Figure 2.3 supports these findings where it can be

seen that, due to the rigidity of their observational error distributions, the esti-

mated dynamic quantiles of the DLM and DQLM are more affected by extreme

observations than the exDQLM. This is particularly evident for extreme quan-

tiles, i.e., the 0.05 quantile. Our findings highlight the two main advantages of

our exDQLM for parametric quantile inference on non-Gaussian dynamic models;

robust estimation of any dynamic quantile and superior predictive accuracy for

non-standard distributions.

The assessment criteria also illustrate the comparable accuracy of the ISVB

exDQLM algorithm to the MCMC exDQLM, but with a fraction of the computa-

tional time (see Table 2.1). Both algorithms were implemented in the R program-

ming language on a personal computer with a 2.5 GHz Intel Core i5 processor.

The point-mass prior on parameter σ results in different posterior summaries for

γ from the MCMC and ISVB algorithms, as discussed in Section 2.2.5 and seen

in Table 2.1. It can been seen in Figure 2.4 that the credible intervals (CrIs) of

the ISVB algorithm are narrower than the CrIs of the MCMC algorithm. The

median proportion of coverage agreement between the 95% CrIs from the ISVB

and MCMC algorithms are reported in Table 2.2. It can be seen that the median

proportion of the 95% CrIs from the MCMC algorithm contained within the 95%

CrIs from the ISVB algorithm varies between approximately 0.33 and 0.83. This

underestimation of the variability is a feature to be aware of when using varia-

tional methods. However, the approximated posterior quantiles from the ISVB

algorithm are almost entirely contained with the MCMC posterior 95% CrIs.

28



2.4 Conclusion

Motivated by the need for versatile estimation of a single quantile over time,

we have presented several methodological and computational contributions for

dynamic quantile modeling. Our exDQLM has two main advantages; the model

facilitates more flexibility in the estimation of the quantile than standard Bayesian

parametric quantile regression approaches, and relevant features such as season-

ality or structured long-term variability are easily included in the evolution struc-

ture of the quantile. Further, the development of our efficient ISVB algorithm

facilitates fast posterior inference, making our methodology accessible even in

applications with very long time series data. Our methodology is immediately

beneficial not only in climatological applications such as AR detection detailed in

the following chapter, but more generally in any application with non-Gaussian

time-varying models.
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Model γ σ MCL KL pplc time

Stochastic Volatility (δ = 0.92, 0.99, 0.87 for p0 = 0.05, 0.50, 0.85, respectively)
p0 = 0.05
DLM — — — 3.644 839.7 0.1
DQLM — 0.178 (0.17,0.19) — 3.943 2012.6 19.6
exDQLM/MCMC 4.358 (3.96,4.77) 0.303 (0.29,0.32) — 3.641 697.5 46.2
exDQLM/ISVB 6.980 (6.93,7.03) 0.178 (fixed) — 3.911 774.3 4.1
p0 = 0.50
DLM — — 0.035 3.586 852.6 0.1
DQLM — 0.486 (0.46,0.52) 0.011 3.484 749.7 21.3
exDQLM/MCMC 0.037 (-0.03,0.09) 0.487 (0.46,0.52) 0.012 3.498 757.4 48.7
exDQLM/ISVB 0.017 (-0.02,0.05) 0.486 (fixed) 0.012 3.524 769.6 0.8
p0 = 0.85
DLM — — — 3.679 829.5 0.1
DQLM — 0.299 (0.28,0.32) — 3.979 1133.3 19.5
exDQLM/MCMC -1.384 (-1.53,-1.18) 0.401 (0.376,0.423) — 3.667 740.6 43.9
exDQLM/ISVB -2.610 (-2.65,-2.57) 0.299 (fixed) — 3.652 785.5 2.1
exDQLM (trend δ = 0.93 for all p0)
p0 = 0.05
DLM — — — 4.496 2282.7 0.1
DQLM — 0.456 (0.43,0.48) — 3.968 4276.3 18.6
exDQLM/MCMC 5.139 (4.75,5.52) 0.854 (0.81,0.94) — 3.910 1692.6 46.2
exDQLM/ISVB 8.058 (8.02,8.09) 0.456 (fixed) — 4.076 1799.9 4.6
p0 = 0.50
DLM — — — 4.169 2287.6 0.1
DQLM — 1.584 (1.49,1.68) — 3.578 2343.8 19.0
exDQLM/MCMC 0.362 (0.27,0.48) 1.377 (1.20,1.53) — 3.548 2328.8 45.9
exDQLM/ISVB 0.25 (0.21,0.28) 1.584 (fixed) — 3.674 2345.0 0.7
p0 = 0.85
DLM — — 0.214 4.384 2283.3 0.1
DQLM — 0.871 (0.82,0.93) 0.252 3.939 2963.1 18.9
exDQLM/MCMC -2.514 (-2.72,-2.39) 0.967 (0.87,1.03) 0.195 3.831 1489.7 46.2
exDQLM/ISVB -2.68 (-2.71,-2.65) 0.871 (fixed) 0.211 3.835 1510.2 0.7
Generalized DLM (trend δ = 0.98, seasonality δ = 0.95 for all p0)
p0 = 0.05
DLM — — 1.830 5.323 84242.3 0.1
DQLM — 3.164 (2.98,3.37) 1.410 3.729 45607.3 19.0
exDQLM/MCMC 3.469 (3.23,3.76) 3.492 (3.35,3.71) 0.472 3.603 10747.9 45.0
exDQLM/ISVB 1.534 (1.45,1.62) 3.164 (fixed) 1.046 3.609 19189.5 2.4
p0 = 0.50
DLM — — 2.723 5.401 84316.5 0.1
DQLM — 4.536 (4.26,4.84) 1.204 3.635 7400.3 18.9
exDQLM/MCMC 0.112 (0.06,0.18) 4.465 (4.21,4.71) 1.203 3.581 7278.6 45.5
exDQLM/ISVB 0.095 (0.06,0.13) 4.536 (fixed) 1.240 3.514 7616.1 0.7
p0 = 0.85
DLM — — 4.518 5.339 84347.7 0.1
DQLM — 3.149 (2.95,3.36) 0.979 3.531 13454.3 18.6
exDQLM/MCMC -1.139 (-1.24,-1.02) 3.703 (3.478,3.926) 0.823 3.516 8873.2 45.1
exDQLM/ISVB -0.497 (-0.57,-0.42) 3.149 (fixed) 0.828 3.491 9836.2 1.1

Table 2.1: Posterior summaries for γ and σ (where applicable): mean (95% CrI).
Mean check loss of the MAP dynamic quantile. KL divergences of the one-step-
ahead distributions. Posterior predictive loss criterion (pplc) under the check loss
function. Computation run-time (min).
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p0 SV exDQLM gDLM
0.05 0.368 0.327 0.524
0.50 0.709 0.831 0.785
0.85 0.629 0.675 0.685

Table 2.2: Median proportion of coverage agreement between the 95% CrIs from
the ISVB and MCMC algorithms. That is, the proportion of the 95% CrIs from
the MCMC algorithm covered by the 95% CrIs from the ISVB algorithm.
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Chapter 3

Estimating a Non-linear Response in

a Time-Varying Quantile with

Application to the Characterization

of Atmospheric Rivers

In this chapter, we apply the exDQLM to the analysis of the IVT quantile

threshold. In doing so, we develop a transfer function extension to our exDQLM

as a method for quantifying non-linear relationships between a quantile of a cli-

matological response and an input. The utility of our transfer function exDQLM

is demonstrated in capturing both the immediate and lagged effects of El Niño

Southern Oscillation Longitude Index on the estimation of the 0.85 quantile IVT.

3.1 Introduction

The method presented in Guan and Waliser (2015) for detection of ARs from

the IVT is as follows. For each of the 12 months, the 0.85 quantile IVT is calculated
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Figure 3.1: Top panel: Average daily IVT magnitude in the grid cell containing
Santa Cruz, CA. The dashed vertical lines enclose the two time periods enlarged
in the middle panel. Middle panel: A closer look at the two time periods high-
lighted in the top panel. Years 1982 to 1985 illustrate a time period which saw
an exceptional amount of rain. Years 2012 to 2015 illustrate a period which was
exceptionally dry. ARs detected by the scheme proposed in Guan and Waliser
(2015) in the Santa Cruz grid cell are indicated with dark triangles. ARs detected
in neighboring coastal grid cells are indicated with lighter circles. Bottom panel:
ELI anomalies resulting from the de-seasonalization of the interpolated ELI. The
dashed, horizontal line is at zero, for reference.
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over all time steps during the 5 month windows centered on that month over the

period from 1997 to 2014 at a specific location. Comparison to the estimated 0.85

quantile in combination with a minimum threshold is used to isolate regions of

enhanced IVT as possible ARs. Criteria are then applied to the length and width

of these regions, resulting in a defined set of ARs. Finally, the coastal location

intersecting with an AR at which the IVT magnitude is highest is defined as the cell

in which the AR makes landfall. Guan and Waliser (2015) conduct a sensitivity

study in which they consider various possible quantiles, however we focus the

following analysis on the 0.85 quantile to illustrate our estimation methods. For

more details on the full AR detection algorithm and sensitivity study, see Guan

and Waliser (2015).

The primary dataset used to calculate IVT in the study by Guan and Waliser

(2015) is the European Centre for Medium-Range Weather Forecasts (ECMWF)

Interim reanalysis (ERA-Interim) (Berrisford et al., 2011; Dee et al., 2011), how-

ever we utilize the latest ECMWF observational product ERA5 in our analysis.

ERA5 produces 1-hourly atmospheric fields at a 0.5◦ × 0.5◦ spatial resolution be-

ginning in 1979 and is continuously updated at a 2 month lag (Hersbach et al.,

2020). The top panel of Figure 3.1 illustrates the average daily IVT magnitude in

Santa Cruz, CA, of which we examine the 0.85 quantile in this analysis. For illus-

tration, the times at which ARs detected to make landfall at that location and in

the neighboring coastal locations are illustrated in the middle panels of Figure 3.1

for two time periods; years 1982 to 1985 in which CA saw an exceptional amount

of rain, and years 2012 to 2015 which were exceptionally dry for CA.

Although many climate indices other than ELI have been studied as potential

sources of predictability for ARs, initial examination of several indices with our

transfer function exDQLM did not demonstrate significant associations. There-
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fore in this analysis, we focus solely on the association between IVT and ELI. ELI

is a single metric which captures the spatial diversity of ENSO, created utiliz-

ing the monthly ECMWF twentieth century reanalysis (ERA-20C). In particular,

ELI is the average longitude at which tropical Pacific deep convection occurs at

a given month. For further details on the development ELI and the relationship

of ELI with precipitation see Williams and Patricola (2018) and Patricola et al.

(2020), respectively. The monthly ELI dataset is available online beginning in

1854 and is frequently updated (Williams and Patricola, 2018). For our analysis,

we interpolate the ELI to the daily time scale and de-seasonalize the time series

by removing the smoothed posterior mean estimates from a standard DLM with

constant trend, annual, semi-annual, and quarterly components. De-seasonalizing

in this way ensures the variability in the 0.85 quantile described by the ELI com-

ponent of our model is not an artifact of the seasonality in the original ELI time

series. This de-seasonalization results in a time series of ELI anomalies, also seen

in Figure 3.1, which we use as the input in our analysis of the 0.85 quantile of the

IVT magnitude.

Quantifying the relationship between a climatological response and input at

various quantiles is a non-trival task. In the mean-centric setting, transfer func-

tions are a simple way to incorporate variables which measure the combined effect

of current and past inputs or regression effects (West and Harrison, 2006). To

capture both the immediate and lagged effects of a climatological variable, we

expand the use of transfer functions to the dynamic quantile regression setting

with the development of a transfer function extension to our exDQLM.
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3.2 Transfer Function exDQLM

For time t = 1, . . . , T and a single regression effect, Xt, a transfer function

exDQLM with exponential decay is as follows:

yt|θt, γ, σ ∼ exALp0(F′tθt + ζt, σ, γ) (3.1)

θt|θt−1,Wt ∼ N(Gtθt−1,Wt) (3.2)

ζt|ζt−1, ψt−1, ωt ∼ N(λζt−1 +Xtψt−1, ωt) (3.3)

ψt|ψt−1, νt ∼ N(ψt−1, νt). (3.4)

Here ζt captures the effect of the current and past regression effects, as seen in

Equation (3.3). The parameter ψt determines the immediate effect Xt has on the

quantile. Alternatively the parameter λ is a quantity in the unit interval which

represents the memory of the regression effect up to time t. This effect decays at

an exponential rate, reducing by a factor of λ at every time step. To see this more

explicitly we can derive the transfer function effect k steps ahead, that is:

ζt+k = λkζt +
k∑
r=0

λk−rψt+r−1Xt+r + ∂ζt+k. (3.5)

Thus, the effect of Xt on the quantile at time t + k is λkψt−1Xt. This effect is

negligible when λk|ψt−1Xt| ≤ ε for small ε. Using this we can derive a series, kt,

representing a lower bound for the number of time steps until the effect of Xt is

less than or equal to a fixed ε. That is, for t = 1, . . . , T

kt ≥
log(ε)− log(|ψt−1Xt|)

log(λ) . (3.6)

To complete the model, conjugate priors are available for the additional trans-

fer function parameters; normal conjugate priors for ζ0 ∼ N(mζ0 , Cζ0) and ψ0 ∼
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N(mψ0 , Cψ0), and a conjugate normal truncated to the unit interval prior for

λ ∼ N(0,1)(mλ, vλ).

3.2.1 MCMC and ISVB Algorithm Augmentations

This transfer function exDQLM can equivalently be rewritten in the form of a

standard exDQLM

yt|γ,θt, σ ∼ exALp0(F̃′tθ̃t, σ, γ) (3.7)

θ̃t|θ̃t−1,W̃t ∼ N(G̃tθ̃t−1,W̃t) (3.8)

where F̃′t = (F′t, 1, 0), θ̃′t = (θ′t, ζt, ψt), G̃t = blockdiag
{
Gt,

(
λ Xt
0 1

)}
, and

W̃t = blockdiag
{
Wt,

(
ωt 0
0 νt

)}
.

Using this representation, the exDQLM MCMC Algorithm 1 can easily be

augmented to incorporate the transfer function structure as follows: (1) Replace

all {Ft,θt,Gt,Wt} with {F̃t, θ̃t, G̃t,W̃t}, where G̃t will be conditional on λ(i);

(2) For each iteration i, add an additional step to sample λ(i+1)|ζ(i+1),ψ(i+1) ∼

N(0,1)(µλ, σ2
λ) with

σ2
λ =

 T∑
t=1

ζ
(i+1)2
t−1
ωt

+ 1
vλ

−1

,

µλ = σ2
λ

 T∑
t=1

ζ
(i+1)
t−1 (ζ(i+1)

t − ψ(i+1)
t Xt)

ωt
+ 1
vλ

 .
Augmenting the ISVB algorithm is not as straight-forward. The random pa-

rameter λ within the evolution matrix G̃t compromises our ability to update

the state parameter variational distributions within the FFBS while using dis-

count factors to specify W̃t. To preserve the ability to utilize discount factors,

we propose optimizing the parameter λ with respect to the KL divergence of the

one-step-ahead predictive distribution functions as discussed in Sections 2.2.3 and
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2.2.4. For optimal λ, say λ̃, the ISVB algorithm can be augmented to incorpo-

rate the transfer function structure by simply replacing all {Ft,θt,Gt,Wt} with

{F̃t, θ̃t, G̃t,W̃t} where G̃t = blockdiag
{
Gt,

(
λ̃ Xt
0 1

)}
.

3.3 Estimating the 0.85 quantile IVT threshold

3.3.1 Model selection

Consider first a model, M01, in which we estimate the 0.85 quantile with a

transfer function component ζt to capture the effects of ELI, baseline component

η1,t, and seasonal components α
(l)
1,t, for harmonics l = 1, . . . , 6 of a period of 365

days. More specifically, at each time t we decompose our 0.85 quantile µt as

follows:

µt = η1,t +
6∑
l=1

α
(l)
1,t + ζt. (3.9)

We define the baseline component in the model, η1,t, with a second order polyno-

mial as follows:

(
η1,t
η2,t

)
=
(

1 1
0 1

)(
η1,t−1
η2,t−1

)
+ ωηt , ωηt ∼ N2(0,Wη

t ) . (3.10)

This second order polynomial allows the baseline component of the IVT quantile

to vary linearly over the extended time frame. Here the system evolution error

vectors ωηt , are assumed to be independent over time. We will denote this trend

component evolution matrix as Gη = ( 1 1
0 1 ). Further, each harmonic l included

in the model is described with a Fourier form representation of cyclical functions,
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given as

(
α

(l)
1,t

α
(l)
2,t

)
=
(

cos( 2π
365 l) sin( 2π

365 l)
− sin( 2π

365 l) cos( 2π
365 l)

)(
α

(l)
1,t−1

α
(l)
2,t−1

)
+ ωα,lt , ωα,lt ∼ N2(0,Wα,l

t ) . (3.11)

We denote the lth seasonal evolution matrix Gα,l =
(

cos( 2π
365 l) sin( 2π

365 l)
− sin( 2π

365 l) cos( 2π
365 l)

)
. Again,

it is assumed that ωα,lt are independent over time, as well as independent of ωηt

for t = 1, . . . , T . For this application we are not interested in higher frequency

effects, thus we limit our model to consider only harmonics l = 1, .., 6 in the

seasonal component.

We choose to model the baseline and seasonal components in this analysis

as non-time-varying, thus any variation in the 0.85 quantile from year to year

will solely be attributed to the effects of the ELI as input to our transfer func-

tion model. This is easily done utilizing component discounting to specify Wt

with discount factor values of 1 (West and Harrison, 2006), which also preserves

our ability to update the state parameter using FFBSm. Note that, under this

modeling choice, the baseline and seasonal parameters in the state vector are

non-time-varying, thus we will omit subscripts t going forward where applicable.

To set the point-mass prior for the scale parameter σ, we considered first the

prior suggested in Section 2.7 with point-mass at σ̂p0
γ=0 ≈ 20. However, we found

the ISVB algorithm still struggled to converge so we decrease the location of the

point-mass to 15; a decrease of approximately twenty-five percent as suggested in

the previous chapter, Section 2.2.5.

The rate parameter λ as well as the discount factors for the evolution of the

transfer function parameters, δζ and δψ, are optimized using the KL divergence

of the one-step-ahead predictive distribution functions. More specifically, if we

denote [h|λ, δζ , δψ] as the numerically approximated density of the transformed

(by the standard normal CDF) sequence {ût} estimated with parameter λ and
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discount factors (δζ , δψ), the optimal values will be as follows,

{λ̃, δζ , δψ} = arg min
λ,δζ ,δψ

∫ ∞
−∞

[h(x)|λ, δζ , δψ] log [h(x)|λ, δζ , δψ]
φ(x) dx (3.12)

with φ denoting the standard normal density. Optimal values for M01 can be

found in Table 3.1.

M01 M1

(δζ , δψ) (0.97,0.97) (0.97,0.97)

λ̃ 0.37 0.38

γ -2.39 (-2.40,-2.38) -2.39 (-2.41,-2.38)

η1,1 126.93 (125.13,128.64) 127.18 (125.51,128.98)

η2 × 104 11.67 (9.61,13.73) 11.58 (9.68,13.57)

pplc 449103.6 447373.1

KL 0.621 0.614

Table 3.1: IVT analysis results for M01 and M1. Optimal δζ , δψ, and λ̃. Posterior
summaries (format: mean (95% CrI)) for skewness parameter γ, baseline value
at t = 1, η1,1, as well as the change in the baseline at each time step, η2. pplc:
Posterior predictive loss criterion under the check loss function. KL: Kullback-
Liebler divergences of the one-step-ahead distributions.

Table 3.1 summaries the estimates of the second-order polynomial component

with the 95% credible interval (CrI) of the baseline itself at time t = 1, η1,1,

as well as the 95% CrI of the change in the baseline at each time step, η2 (not

time-varying). It is clear both the terms are significant. Similarly, Figure 3.2

illustrates 95% CrIs for the seasonal cycles for harmonics l = 1, . . . , 6 for one

period of 365 days. Our assessment based on these CrIs indicates the harmonics

1, 2 and 4 distinct from zero and therefore significant. However, the CrIs of the

other 3 components all either overlap with zero or are very close. Keeping in mind

variational algorithms underestimate variability, we conclude these harmonics are

not significant and omit them in our formal analysis.

Removing the components that are not significant leaves us with a model
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Figure 3.2: M01 seasonal components for harmonics l = 1, 2, . . . , 6.

Figure 3.3: M1 retained seasonal components for harmonics l = 1, 2, 4.

comprised of a transfer function component, a second order baseline component

and seasonal components for harmonics l = 1, 2, 4. Analogous results for this

reduced model can be found in Table 3.1 and Figure 3.3 for comparison to M01.

It clear the retained components remain unchanged, however the pplc and KL

divergence (also seen in Table 3.1) are both lower for this model, suggesting a

superior fit to M01. We call this reduced model M1 and present its results formally

in the following section.
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3.3.2 IVT analysis

Figure 3.4: Top panel: IVT data with overlaid solid line indicating the M1 MAP
0.85 quantile threshold of the average daily IVT magnitude in Santa Cruz, CA.
The vertical dashed lines enclose the two periods enlarged in the bottom panels.
Bottom panels: Years 1982 to 1985 (left, exceptional amount of rain) and years
2012 to 2015 (right, exceptionally dry). The MAP 0.85 quantile from M1 and M0
are seen in solid and dashed lines, respectively. The dotted lines surrounding the
M1 MAP estimate indicate the 95% CrIs.

To assess the utility of the transfer funtion component, we fit two separate

models to estimate the 0.85 quantile of the IVT magnitude. The first, M0, is a

simplified version of the second, M1. The simplified M0 includes only a baseline

level and seasonal effects without any input from the ELI time series. Our analysis

will focus on the results of M1, only highlighting features of M0 for comparison

purposes.

As detailed in the previous section, for M1 we define the structure of the

quantile to include a second order baseline, as well as seasonal components for
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Figure 3.5: Top panel: Effects of ELI captured by the transfer function compo-
nent, ζt. Bottom panel: Instantaneous effects of ELI, ψt. In both panels, dark
grey lines indicate the MAP estimates. 95% CrI are indicated by the grey shaded
regions. Dashed horizontal dashed lines are at zero, for reference. Left vertical
dashed lines enclose years 1982 to 1985 in which CA saw an exceptional amount
of rain. Right vertical dashed lines enclose 2012 to 2015 in which CA was excep-
tionally dry.

the annual (l = 1), semi-annual (l = 2), and quarterly (l = 4) harmonics. Using

superposition the resulting state vector θt, F′, G and Wt in Equations (3.1)-(3.4)

are defined, respectively, as follows:

θt = (η1,t, η2,t, α
(1)
1,t , α

(1)
2,t , α

(2)
1,t , α

(2)
2,t , α

(4)
1,t , α

(4)
2,t )′, (3.13)

F′ = (1, 0, 1, 0, 1, 0, 1, 0), (3.14)

G = blockdiag(Gη,Gα,1,Gα,2,Gα,4), (3.15)

Wt = blockdiag(Wη
t ,Wα,1

t ,Wα,2
t ,Wα,4

t ). (3.16)

43



M0 M1

(δζ , δψ) — (0.97,0.97)

λ̃ — 0.38

γ -2.47 (-2.48,-2.46) -2.39 (-2.41,-2.38)

η1,1 137.82 (137.01,138.83) 127.18 (125.51,128.98)

η2 × 104 4.86 (3.61,5.75) 11.58 (9.68,13.57)

A1 22.97 (22.23,23.63) 20.97 (20.00,22.05)

P1 -0.45 (-0.48,-0.42) -0.39 (-0.45,-0.34)

A2 9.67 (8.93,10.38) 9.58 (8.66,10.47)

P2 1.53 (1.46,1.57) 1.52 (1.44,1.57)

A4 3.54 (2.92,4.17) 3.41 (2.63,4.15)

P4 -1.02 (-1.19,-0.80) -1.02 (-1.25,-0.81)

pplc 450214.7 447373.1

KL 0.856 0.614

run-time 6.87 7.92

Table 3.2: IVT analysis results for M0 and M1. Optimal δζ , δψ, and λ̃, as discussed
in Section 3.3.1. Posterior summaries (format: mean (95% CrI)) for skewness
parameter γ, baseline at t = 1 η1,1, the change in the baseline at each time step
η2, annual amplitude A1, annual phase P1, semi-annual amplitude A2, semi-annual
phase P2, quarterly amplitude A4, quarterly phase P4. pplc: Posterior predictive
loss criterion under the check loss function. KL: Kullback-Liebler divergences of
the one-step-ahead distributions. Run-time: ISVB run-times in minutes.

In addition to the baseline and seasonal components, in M1 we utilize the

exponentially decaying transfer function exDQLM as specified in Equations (3.1)-

(3.4) to capture both the immediate and lagged effects of ELI on the 0.85 quantile.

We complete the models with conjugate priors, where applicable; θ0 ∼ N(m0,C0)

with m0 = 0 and C0 = 100Iq, ζ0 ∼ N(mζ0 , Cζ0) and ψ0 ∼ N(mψ0 , Cψ0) with

mζ0 = mψ0 = 0 and Cζ0 = Cψ0 = 10, and γ ∼ t(−5.137,0.213)(0, 1) with 1 degree

of freedom. The parameter σ is fixed at a value of 15 to facilitate convergence,

as discussed in the previous section. Lastly, in M1, the parameter λ as well as

the discount factors for the evolution of ζt and ψt, δζ and δψ respectively, are

optimized using the KL divergence of the one-step-ahead predictive distribution

functions as discussed in Section 3.3.1. Optimal λ, δζ , δψ can be found in Table
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Figure 3.6: 60-step-ahead quantile forecast beginning November 2, 2019 through
December 31, 2019 overlaid on the IVT magnitude data. The vertical dot-dashed
line is at the beginning of the forecast period, November 2, 2019, for reference.
From M1: Solid lines indicate mean estimates and dotted lines 95% CrI, with
the filtered estimates seen leading up to November 2nd and the forecast estimates
beyond November 2nd. From M0: The dashed lines indicate the mean estimates,
again with the filtered and forecast estimates seen before and after November 2nd,
respectively.

3.2.

We apply our ISVB algorithm to estimate the 0.85 quantile of the daily IVT

magnitude in Santa Cruz, CA from 1979 to 2019. The ISVB algorithm was im-

plemented in the R programming language (R Core Team, 2013) on a personal

computer with a 2.5 GHz Intel Core i5 processor. For this time series of length

14965 the ISVB computation times are under eight minutes for both models; ex-

act times can be found in Table 3.2. Also seen in Table 3.2, the CrIs of skewness

parameter γ are distinct from 0 for both M0 and M1, thus justifying the added
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flexibility of our exDQLM versus the DQLM in this application. A full comparison

of M1 with an analogous transfer function DQLM can be found in the following

section.

Figure 3.4 illustrates the MAP 0.85 quantile of M1 for the entire time pe-

riod, as well as the MAP estimates from both models for the two time periods,

1982 through 1985 and 2012 through 2015, in which CA saw drastically different

amounts of precipitation. It can be seen that the CrI of M1 are often distinct

from M0, with the M1 quantile generally higher than the M0 quantile when CA

experienced an exceptional amount of rain and the opposite true when CA was

exceptionally dry.

From the posterior estimates of the annual and semi-annual harmonic compo-

nents of the models we compute the amplitude and phase, Al =
√

(αl1)2 + (αl2)2

and Pl = arctan (−αl2/αl1) respectively. Posterior summaries of these as well as

the baseline parameters can be found in Table 3.2. It can be seen that the value of

the second-order polynomial trend component at t = 1, η1,1, is significantly larger

in M0 than M1. Conversely, the parameter which describes the rate of change

per time step (non-time-varying), η2, is significantly smaller in M0 than M1. This

suggests the inclusion ELI in M1 accounts for some of the long-term variability

seen in the 0.85 quantile from 1979 through 2019. Differences can also be seen

in the annual components where the amplitude of M0 is significantly larger than

M1 and the phase of M0 is significantly smaller than that of M1. Alternatively,

the semi-annual and quarterly harmonic components are indistinct between the

two models. This suggests there is a substantial amount of variability in the 0.85

quantile that can be associated with the ELI time series specifically on the annual

time scale, with the distinction less clear at the semi-annual and quarterly scales.

The amount of variability in the 0.85 quantile attributed to the effects of
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ELI captured with transfer function component in M1, ζt, are seen in Figure 3.5.

The effects of ELI are overall significant and are dramatically more pronounced

between 1982 and 1985 than between 2012 and 2015. In particular, a majority of

the effects between 1982 and 1985 (in which CA received heavy precipitation) are

distinctly positive whereas the effects between 2012 to 2015 (when drought was

severe) are negative or not significant. The instantaneous effects of ELI at time t,

ψt, also exhibit very different behavior in the two time periods, seen in Figure 3.5.

Upon computing the series kt from Equation (3.6) for ε = 1e−3 (not pictured),

we find the lagged effects of ELI persist for around 8.5 days, on average.

To assess the predictive value added by the transfer function component cap-

turing the effects of ELI in M1, we compare the pplc and KL divergence of the

one-step-ahead forecast distributions for M1 to those of M0, seen in Table 3.2.

M1 is favored with smaller values of both model comparison criterion, suggesting

the inclusion of ELI improves both the predictive and forecasting power of M1.

As further model validation, a thorough examination of the correlation and dis-

tributional shape of the one-step-ahead predictive distributions (discussed in the

previous chapter Section 2.2.3) is presented Section 3.3.4. To further investigate

the information added by ELI, we can examine the k-step-ahead quantile forecast

distributions. More specifically, for each time t we can compute the k-step-ahead

future distribution of state vector

θ̃t+k|ξ−θ1:T , y1, . . . , yt ∼ N(at(k),Rt(k)) (3.17)

where at(k) = G̃t+kat(k − 1), Rt(k) = G̃t+kRt(k − 1)G̃′t+k + W̃t+k, at(0) = mt,

and Rt(0) = Ct, with mt and Ct denoting the filtered mean and covariance of

θ̃t, respectively. W̃t+k can again be specified using discount factors such that

the ith component is defined W̃i,t+k = (1−δi)
δi

G̃i,t+kRi,t(k − 1)G̃′i,t+k where G̃i,t+k
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and Ri,t(k − 1) denote the ith components of G̃t+k and Rt(k − 1), respectively,

and δi denotes ith discount factor. From this k-step-ahead future distribution of

state vector, we can derive the k-step-ahead future marginal distribution of the

quantile,

F̃′t+kθ̃t+k|ξ−θ1:T , y1, . . . , yt ∼ N(F̃′t+kat(k), F̃′t+kRt(k)F̃t+k). (3.18)

The posterior means and 95% CrIs of the 60-steps-ahead quantile distributions

can be seen in Figure 3.6. The MAP quantile forecast of M1, which takes the ELI

into consideration, suggests the 0.85 quantile will be very similar to the seasonal

average projected by M0 in this particular time period.

3.3.3 Comparison with the DQLM special case

Next, we illustrate the differences between 0.85 quantile IVT threshold esti-

mated using the DQLM versus those from the exDQLM, e.g. M1. The results

from the DQLM we will call M2 going forward.

M1 and M2 are estimated using the transfer function exDQLM with identical

components; a second-order polynomial baseline and seasonal effects for harmonics

l = 1, 2, 4. The rate parameter λ used in M2 is optimized using the KL divergence

of the one-step-ahead predictive distribution functions as discussed in Section

3.3.1, the value of which can be found in Table 3.3. However, the discount factors

of M2 are fixed to the optimal values from M1 to facilitate comparison.

Figure 3.7 illustrates the MAP 0.85 quantile of the models for the entire time

period from 1979 through 2019, as well as the 95% CrI for the two time periods,

1982 through 1985 and 2012 through 2015, in which CA saw drastically different

amounts of precipitation. It can be seen that the CrI of M1 are distinct from M2

with the M2 quantile generally higher than the M1 quantile, particularly in the
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M1 M2

(δζ , δψ) (0.97,0.97) (0.97,0.97)

λ̃ 0.38 0.42

σ 15 (fixed) 20.13 (19.84,20.42)

γ -2.39 (-2.41,-2.38) 0 (fixed)

η1,1 127.18 (125.51,128.98) 132.85 (130.85,134.67)

η2 × 104 11.58 (9.68,13.57) 25.46 (23.32,28.07)

A1 20.97 (20.00,22.05) 41.44 (39.90,42.89)

P1 -0.39 (-0.45,-0.34) -0.22 (-0.26,-0.18)

A2 9.58 (8.66,10.47) 15.71 (14.60,17.04)

P2 1.52 (1.44,1.57) 1.22 (1.16,1.30)

A4 3.41 (2.63,4.15) 4.76 (3.76,5.79)

P4 -1.02 (-1.25,-0.81) -0.72 (-0.90,-0.47)

pplc 447373.1 1119638

KL 0.614 0.958

run-time 7.92 4.23

Table 3.3: IVT analysis results for M1 and M2. Identical values of (δζ , δψ) used
in both models and optimized within M1. Rate parameter λ̃ optimized within
each model. The scale parameter σ is fixed for M1 as discussed in Section 2.7,
and the skewness parameter γ is fixed to 0 for M2 (reducing the model to the
DQLM). Posterior summaries (format: mean (95% CrI)) for M2 scale parameter
σ, M1 skewness parameter γ, baseline at t = 1 η1,1, the change in the baseline at
each time step η2, annual amplitude A1, annual phase P1, semi-annual amplitude
A2, semi-annual phase P2, quarterly amplitude A4, quarterly phase P4. pplc:
Posterior predictive loss criterion under the check loss function. KL: Kullback-
Liebler divergences of the one-step-ahead distributions. Run-time: ISVB run-
times in minutes.

winter months. Given what was seen in the simulation study of Section 2.3 of the

previous chaper, this result is not surprising. The DQLM is substantially affected

by the extreme observations of IVT which occur most commonly in the winter

months.

Differences between the two models can also be seen in Table 3.3. Every

component of the model is affected when using the DQLM. Most noticeably, these

include the initial baseline value η1,1 and the baseline increase over time η2, as

well as all seasonal amplitudes. The phases of the seasonal components however
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Figure 3.7: Top panel: In purple, M1 MAP 0.85 quantile threshold of the average
daily IVT magnitude in Santa Cruz, CA. In red, M2 MAP 0.85 quantile. The blue
vertical lines enclose a period in which CA saw an exceptional amount of rain.
The red vertical lines enclose a period in which CA was exceptionally dry. Bottom
panels: Years 1982 to 1985 (left, exceptional amount of rain) and years 2012 to
2015 (right, exceptionally dry). The MAP 0.85 quantile from M1 and M2 are seen
in purple and red, respectively, with 95% CrIs indicated with dashed lines.

are barely distinct for the annual and semi-annual components, and the 95% CrI

of the quarterly phases overlap.

The amount of variability in the 0.85 quantiles attributed to the effects of ELI

captured with transfer function components, ζt, are seen in Figure 3.8 for both

M1 and M2. The instantaneous effects of ELI at time t, ψt, are also seen in Figure

3.8. The behavior of both parameters at each time point is very similar between

the two models. However, as expected the effects of ELI are exaggerated by the

DQLM in M2.
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Figure 3.8: Top panel: Effects of ELI captured by the transfer function compo-
nent, ζt. Bottom panel: Instantaneous effects of ELI, ψt. In both panels, M1 is
seen in purple and M2 is seen in red. Solid lines indicate the MAP estimates. 95%
CrI are indicated by the shaded regions. Dashed horizontal orange lines are at
zero, for reference. Blue vertical lines enclose years 1982 to 1985 in which CA saw
an exceptional amount of rain. Red vertical lines enclose 2012 to 2015 in which
CA was exceptionally dry.

To further investigate the differences between the exDQLM and DQLM, we

can examine k-step-ahead quantile forecast distributions in Equation (3.18). The

posterior means and 95% CrIs of these distributions for 60-steps-ahead can be

seen in Figure 3.9. The MAP quantile forecast of M2, suggests the 0.85 quantile

will be dramatically higher than the 0.85 quantile projected by M1.

The predictive value of the models, as well as the overall fit, can be compared

using the pplc and KL divergence of the one-step-ahead forecast distributions.

These values for M1 and M2 can be found in Table 3.3. M1 is favored with
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Figure 3.9: 60-step-ahead quantile forecast beginning November 2, 2019 through
December 31, 2019. From M1: The solid magenta line indicates the forecast means
and the dashed magenta indicate the 95% CrI of the forecasted 0.85 quantile. Also
included are the filtered means and 95% CrI up to November 2, 2019 in purple
solid and dashed lines, respectively. From M2: The solid orange line indicates the
forecast means and the dashed orange lines the 95% CrIs. The filtered means and
95% CrI up to November 2, 2019 in red solid and dashed lines, respectively. The
IVT magnitude data is seen in grey.

smaller values of both model comparison criterion. Our exDQLM improves on

both the predictive and forecasting power of the DQLM, and provides a method

for quantifying the relationship between IVT and ELI at the 0.85 quanitle that is

robust with respect to extreme observations.

3.3.4 Model Validation

In addition to the KL divergence and pplc in Table 3.2, we can further as-

sess models M0, M1, and now M2 by taking a closer look at the one-step-ahead

predictive distributions ut = Φ(yt|Dt−1,v, s, σ, γ) introduced in Section 2.2.3.

We diagnose the model performance through the distributional shape of the

estimated sequence {ût}. Transforming the values with a standard normal inverse
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Figure 3.10: QQ-plots of the transformed one-step-ahead predictive distribution
functions. M0 is seen in green, M1 in purple, and M2 in red.

Figure 3.11: ACF plots of the one-step-ahead predictive distribution functions.
M0 is seen in green, M1 in purple, and M2 in red.

CDF allows for examination of the distribution shape with a normal QQ-plot,

results of which can be found in Figure 3.10. M0 and M1, the exDQLMs, produce

very similar results to the point that they are difficult to visually distinguish. It is

clear, even with the added flexibility of the exDQLM, we are not able to capture

the entire structure of the data. While the exAL improves upon the AL which

is well known to suffer from model misspecification (Komunjer, 2005), a certain

level of misspecification is unavoidable. We are however able to improve upon the
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results of the DQLM, which deviates dramatically from the theoretical quantile

of the standard normal, particularly in the upper tail of the distribution. The

divergence of these transformed values from a standard normal is summarized by

the KL divergence in Table 3.3.

Next, we diagnose the model performances through the correlation of the es-

timated sequence {ût}. This is done using the ACF plots seen in Figure 3.11.

It can be seen that the sequence from the exDQLM without a transfer function

component (M0) has the most persistent auto-correlation. Alternatively, the se-

quences of both transfer function models (M1 and M2) have auto-correlations

which have decayed by lag of approximately 20. Although all models exhibit

some left over temporal dependence, the correlation of the sequence estimated by

the transfer function exDQLM (M1) decays the fastest with a auto-correlation of

approximately zero by a lag of 15.

Finally, we can also use the standardized forecast errors,

yt − E[yt|Dt−1,v, s, σ, γ]√
Var(yt|Dt−1,v, s, σ, γ)

,

seen in Figure 3.12 as an additional graphical aid in examining distribution at

specific time points. The distributions of these forecast are not available in closed

form, however we can observe the scale of the residuals is the largest for M2, the

DQLM. Further, we can observe M0, which does not include the effects of ELI,

has an apparent seasonal pattern in its lower tail which is not present in the other

two models. Although none of the models are able to fully capture the entire

structure of the IVT time series, it is clear the transfer function exDQLM (M1)

improves upon the transfer function DQLM (M2) and the inclusion of ELI accounts

for a portion of the structure omitted in M0. Inclusion of more components or

covariates may improve this further, however we would like to emphasize the
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Figure 3.12: MAP estimates of the standard one-step-ahead predictive forecast
errors. M0 is seen in green, M1 in purple, and M2 in red.

exDQLM provides a superior model fit to the DQLM regardless of the structure

of the quantile.

3.4 Conclusion

In contrast to current schemes, our transfer function exDQLM develops a

straight-forward method for quantifying non-linear relationships between a re-

sponse and input at a specified quantile. We illustrated the utility of our methods

in the analysis of the ERA5 IVT magnitude 0.85 quantile threshold in Santa Cruz,

CA; an analysis made possible by our ISVB algorithm. In contrast to many cur-

rent thresholding approaches, estimating the 0.85 quantile with our model provides

rich inference about the structure of the time series and thus enhances the tools
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for characterization of ARs. The results demonstrated not only significant long-

term variability and seasonality, but also a significant non-linear relationship with

the climate index ELI captured by the transfer function component of our model.

Through several model checking criteria, we were able to show the inclusion of

ELI in the model was advantageous both in forecast and predictive accuracy. We

saw the effects of ELI on the 0.85 quantile varied substantially between two time

periods which experienced drastically different amounts of precipitation; results

that are relevant to understanding the roll of IVT magnitude and ARs in the

global water cycle and regional weather.
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Chapter 4

exdqlm: An R Package for Estimation

and Analysis of Flexible Dynamic

Quantile Linear Models

In this chapter, we present the (R Core Team, 2013) package exdqlm. We

discuss in detail the functionalities of the package and illustrate implementation

of the routines with step-by-step analyses of several real datasets.

4.1 Introduction

The purpose of the R (R Core Team, 2013) package exdqlm is to provide

an accessible and comprehensive tool for flexible Bayesian estimation of a single

dynamic quantile. Implementing the methodology presented in Chapters 2 and 3,

the package includes routines for model building, estimation and diagnostics. Both

the MCMC and ISVB algorithms are implemented within the package, as well as

the transfer function extension to the exDQLM. The package is protected under

the MIT License, and is available from the Comprehensive R Archive Network
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(CRAN) at https://CRAN.R-project.org/package=exdqlm.

In the remainder of this chapter we introduce the package as follows. In Section

4.2, we briefly summarize the modeling framework, including the algorithms used

for efficient posterior inference and methods for including nonlinear relationships.

In Section 4.3 we detail the model diagnostics implemented in the package. For

readability some details presented in Chapters 2 and 3 are also included in these

sections. Then, in Section 4.4, we walk through three step-by-step examples on

how to use the package. Finally, in Section 4.5, we present a summary of the

package capabilities.

4.2 Extended dynamic quantile linear models

The package exdqlm implements the dynamic quantile models defined in Chap-

ter 2 for inference on a single p0-th quantile. That is, for a set of scalar time-

evolving responses, yt, and t = 1, . . . , T , an exDQLM is defined by:

Observation equation: yt = F′tθt + εt, εt ∼ exALp0(0, σ, γ) (4.1)

System equation: θt = Gtθt−1 + ωt, ωt ∼ N(0,Wt). (4.2)

As presented in Section 2.2, the mixture representation of the exAL can be ex-

ploited to rewrite the exDQLM as the following hierarchical model for t = 1, . . . , T :

yt|θt, σ, γ, vt, st ∼ N(yt|F′tθt + C(p, γ)σ|γ|st + A(p)vt, σB(p)vt) (4.3)

vt, st|σ ∼ Exp(vt|σ)N+(st|0, 1) (4.4)

θt|θt−1,Wt ∼ N(Gtθt−1,Wt). (4.5)
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Input list model PriorSigma PriorGamma

Symbol F1:T G1:T m0 C0 aσ bσ mγ sγ νγ
List component FF GG m0 C0 a_sig b_sig m_gam s_gam df_gam

Default - - - - 2.1 1.1 0 1 1

Table 4.1: Translation from mathematical symbols to parameters used exdqlm
functions, as well as default values where applicable.

This hierarchical form is leveraged for the posterior inference implemented within

the package. Table 4.1 shows the inputs that define the structure of the dynamic

model; Ft and Gt for t = 1, . . . , T .

4.2.1 Prior specification

Under a Bayesian formulation and given p0, we specify priors for the initial

state vector θ0, scale parameter σ and skewness parameter γ. For θ0, we assume

a q-variate conjugate normal prior θ0 ∼ N(m0,C0). For σ, we assume a conjugate

inverse-gamma prior denoted as IG(aσ, bσ). In many cases a strong prior on σ

is necessary to guarantee fast posterior convergence and estimation, which will

be illustrated in the examples of Section 4.4. For the prior on γ, we place a

Student-t distribution truncated to the interval (L,U) as defined in Section 2.1,

i.e. γ ∼ t(L,U)(mγ, sγ) with νγ degrees of freedom. The prior parameters used

in the exdqlm functions, their corresponding mathematical symbols, and default

values are shown in Table 4.1.

4.2.2 Posterior estimation

The hierarchical representation of the exDQLM facilitates posterior simulation

using the MCMC algorithm, detailed in Section 2.2.1. This is implemented in

the function exdqlmMCMC. Gibbs sampling steps are used to update the sets of

latent variables st and vt for t = 1, . . . , T . The dynamic regression coefficients
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are sampled using a forward filtering backwards sampling algorithm (Carter and

Kohn, 1994; Frühwirth-Schnatter, 1994). Finally, parameters γ and σ are updated

jointly with a random-walk Metropolis-Hastings (MH) step on the rescaled logit-

and log-scale, respectively. The covariance matrix used to sample the parameters

(ΣMH) can be specified by the user and/or automatically computed from the

burned sample. An example of this functionality can be found in Section 4.4.1.

We perform a total of NBURN + NMCMC MCMC iterations, discarding the first

NBURN resulting in NMCMC posterior samples. The output of the exdqlmMCMC

function includes the posterior samples of all parameters (θ1:T , v1:T , s1:T , γ, σ), a

list containing the parameters of the filtered and smoothed distributions of the

state vector θ1:T , the covariance matrix ΣMH and the acceptance rate of the MH

step.

We include in the package the ISVB routine detailed in Section 2.2.2, imple-

mented in exdqlmISVB, for fast and accurate approximate posterior estimation.

For the exDQLM, the variational distributions are recognizable closed-form distri-

butions with the exception of the joint variational distribution of σ and γ, which

is approximated at each iteration using importance sampling (IS) with NIS par-

ticles. The parameters of the remaining distributions are computed directly at

each iteration, with the dynamic regression coefficients updated using a forward

filtering backwards smoothing algorithm. After the algorithm reaches convergence

with tolerance of εtol, NSAMP samples are drawn from the variational distributions,

resulting in an approximate sample of the posterior distribution. The output of

the exdqlmISVB function includes the approximate posterior samples as well as

lists containing the parameters of the variational distributions for all parameters

(θ1:T , v1:T , s1:T , γ, σ). For γ and σ the list also contains the IS weights and samples.

Table 4.2 shows the input parameters used in the functions discussed in this
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exdqlm function exdqlmMCMC exdqlmISVB

Symbol ΣMH NBURN NMCMC εtol NIS NSAMP

Input Sig.mh n.burn n.mcmc tol n.IS n.samp

Default 0.05I2 2000 1500 0.1 500 200

Table 4.2: Translation from mathematical symbols to parameters used in func-
tions exdqlmMCMC and exdqlmISVB, as well as default values. Here I2 denotes the
identity matrix of dimension 2.

section, their mathematical symbols and default values.

4.2.3 Specification of the evolution covariance via discount factors

Both estimation algorithms, exdqlmMCMC and exdqlmISVB, utilize discount fac-

tors to specify the time-evolving covariance matrices Wt found in Equation (4.2).

The discount factor δ can be specified by the user via function parameter df.

Selection of discount factors is typically done by optimizing some model checking

criterion. We suggest using the Kullback-Leibler (KL) divergence of the one-step-

ahead predictive distribution functions presented in Section 2.2.3. A brief example

of this method for discount factor selection can be found in Section 4.4.2.

Discounting by component of the state-space model is also a functionality of

the estimation algorithms. Suppose the state vector is comprised of h components

θit of dimension qi for i = 1, . . . , h such that θ′t = (θ′1t, . . . ,θht)′ and
∑h
i=1 qi =

q. If Wit denotes the ith component of the evolution covariance matrix such

that Wt = blockdiag{W1t, . . . ,Wht} and δi denotes a discount factor for the

ith component, we can define the evolution variance matrix by component as

Wit = 1−δi
δi

GitCi,t−1G′it. Here Git and Ci,t−1 denote the ith components of Gt and

Ct−1, respectively. The function parameters df and dim.df allow users to specify

a set of component discount factors (δ1, . . . , δh) and their dimensions (q1, . . . , qh),

respectively, within the state-space model. Examples of this feature can be found
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Symbol t̃ k F(t̃+1):(t̃+k) G(t̃+1):(t̃+k)
exdqlmForecast input start.t k fFF fGG

Table 4.3: Translation from mathematical symbols to additional parameters used
in function exdqlmForecast.

in Section 4.4. For a full review of discount factors including discounting by

component, see West et al. (1985).

4.2.4 k-step-ahead forecast

For an arbitrary time t̃, the k-step-ahead future marginal distribution of the

quantile is

F′t̃+kθt̃+k|y1, . . . , yt̃ ∼ N(F′t̃+kat̃(k),F′t̃+kRt̃(k)Ft̃+k) (4.6)

where at̃(k) = Gt̃+kat̃(k − 1), Rt̃(k) = Gt̃+kRt̃(k − 1)G′t̃+k + Wt̃+k, at̃(0) = mt̃,

and Rt̃(0) = Ct̃, with mt̃ and Ct̃ denoting the filtered mean and covariance of

θt̃, respectively. This distribution is implemented in the function exdqlmForecast

which is compatible with the outputs from both the MCMC and ISVB algorithms.

Table 4.3 shows the input parameters used in the function, as well as their math-

ematical symbols seen in this section. The output of exdqlmForecast includes

the parameters of the forecasted distribution as well as at̃(k) and Rt̃(k) for the k

steps.

4.2.5 Transfer function model

The transfer function extension of the exDQLM presented in Chapter 3 is also

implemented within the exdqlm package, particularly for the ISVB algorithm. For

readability, we briefly review the key details of this model here.

For t = 1, . . . , T and univariate input, Xt, a transfer function exDQLM with
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exponential decay is defined by

yt|θt, γ, σ ∼ exALp0(F′tθt + ζt, σ, γ) (4.7)

θt|θt−1,Wt ∼ N(Gtθt−1,Wt) (4.8)

ζt|ζt−1, ψt−1, ωt ∼ N(λζt−1 +Xtψt−1, ωt) (4.9)

ψt|ψt−1, νt ∼ N(ψt−1, νt). (4.10)

Here ζt captures the effect of the current and past regression effects on the quantile

at time t. Alternatively, the parameter ψt determines the instantaneous effect Xt

has on the quantile. The parameter λ ∈ [0, 1] represents the memory of the

regression effect up to time t. This effect decays at an exponential rate, reducing

by a factor of λ at every time step. More explicitly, the effect of Xt on the quantile

at time t+k is λkψt−1Xt. Thus, the series kt ≥ log(ε)−log(|ψt−1Xt|)
log(λ) represents a lower

bound for the number of time steps until the effect of Xt is less than or equal to

a fixed ε. The median value of kt corresponding to ε = 1e−3 is included as an

output of the transfer function routine.

Conditional on a fixed λ, say λ̃, we augment the ISVB algorithm to incorporate

the transfer function structure by simply replacing Ft,θt,Gt, and Wt in Equations

(4.1)-(4.2) with F̃′t = (F′t, 1, 0), θ̃′t = (θ′t, ζt, ψt), G̃t = blockdiag
{
Gt,

(
λ̃ Xt
0 1

)}
,

and W̃t = blockdiag
{
Wt,

(
ωt 0
0 νt

)}
, respectively. This augmentation is imple-

mented in the function transfn_exdqlmISVB, an extension of the routine found

in exdqlmISVB.

Similar to the specification of Wt discussed in Section 4.2.3, discount factors

(δζ , δψ) are utilized to specify
(
ωt 0
0 νt

)
. A bivariate normal conjugate prior on

(ζ0, ψ0)′ ∼ N(mtf
0 ,C

tf
0 ) completes the transfer function model extension. Table

4.4 shows the additional parameters used in transfn_exdqlmISVB, as well as their
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Symbol Xt λ̃ (δζ , δψ) mtf
0 Ctf

0
transfn_exdqlmISVB input X lam tf.df tf.m0 tf.C0

Table 4.4: Translation from mathematical symbols to additional parameters used
in function transfn_exdqlmISVB.

mathematical symbols discussed in this section.

4.2.6 Special cases

As mentioned previously, non-time-varying quantile regression is a special case

of our methodology. More specifically, when discount factors are set to 1, the

evolution covariance Wt reduces to 0 resulting in non-time-varying parameters

(West et al., 1985). Thus, the methodology presented in Yan and Kottas (2017)

which utilizes the exAL in a static model can also be implemented using the

package with parameter df = 1.

The next special case of the exDQLM arises from the fact that the exAL is an

extension of the AL (Yan and Kottas, 2017). When γ = 0, the observational error

εt in Equation (4.1) reduces such that εt ∼ exALp0(εt|0, σ, γ) = ALp0(εt|0, σ). This

special case with observational errors distributed independently from an AL is the

dynamic quantile linear model (DQLM) presented in Gonçalves et al. (2020). The

DQLM can be implemented with the package by fixing γ = 0 using the parameter

dqlm.ind = TRUE.

The final special case is the intersection of the previous two. A static quantile

regression model with observational errors distributed according to an AL is the

well-known Bayesian parametric method for quantile regression first presented in

Yu and Moyeed (2001). This methodology, utilized to create the Bayesian package

for quantile regression bayesQR, can also be implemented with the package using

parameters df = 1 and dqlm.ind = TRUE.
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4.3 Model Diagnostics

To evaluate the quantile inference and predictive performance of the exDQLM,

the quantitative and visual model diagnostics presented in Section 2.2.3 are in-

cluded in the package. We summarize them here.

The first diagnostic included in the package is one-step-ahead predictive dis-

tribution sequence. For the exDQLM, and conditional on the MAP estimates

{v̂1:T , ŝ1:T , σ̂, γ̂}, we estimate the sequence as

ût = Φ(yt|y1:t−1, v̂1:T , ŝ1:T , σ̂, γ̂) (4.11)

where Φ denotes the normal CDF, y1:t−1 = y1, . . . , yt−1, v1:T = (v1, . . . , vT ) and

s1:T = (s1, . . . , sT ).

Using this estimated sequence {ût}, we can assess the model performance

in several ways. First, we visually examine the correlation of the estimated se-

quence via an ACF plot. Second, by transforming the values with a standard

normal inverse CDF, we compare their distributional shape to that of a standard

normal with a normal QQ-plot. To quantify the divergence of this transformed

sequence from normality we compute the KL divergence (Kullback and Leibler,

1951), KL(h, φ) =
∫∞
−∞ h(x) log h(x)

φ(x)dx, where h denotes the numerically approxi-

mated density of the transformed sample and φ is the standard normal density. A

smaller KL divergence suggests a superior model fit. Lastly, the MAP standard-

ized forecast errors,

yt − E[yt|y1:t−1, v̂1:T , ŝ1:T , σ̂, γ̂]√
Var(yt|y1:t−1, v̂1:T , ŝ1:T , σ̂, γ̂)

(4.12)

can also be used as an additional graphical aid in examining the distribution at

specific time points. These MAP standardized forecast errors are included in the
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output of the exdqlmMCMC and exdqlmISVB functions.

For a final diagnostic, we include Gelfand and Ghosh (1998) posterior predic-

tive loss criterion (pplc) with check loss function ρp0(x) = x[p0 − I(x < 0)]. That

is,

pplc =
∑
t

E[ρp0(yobst − y
rep
t )|y1:T ], (4.13)

where the expectation is with respect to the posterior predictive distribution of yt,

p(yrept |y1:T ). Again, a smaller pplc value suggest a superior model fit. Samples from

the posterior replicate distributions are included in the output of the exdqlmMCMC

and exdqlmISVB functions.

The function exdqlmChecks implements the model checking criteria discussed

in this section. When an output from either exdqlmMCMC and exdqlmISVB is passed

to exdqlmChecks, the function output includes: the estimated sequence {ût}, the

KL divergence, pplc, the ordered pairs of the QQ-plot, and autocorrelations by

lag. By default, the function also produces the QQ-plot, ACF plot and MAP

standard forecast error plot. Examples of the utility of exdqlmChecks can be

found in the following Section 4.4.

4.4 Examples

The following examples are implemented on a personal computer with a 2.5

GHz Intel Core i5 processor. We begin by loading the exdqlm package used for

all examples.

R> library(exdqlm)
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4.4.1 Lake Huron

In this example, we consider the Lake Huron time series from the package data

sets. The data are annual measurements of the level (ft) of Lake Huron from 1875

to 1972, shown in Figure 4.2. With this example we show how to: build a basic

state-space structure, specify a prior on γ, run the MCMC algorithm, plot the

estimated quantiles and forecast distributions.

To estimate the dynamic distribution of the data, we consider three quantiles,

p0 = 0.95, 0.50, and 0.05. We begin by creating the state-space structure and prior

used to estimate the quantiles (i.e. Ft,Gt,m0, and C0 discussed in Section 4.2).

We choose to model the quantiles with a second order polynomial trend, which

we construct with the polytrendMod function.

R> model = polytrendMod(order = 2, m0 = c(mean(LakeHuron),0),

+ C0 = 10*diag(2))

R> model

$FF

[1] 1 0

$GG

[,1] [,2]

[1,] 1 1

[2,] 0 1

$m0

[1] 579.0041 0.0000

$C0
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[,1] [,2]

[1,] 10 0

[2,] 0 10

To allow variability in the dynamic quantile, we select a single discount factor

of 0.9 to define the evolution covariance matrix Wt. Discount factors can also be

optimized, an example of which we will show in Section 4.4.2. We use the parame-

ter fix.sigma = TRUE to place a point-mass prior on σ to facilitate convergence,

with point-mass at 0.07 for p0 = 0.95, 0.05 and 0.4 for p0 = 0.5. A discussion

on how to choose the location of the point-masses can be found in Section 4.4.2.

Further, we place truncated Student-t priors on the skewness parameters via Pri-

orGamma as discussed in Section 4.2.1. Lastly, we limit the number of iterations

with n.burn = 700 and n.mcmc = 300. The R output is shown for only the last

quantile using the input verbose = TRUE.

R> M95 = exdqlmMCMC(y = LakeHuron, p0 = 0.95, model = model,

+ df = 0.9, dim.df = 2, fix.sigma = TRUE,

+ sig.init = 0.07, PriorGamma =

+ list(m_gam = -1, s_gam = 0.1, df_gam = 1),

+ n.burn = 700, n.mcmc = 300, verbose = FALSE)

R> M50 = exdqlmMCMC(y = LakeHuron, p0 = 0.50, model = model,

+ df = 0.9, dim.df = 2, fix.sigma = TRUE,

+ sig.init = 0.4, PriorGamma =

+ list(m_gam = 0, s_gam = 0.1, df_gam = 1),

+ n.burn = 700, n.mcmc = 300, verbose = FALSE)

R> M5 = exdqlmMCMC(y = LakeHuron, p0 = 0.05, model = model,

+ df = 0.9, dim.df = 2, fix.sigma = TRUE,

+ sig.init = 0.07, PriorGamma =
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+ list(m_gam = 1, s_gam = 0.1, df_gam = 1),

+ n.burn = 700, n.mcmc = 300, verbose = TRUE)

[1] "running isvb algorithm to initialize mcmc"

[1] "ISVB iteration 5: 2021-06-14 14:02:30"

[1] "ISVB iteration 10: 2021-06-14 14:02:31"

[1] "ISVB iteration 15: 2021-06-14 14:02:33"

[1] "ISVB converged: 15 iterations, 4.584 seconds"

[1] "burn-in iteration 500, acceptance rate 0.032:

2021-06-14 14:03:11"

[1] "MCMC iteration 1000, acceptance rate 0.127: 2021-06-14 14:03:52"

[1] "MCMC complete: 1000 iterations, 78.617 seconds"

For this time series of length 98 it takes approximately 80 seconds for the

MCMC algorithm sample 1000 iterations, as seen in the output above. By de-

fault exdqlmMCMC runs the ISVB algorithm to initialize the MCMC, which prints

progress every 5 iterations. When the ISVB is used for initialization, the covari-

ance matrix used to sample σ and γ in the MH step is automatically calculated

from the ISVB samples of σ and γ. This covariance can be specified manually

by using the setting init.from.isvb = FALSE, and providing the covariance via

input mh_Sig. Further, using the setting joint.sample = TRUE, the covariance

matrix can be recalculated from burned samples.

After the ISVB algorithm converges, the exdqlmMCMC prints progress after each

500 MCMC iterations, along with the current acceptance rate of the MH step and

system time. It is not uncommon for low acceptance rates to facilitate convergence,

particularly for extreme quantiles (i.e. 0.05), as is seen in this example. The data

are relatively symmetric, therefore we do not expect the skewness parameter γ to

be far from zero for p0 = 0.5. We can examine this with the samples from the
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Figure 4.1: Example 1: Lake Huron. Trace plot (left) and density (right) of the
MCMC samples of the skewness parameter γ estimated at the median.

posterior distribution of γ. All MCMC samples in the output of exdqlmMCMC are

mcmc objects. Thus we can use the package coda to examine the trace plot and

density of γ, seen in Figure 4.1.

R> library(coda)

R> traceplot(M50$samp.gamma, main = "")

R> densplot(M50$samp.gamma, main = "")

Clearly γ is indistinct from zero, thus the added flexibility of the skewness

parameter is not necessary for the median. We re-run the model with a point-mass

prior on γ at 0 using the settings gam.init = 0 and fix.gamma = 0, equivalent

to the setting dqlm.ind = TRUE.

R> M50 = exdqlmMCMC(y = LakeHuron, p0 = 0.50, model = model,

+ df = 0.9, dim.df = 2,

+ fix.sigma = TRUE, sig.init = 0.4,
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+ gam.init = 0, fix.gamma = TRUE,

+ n.burn = 700, n.mcmc = 300)

[1] "running isvb algorithm to initialize mcmc"

[1] "ISVB iteration 5: 2021-07-18 12:42:47"

[1] "ISVB iteration 10: 2021-07-18 12:42:48"

[1] "ISVB iteration 15: 2021-07-18 12:42:50"

[1] "ISVB converged: 15 iterations, 4.305 seconds"

[1] "burn-in iteration 500, acceptance rate 0.212:

2021-07-18 12:43:35"

[1] "MCMC iteration 1000, acceptance rate 0.265:

2021-07-18 12:44:18"

[1] "MCMC complete: 1000 iterations, 87.92 seconds"

The results are exdqlm objects that can be used for analysis and forecasting.

First we examine the estimated quantiles with the function exdqlmPlot, seen in

Figure 4.2. This function generates a plot of the data with the MAP estimates and

the 95% CrIs of the dynamic quantile. Subsequent quantiles (i.e. p0 = 0.50, 0.05

in this example) can be added to the plot using the setting add = TRUE.

R> exdqlmPlot(y = LakeHuron, M95)

R> exdqlmPlot(y = LakeHuron, M50, add = TRUE, col = "blue")

R> exdqlmPlot(y = LakeHuron, M5, add = TRUE, col = "forest green")

R> legend("topright", lty = 1,

+ col = c("purple","blue","forest green"),

+ legend = c(expression(’p’[0]*’=0.95’),

+ expression(’p’[0]*’=0.50’),

+ expression(’p’[0]*’=0.05’)))
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Figure 4.2: Example 1: Lake Huron. Left: MAP estimates and 95% CrIs of
the estimated quantiles, plotted with the data (grey). Right: Forecasted quantile
estimates and 95% credible intervals (seen after 1972), along with the filtered
quantile estimates and 95% credible intervals (seen from 1952 to 1972).

Next, we forecast the k = 8 step-ahead distributions starting in 1972. To do

this, we first create the observational vector (fFF) and evolution matrix (fGG) that

will be used in the forecast updates. In this case both are non-time-varying and

identical to those used to estimate the quantile.

R> fFF = model$FF

R> fGG = model$GG

We plot the time series data in a narrower range for closer examination and

add the forecast estimates using exdqlmForecast with setting add = TRUE. No-

tice we start the forecast at the last time index of the data, i.e. start.t =

length(LakeHuron).

R> plot.ts(LakeHuron, xlim = c(1952,1980), ylim = c(575,581),

+ col = "dark grey")

R> exdqlmForecast(y = LakeHuron, start.t = length(LakeHuron),

+ k = 8, M95, fFF = fFF, fGG = fGG, plot = TRUE,
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+ add = TRUE)

R> exdqlmForecast(y = LakeHuron, start.t = length(LakeHuron),

+ k = 8, M50, fFF = fFF, fGG = fGG, plot = TRUE,

+ add = TRUE, cols = c("blue","light blue"))

R> exdqlmForecast(y = LakeHuron, start.t = length(LakeHuron),

+ k = 8, M5, fFF = fFF, fGG = fGG, plot = TRUE,

+ add = TRUE, cols = c("forest green","green"))

This generates a plot of the data with the forecasted quantile estimates and

95% credible intervals (seen after 1972), along with the filtered quantile esti-

mates and 95% credible intervals (before 1972), for reference. Results can be seen

in Figure 4.2. The percentage in the CrIs can be modified with the parameter

cr.percent.

4.4.2 Sunspots

For our next example, we will use the yearly Sunspot time series from the pack-

age datasets. The data are yearly counts for sunspots from 1700 to 1988, shown in

Figure 4.3. With this example we will show how to: use the dlm package to create

the state-space model, combine blocks of a state-space model, apply the ISVB

algorithm, choose a prior for σ to facilitate convergence, perform visual model

diagnostics to compare the exDQLM with the DQLM, and use those diagnostics

for model selection.

The solar cycle impacts astronauts in space as well as lives and technology

on earth. Of particular interest to scientists is the solar max, or period in which

the sun is most active Fox (2012), therefore we will explore the 0.85 quantile

in this example. Again, we begin by building the state-space structure used to

estimate the quantile. Here we choose to model the quantile with a first order
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polynomial trend component as well as a Fourier form seasonal component that

incorporates a fundamental period every 11 observations (years), as well as some

of its corresponding harmonics. This results in a dynamic model with a total

of 9 state parameters, 1 for the first order polynomial component and 8 for the

seasonal component. The exdqlm functions are compatible with time-invariant

dlm objects from the dlm package. For example, we create the first order trend

component with the function dlmModPoly from the dlm package.

R> library(dlm)

R> dlm.trend.comp = dlmModPoly(1, m0 = mean(sunspot.year), C0 = 10)

Next, we construct the seasonal component with the seasMod function. The du-

ration of sunspot cycles typically follow a period of 11 years, of which we include

the first 4 harmonics in the component.

R> seas.comp = seasMod(p = 11, h = 1:4, C0 = 10*diag(8))

To combine the two components into a single state-space structure, we use the

function combineMods.

R> model = combineMods(dlm.trend.comp,seas.comp)

Warning message:

In combineMods(dlm.trend.comp, seas.comp) :

m1 converted from a dlm object using ’dlmMod(m1)’

This produces a warning that the first input dlm.trend.comp was converted from

a dlm object using the function dlmMod. This function can also be used directly

on the dlm object to eliminate the warning. The resulting evolution matrix of the

combined models is printed for illustration.
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R> trend.comp = dlmMod(dlm.trend.comp)

R> model = combineMods(trend.comp,seas.comp)

R> model$GG

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[2,] 0 0.8413 0.5406 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[3,] 0 -0.5406 0.8413 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[4,] 0 0.0000 0.0000 0.4154 0.9096 0.0000 0.0000 0.0000 0.0000

[5,] 0 0.0000 0.0000 -0.9096 0.4154 0.0000 0.0000 0.0000 0.0000

[6,] 0 0.0000 0.0000 0.0000 0.0000 -0.1423 0.9898 0.0000 0.0000

[7,] 0 0.0000 0.0000 0.0000 0.0000 -0.9898 -0.1423 0.0000 0.0000

[8,] 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.6549 0.7557

[9,] 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.7557 -0.6549

We will apply discount factors by component, i.e. a discount factor of 0.9

for the trend component of dimension 1 and a discount factor of 0.85 for the

seasonal component of dimension 8. This discounting strategy can be applied

with parameters df = c(0.9,0.85) and dim.df = c(1,8).

Next we illustrate how to fix σ at a reasonable value. To do this, we investigate

the scale of the data using the DQLM, a special case of the exDQLM described

in Section 4.2.6. We call the function exdqlmISVB to apply the ISVB algorithm

with dqlm.ind = TRUE and fix.sigma = FALSE to obtain estimates of the scale

parameter σ. For this dataset of length 298 the ISVB algorithm for the DQLM

takes 29 iterations and approximately 25 seconds to converge, seen in the output

below. This output is suppressed for the remainder of this section using input

verbose = FALSE.

R> M1 = exdqlmISVB(y = sunspot.year, p0 = 0.85, model = model,
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Figure 4.3: Example 2: Sunspots. Left: The sunspot time series from 1700 to
1988. Center: MAP estimates and 95% CrIs of the estimated quantiles from the
DQLM (red) and exDQLM (blue), plotted with the data (grey) from 1750 to 1850.
Right: Histogram of samples from the approximated posterior distribution of γ.

+ df = c(0.9,0.85), dim.df = c(1,8),

+ dqlm.ind = TRUE, fix.sigma = FALSE)

[1] "ISVB iteration 5: 2021-07-18 13:01:04"

[1] "ISVB iteration 10: 2021-07-18 13:01:08"

[1] "ISVB iteration 15: 2021-07-18 13:01:12"

[1] "ISVB iteration 20: 2021-07-18 13:01:16"

[1] "ISVB iteration 25: 2021-07-18 13:01:21"

[1] "ISVB converged: 29 iterations, 24.772 seconds"

The σ estimates from the DQLM give a general idea of the scale of the data and

are a good starting point for fixing σ (or setting a strong prior) in the exDQLM.

For example, the MAP estimate of σ from the DQLM is approximately 4.

R> summary(M1$samp.sigma)

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.470 3.806 3.935 3.934 4.054 4.513

Reducing this value, we place a point-mass prior on σ at 2. By default, exdqlmISVB

places a point-mass prior on σ at the value of sig.init. We re-run the algorithm

76



with dqlm.ind = TRUE to estimate the DQLM, as well as with the default settings

to estimate the exDQLM.

R> M1 = exdqlmISVB(y = sunspot.year, p0 = 0.85, model = model,

+ df = c(0.9,0.85), dim.df = c(1,8),

+ dqlm.ind = TRUE, sig.init = 2,

+ verbose = FALSE)

R> M2 = exdqlmISVB(y = sunspot.year, p0 = 0.85, model = model,

+ df = c(0.9,0.85), dim.df = c(1,8),

+ sig.init = 2, verbose = FALSE)

We can visualize the differences between the two resulting dynamic quantiles

using the function exdqlmPlot, seen in Figure 4.3. For clarity we limit the figure

to years 1750 to 1850.

R> plot(sunspot.year, xlim = c(1750,1850), col = "dark grey",

+ ylab = "quantile 95% CrIs")

R> exdqlmPlot(y = sunspot.year, M1, add = TRUE, col = "red")

R> exdqlmPlot(y = sunspot.year, M2, add = TRUE, col = "blue")

To examine whether the added flexibility of the exDQLM is significant, we can

also visualize the approximate posterior distribution of the skewness parameter γ

by plotting the samples from the corresponding variational distribution, also seen

in Figure 4.3.

R> hist(M2$samp.gamma,xlab=expression(gamma),main="")

The approximate distribution is clearly distinct from zero, thus we expect a better

model fit from the exDQLM.

To further examine the two models, we use the function exdqlmChecks to plot

the model diagnostics discussed in Section 4.3. The results are seen in Figure
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Figure 4.4: Example 2: Sunspots. The QQ-plots (left column), ACF plots (center
column) and standard forecast errors (right column) from the DQLM (red) and
exDQLM (blue).

4.4. It is clear the QQ-plot and the scale of the standard forecast errors favor the

exDQLM.

R> exdqlmChecks(y = sunspot.year, M1, M2, cols = c("red","blue"))

Finally, the function exdqlmChecks can also be used for model selection. Say

we want to check whether the discount factor we used for the seasonal component

was optimal with respect to the KL divergence of the one-step-ahead predictive

distributions. We can create a list of possible discount factors, quickly run the

ISVB for each possible model, and select the set of discount factors which re-

sults in the lowest KL divergence. A simple example is seen below, which takes

approximately 6 minutes to run.

R> possible.dfs = cbind(0.9,seq(0.85,1,0.05))

78



R> possible.dfs

[,1] [,2]

[1,] 0.9 0.85

[2,] 0.9 0.90

[3,] 0.9 0.95

[4,] 0.9 1.00

R> KLs <- vector("numeric")

R> ref.samp = rnorm(length(sunspot.year))

R> for(i in 1:nrow(possible.dfs)){

+ temp.M2 = exdqlmISVB(y = sunspot.year, p0 = 0.85,

+ model = model, df = possible.dfs[i,],

+ dim.df = c(1,8), sig.init = 2, verbose = FALSE)

+ temp.check = exdqlmChecks(y = sunspot.year, temp.M2,

+ plot = FALSE, ref = ref.samp)

+ KLs = c(KLs,temp.check$m1.KL)

+ }

R> # optimal dfs based off KL divergence

R> possible.dfs[which.min(KLs),]

[1] 0.90 0.85

The results suggest the discount factor we used for the seasonal component is

optimal.

4.4.3 Big Tree water flow

For our final example, we consider the average monthly natural water flow

(cubic feet per second) at the Big Tree gauge of the San Lorenzo river in Santa
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Figure 4.5: Example 3: Big Tree water flow. Top: Average monthly water flow at
the Big Tree gauge of the San Lorenzo river in Santa Cruz County, CA, plotted on
the log-scale. Bottom: Monthly values of Niño 3.4. Both time series span January
1937 through April 2021.

Cruz County, CA from January 1937 through April 2021 (U.S. Geological Survey,

2016), for a total of 1012 observations. The dataset is included in the package as

BTflow. With this example we show how to build a state-space structure manu-

ally (particularly for a dynamic quantile regression), apply the transfer function

exDQLM, examine individual components of the estimated quantiles, and perform

quantitative model diagnostics to compare models.

For this particular dataset, the interest is in low quantiles as a possible in-

dicator of drought, thus we will consider the p0 = 0.15 quantile. To investigate

any climatological influence on this low quantile, we include the Niño 3.4 index

(Rayner et al., 2003) as in input of the exDQLM. The Niño 3.4 index is a measure

of how anomalously warm or cool the average sea surface temperature is in the

Niño 3.4 region (5◦S-5◦N, 170◦W-120◦W) of the Pacific Ocean. It is one of the

most commonly used indices to define El Niño and La Niña events. The monthly
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Niño 3.4 dataset used in the analysis is also included in the package as nino34.

We model the relationship between Niño 3.4 and the quantile with two model

structures: a dynamic quantile regression and a transfer function as seen in Sec-

tion 4.2.5. To avoid modeling problems caused by the scale and extremes in the

Big Tree dataset, we fit the following models to the time series on the log scale

seen in Figure 4.5.

In addition to the components that capture the relationship with the Niño

3.4 index, we also include a first order polynomial trend component as well as a

Fourier form seasonal component that includes a single periodic component with

period 12. The Big Tree water flow time series follows a period of twelve months,

of which we include only the first (annual) harmonic.

R> trend.comp = polytrendMod(1, m0 = 3, C0 = 0.1)

R> seas.comp = seasMod(p = 12, h = 1, C0 = diag(1,2))

R> model = combineMods(trend.comp, seas.comp)

Next, we create the dynamic regression component for the first model. A re-

gression effect is easily written in a state-space format by setting the observational

vector Ft = Xt and Gt = 1, where Xt denotes the input at time t. Thus we create

this regression component for the state-space model manually as follows.

R> reg.comp <- NULL

R> reg.comp$m0 = 0

R> reg.comp$C0 = 1

R> reg.comp$FF = matrix(nino34,nrow = 1)

R> reg.comp$GG = 1

Combining this with the trend and seasonal component we have the complete

state-space structure for the dynamic quantile regression model.
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R> model.w.reg = combineMods(model,reg.comp)

To allow the Niño 3.4 input components of both models to vary over time, we

set the respective discount factors to be 0.95 (this is done via the parameter df in

the exdqlmISVB function and the parameter tf.df in the transfn_exdqlmISVB

function). Alternatively, we set the discount factors to 1 and 0.9 for the trend and

seasonal components, respectively. This allows the seasonal amplitudes to evolve

over time, while any further variation in the 0.15 quantile from year to year will

solely be attributed to the effects of the Niño 3.4 input in the models.

The transfer function model is created within the function transfn_exdqlmISVB

and follows the structure detailed in Section 4.2.5. Optimization using the KL di-

vergence suggests the effects of the Niño 3.4 index decay at an optimal transfer

function rate of λ = 0.85.

R> possible.lams = seq(0.1,0.9,0.05)

R> KLs <- vector("numeric")

R> ref.samp = rnorm(length(BTflow))

R> for(i in 1:length(possible.lams)){

R> temp.M2 = transfn_exdqlmISVB(y = log(BTflow), p0 = 0.15,

+ model = model, df = c(1,0.9),

+ dim.df = c(1,2), X = nino34,

+ tf.df = c(0.95), lam = possible.lams[i],

+ tf.m0 = c(0,0), tf.C0 = diag(c(0.1,0.05)),

+ sig.init = 0.1, gam.init = - 0.1,

+ tol = 0.05, verbose = FALSE)

R> temp.check = exdqlmChecks(y = log(BTflow), temp.M2,

+ plot = FALSE, ref = ref.samp)

R> KLs = c(KLs,temp.check$m1.KL)
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Figure 4.6: Example 3: Big Tree water flow. Top: MAP estimates and 95%
CrIs of the estimated quantiles from the models with the regression component
(purple) and transfer function component (green), plotted with the data (grey)
from 1970 to 1990. Middle: MAP estimates and 95% CrIs of the annual seasonal
components. Bottom: MAP estimates and 95% CrIs of the components which
model the quantile association with Niño 3.4. The estimates of the dynamic
regression component Xtθ4,t of M1 where θ4,t denotes the fourth element of the
state vector, are seen in purple. The estimates of the transfer function component
ζt of M2 are in green. The horizontal orange dotted line is at zero for reference.

R> }

R> # optimal lambda based off KL divergence

R> possible.lams[which.min(KLs)]

[1] 0.85

With these discount factors and optimal λ, we estimate the dynamic quantile

regression model (M1) and transfer function model (M2).
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R> M1 = exdqlmISVB(y = log(BTflow), p0 = 0.15, model = model.w.reg,

+ df = c(1,0.9,0.95), dim.df = c(1,2,1),

+ sig.init = 0.1, gam.init = - 0.1,

+ tol = 0.05, verbose = FALSE)

R> M2 = transfn_exdqlmISVB(y = log(BTflow), p0 = 0.15,

+ model = model, df = c(1,0.9), dim.df = c(1,2),

+ X = nino34, tf.df = c(0.95), lam = 0.85,

+ tf.m0 = c(0,0), tf.C0 = diag(c(0.1,0.005),2),

+ sig.init = 0.1, gam.init = - 0.1,

+ tol = 0.05, verbose = FALSE)

To visualize the differences between the two resulting dynamic quantiles we

use the function exdqlmPlot, results of which are found in Figure 4.6. For clarity

we limit the figure to view 1970 to 1990.

R> plot(log(BTflow), col = "grey", ylim = c(1,8),

+ xlim = c(1970,1990), ylab = "quantile 95% CrIs")

R> exdqlmPlot(y = BTflow, M1, add = TRUE)

R> exdqlmPlot(y = BTflow, M2, add = TRUE, col = "forest green")

Clearly the resulting quantiles have significant differences. To identify from

where these differences arise, we can utilize the function compPlot to examine

the components of the models more closely. We examine the annual component

of the parameter vector first. The annual component is comprised of the second

and third elements of the parameter vector θt, thus we set the parameter index =

c(2,3) to visualize this component. The result is seen in Figure 4.6, again limited

to the years 1970 to 1990.

R> plot(NA, ylim = c(-1.5,1.5), xlim = c(1970,1990),

+ ylab = "seasonal components")
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Figure 4.7: Example 3: Big Tree water flow. MAP estimates and 95% CrIs of
parameters ζt and ψt from the transfer function component. Horizontal dotted
orange lines are at zero for reference.

R> compPlot(y = log(BTflow), M1, index = c(2,3), add = TRUE)

R> compPlot(y = log(BTflow), M2, index = c(2,3), add = TRUE,

+ col = "forest green")

Although the seasonal components of the two models exhibit differences in ampli-

tude, we expect more significant differences to appear in the Niño 3.4 component

of each model. Again, we use the function compPlot to visualize these components

seen in Figure 4.6 from 1970 to 1990.

R> plot(NA, ylim = c(-0.5,1.5), xlim = c(1970,1990),

+ ylab = "Ni~no 3.4 components")

R> compPlot(y = log(BTflow), M1, index = c(4), add = TRUE)

R> compPlot(y = log(BTflow), M2, index = c(4,5), add = TRUE,
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+ col = "forest green")

R> abline(h = 0, col = "orange", lty = 3, lwd = 2)

For the transfer function model, M2, it is also of interest to look at the estimates

of parameters ζt and ψt directly. Because these parameters augmented the state-

space model as discussed in Section 4.2.5, the function compPlot can also be used

to look at these estimates directly using the parameter just.theta = TRUE. This

setting returns the dynamic posterior estimates of a single index of the state vector

θt (or θ̃t in the case of the transfer function model). Parameter index of 4 and 5

correspond to ζt and ψt, respectively. Results can be found in Figure 4.7.

R> compPlot(y = log(BTflow), M2, index = 4, col= "forest green",

+ add = FALSE, just.theta = TRUE)

R> abline(h = 0, col = "orange", lty = 3, lwd = 2)

R> title(expression(eta[t]))

R> compPlot(y = log(BTflow), M2, index = 5, col = "forest green",

+ add = FALSE, just.theta = TRUE)

R> abline(h = 0, col = "orange", lty = 3, lwd = 2)

R> title(expression(psi[t]))

To further understand these transfer function parameters, we examine the

median number of time steps until the effect of Niño 3.4 on the 0.15 quantile is

less than or equal to 1e−3, as discussed in Section 4.2.5. A median value 20.76

suggests the effect of the Niño 3.4 index value at time t last for around 21 months.

R> M2$median.kt

[1] 20.76305
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Figure 4.8: Example 3: Big Tree water flow. 18-step-ahead quantile forecast be-
ginning October 2019 through April 2021 overlaid on the log Big Tree water flow
time series. The vertical dot-dashed line is at the beginning of the forecast period,
October 2019, for reference. Solid lines indicate mean estimates and dotted lines
95% CrI, with the filtered estimates seen leading up to October 2019 and the fore-
cast estimates beyond October 2019. Estimates from M1, the quantile regression
model, are seen in purple/pink. Estimates from M2, the transfer function model,
are seen in green.

This suggests a long-term forecast could be of interest. Thus we forecast the

k = 18 step ahead distributions for both models starting in October 2019, results

of which are seen in Figure 4.8.

R> exdqlmForecast(y = log(BTflow), start.t = length(BTflow)-18,

+ k = 18, M1)

R> exdqlmForecast(y = log(BTflow), start.t = length(BTflow)-18,

+ k = 18, M2, add = TRUE,

+ cols = c("forest green","green"))

Finally, we use the function exdqlmChecks to compute the KL divergence and

pplc discussed in Section 4.3, results of which are seen in Table 4.5.

R> checks.out = exdqlmChecks(y = log(BTflow), M1, M2,
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M1 M2

output value output value
pplc m1.pplc 957.72 m2.pplc 897.22
KL m1.kl 1.135 m2.kl 0.880

Table 4.5: Example 3: Big Tree water flow. Model diagnostic output from
exdqlmChecks and resulting values.

+ col = c("purple","orange"), plot = FALSE)

The KL divergence and pplc both clearly favor the nonlinear relationship captured

by the transfer function model.

4.5 Conclusion

The exDQLM framework presented in the previous chapters provides a robust

and versatile tool for dynamic quantile modeling, implemented in the presented

exdqlm package. Relevant features of the data can easily be incorporated in the

evolution of the quantile. The MCMC algorithm provides a method for exact

posterior inference. Alternatively, the ISVB algorithm provides a method for fast

approximate inference enabling estimation for large data sets, quick examina-

tion relevant model features and model selection. Further, the transfer function

model provides a straight-forward method for quantifying a nonlinear relationship

between a quantile and response. Finally, the forecast and diagnostic routines

facilitate further model exploration. These capabilities have been discussed in de-

tail and demonstrated with a set of examples. The exdqlm package makes these

methods, and more generally, dynamic quantile modeling, accessible to all levels

of users.
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Chapter 5

Joint Estimation of Time-Varying

Quantiles via Flexible Multivariate

Dynamic Models

In this chapter, we develop a multivariate extended dynamic quantile linear

model to consider multiple time series simultaneously and jointly estimate a spec-

ified quantile for each series. To do this, we first develop a multivariate exAL

distribution. We then present the details of multivariate MCMC and ISVB algo-

rithms for exact and approximate posterior inference, respectively. The utility of

the multivariate model is illustrated via application to two real datasets.

5.1 Background

We begin by presenting a new class of multivariate distributions, the multi-

variate exAL (MVexAL). This family of distributions is an extension of the exAL

and the multivariate AL (MVAL) developed in Kotz et al. (2003) which we review

here.
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Let y = (y1, . . . , yn)′ denote a vector of n observations distributed according

to a MVAL, i.e. y ∼ MVALp(µ,σ). Kotz et al. (2003) establish that the MVAL

is equal in distribution to the mixture representation,

y = µ+ A(p)� v +
√
B(p)� v� σ � z (5.1)

with � denoting element-wise multiplication. Here σ = (σ1, . . . σn)′ is a set of

scale parameters, µ = (µ1, . . . , µn)′ is a set of location parameters, and p =

(p1, . . . , pn)′ are skewness parameters which will correspond to the quantiles of

interest for the n observations. A(p) and B(p) are element-wise scalar functions

analogous to those seen in Chapter 2 2.1, i.e. A(p) = 1−2p
p(1−p) and B(p) = 2

p(1−p) .

Further, v = (v1, . . . vn)′ is such that each element vj is marginally distributed

according to an exponential distribution with scale σj for j = 1, . . . , n. Finally, z =

(z1, . . . zn)′ ∼ Nn(0,R), independent of v, with R denoting a latent correlation

matrix of dimension n.

Kotz et al. (2003) showed that each component yj of a MVAL random vector

y admits the representation

yj = µj + A(pj)vj +
√
B(pj)vjσjzj (5.2)

where zj is a standard normal variable. This is the mixture representation of the

univariate AL presented in Section 2.1, thus each element of y marginally follows

an ALpj(µj, σj). For further details on the development and properties of the

MVAL, see Kotz et al. (2003).
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5.1.1 The multivariate exAL

We expand the advantages of the exAL to the multivariate setting by extending

the multivariate AL presented in Kotz et al. (2003). Let p0 = (p01, . . . , p0n)′ such

that each element p0j denotes the quantile of interest for the jth observation of

y, for j = 1, . . . , n. Utilizing the mixture representation of the MVAL discussed

above, we define a multivariate exAL (MVexAL) for inference of the p0-quantiles

as follows:

y = µ+ C(p,γ)� σ � |γ| � s + A(p)� v +
√
B(p)� v� σ � z. (5.3)

Analogous to the univariate exAL, γ = (γ1, . . . γn)′ is a set of skewness parameters

and s = (s1, . . . sn)′ is such that each element of s is marginally distributed accord-

ing to a standard half-normal distribution, independent of v and z. The parameter

p is now a scalar function of p0 and γ; p = p(p0,γ) = I(γ < 0) + {[p0 − I(γ <

0)]/g(γ)} where g(γ) = 2Φ(−|γ|)exp(γ2/2) and Φ(·) denotes the standard nor-

mal CDF also applied element-wise. Each element γj of the parameter vector γ

has bounded support over the interval (Lj, Uj) where Lj is the negative root of

g(γj) = 1 − p0j and Uj is the positive root of g(γj) = p0j. Further, A(p), B(p),

C(p,γ) are scalar functions of p with A(p), B(p) as defined in Equation (5.1)

and C(p,γ) = [I(γ > 0) − p]−1. Kindred to the univariate exAL, when γ = 0

the MVexAL reduces to the MVAL.

Each component yj of the MVexAL random vector y admits the representation

yj = µj + C(pj, γj)σj|γj|sj + A(pj)vj +
√
B(pj)vjσjzj (5.4)

where again zj is a standard normal variable. Clearly this is the mixture repre-

sentation of the univariate exAL presented in Section 2.1, thus each element of y
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marginally follows an exALpj(µj, σj, γj). Thus, by construction µj corresponds to

the fixed quantile p0j such that

∫ µj

−∞
exAL(yj|µj, σj, γj)dyj = p0j. (5.5)

As in the univariate setting, the capacity to fix the quantiles of interest is retained.

Further, the mixture representation preserves many of the computational advan-

tages discussed in Chapter 2, making the MVexAL a robust error distribution for

our multivariate dynamic quantile model.

5.1.2 Specifying s and v

common v & common s
CiCj |γi||γj |[1−4φ(0)2]+AiAj+

√
BiBjπRij

4
√

(C2
i γ

2
i [1−4φ(0)2]+A2

i+Bi)(C
2
j γ

2
j [1−4φ(0)2]+A2

j+Bj)

common v & iid sj
AiAj+

√
BiBjπRij

4
√

(C2
i γ

2
i [1−4φ(0)2]+A2

i+Bi)(C
2
j γ

2
j [1−4φ(0)2]+A2

j+Bj)

iid vj & common s
CiCj |γi||γj |[1−4φ(0)2]+

√
BiBjπRij

4
√

(C2
i γ

2
i [1−4φ(0)2]+A2

i+Bi)(C
2
j γ

2
j [1−4φ(0)2]+A2

j+Bj)

iid vj & iid sj

√
BiBjπRij

4
√

(C2
i γ

2
i [1−4φ(0)2]+A2

i+Bi)(C
2
j γ

2
j [1−4φ(0)2]+A2

j+Bj)

Table 5.1: Corr(yi, yj) for the four possible modeling options of latent parameters
vj and sj.

As mentioned previously, for j = 1, . . . , n the latent parameters vj and sj are

marginally distributed according to an exponential with mean σj and a standard

half normal, respectively. Here we discuss four modeling options for the elements

of v and s: (a) common v and common s for all j = 1, . . . , n, (b) common v and

iid sj, (c) iid vj and common v, and (d) iid vj and iid sj.

To examine the possible behaviors of the correlation of the multivariate model

at various quantiles, we derive Corr(yi, yj) for the four possible cases, seen in Table

5.1. We use the short-hand Aj = A(pj), Bj = B(pj), and Cj = C(pj, γj). Further,
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Rij denotes the ij-th element of the latent correlation matrix R. Note, in cases

(a) and (b), common v also implies common σ for j = 1, . . . , n. This implication

is too restrictive of an assumption for our applications, thus we focus on the other

two case (c) and (d) going forward.

The correlations in Table 5.1 depend on the parameters γ and fixed quantiles

p0 via the functions Aj, Bj, and Cj. To investigate further the behavior of the

correlation for the remaining cases, we plot the correlations for three quantiles of

varying extremes and two differing values of the correlation Rij. It can be seen

in Figure 5.1 that for iid vj and common s, when the skewness parameters γi

and γj are distinct from zero, the correlations tend to 1 for the extreme quantiles

regardless of the values of Rij. In contrast, for the case of iid vj and iid sj seen

in Figure 5.2, the correlations weaken at the extreme quantiles, particularly for

skewness parameters distinct from zero. Although this feature limits the amount

of correlation that can be captured by the model, the flexibility for γ distinct

from zero is desirable. Thus, due to the increasing correlations at the extreme

quantiles for case (c) with common s, we utilize case (d) with both iid sj and vj

for j = 1, . . . n going forward.

5.2 The MVexDQLM

Consider a set of n dimensional time-evolving responses, yt = (yt,1, . . . , yt,n)′,

for times t = 1, . . . , T . For each t, a general multivariate dynamic model can be

defined by

Observation equation: yt = F′tθt + εt (5.6)

System Equation: θt = Gtθt−1 + ωt. (5.7)
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Figure 5.1: Corr(yi, yj) for case (c); common s and iid vj, for varying values of γi
(x-axes), γj (y-axes), p0 (columns) and Rij (rows).

Figure 5.2: Corr(yi, yj) for case (d); iid sj and iid vj, for varying values of γi
(x-axes), γj (y-axes), p0 (columns) and Rij (rows).
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Here Ft is the q×n regression matrix of the covariates corresponding to the q× 1

regression parameter vector θt at time t, and Gt is the q-dimensional evolution

matrix defining the structure of the parameter vector evolution in time. We pro-

pose a multivariate extended dynamic quantile linear model (MVexDQLM) for

inference on the p0 = (p01, . . . , p0n)′ quantiles of the elements of yt by specifying

the observational errors of a multivariate dynamic model to be distributed inde-

pendently from the MVexAL, which we denote MVexALp0 . Utilizing a Gaussian

time-evolving structure on the system error vector, ωt ∼ N(0,Wt) where Wt is

the evolution variance matrix, our MVexDQLM can be written

yt|θt,γ,σ ∼ MVexALp0(F′tθt,σ,γ) (5.8)

θt|θt−1,Wt ∼ N(Gtθt−1,Wt) (5.9)

where the normal distribution according to which θt evolves is q-variate. The spe-

cific structure of {Ft,θt,Gt,Wt} will depend heavily on the application, thus this

is discussed in more detail within Sections 5.4 and 5.5. Similar to the exDQLM,

the mixture representation of the MVexAL in Equation (5.3) can be exploited to

rewrite the MVexDQLM as the following hierarchical model for t = 1, . . . , T :

yt|θt,σ,γ,vt, st ∼ (5.10)

N(F′tθt+C� σ � |γ| � st + A� vt,
√

B� vt � σ
′R
√

B� vt � σ)

vt,j, st,j|σj ∼ Exp(vt,j|σj)N+(st,j|0, 1), for j = 1, . . . , n (5.11)

θt|θt−1,Wt ∼ N(Gtθt−1,Wt). (5.12)

where the normal distribution according to which yt evolves is n-variate. Here,

A = A(p), B = B(p), C = C(p,γ) are the functions of p and γ defined in Equa-
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tion (5.3). Under the Bayesian framework, we place priors on the parameters as

follows: a q-variate prior θ0 ∼ N(m0,C0), σj ∼ IG(aσ, bσ) and γj ∼ t(Lj ,Uj)(0, 1)

for j = 1, . . . , n. As in Chapter 2, we utilize discount factors to specify the co-

variance matrix Wt. Note that if a point mass prior at zero is used for skewness

parameters γ, the observational errors εt in Equation (5.6) are distributed inde-

pendently from the MVAL, a special case of the MVexAL defined in Equation

(5.1). This simplified model for fixed quantiles p = p0, we call the MVDQLM.

However, since we already explored in detail the added advantages of the exAL in

comparison to the AL in Chapters 2 and 3, we will not be exploring the MVDQLM

further in this Chapter.

5.2.1 MCMC algorithm

The mixture representation of the MVexAL facilitates Bayesian posterior simu-

lation using a MCMC algorithm. Closed form conditional distributions are avail-

able for the latent variables s1:T = {s1, . . . , sT} which are sampled with Gibbs

steps. In the multivariate setting we loose conjugacy for the latent variables

v1:T = {v1, . . . ,vT} and scale parameters σ. Thus, v1:T , σ, skewness parameters

γ and correlation matrix R are updated with MH steps. Conditional on s1:T , v1:T ,

σ and γ, the dynamic regression coefficients can be sampled using a forward fil-

tering backwards sampling (FFBS), full details of which can be found in Appendix

A. MCMC posterior simulation is summarized in Algorithm 3.

5.2.2 ISVB algorithm

The high computation and memory costs seen with the exDQLM are com-

pounded in the multivariate setting, thus an efficient algorithm for accurate esti-

mation is even more necessary. We extend our ISVB algorithm to the multivariate
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Algorithm 3: MVexDQLM MCMC

Initialize σ(0), γ(0),v(0)
1:T , s

(0)
1:T , θ

(0)
1:T ;

for i = 0, . . . , I-1 do

1. Sample (γ(i+1),σ(i+1))|θ(i)
1:T ,v

(i)
1:T , s

(i)
1:T ,R

(i) using a Metropolis-Hastings step with a
Gaussian random walk with joint proposals on the logit and log scales.

2. Sample R(i+1)|θ(i)
t ,v(i)

1:T , s
(i)
1:T ,σ

(i), γ(i) using a Metropolis-Hastings step with a

Rescaled-Wishart proposal distribution centered at R(i).

3. for t=1,. . . ,T do

Sample v(i+1)
t |θ(i)

t , s(i)
t ,σ(i), γ(i),R(i) using a Metropolis-Hastings step with a Gaussian

random walk proposal on the log scale.

end

4. for t=1,. . . ,T do

Sample s(i)
t |θ

(i)
t ,v(i)

t ,σ(i), γ(i),R(i) ∼ MVN+(µst ,σ
2
st

), where MVN+ denotes a
multivariate normal truncated to the positive reals with parameters

Σst =

diag

C(i) � γ(i) �
√
σ(i)√

B(i) � v(i)
t

R−1diag

C(i) � γ(i) �
√
σ(i)√

B(i) � v(i)
t

+ In

−1

,

µst = Σst diag

C(i) � γ(i) �
√
σ(i)√

B(i) � v(i)
t

R−1diag

 1√
B(i) � v(i)

t � σ(i)

 (yt−F′tθ
(i)
t −A(i)�v(i)

t ).

end

5. for t=1,. . . ,T do

Sample θt|v(i)
1:T , s

(i)
1:T , γ

(i),σ(i),R(i) via FFBS. The forward part of the FFBS algorithm
uses the forecast distribution p(yt|Dt−1) = N(ft,Qt) where Dt−1 = {y1, . . . ,yt−1},

ft = F′tat + C(i) � σ(i) � |γ(i)| � s(i)
t + A(i) � v(i)

t , Qt = F′tRtFt + σ(i) �B(i) � v(i)
t .

end

end

setting as follows.

Let ξ = {θ1:T ,σ,γ,v1:T , s1:T ,R} denote the set of all parameters in the

MVexDQLM. We approximate the posterior distribution f(ξ|y1:T ) with an arbi-

trary variational distribution r(ξ) which minimizes the KL divergence and equiv-

alently the ELBO, as detailed in Chapter 2 Section 2.2.2. We utilize a mean-field
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approximation with the following factorization,

r(ξ) = r(θ1:T )r(v1:T )r(s1:T )r(σ,γ)r(R). (5.13)

The ELBO is maximized by the following

r(ξc) ∝ exp
{∫

log f(y1:T , ξ−c)r(ξ−c)dξ−c
}

(5.14)

where ξc denotes the set of variables in the component being maximized and ξ−c

denotes the variables not in that component of the partition. We initialize the

partitioned variational distributions seen in Equation (5.13) and iteratively update

the distributions using Equation (5.14) until convergence. For the MVexDQLM,

the variational distributions r(s1:T ) and r(θ1:T ) are recognizable, closed-form dis-

tributions which can be updated directly at each iteration. In particular, r(θ1:T ) is

updated using a FFBSm algorithm. Alternatively, variation distributions r(v1:T ),

r(σ,γ), and r(R) are not recognizable and therefore updated at each iteration

using adaptive IS (AIS). ISVB posterior inference for the MVexDQLM is sum-

marized in Algorithm 4 with details of the FFBSm and IS algorithms found in

Appendix A.

5.3 Comparison criteria

To evaluate the predictive ability of the MVexDQLM, we again consider the

Gelfand and Ghosh (1998) pplc with check loss function ρp0 . Given the poste-

rior replicate distribution of yt, p(yrept |DT ), the pplc for the MVexDQLM can be
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Algorithm 4: MVexDQLM ISVB part 1
Set k = 0 and initialize r0(s1:T ), r0(v1:T ), r0(θ0), r0(σ, γ) and r0(R);
while convergence has not been achieved

1. for t=1,. . . ,T do

Update r(k+1)(st) = MVN+(Σst
(k+1)µ

(k+1)
st ,Σst

(k+1)), where the ij-th element of

Σ−1
st

(k+1)
for i 6= j is

(
Σ−1
st

(k+1)
)
ij

=

〈
Ci
√
σiγiCj

√
σjγj√

BiBj

〉(k)〈
1

√
vtivtj

〉(k)

〈R−1〉(k)
ij ,

for i, j = 1, . . . , n, where γi, σi, Bi and Ci denote the i-th elements of γ, σ, B and C,
respectively, and 〈R−1〉ij denotes the ij-th element of 〈R−1〉. For i = j,

(
Σ−1
st

(k+1)
)
ii

=
〈
C2
i σiγ

2
i

Bj

〉(k) 〈 1
vti

〉(k)
+ 1,

for i = 1, . . . , n. Further, the i-th element of µ
(k+1)
st is(

µ
(k+1)
st

)
i

=
〈
Ci|γi|
Bi

〉(k) 〈 1
vti

〉(k)
(yti − 〈F′tθt〉

(k)
i )〈R−1〉(k)

ii

+
n∑

j=1,j 6=i

〈
Cj |γj |σj√
BjBiσi

〉(k)〈
1

√
vtjvti

〉(k)

(ytj − 〈F′tθt〉
(k)
j )〈R−1〉(k)

ij

+
〈
Ci|γi|Ai
Bi

〉(k)
〈R−1〉(k)

ii

+
n∑

j=1,j 6=i

〈
Cj |γj |σjAj√

BjBiσi

〉(k)〈√
vti

vtj

〉(k)

〈R−1〉(k)
ij

where 〈F′tθt〉i and Ai denote the i-th elements of 〈F′tθt〉 and A, respectively, for i = 1, . . . , n.

end

2. for t=1,. . . ,T do

Update the smoothed distribution r(k+1)(θt) = N(ms
t ,Cs

t ) using a FFBSm algorithm with

forecast distribution r(k+1)(yt|Dt−1) = N(ft,Qt) where ft = F′tat + Q̃t f̃t and

Qt = F′tRtFt + Q̃t. Here, the i-th element of f̃ is

f̃i =
〈
Ci|γi|
Bi

〉(k) 〈 1
vti

〉(k)
〈sti〉(k)〈R−1〉(k)

ii

+
n∑

j=1,j 6=i

〈
Cj |γj |

√
σj√

BjBiσi

〉(k)〈
1

√
vtjvti

〉(k)

〈stj〉(k)〈R−1〉(k)
ij

and the ij-th element of Q̃−1
t for i 6= j is

(Q̃−1
t )ij =

〈
1√

σiσjBiBj

〉(k)〈
1

√
vtivtj

〉(k)

〈R−1〉(k)
ij

and for i = j

(Q̃−1
t )ii =

〈 1
σiBi

〉(k) 〈 1
vti

〉(k)
〈R−1〉(k)

ii .

end
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Algorithm 5: MVexDQLM ISVB part 2

3. for t=1,. . . ,T do

Update r(k+1)(vt) using AIS with proposal distribution

MVT+(〈vt〉(k),Cov(vt)(k))

where MVT+ denotes a multivariate Student-t distributions truncated to the positive reals
with 1 degree of freedom and Cov(vt)(k) = 〈(vt − 〈vt〉(k))(vt − 〈vt〉(k))′〉(k).

end

4. Update r(k+1)(σ, γ) using AIS with proposal distributions MVT(L,U)(〈γ〉(k),Cov(γ)(k)) and

MVT+(〈σ〉(k) ,Cov(σ)(k))) for γ and σ, respectively, where MVT(L,U) denotes a multivariate
Student-t distribution truncated to the n-dimensional support (L,U).

5. Update r(k+1)(R) using AIS with proposal distribution Rescaled-Wishart(ν, 〈R〉(k)). Further
details of this AIS and the other AIS steps can be found in Appendix A

6. Set k = k + 1.

end

computed as

pplc =
∑
j

∑
t

E[ρp0(yobst,j − yrept,j )|DT ]. (5.15)

Further, we consider the Rosenblatt (1952) one-step-ahead predictive distribu-

tion function for each component of the time-series, as suggested in Prado et al.

(2006). That is, for j = 1, . . . , n, {ut,j} will be a sequence of independent random

variables uniformly distributed on (0, 1). For the MVexDQLM,

ut,j = Pr(Ytj ≤ ytj|Dt−1, ξ−θ1:T ) = Φ(ytj|Dt−1, ξ−θ1:T ). (5.16)

Conditional on ξ−θ1:T , the predictive distribution of yt is normally distributed with

mean ft and variance Qt seen in Algorithms 3 and 4, thus utj = Φ(ytj|ftj, Qtj)

where ftj denotes the j-th element of ft and Qtj denotes the j-th diagonal element

of Qt. We can obtain estimates for utj conditionally on MAP estimates of ξ−θ1:T

from the MCMC or ISVB posterior samples. For each component of the time-
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series, we can diagnose the model performance using the distributional shape of

the estimated sequence {ût,j} through transformation with a standard normal

inverse CDF, as done in Chapter 2 Section 2.2.3. This will allow visual diagnosis

with a normal QQ-plot, as well as quantitative diagnosis using the KL divergence.

5.4 Big Tree water flow analysis

Water flow levels act as useful indicators for potential floods as well as droughts.

In particular, percentiles of historical stream flow are used locally as as drought

severity classifications (Lombard, 2016; NOAA National Centers for Environmen-

tal Information, 2021). In this example, we examine the monthly water flow (cubic

feet per second; cfs) at the Big Tree (BT) water gauge on the San Lorenzo river

in Santa Cruz county, CA. In particular, we estimate a low quantile as a possible

indicator of below-normal water levels in Santa Cruz county.

Many other climatological and local weather variables are also known to affect

water supply. Two of these such variables are precipitation and temperature,

which we also include in this analysis. In particular, when rainfall is significantly

low for an extended period, water levels decrease (Johannis et al., 2016). Further,

rising temperatures can cause enhanced evaporation and early snow melts resulting

in reduced surface water (Ostroff et al., 2017). To incorporate these factors into

our analysis, we estimate a low quantile of the monthly precipitation (inches; in)

as well as a high quantile of temperature (Fahrenheit; F), both recorded in Santa

Cruz county.

Not only are water flow, precipitation and temperature known indicators of

extreme water conditions, they are also known to be practically associated with

one another. Thus, this example is an ideal application for the MVexDQLM which

provides a framework for not only estimating the quantiles, but also incorporating
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Figure 5.3: Top panel: Monthly water flow on the log-scale (cfs) at the Big Tree
water gauge on the San Lorenzo river in Santa Cruz county, CA. Middle panel:
Monthly precipitation (in) recorded in Santa Cruz county. Bottom panel: Monthly
temperature (F) also recorded in Santa Cruz county. All data span from January
1937 to February 2021.

any correlation structure between them. The time-series used in the analysis span

from January 1937 to February 2021, and can be seen in Figure 5.3. To avoid

modeling problems caused by the scale and extremes in the BT water flow dataset,

we fit the following models to the BT time-series on the log scale.

5.4.1 Modeling framework

As discussed above, in this example the interest is in quantiles as possible

indicators of drought. For both water flow and precipitation, we examine the

0.15-quantile as abnormally low values suggest dry conditions for these time-series.

Alternatively, drought conditions are correlated with high temperatures, therefore

we consider the 0.85-quantile for the temperature time-series. Thus, we set p0 =

(0.15, 0.15, 0.85)′ for this analysis.
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To assess the gain of including a multivariate structure between the time-

series, we fit two separate models to estimate the p0-quantiles. The first, M0, is the

univariate version of the second, M1. M0 is equivalent to the exDQLM presented in

Chapter 2, i.e. the special case of the MVexDQLM with latent correlation R = In

where In denotes an identity matrix of dimension n. Alternatively, M1 estimates

the multivariate structure between the time-series via the latent correlation matrix

R.

We begin by developing the evolution structure of the quantiles. For each

time-series, we select significant components as well as optimize discount factors

in the univariate setting. In particular, for the Big Tree water flow time-series,

we model the 0.15-quantile with a first order baseline component, ηBT
t , as well

as a Fourier form seasonal component that includes a single periodic component

with period of twelve months, α
BT(1)
1,t , the first (annual) harmonic. Following the

notation defined in Chapter 2 Section 3.3.1, these components for the Big Tree

water flow quantile can be represented as

θBT
t = (ηBT

t , α
BT(1)
1,t , α

BT(1)
2,t )′ (5.17)

FBT
t = (1, 1, 0)′ (5.18)

GBT
t = blockdiag(1,GBT

α,1). (5.19)

where Gα,l denotes the lth seasonal evolution matrix, i.e. Gα,l =
(

cos( 2π
12 l) sin( 2π

12 l)
− sin( 2π

12 l) cos( 2π
12 l)

)
.

Further, we specify the evolution covariance, WBT
t , using the two discount factors

δBT = (0.86, 0.82) for the baseline and seasonal components, respectively. Finally,

we fix σBT = 0.1 to facilitate convergence.

Next, for the precipitation time-series, we model the 0.15-quantile with a first

order baseline component, ηprec
t , as well as a Fourier form seasonal component that

includes the first two harmonics, α
prec(l)
1,t for l = 1, 2, the annual and semi-annual
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harmonics, respectively. These components for the precipitation quantile can be

represented as

θprec
t = (ηprec

t , α
prec(1)
1,t , α

prec(1)
2,t , α

prec(2)
1,t , α

prec(2)
2,t )′ (5.20)

Fprec
t = (1, 1, 0, 1, 0)′ (5.21)

Gprec
t = blockdiag(1,Gprec

α,1 ,G
prec
α,2 ). (5.22)

We specify the evolution covariance, Wprec
t , using the two discount factors δprec =

(0.99, 0.94) for the baseline and seasonal components, and fix σprec = 0.28 to

facilitate convergence.

Lastly, we model the 0.85-quantile of the temperature time-series again with

a first order baseline component, ηtemp
t , and a Fourier form seasonal component

this time including the annual, semi-annual and tri-annual harmonics, α
temp(l)
1,t for

l = 1, 2, 3, respectively. These components for the temperature quantile can be

represented as

θtemp
t = (ηtemp

t , α
temp(1)
1,t , α

temp(1)
2,t , α

temp(2)
1,t , α

temp(2)
2,t , α

temp(3)
1,t , α

temp(3)
2,t )′ (5.23)

Ftemp
t = (1, 1, 0, 1, 0, 1, 0)′ (5.24)

Gtemp
t = blockdiag(1,Gtemp

α,1 ,Gtemp
α,2 ,Gtemp

α,3 ). (5.25)

Finally, we specify the evolution covariance, Wtemp
t , using the two discount factors

δtemp = (0.97, 0.92) for the baseline and seasonal components, and fix σtemp = 0.32

to facilitate convergence.

To specify {θt,Ft,Gt,Wt} found in Equations (5.8)-(5.9), we combine the
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individual evolutions discussed above as follows:

θ′t = (θBT′

t ,θprec′

t ,θtemp′

t ) (5.26)

F′t = blockdiag(FBT′

t ,Fprec′

t ,Ftemp′

t ) (5.27)

Gt = blockdiag(GBT
t ,Gprec

t ,Gtemp
t ) (5.28)

Wt = blockdiag(WBT
t ,Wprec

t ,Wtemp
t ). (5.29)

This results in a state evolution of dimension q = 15. Specifying Wt in this way

allows for component discounting with discount factors

δ = {0.86, 0.82, 0.99, 0.94, 0.97, 0.92}

of dimensions {1, 2, 1, 4, 1, 6}, respectively. We complete the models with conju-

gate prior θ0 ∼ N(m0,C0) with m0 = 0 and C0 = Iq. Further, γBT, γprec ∼

t(−0.213,5.137)(0, 1) and γtemp ∼ t(−5.137,0.213)(0, 1), all with 1 degree of freedom.

Lastly, we can combine the fixed scale parameter values into the single parameter

vector, σ = (0.1, 0.28, 0.32)′.

5.4.2 Results

We apply our MVexDQLM with the structure defined above to estimate the

0.15, 0.15 and 0.85-quantiles of the Big Tree water flow (on the log-scale), precip-

itation, and temperature time-series, respectively. The results in this section are

computed using the MCMC Algorithm 3 and are implemented in the R program-

ming language on a personal computer with a 2.5 GHz Intel Core i5 processor.

We run each model for 1000 iterations after a burn-in of 1000 iterations. For

three time-series of length 1010, the computation times are approximately two

and three hours for the univariate and multivariate models, respectfully, with the
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M0 M1

γBT -0.0957 (-0.0993,-0.0918) -0.0291 (-0.0338,-0.0256)

γprec -0.1056 (-0.1092,-0.1024 ) -0.0366 (-0.0410,-0.0313)

γtemp -3.059 (-3.086,-3.034) -3.138 (-3.158,-3.111)

RBT,prec — 0.943 (0.930,0.959)

RBT,temp — -0.397 (-0.491,-0.316)

Rprec,temp — -0.482 (-0.561,-0.419)

KLBT 0.1903 0.0035

KLprec 0.4922 0.0019

KLtemp 0.1558 0.0054

pplc 3219.24 2267.26

run-time 2.04 2.87

Table 5.2: Big Tree log-water flow, precipitation, and temperature analysis results
for M0 and M1. Posterior summaries (format: mean (95% CrI)) for skewness pa-
rameters γBT (BT water flow), γprec (precipitation), γtemp (temperature), as well
as the latent correlations RBT,prec (BT flow and precipitation), RBT,temp (BT flow
and temperature), Rprec,temp (precipitation and temperature). pplc: Posterior
predictiveloss criterion under the check loss function. KL: Kullback-Liebler diver-
gences of the marginal one-step-ahead distributions. Run-time: MCMC run-times
in hours.

exact times found in Table 5.2.

Also found in Table 5.2 are the 95% CrIs of the skewness parameters γ. The

CrIs of both M1 and M0 are seen to be distinct from zero, as well as distinct

from one another. Also seen in Table 5.2 are estimates from the latent correla-

tion R. In particular, we see a strong latent correlation between the BT water

flow and precipitation, as expected. Also expected, we see moderate negative la-

tent correlations between the BT water flow and temperature, as well as between

precipitation and temperature.

Figure 5.4 illustrates the MAP quantiles of M1, the multivariate model. The

baseline and seasonal components of each time-series are decomposed in Figure

5.5. It can be seen that the baseline component of the BT water flow 0.15-quantile

estimate varies throughout the time period, with a slight downward trend. There

is a notable period of prolonged low water flow seen around 1987 to 1992 when CA
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Figure 5.4: Data with overlaid solid line indicating the M1 MAP quantiles with
surrounding dashed lines indicated in the 95% CrIs. Top panel: log-Big Tree
water flow data with 0.15-quantile estimates. Middle panel: Precipitation data
with 0.15-quantile estimates. Bottom panel: Temperature data with 0.85-quantile
estimates.

experienced a significant statewide multi-year drought (U.S. National Integrated

Drought Information System, 2008). During this and other periods of low water

flow, the seasonal component of the quantile estimate also exhibits a decrease

in amplitude. Also seen in Figure 5.5, the precipitation 0.15-quantile baseline

estimate illustrates a clear and consistent decrease. A consistent decrease in the

seasonal amplitudes of the precipitation estimates is seen as well. Alternatively,

the baseline estimate of the 0.85-quantile of the temperature time-series exhibits a

general upward trend, with the seasonal variation remaining relatively consistent

throughout the time period considered.

Figure 5.5 also includes the analogous components from the univariate model,

M0, for comparison. It can be seen that the 95% CrIs of the seasonal components

overlap for all time-series, to the extent that they can be difficult to visually
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Figure 5.5: Baseline (first column) and seasonal (second column) components of
the quantiles estimated by M0 (purple) and M0 (green). Solid lines indicate the
MAP estimates with surrounding dashed lines indicated in the 95% CrIs. Top row:
log-Big Tree water flow first order-polynomial baseline and seasonal component in-
cluding harmonic l = 1. Middle row: Precipitation first order-polynomial baseline
and seasonal component including harmonics l = 1, 2. Bottom row: Tempera-
ture first order-polynomial baseline and seasonal component including harmonics
l = 1, 2, 3.

distinguish from one another. Further, the 95% CrIs of the baseline components

of the two models also overlap for all time-series, with one exception of the BT

water flow in the mid-eighties.

To assess the predictive value added by the multivariate structure in M1, we

compare the pplc and KL divergence of the marginal one-step-ahead forecast dis-

tributions for M1 to those of M0, seen in Table 5.2. M1 is favored with smaller

values of both comparison criteria, suggesting the multivariate structure improves
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Figure 5.6: 12-step-ahead quantile forecasts for the Big Tree log-water flow, pre-
cipitation, and temperature data (left to right). Forecasts begin February 2020
through February 2021 and are overlaid on the respective time-series. The ver-
tical dot-dashed line is at the beginning of the forecast period, February 2020,
for reference. Solid lines indicate mean estimates and dotted lines 95% CrI, with
the filtered estimates seen leading up to February 2020 and the forecast estimates
beyond February 2020. Results from M1 are seen in purple and magenta, and
results from M0 are seen in dark and light green.

both the predictive and forecasting power of M1. In particular, the marginal KL

divergences of M1 are very close to zero suggesting the transformed one-step-ahead

predictive distribution estimates discussed in Section 5.3 are very near normality.

To further investigate the gain added by the correlation structure, we examine

the k-step-ahead quantile forecast distributions. For each time t the k-step-ahead

future marginal distribution of the quantiles is

F′t+kθt+k|ξ−θ1:T , y1, . . . , yt ∼ Nn(F′t+kat(k),F′t+kRt(k)Ft+k) (5.30)

where at(k) = Gt+kat(k − 1), Rt(k) = Gt+kRt(k − 1)G′t+k + Wt+k, at(0) = mt,

and Rt(0) = Ct, with mt and Ct denoting the filtered mean and covariance

of θt, respectively. Contrary to the k-step-ahead quantile forecast distributions

of the exDQLM defined in Equation 3.18, here F′t+kθt+k is n dimensional, thus

the above distribution provides forecast estimates for all n = 3 quantiles. The

posterior means and 95% CrIs of these distributions for 12-steps-ahead can be seen
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in Figure 5.6. The MAP quantile forecasts of M0 are almost entirely contained

within the 95% CrIs of the M1 forecasts with few exceptions. However, the 95%

CrIs of M1 are markedly smaller than those of M0 suggesting the multivariate

model provides more precise forecasts over extended periods.

5.5 Multivariate IVT analysis

In this section, we expand our analysis of the Santa Cruz average daily mag-

nitude IVT 0.85-quantile threshold seen in Chapter 3 to 64 locations spanning all

of California. The gridded observation locations used in this analysis are depicted

in Figure 5.7 and correspond to the ERA-Interim IVT dataset used in Guan and

Waliser (2015), discussed in Section 3.1. An example of the correlation between

the time-series at nearby locations can be seen in Figure 5.8, which illustrates the

average daily magnitude IVT time-series near Santa Cruz (SC), CA as well as near

Fort Bragg (FB) and Santa Barbara (SB), CA. The locations of these observed

time series are indicated in Figure 5.7. To incorporate this correlation structure

between observation locations, we apply the MVexDQLM to jointly estimate the

0.85-quantiles of the magnitude IVT over all 64 observed locations. Again we

include the immediate and lagged effects of ELI in the analysis, this time via a

single transfer function component common to all locations. The ELI time series

used can be seen in Figure 3.1 of Chapter 3.

5.5.1 Modeling Framework

In this application, p0j = 0.85 for j = 1, . . . , n with n = 64. For all n time-

series, we define the structure of the 0.85-quantile to include a second order base-

line as well as seasonal components for harmonics l = 1, 2, 4. Thus for the jth
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Figure 5.7: IVT magnitude observation locations spanning all of CA. Triangles
indicate coastal locations at which Guan and Waliser (2015) detect ARs to make
landfall. The dark green filled triangle marks the location nearest Santa Cruz
CA. The light green filled triangles mark the locations nearest Fort Bragg (in
Northern CA) and Santa Barbara (in Southern CA). Finally, the locations outlined
in blue and red are those we label as climatologically Northern and Southern CA,
respectively.

location, the qj = 8 dimensional evolution of the quantile is defined by

θt
j = (ηj1,t, ηj2,t, α

j(1)
1,t , α

j(1)
2,t , α

j(2)
1,t , α

j(2)
2,t , α

j(4)
1,t , α

j(4)
2,t )′, (5.31)

Fj ′ = (1, 0, 1, 0, 1, 0, 1, 0), (5.32)

Gj = blockdiag(Gη,Gα,1,Gα,2,Gα,4), (5.33)
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Figure 5.8: Average daily IVT magnitude near Fort Bragg CA (FB; top panel),
Santa Cruz CA (SC; middle panel), and Santa Barbara CA (SB; bottom panel),
spanning from 1979 through 2015. The dashed vertical lines enclose the years
1982 to 1985, a time period in which CA saw an exceptional amount of rain, and
years 2012 to 2015, a period which was exceptionally dry.
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where Gη = ( 1 1
0 1 ) and Gα,l denotes the lth seasonal evolution matrix, i.e. Gα,l =(

cos( 2π
365 l) sin( 2π

365 l)
− sin( 2π

365 l) cos( 2π
365 l)

)
. Noting that Fj and Gj are not dependent on location, we

can specify the baseline and seasonal evolutions of the vectorized spatial field as

follows:

θ′t = (θ1′
t , . . . ,θ

64′
t ), (5.34)

F′ = (In ⊗ Fj ′), (5.35)

G = (In ⊗Gj), (5.36)

Wt = blockdiag(W1
t , . . . ,W64

t ). (5.37)

Here In is the n× n identity matrix, and ⊗ denotes the Kronecker product.

In addition to the baseline and seasonal components, we include the effects

of ELI as an exponentially decaying transfer function component common to all

locations. More specifically, if Xt denotes the value of ELI at time t, the transfer

function MVexDQLM can be written

yt|θt,γ,σ ∼ MVexALp0(F′θt + ζt1n,σ,γ) (5.38)

θt|θt−1,Wt ∼ N(Gθt−1,Wt) (5.39)

ζt|ζt−1, ψt−1, ωt ∼ N(λζt−1 +Xtψt−1, ωt) (5.40)

ψt|ψt−1, νt ∼ N(ψt−1, νt). (5.41)

where θt,F,G, and Wt are as defined in Equations 5.34-5.37, and 1n denotes a

n-dimensional vector of ones. Conditioning on optimal λ, this transfer function

MVexDQLM can be rewritten in the form of a standard MVexDQLM by replacing
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Figure 5.9: Fixed values of σ displayed by latitude (y-axis) and longitude (x-axis).

{θt,F,G,Wt} in Equations (5.8)-(5.9) with {θ̃t, F̃, G̃,W̃t} as follows:

F̃′t = (F′t,1n,0n), (5.42)

θ̃′t = (θ′t, ζt, ψt), (5.43)

G̃t = blockdiag
{
Gt,

(
λ Xt
0 1

)}
, (5.44)

W̃t = blockdiag
{
Wt,

(
ωt 0
0 νt

)}
. (5.45)

Here 0n denotes a n-dimensional vector of zeros. This results in a q = nqj + 2 =

64(8) + 2 = 514 dimensional state-vector, θ̃′t. Augmenting the state-space model

in this manner preserves our ability to update the state-space vector using FFBSm

as well as the use of discount factors to specify the evolution covariance W̃t.

Similar to our approach in Chapter 2, we choose to model the baseline and

seasonal components to be non-time-varying (using discount factor values of 1)
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φ 0.486 (0.473,0.492)

λ̃ 0.37

(δζ , δψ) (0.96,0.97)

run-time 25.6

Table 5.3: Multivariate IVT analysis results. Posterior summaries for exponential
correlation function parameter φ in the format: mean (95% CrI). Optimal values
of λ̃, δζ , δψ. Run-time: ISVB run-time in hours.

such that any variability from year to year will solely be attributed the effects

of ELI. The remaining discount factors for the evolution of ζt and ψt, δζ and δψ

respectively, as well as the rate parameter λ are optimized using the sum (over j)

of the one-step-ahead predictive distribution function KL divergences discussed in

Section 5.3. Optimal λ, δζ , δψ can be found in Table 5.3.

We complete the model with conjugate priors, where applicable; θ0 ∼ N(m0,C0)

with m0 = 0 and C0 = 100Iq, ζ0 ∼ N(mζ0 , Cζ0) and ψ0 ∼ N(mψ0 , Cψ0) with

mζ0 = mψ0 = 0 and Cζ0 = Cψ0 = 10. Further, γj ∼ t(−5.137,0.213)(0, 1) for all j,

and σj is fixed at 0.75σ̂j,γj=0 where σ̂j,γj=0 denotes the MAP estimate of σj under

the DQLM, as discussed in Section 2.2.5. The fixed values of σ are illustrated in

Figure 5.9.

5.5.2 Incorporating spatial correlation

To model the spatial dependence between locations, we apply a correlation

function to define the latent correlation between observations based on the spa-

tial distance between them. In particular, we apply the exponential correlation

function with parameter φ. That is, if we denote the distance (in 1000 km) be-

tween the ith and jth locations by dij, then the ith and jth element of the latent
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235.5 237 238.5 240 241.5 243 244.5 246
42 (-2.22,-2.18) (-2.18,-2.15) (-2.28,-2.26) (-2.33,-2.30) (-2.36,-2.33) (-2.43,-2.40) (-2.55,-2.52) (-2.58,-2.55)

40.5 (-2.29,-2.27) (-2.16,-2.13) (-2.22,-2.19) (-2.23,-2.20) (-2.30,-2.26) (-2.41,-2.38) (-2.53,-2.49) (-2.56,-2.53)
39 (-2.38,-2.35) (-2.15,-2.12) (-2.09,-2.06) (-2.18,-2.14) (-2.36,-2.34) (-2.49,-2.46) (-2.55,-2.52) (-2.55,-2.53)

37.5 (-2.40,-2.38) (-2.28,-2.25) (-2.13,-2.10) (-2.11,-2.08) (-2.35,-2.32) (-2.51,-2.48) (-2.53,-2.50) (-2.48,-2.45)
36 (-2.45,-2.42) (-2.42,-2.39) (-2.30,-2.27) (-2.20,-2.17) (-2.28,-2.24) (-2.42,-2.39) (-2.48,-2.45) (-2.42,-2.39)

34.5 (-2.49,-2.46) (-2.50,-2.47) (-2.43,-2.39) (-2.31,-2.28) (-2.21,-2.18) (-2.33,-2.31) (-2.46,-2.43) (-2.44,-2.40)
33 (-2.48,-2.45) (-2.53,-2.50) (-2.54,-2.51) (-2.46,-2.43) (-2.29,-2.26) (-2.28,-2.24) (-2.38,-2.36) (-2.43,-2.40)

31.5 (-2.45,-2.43) (-2.50,-2.47) (-2.53,-2.50) (-2.50,-2.48) (-2.39,-2.37) (-2.31,-2.28) (-2.28,-2.25) (-2.36,-2.33)

Table 5.4: 95% CrI estimates of γ indexed by latitude (rows) and longitude
(columns).

correlation R is defined by

Rij = exp(−dij/φ). (5.46)

Here, the parameter φ controls how fast the correlation decays with distance. More

flexible families of correlation functions exist. An example of such a family is the

Matérn, which is indexed by an additional parameter that controls the fine-scale

decay of the correlation, i.e. how fast the correlation decreases as small distances.

However, for this application we found the exponential correlation function, which

is a special case of the Matérn family, produced reasonable results. We learn the

parameter φ by replacing step 5 of the MVexDQLM ISVB algorithm with AIS Step

for φ with proposal distribution t+(〈φ〉(k),Var(φ)(k)) where t+ denotes a Student-t

distribution truncated to the positive reals with 1 degree of freedom.

5.5.3 Results

We apply our MVexDQLM ISVB algorithm to jointly estimate the 0.85-quantiles

of the average daily IVT magnitude at the 64 observation locations discussed above

from 1979 through 2015. The algorithm was implemented in the R programming

language on a Dell PE R820 server with 32 cores (4 x Intel Xeon Sandy Bridge

E5-4640 processors, each of which has 8 cores per cpu, 2.7 GHz, and 16GB RAM).
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Figure 5.10: MAP estimates of γ displayed by latitude (y-axis) and longitude
(x-axis).

For this 64-dimensional multivariate time series of length 13505, totaling 864320

observations, the ISVB computation time is approximately one day, with the ex-

act time found in Table 5.3. Also seen in Table 5.3 are the MAP and 95% CrI

estimates of the exponential correlation function parameter φ. The MAP estimate

of 0.486 corresponds to latent correlations of approximately 0.71 at the closest ob-

served distance (167 km; 103.8 miles) and 0.05 at the farthest observed distance

(1495.3 km; 929.2 miles). Figure 5.10 depicts the MAP estimates of the skewness

parameter γ by location. The estimates vary from -2.07 near San Francisco to

-2.56 in the NE corner of Nevada. For further reference, the 95% CrIs are listed

in Table 5.4, all of which are distinct from 0, thus justifying the added flexibility

of the MVexAL versus the MVAL in this application.

Figure 5.11 illustrates the MAP 0.85 quantiles for the FB, SC, and SB time

series, however we also examine the quantile components individually for more
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Figure 5.11: IVT data with overlaid solid line indicating the MAP 0.85-quantile
estimates near Fort Bragg CA (FB; top panel), Santa Cruz CA (SC; middle panel),
and Santa Barbara CA (SB; bottom panel). The dashed vertical lines enclose the
years 1982 to 1985 and 2012 to 2015, time periods in which CA was exceptionally
wet and dry, respectively.
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Figure 5.12: MAP estimates of the second-order polynomial trend components
displayed by latitude (y-axes) and longitude (x-axes). The starting value at t = 1,
η1,1 (top), and change over the entire time period, 13505η2 (bottom).

information. In particular, MAP estimates of the baseline parameters, which cap-

ture the long-term variability of the quantile, can be found in Figure 5.12 with

CrIs listed in Tables A.1 and A.2 of the Appendix A.7, for readability. Unsurpris-

ingly, the value of the second-order polynomial trend component at location j and
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time t = 1, ηj1,1, varies dramatically from the central valley of CA to the Pacific

Ocean off the coast of Northern CA, with the lowest value of 85.0 and highest

of 181.1, respectively. The rate of change per time step (non-time-varying), ηj2,

is depicted in Figure 5.12 by 13505 × η̂j2, where η̂j2 denotes the MAP estimate.

This is equivalent to the MAP long-term change in the IVT quantiles from 1979

through 2015. The change is generally positive in Northern CA, and in the Pacific

Ocean. Alternatively, the change is significantly negative near Los Angeles, in-

cluding several locations in the Pacific Ocean. Between the positive and negative

regions, there are also locations in which the change is not significant.

From the posterior estimates of the harmonic components of the quantiles,

we can compute the amplitude and phase, Ajl =
√(

α
j(l)
1

)2
+
(
α
j(l)
2

)2
and P j

l =

arctan
(
− αj(l)2 /α

j(l)
1

)
, respectively, at each j location. MAP estimates of the am-

plitudes are illustrated in Figure 5.13, however tables with the amplitude CrIs, as

well as tables and figures summarizing the phases be found in the Appendix A.7

for readability. The MAP estimates of the annual harmonics vary dramatically

from Southern CA (0.85 in San Diego) to Northern CA (24.36 off the coast near

Crescent City), suggesting the seasonal variability of the IVT is drastically differ-

ent at the two extremes of CA. The semi-annual amplitudes also vary spatially,

with the lowest value of 0.32 seen near Death Valley and the highest value of

15.32 off the coast north of San Francisco (SF). Lastly, the largest quarter annual

amplitude of 7.37 is seen off the coast of SF and the smallest values of 1.29 is seen

at the very Southern border of CA.

The amount of variability, common to all 0.85 quantiles, which can be at-

tributed to the effects of ELI are captured with the transfer function component,

ζt, seen in Figure 5.14. The common effects of ELI are overall significant and are

dramatically more pronounced between 1982 and 1985 than between 2012 and
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Figure 5.13: MAP estimates of the annual (top), semi-annual (middle), and quar-
terly (bottom) amplitudes displayed by latitude (y-axes) and longitude (x-axes).
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Figure 5.14: Top panel: Common effects of ELI captured by the transfer function
component, ζt. Bottom panel: Common instantaneous effects of ELI, ψt. In both
panels, dark grey lines indicate the MAP estimates. 95% CrI are indicated by the
grey shaded regions. Dashed horizontal dashed lines are at zero, for reference. Left
vertical dashed lines enclose years 1982 to 1985 in which CA saw an exceptional
amount of rain. Right vertical dashed lines enclose 2012 to 2015 in which CA was
exceptionally dry.

2015. Similar to the univariate analysis in Chapter 3, a majority of the effects of

ELI on the IVT quantiles between 1982 and 1985 (when CA experienced heavy

rainfall) are distinctly positive whereas the effects between 2012 to 2015 (when

drought was widespread in CA) are negative. The instantaneous effects of ELI

at time t, ψt, also exhibit very different behavior in the two time periods, seen in

Figure 5.14. We compute the series kt from Chapter 3 Equation (3.6) for ε = 1e−3

and find the lagged effects of the common ELI component persist for around 7.5

days, on average.

Finally, with the goal of discovering any information which could contribute

122



Figure 5.15: First two PCs of the components of the the forecast covariances
which correspond to Northern CA (left) and Southern CA (right). Green dots
indicate the PCs for times at which the considered region of CA is experiencing
“high AR activity”.

towards the characterization of ARs, we examine the multivariate structure fur-

ther. In particular, we conduct two principle component analyses (PCA) on the

forecast covariances Qt = F′tRtFt+Q̃t, detailed in Algorithm 4. More specifically,

we consider the components of Qt which correspond to locations in Northern CA

(defined in Figure 5.7) and perform a PCA, then repeat for the components of

Qt which correspond to locations in Southern CA (also depicted in Figure 5.7).

The first two principle components (PCs) for both of these analyses can be seen

in Figure 5.15. We define times at which the considered region (Northern or

Southern CA) experiences “high AR activity” as time steps at which at least two

coastal locations within the region are indicated to have an AR make landfall by

the detection scheme in Guan and Waliser (2015). The PCs from times of high

AR activity exhibit a clustering behavior, as illustrated in Figure 5.15. The goal

of the MVexDQLM is not classification, thus we do not pursue this further. How-

ever, it is an illustration of the rich quantitive information made possible by the
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multivariate structure of the MVexDQLM.

5.6 Conclusion

We have presented several methodological and computational contributions to

dynamic quantile linear modeling of multivariate time series. In particular, we

developed the MVexDQLM for versatile, joint estimation of a specified quantile

for each time series. Our MVexDQLM retains the advantages illustrated by the

exDQLM by facilitating flexibility via the skewness parameters of the MVexAL

and providing a straight-forward method for inclusion of relevant structures in

the evolutions of the multivariate quantiles. The natural extension of our ISVB

algorithm facilitates fast inference even for very large datasets. We illustrated the

utility of our methods with the analysis of two datasets, including joint estimation

of the IVT magnitude 0.85 quantile threshold at 64 locations spanning CA; an

analysis made possible by our ISVB algorithm. Estimating the 0.85 quantiles with

our multivariate model enhances the tools for characterization of ARs, as demon-

strated by the PCA of the forecast covariances. Our methodology contributes not

only to applications which require modeling of a dynamic multivariate quantile,

but more generally any application with non-Guassian time-varying multivariate

models.
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Chapter 6

Conclusion

Within this dissertation, we have developed several new methodological and

computational methods for dynamic quantile regression. All of the methods em-

ploy the exAL or its multivariate extension, the MVexAL, to promote flexibility

in the estimation of the quantiles while preserving computational advantages of a

parametric error distribution. We began with the development of the exDQLM for

flexible estimation of a single quantile for univariate time series. We then devel-

oped the ISVB algorithm for extremely fast and accurate posterior approximation.

We expanded the exDQLM to include immediate an lagged effects of a covariate

via the transfer function exDQLM. The expanded model was utilized to estimate

the 0.85 quantile IVT in Santa Cruz CA, while capturing both the immediate and

lagged effects of ELI on the quantile. To make the these methods available to

practitioners, we developed the R package, exdqlm, and demonstrated the utility

of the software on several real datasets. Finally, we developed the MVexDQLM

to consider multiple time series simultaneously and jointly estimate a specified

quantile for each series. Our ISVB algorithm naturally extends to the multivari-

ate setting, again promoting fast accurate approximate estimation. We illustrated

the utility of the MVexDQLM via application to two real datasets, including an
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IVT dataset spanning all of CA. A brief PCA of the multivariate structure es-

timated in the IVT application exhibited a clustering of the PCs for times at

which certain regions of CA experienced high AR activity, thus illustrating the

rich quantitative information in the multivariate structure of the MVexDQLM.

Several expansions on the work presented here could be considered. For in-

stance, the MVexDQLM could be modified to accommodate higher dimensional

problems. For example, in our multivariate analysis of the IVT dataset, vectoriz-

ing the spatial field allowed for application of our methods, including a FFBSm

algorithm. However, for other spatial datasets, the number of observations may

be too large, resulting in parameter vector of very high dimension, rendering the

use of a standard FFBSm algorithm computationally unrealistic. A possible rem-

edy would be the Ensemble Kalman Filter presented in Katzfuss et al. (2020),

which has been successfully implemented in applications with tens of millions of

dimensions. Another possible place for further development is in the selection

of an adaptive importance sampling distribution for the latent parameters v1:T .

Within the MVexDQLM ISVB algorithm, selecting this distribution did require

a fair amount of educated guess work. More sophisticated methods for selecting

the importance sampling distributions, or even estimating the variational distri-

butions in general, could be considered. Another avenue that remains pending is

the development of a spatial process based on the MVexAL. This could be done

in several ways, such as extending the AL process in Lum et al. (2012). Other

possible alternatives to formulate a spatial process could be considered, such as

extending the approach in Tuo (2018) which considers a class of α-stable pro-

cesses. A complete study comparing the properties of the new spatial process and

existing methods would be of interest. Finally, it would be interesting to consider

more general distributions for the quantiles. One possibility is error distributions
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with tails that change in time via time-varying exAL skewness parameters. An-

other ambitious possibility would be the mixture distribution of exALs presented

in Yan (2017) for estimation of a set of quantiles per time-series. These more

general distributions would be accompanied by formidable price tags in terms of

the computational tractability and model complexity, thus they would need to be

coupled with further computational innovations.
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Appendix A

Algorithm Details

A.1 MCMC Forward Filtering Backwards Sampling

Let Dt = {y1, . . . ,yt}. To simplify the notation, we leave out conditional pa-

rameters v1:T , s1:T ,γ,σ,R. For t = 1, . . . , T , sample θt|DT = θt|DT ,v1:T , s1:T ,γ,σ,R

using the following FFBS updates:

• Forward filtering, for t = 1, . . . , T compute:

– Prior p(θt|Dt−1): Given θt−1|Dt−1 ∼ N(mt−1,Ct−1),

p(θt|Dt−1) =
∫

N(θt|Gtθt−1,Wt)N(θt−1|mt−1,Ct−1)dθt−1.

Thus, p(θt|Dt−1) = N(at,Rt), with at = Gtmt−1 and Rt = GT
t Ct−1Gt+

Wt.
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– Forecast p(yt|Dt−1): Given θt|Dt−1 ∼ N(at,Rt),

p(yt|Dt−1) =∫
N(yt|F′tθt + C� σ � |γ| � st + A� vt,

√
B� vt � σ

′R
√

B� vt � σ)

N(θt|at,Rt)dθt.

Thus, for the MVexDQLM algorithm, p(yt|Dt−1) = N(ft,Qt), with

ft = F′tat + C� σ � |γ| � st + A� vt,

and

Qt = F′tRtFt +
√

B� vt � σ
′R
√

B� vt � σ.

If the data are univariate, i.e. yt = yt, the forecast distribution sim-

plifies to that used in the exDQLM algorithm: p(yt|Dt−1) = N(ft, Qt),

with ft = F′tat + C(p)σ|γ|st + A(p)vt and Qt = F′tRtFt + σB(p)vt.

– Posterior p(θt|Dt): Given the prior and forecast distributions, the joint

distribution can be written

[
θt
yt

∣∣∣Dt−1
]
∼ N

([
at
ft

]
,
[

Rt RtFt
F′tRt Qt

])
.

The conditional distribution of the multivariate normal p(θt|Dt) =

N(mt,Ct) with mt = at+RtFtQ−1
t (yt−ft) and Ct = Rt−RtFtQ−1

t F′tRt

• Backwards sampling, p(θt|DT ):

– For T , sample θT |DT ∼ N(mT ,CT ).

– For t = T − 1, . . . , 1, sample θt|DT ∼ N(ms
t ,Cs

t) with ms
t = mt +

CtG′tR−1
t+1(θt+1 − at+1) and Cs

t = Ct −CtG′tR−1
t+1GtCt.
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A.2 ISVB Forward Filtering Backwards Smoothing

Similarly, we can update r(k+1)(θt) = N(ms
t ,Cs

t) using FFBSm as follows.

• Forward filter, for t = 1, . . . , T :

– Prior: r(k+1)(θt|Dt−1) = N(at,Rt), with at = Gtmt−1 and Rt =

GT
t Ct−1Gt + Wt.

– Forecast: In the MVexDQLM algorithm r(k+1)(yt|Dt−1) = N(ft,Qt)

where ft = F′tat + Q̃tf̃t and Qt = F′tRtFt + Q̃t. Here, the i-th element

of f̃ is

f̃i =
〈
Ci|γi|
Bi

〉(k) 〈 1
vti

〉(k)
〈sti〉(k)〈R−1〉(k)

ii

+
n∑

j=1,j 6=i

〈
Cj|γj|

√
σj√

BjBiσi

〉(k) 〈 1
√
vtjvti

〉(k)

〈stj〉(k)〈R−1〉(k)
ij

and the ij-th element of Q̃−1
t for i 6= j is

(Q̃−1
t )ij =

〈
1√

σiσjBiBj

〉(k) 〈 1
√
vtivtj

〉(k)

〈R−1〉(k)
ij

and for i = j

(Q̃−1
t )ii =

〈 1
σiBi

〉(k) 〈 1
vti

〉(k)
〈R−1〉(k)

ii .

If the data are univariate, i.e. yt = yt, the variational forecast distribu-

tion simplifies to that used in the exDQLM algorithm: r(k+1)(yt|Dt−1) =
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N(ft, Qt), with

ft =
F′tat +

[〈
C(p)|γ|
B(p)

〉(k)
〈st〉(k+1) +

〈
A(p)
σB(p)

〉(k)
/〈

1
vt

〉(k+1)
]

〈
1

σB(p)

〉(k)

Qt = F′tRtFt +
〈 1

vt

〉(k+1)〈 1
σB(p)

〉(k)
−1

.

– Posterior: r(k+1)(θt|Dt) = N(mt,Ct), with mt = at + RtFtQ−1
t (yt− ft)

and Ct = Rt −RtFtQ−1
t F′tRt

• Backward smoother:

– For T , r(k+1)(θT |DT ) = N(ms
T = mT ,Cs

T = CT )

– For t = T − 1, . . . , 1, r(k+1)(θt|DT ) = N(ms
t ,Cs

t) with ms
t = mt +

Bt(mt+1 − at+1) and Cs
t = Ct + Bt(Cs

t+1 − Rt+1)B′t, where Bt =

CtG′tR−1
t+1
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A.3 exDQLM ISVB Importance Sampling

The variational distribution r(k+1)(σ, γ) can be computed up to a proportion-

ality constant,

r(k+1)(σ, γ) ∝f0(γ)f0(σ)σ1.5T exp
{
−
∑
〈ut〉(k+1)/σ

− 1
2
∑[ 1

σB(p)

〈 1
vt

〉(k+1)
(y2
t − 2yt〈F′tθt〉(k+1) + 〈(F′tθt)2〉(k+1))

− 2(C(p)|γ|
B(p)

〈 1
vt

〉(k+1)
〈st〉(k+1) + A(p)

σB(p))(yt − 〈F′tθt〉(k+1))

+ 2C(p)|γ|A(p)
B(p) 〈st〉(k+1) + C(p)2σ|γ|2

B(p) 〈s2
t 〉(k+1)

〈 1
vt

〉(k+1)

+ A(p)2

σB(p)〈vt〉
(k+1)

]}

where f0(σ) and f0(γ) denote the prior distributions of σ and γ, respectively.

Therefore, we can update r(k+1)(σ, γ) with importance sampling as follows:

• For n in 1, ..., N , sample (σn, γn) ∼ l(σ, γ) where l(σ, γ) denotes the chosen

proposal distribution.

• Compute the weights

w(σn, γn) = r(k+1)(σn, γn)
l(σn, γn) (A.1)

The variational distribution r(k+1)(σ, γ) can be approximated by

r(k+1)(σ, γ) ≈
∑N
n=1w(σn, γn)δ(σn,γn)(σ, γ)∑N

n=1w(σn, γn)
. (A.2)
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Similarly, for any function h(σ, γ),

E[h(σ, γ)] ≈
∑N
n=1 h(σn, γn)w(σn, γn)∑N

n=1w(σn, γn)
. (A.3)

A.4 exDQLM ISVB Closed Form Integrals

For notational simplicity, we omit the superscript indicating the VB iteration.

If r(st) = N+(µst , σ2
st), φ(·) is the probability density function of the standard

normal distribution, and Φ(·) is its cumulative distribution function, then

〈st〉 = µst + σst
φ(µst/σst)
Φ(µst/σst)

〈s2
t 〉 = µ2

st + σ2
st + µstσst

φ(µst/σst)
Φ(µst/σst)

If r(vt) = GIG(λvt , χvt , ψvt) and Kλ(·) is a modified Bessel Function of the

second kind with order λ, then

〈vt〉 =
√
χvtKλvt+1(

√
χvtψvt)√

ψvtKλvt
(
√
χvtψvt)〈 1

vt

〉
=

√
ψvtKλvt+1(

√
χvtψvt)

√
χvtKλvt

(
√
χvtψvt)

− 2λvt
χvt

If r(θt) = N(ms
t ,Cs

t), then

〈F′tθt〉 = F′tms
t

〈(F′tθt)2〉 = F′tCs
tFt + (F′tms

t )2

Lastly, if r(σ, γ) is approximated with IS according to Equation (A.2), the
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following expectations can be approximated using Equation (A.3);

〈
C(p)2σ|γ|2

B(p)

〉
,
〈 1
σ

〉
,

〈
C(p)|γ|
B(p)

〉
,

〈
C(p)|γ|A(p)

B(p)

〉
,

〈
1

σB(p)

〉
,〈

A(p)
σB(p)

〉
, and

〈
A(p)2

σB(p)

〉
.

A.5 MVexDQLM ISVB Importance Sampling

The variational distributions r(vt)(k+1) for t = 1, . . . , T , r(σ,γ)(k+1), and

r(R)(k+1) can be computed up to proportionality constants. Following the nota-

tion defined Section 5.2.2 and omitting the superscripts indicating the VB iteration
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for notational simplicity, these distribution can be written as follows.

r(vt) ∝
n∏
i=1

[
v
−1/2
it exp

{
−
〈
σ−1
i

〉
vit

}]

exp
{
− 1

2

n∑
i=1

( 1
vti

(y2
ti − 2yti〈F′tθt〉i + 〈(F′tθt)2〉i)

〈 1
Biσi

〉
〈R−1〉ii

+ (yti − 〈F′tθt〉i)
n∑

j=1,j 6=i

1
√
vtivtj

(ytj − 〈F′tθt〉j)
〈

1√
BiσiBjσj

〉
〈R−1〉ij

)

+
n∑
i=1

( 1
vti

〈
Ci|γi|
Bi

〉
〈sti〉(yti − 〈F′tθt〉i)〈R−1〉ii

+ 〈sti〉
n∑

j=1,j 6=i

1
√
vtivtj

〈
Ci|γi|

√
σi√

BiBjσj

〉
(ytj − 〈F′tθt〉j)〈R−1〉ij

)

− 1
2

n∑
i=1

( 1
vti

〈
C2
i |γi|2σi
Bi

〉
〈s2
ti〉〈R−1〉ii

+
n∑

j=1,j 6=i

1
√
vtivtj

〈
CiCj|γiγj|

√
σiσj√

BiBj

〉
〈stistj〉〈R−1〉ij

)

+
n∑
i=1

n∑
j=1,j 6=i

√
vti√
vtj

〈
Ai√

BiσiBjσj

〉
(ytj − 〈F′tθt〉j)〈R−1〉ij

−
n∑
i=1

n∑
j=1,j 6=i

√
vti√
vtj

〈
AiCj|γj|

√
σj√

BiBjσi

〉
〈stj〉〈R−1〉ij

− 1
2

n∑
i=1

(
vti

〈
A2
i

Biσi

〉
〈R−1〉ii +

n∑
j=1,j 6=i

√
vtivtj

〈
AiAj√
BiσiBjσj

〉
〈R−1〉ij

)}
.
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r(σ,γ) ∝ f0(γ)f0(σ)
n∏
i=1

[
σ
−3T/2
i exp

{
−

T∑
t=1
〈vti〉 /σi

}]

exp
{
− 1

2

n∑
i=1

( 1
Biσi

(y2
ti − 2yti〈F′tθt〉i + 〈(F′tθt)2〉i)

〈 1
vti

〉
〈R−1〉ii

+ (yti − 〈F′tθt〉i)
n∑

j=1,j 6=i

1√
BiσiBjσj

(ytj − 〈F′tθt〉j)
〈

1
√
vtivtj

〉
〈R−1〉ij

)

+
n∑
i=1

(
Ci|γi|
Bi

〈 1
vti

〉
〈sti〉(yti − 〈F′tθt〉i)〈R−1〉ii

+ 〈sti〉
n∑

j=1,j 6=i

Ci|γi|
√
σi√

BiBjσj
(ytj − 〈F′tθt〉j)

〈
1

√
vtivtj

〉
〈R−1〉ij

)

− 1
2

n∑
i=1

(
C2
i |γi|2σi
Bi

〈s2
ti〉
〈 1
vti

〉
〈R−1〉ii

+
n∑

j=1,j 6=i

CiCj|γiγj|
√
σiσj√

BiBj

〈stistj〉
〈

1
√
vtivtj

〉
〈R−1〉ij

)

+
n∑
i=1

(
Ai
Biσi

(yti − 〈F′tθt〉i)〈R−1〉ii

+
n∑

j=1,j 6=i

Ai√
BiσiBjσj

〈√
vti√
vtj

〉
(ytj − 〈F′tθt〉j)〈R−1〉ij

)

−
n∑
i=1

(
AiCi|γi|
Bi

〈sti〉〈R−1〉ii

+
n∑

j=1,j 6=i

AiCj|γj|
√
σj√

BiBjσi
〈stj〉

〈√
vti√
vtj

〉
〈R−1〉ij

)

− 1
2

n∑
i=1

(
A2
i

Biσi
〈vti〉〈R−1〉ii

+
n∑

j=1,j 6=i

AiAj√
BiσiBjσj

〈√vtivtj〉〈R−1〉ij
)}
.
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r(R) ∝ f0(R) det |R|−T/2

exp
{
− 1

2

n∑
i=1

(
(y2
ti − 2yti〈F′tθt〉i + 〈(F′tθt)2〉i)

〈 1
Biσi
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vti

〉
rii
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+
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〉
rij

)

− 1
2

n∑
i=1

(〈
C2
i |γi|2σi
Bi

〉
〈s2
ti〉
〈 1
vti

〉
rii

+
n∑

j=1,j 6=i

〈
CiCj|γiγj|

√
σiσj√

BiBj

〉
〈stistj〉

〈
1

√
vtivtj

〉
rij

)

+
n∑
i=1

(〈
Ai
Biσi

〉
(yti − 〈F′tθt〉i)rii

+
n∑

j=1,j 6=i

〈
Ai√

BiσiBjσj

〉〈√
vti√
vtj

〉
(ytj − 〈F′tθt〉j)rij

)

−
n∑
i=1

(〈
AiCi|γi|
Bi

〉
〈sti〉rii

+
n∑

j=1,j 6=i

〈
AiCj|γj|

√
σj√

BiBjσi

〉
〈stj〉

〈√
vti√
vtj

〉
rij

)

− 1
2

n∑
i=1

(〈
A2
i

Biσi

〉
〈vti〉rii

+
n∑

j=1,j 6=i

〈
AiAj√
BiσiBjσj

〉
〈√vtivtj〉rij

)}
.

Here f0(σ), f0(γ), and f0(R) denote the prior distributions of σ, γ, and R,

respectively. Thus, we can update any of these distributions with importance

sampling as detailed in Section A.3
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A.6 MVexDQLM ISVB Closed Form Integrals

For notational simplicity, we omit the superscript indicating the VB iteration.

If r(st) = MVN+(µst ,Σst), the expectations 〈sti〉, 〈s2
ti〉, 〈stistj〉 for i, j = 1, . . . , n

with i 6= j are available in closed form as detailed in Manjunath and Wilhelm

(2012) and can be calculated using the R package tmvtnorm (Wilhelm and G,

2015).

If r(θt) = N(ms
t ,Cs

t), then

〈F′tθt〉 = F′tms
t

〈(F′tθt)2〉 = F′tCs
tFt + (F′tms

t )2

If r(vt), for t = 1, . . . , T , is approximated with IS according to Equation (A.2),

the following expectations for i, j = 1, . . . , n and i 6= j can be approximated using

Equation (A.3);

〈√vtivtj〉, 〈vti〉,
〈√

vti
vtj

〉
,

〈
1

√
vtivtj

〉
,
〈 1
vti

〉
.

Similarly, if r(σ,γ) is approximated with IS, the following expectations can

be approximated using Equation (A.3);

〈 1
Biσi

〉
,

〈
1√

BiσiBjσj

〉
,

〈
Ci|γi|
Bi

〉
,

〈
Ci|γi|

√
σi√

BiBjσj

〉
,

〈
C2
i |γi|2σi
Bi

〉
,

〈
CiCj|γiγj|

√
σiσj√

BiBj

〉
,
〈
Ai
Biσi

〉
,

〈
Ai√

BiσiBjσj

〉
,

〈
AiCi|γi|
Bi

〉
,

〈
AiCj|γj|

√
σj√

BiBjσi

〉
,

〈
A2
i

Biσi

〉
,

〈
AiAj√
BiσiBjσj

〉
.

Lastly, if r(R) is approximated with IS, 〈rij〉 for i, j = 1, . . . , n can be approx-
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imated using Equation (A.3) as well.

A.7 Multivariate IVT analysis additional results
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Figure A.1: MAP estimates of the annual (top), semi-annual (middle), and quar-
terly (bottom) phases displayed by latitude (y-axes) and longitude (x-axes).
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