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Abstract

Multiple tools have been developed to identify copy number variants (CNVs) from whole exome 

(WES) and whole genome sequencing (WGS) data. Current tools such as XHMM for WES and 

CNVnator for WGS identify CNVs based on changes in read depth. For WGS, other methods to 

identify CNVs include utilizing discordant read pairs and split reads and genome-wide local 

assembly with tools such as Lumpy and SvABA, respectively. Here, we introduce a new method to 

identify deletion CNVs from WES and WGS trio data based on the clustering of Mendelian errors 

(MEs). Using our Mendelian Error Method (MEM), we identified 127 deletions (inherited and de 
novo) in 2,601 WES trios from the Pediatric Cardiac Genomics Consortium, with a validation rate 

of 88% by digital droplet PCR. MEM identified additional de novo deletions compared to 

XHMM, and a significant enrichment of 15q11.2 deletions compared to controls. In addition, 

MEM identified eight cases of uniparental disomy, sample switches, and DNA contamination. We 

applied MEM to WGS data from the Genome In A Bottle Ashkenazi trio and identified deletions 

with 97% specificity. MEM provides a robust, computationally inexpensive method for identifying 

deletions, and an orthogonal approach for verifying deletions called by other tools.

Keywords

copy number variant identification; whole exome sequencing; whole genome sequencing; UPD

Introduction

Structural variation (SV), particularly de novo deletions, has been implicated in many human 

diseases including autism spectrum disorders, developmental delay, schizophrenia and 

congenital heart disease (Weischenfeldt et al., 2013; Gilissen et al., 2014; Glessner et al., 

2014; Szatkiewicz et al., 2014; Brandler et al., 2015). Previously identified using 

microarrays, many tools have been developed in the past ten years to identify SV from next 

generation sequencing (NGS) data (Tattini et al., 2015). These tools utilize three main lines 

of evidence to detect SV: changes in read depth, discordant read pairs and split reads. 

Assembly methods including genome-wide local assembly and de novo assembly are also 

available (Weisenfeld et al., 2014; Wala et al., 2017).

With respect to whole exome sequencing (WES) data, one tool to identify copy number 

variants (CNVs) is XHMM, which identifies changes in normalized read depth within a 

cohort (Fromer and Purcell, 2014). Although widely used for identifying CNVs from WES 

data, XHMM has several limitations, including a minimum cohort size and the requirement 

that CNVs must include at least three exons. Typically, ~20% of putative CNVs identified by 

XHMM fail to be confirmed, and its sensitivity is limited (Glessner et al., 2014). For 

example, one study that used both XHMM and SNP arrays to identify de novo CNVs found 
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that XHMM failed to detect 63% of CNVs identified by the SNP array (Glessner et al., 

2014). The limited sensitivity of XHMM stems from the limitations of WES, which include 

fluctuations in read depth, reference allele bias, and discontinuous data due to exome 

capture. Many of these limitations can be overcome with whole genome sequencing (WGS).

Multiple tools have been developed to identify SV from WGS data including CNVnator and 

Lumpy (Abyzov et al., 2011; Layer et al., 2014). While CNVnator identifies CNVs based on 

changes in normalized read depth (Abyzov et al., 2011), Lumpy utilizes discordant read 

pairs and split reads to identify deletions, duplications and other types of SVs (Layer et al., 

2014). Lumpy is often used in combination with CNVnator to take into account changes in 

read depth. In order to estimate the sensitivity and false discovery rate (FDR), SVs identified 

by CNVnator and Lumpy were both compared to SVs identified in the 1000 Genomes 

Project by other SV callers (e.g., Delly, Pindel). Although both tools are reported to have a 

low FDR (0.4 – 3%) and high sensitivity (60 – 90%) (Abyzov et al., 2011; Layer et al., 

2014), the accuracy of these tools diminishes when used for identifying de novo SV 

(Kloosterman et al., 2015). One potential source for false positive de novo SV calls is 

imperfect sensitivity for SVs, resulting in false negatives in the parents. This creates a 

significant challenge when attempting to identify de novo events that are potentially 

pathogenic.

Here, we describe a novel pipeline called the Mendelian Error Method (MEM) to identify 

and/or validate deletion SV in trios with WES and WGS data. MEM is based on the 

principle described in McCarroll et al. 2006 and Conrad et al. 2006 (Conrad et al., 2006; 

Mccarroll et al., 2006), where the presence of a heterozygous deletion reduces the 

underlying genotype to a hemizyous state. As genotype callers such as GATK assign diploid 

genotypes to autosomal loci, regions of heterozygous deletion are erroneously assigned 

homozygous genotypes. In the context of a trio design, variants within heterozygous 

deletions frequently display Mendelian errors as a result of this genotype mis-assignment 

(illustrated in Figure 1). We, therefore, hypothesized that clusters of Mendelian errors could 

be used as a robust signal for the presence of underlying deletions in sequencing data from 

trios. We applied MEM to both WES and WGS trio data from the Pediatric Cardiac 

Genomic Consortium (PCGC) and compared results to deletions identified by XHMM, 

CNVnator and Lumpy. Overall, our results show that MEM identifies both inherited and de 
novo deletions with a positive predictive value (PPV) exceeding 90%, and identifies 

additional de novo deletions that are missed by other SV callers.

Methods

WES and WGS in cases with CHD

Probands were recruited from 10 centers in the United States and United Kingdom as part of 

the Congenital Heart Disease Genetic Network study of the PCGC as described previously 

(Homsy et al., 2015). Cases (n=2,601) were subject to WES at the Yale Center for Genome 

Analysis as described previously (Homsy et al., 2015), with a mean depth of 107x. All 

genomic coordinates quoted are based on human genome hg19/build 37. Variants were 

called following the n+1 protocol from GATK.
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Three hundred and fifty probands and their parents from the PCGC were selected for WGS; 

of note 332 also have WES data. Cases were sequenced at the Broad Institute (n=25), New 

York Genome Center (n=25) and Baylor College of Medicine Human Genome Sequencing 

Center (n=300). Samples were sequenced with PCR-free library preparation (n=325) or with 

SK2-IES (n=25) to a mean depth of 30x on Illumina HiSeq X Ten sequencers. Variants were 

called by GATK HaplotypeCaller (version 3.3.2) following GATK best practices for n+1 

joint calling (https://software.broadinstitute.org/gatk/best-practices/).

WES and WGS of healthy population cohort

Trios representing a typical population cohort (n=1,683) were provided by the Simons 

Foundation Autism Research Initiative Simplex Collection. Simplex families (two 

unaffected parents, one child with autism spectrum disorder, and one unaffected sibling) 

underwent WES using DNA extracted from peripheral blood cells, with a mean depth of 

117x (O’Roak et al., 2011; Sanders et al., 2012; Iossifov et al., 2014). Trios of unaffected 

siblings and parents served as a typical population cohort for comparison.

Five hundred and nineteen quartet families selected from the Simons Simplex Collection 

(SSC) underwent WGS at the New York Genome Center. Samples were sequenced with 

either a PCR-based library preparation on an Illumina Hi-Seq 2000 (n=39) or PCR-free 

library preparation on an Illumina HiSeq X Ten (n=480). Sequencing was performed with 

150-bp paired reads with median coverage of 37.8x per individual. Detailed information 

regarding this cohort can be found in Werling et al. (Werling et al., 2017)

Variants were called using GATK HaplotypeCaller (version 3.1-1-g07a4bf8, n=19, version 

3.2-2-gec30ce, n=21, version 3.4-0-g7e26428, n=479). GATK best practices (https://

software.broadinstitute.org/gatk/best-practices/) were followed. Trios comprising an 

unaffected sibling and their parents were used as a typical population cohort for comparison 

in this study with permission from the SSC.

Genome in a Bottle (GIAB) WGS with Illumina

The GIAB Ashkenazi Jewish (AJ) trio was subject to WGS using both short and long read 

methodologies. 148-bp paired-end reads were generated with an Illumina Hiseq instrument. 

Reads were aligned with BWA-mem (details in Zook et al., 2016) (Zook et al., 2016). 

Variants were called by GATK HaplotypeCaller (version 3.3.2) following GATK best 

practices using n+1 joint calling.

GIAB deletions for AJ trio

GIAB provided draft benchmark structural variants (SVs) for the AJ trio (v0.3.0a). SVs from 

119 different tools were compared and merged using the tool SURVIVOR (Jeffares et al., 

2017), which required the breakpoints to be within 1000 bp. Deletions identified by a 

minimum of two tools were compared to deletions identified by MEM using bedtools and 

required a 20% reciprocal overlap.
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Mendelian Error Method (MEM) Pipeline – Figure 2

1. Extract Mendelian errors (MEs) from WES and WGS VCFs—MEs were 

extracted based on genotypes reported in the joint VCF produced by GATK best practices, 

using in-house perl scripts or vcftools. Supp. Table S1 includes the eight scenarios 

considered as MEs that could represent a deletion.

2. Filtering—Variants in PCGC, GIAB and SSC trios were filtered using the following 

criteria: read depth ≥10, genotype quality >60 for WES and >30 for WGS (Supp. Table S2). 

B allele frequency (BAF, defined as the alternate allele depth/total depth) was calculated for 

heterozygous SNVs, and those with a BAF <0.25 or >0.75 were excluded. Regions 

overlapping segmental duplications obtained from the UCSC Genome Browser track were 

excluded. CNVs with a minor allele frequency ≥0.05 in European, African or East Asian 

ancestry as identified in Conrad et al. were excluded (Conrad et al., 2012). For WGS, SNVs 

with a mappability score <1 were excluded, based on the UCSC Genome Browser track 

“Alignability of 100mers by GEM from ENCODE/CRG(Guigo)”. Regions with tandem 

repeats, taken from the UCSC Genome Browser track “Simple Repeats” and expanded ±5 

bp, were excluded. The Hardy Weinberg equilibrium (HWE) statistic was calculated using 

vcftools for SNVs with a minimum allele frequency of 0.01 in parents. Any SNVs with a 

HWE p-value equal to zero were removed. Regional filtering was applied to exclude areas of 

the genome where variant calling is more prone to errors.

3. Sliding window analysis—We generated 2-Mb windows with 95% overlap for WES 

analysis and 100-kb windows with 90% overlap for WGS analysis using Bedtools (version 

2.26.0) makewindows. In house bash scripts utilizing Bedtools intersect were used to 

calculate the number of MEs for each window. This was applied to each sample in the 

PCGC and SSC cohorts separately.

For each unique window, the number of probands with MEs, the minimum number of MEs, 

the maximum number of MEs and the average number of MEs per proband were calculated 

for PCGC and SSC probands.

4. Comparison to population cohort—Windows with MEs in PCGC cases were 

compared to corresponding windows in the SSC population cohort. Windows with a ME 

cluster in three or more SSC probands were excluded, except if the maximum number of 

MEs in cases was >5.

5. Merge windows—For each sample overlapping windows with MEs were merged to 

identify putative deletion regions. The minimum, maximum and average number of MEs per 

window was calculated for each region. The number of MEs in each putative deletion region 

was calculated in SSC probands and regions with ME clusters as described in Step 4 were 

removed from further analysis.

6. Filter for ME clusters—Finally, we filtered for regions with an average number of 

MEs per window >2 in cases. We identified the first and last ME within each region and 

used these as the coordinates for the putative deletions.
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Visualization

1. XHMM—For putative deletions identified with MEM from the PCGC WES cohort, we 

extracted z-scores of the PCA-normalized read depth for each exon from XHMM (Fromer 

and Purcell, 2014). Putative deletions were inspected visually (Supp. Figure S1) and exons 

with z-scores <−2 were considered candidates for deletions.

2. IGV—Integrated Genomics Viewer (IGV, version 2.3.34) pileup visualization was used as 

one method for deletion validation. Variants were visualized in the proband and parents. 

Deletions were excluded if any of the following aspects were detected: multiple reads with 

quality scores of zero in child or parents, no clear drop of coverage in the proband, or the 

presence of heterozygous SNVs in the proband.

CNVnator

CNVnator identifies CNVs in WGS data based on changes in normalized read depth 

(Abyzov et al., 2011). Deletions were called for each case proband and the GIAB proband 

with CNVnator (version 0.3.2) and genotyped for putative copy number within the CNV 

regions on a scale from 0 – 3. We considered scores between 0.7 – 1.4 as indicating a 

heterozygous deletion. De novo deletions were identified by filtering for a score <1.4 in the 

child and >1.4 in the parents. We overlapped putative deletions in WGS cases identified 

using MEM with de novo deletions identified by CNVnator using Bedtools intersect, 

requiring a 25% reciprocal overlap. In the AJ trio, we overlapped putative deletions 

identified with MEM with both inherited (proband genotype <1.4) and de novo deletions 

called by CNVnator, and considered all intersections with at least 1 bp of overlap.

Lumpy

Lumpy identifies SVs based on discordant read pairs and split-reads (Layer et al., 2014). 

Deletions were called for each case proband and the GIAB proband with Lumpy (version 

0.2.13) and genotyped using SVtyper (version 0.0.4). De novo deletions were identified 

based on proband and parent genotypes. We overlapped PCGC WGS MEM deletions with 

Lumpy de novo deletions in the same manner as CNVnator. In the AJ trio, we overlapped 

putative deletions identified with MEM with both inherited and de novo deletions by Lumpy, 

and considered all intersections with at least 1 bp of overlap.

SvABA

Deletions were called with SvABA from 350 WGS trios based on genome-wide local 

assembly (Wala et al., 2017). Default parameters were employed to identify putative copy 

number variants, which were further validated by IGV visualization prior to digital droplet 

PCR analyses.

Deletion validation

Digital droplet PCR (ddPCR) was used to validate MEM WES deletions and WGS de novo 
deletions identified by CNVnator and Lumpy, as previously reported (Mazaika and Homsy, 

2014) with the following modification. PCR primers that amplified a portion of the putative 

CNV were designed to avoid homopolymer runs or probes that begin with G. PCR-positive 
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droplets were identified by EvaGreen dye (DNA-bound emission at 500/533 nm). CNV 

product positive droplets were EvaGreen dye positive, VIC negative. A VIC probe targeting 

the RPP30 gene was used as reference. Reaction mixtures of 20μL volume comprising 

ddPCR Master Mix (Bio-Rad), relevant forward and reverse primers and probe(s) and 50ng 

of DNA were prepared, ensuring that<40% of the 5000–10000 droplets ultimately produced 

were positive for Evagreen dye and/or VIC signal. For de novo CNV confirmations, DNA 

from the subject with CHD and parents was used. After thermal cycling, plates were 

transferred to a droplet reader (Bio-Rad) that flows droplets single-file past a 2-color 

fluorescence detector. Differentiation between droplets that contain target and those that did 

not was achieved by applying a global fluorescence amplitude threshold in QuantaSoft (Bio-

Rad). The threshold was set manually based on visual inspection at approximately the mid-

point between the average fluorescence amplitude of positives and negative droplet clusters 

on each of the EvaGreen dye and VIC channels. Confirmed CNV duplications had ≈ 50% 

increase in the ratio of positive to negative droplets, as did the reference channel. 

Conversely, confirmed CNV deletions had approximately half the ratio of positive to 

negative droplets, as did the reference channel. CNVs that were called, but were unable to be 

confirmed or rejected due to ddPCR technical failure or DNA unavailability were excluded 

from analysis.

Results

MEM identifies inherited and de novo deletions from WES trios

The MEM pipeline was used to analyze WES data from 2,601 PCGC trios and 1,683 healthy 

trios from the SSC. The mean number of MEs per WES trio was 1.78 (Supp. Figure S2). 

Windows with ME clusters in SSC probands were removed as described in Methods in order 

to limit our findings to those of likely relevance to the pathogenesis of congenital heart 

disease (CHD). MEM identified a final set of 171 merged and filtered regions containing 

putative deletions in 156 of the 2,601 PCGC probands (0.06 ME clusters/proband; Supp. 

Table S3). We used the location of the first and the last ME in each region with a ME cluster 

to define the minimal coordinates for the deletion. The median and mean sizes of the 

deletions were 133 kb and 1 MB, respectively. We utilized XHMM read depth data to 

perform an initial assessment of the accuracy of our MEM deletion calls. The proband’s 

normalized XHMM z-scores for each exon within the deletion identified by MEM were 

compared to the rest of the cohort (Supp. Figure S1). The presence of outlier negative z-

scores in the proband suggested a deletion. To determine if the deletions were de novo or 

inherited, we compared the parents’ z-scores to the rest of the cohort. If neither parent 

showed evidence of strongly negative z-scores in the ME cluster region, the deletion was 

considered de novo. In this manner, 58 deletions were determined to be de novo, and 79 

were noted to be inherited. Of note, the exons in 13 ME clusters did not have negative 

normalized z-scores, and seven ME clusters showed inconsistent scores, with some exons 

showing reduced XHMM z-scores, while other exons were within the normal range (z-score 

>−2), suggesting that these 20 calls could be false positives.

We directly compared the performance of MEM for the detection of de novo deletions with 

that of XHMM. The de novo deletions identified by XHMM were all previously validated as 
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true de novo deletions based on digital droplet PCR (personal communication) and, 

therefore, represented a truth set with which to benchmark the performance of MEM. Fifty 

deletions were called by both tools, 46 by XHMM alone, and 25 by MEM alone (Figure 

3A). Of note, the 25 MEM-exclusive deletions included 13 that showed no reduction in z-

scores with XHMM for proband or parents and, thus, could represent either de novo 
deletions or false positives. We considered the size of the deletions that MEM did and did 

not identify. For deletions ≥200 kb, MEM identified 100% of deletions, however for 

deletions <200 kb MEM identified 24% of deletions (Figure 3B). The 46 XHMM-exclusive 

deletions had a mean size of 35 kb and, therefore due to an insufficient number of SNPs 

within them, could not be identified by MEM with high recall.

From the 171 MEM deletions, 36 overlapped with deletions previously confirmed by digital 

droplet PCR (ddPCR). For the remaining 135 deletions, we performed ddPCR, which was 

successful for 109 deletions. Ninety-six out of 109 were confirmed as true deletions, 

achieving a positive predictive value (PPV) of 88.1%. Surprisingly, the results from ddPCR 

indicated that five of the regions with the ME cluster were inherited duplications. Thus, 

overall 137/145 (94.5%) of ME clusters identified by MEM were confirmed as true CNVs. 

Deletions identified as inherited by inspection of XHMM z-score plots confirmed with a 

PPV of 86% (49/57 inherited, 3/57 de novo). From the possible false positives, two out of 

eight deletion regions without negative normalized z-scores in XHMM were confirmed, and 

four of six regions with inconsistent loss of exons confirmed. Finally, 26 de novo deletions 

were confirmed, four exclusively identified by MEM.

Enrichment of deletions on chromosome 15q11.2

With MEM, we identified 15 deletions (13 inherited, 2 de novo) ranging from 11 kb to 1 MB 

in the chromosome region 15q11.2 in PCGC probands. These deletions fall in a known 

microdeletion region between breakpoints (BP) 1 and 2, with a population frequency of 

0.25% (Cafferkey et al., 2014). Deletions in this region occurred at a frequency of 0.58% 

(15/2,601) in the PCGC cohort, and are therefore enriched compared to the reported 

population frequency (binomial, p=0.004) and to SSC probands, which had a deletion 

frequency of 0.24% (4/1,683) deletions in this region (binomial, p=0.002).

Identification of uniparental disomy (UPD) in WES trios by MEM

Following ME extraction and applying quality filters (Supp. Table S2), the majority of trios 

had between 0.6 – 3% of SNVs (or on average 1–2 MEs; Supp. Figure S3) that were scored 

as MEs (Figure 4A). We identified eight probands with an elevated rate of MEs distributed 

across an entire chromosome (Figure 4B), suggestive of possible uniparental disomy (UPD). 

For these samples, the average percentage of MEs across all chromosomes did not differ 

from the majority of trios (0.8% – 1.9%), however when analyzed by chromosome, one 

chromosome had an elevated percentage of MEs (i.e., 14.8% – 39.5%). Prior microarray 

experiments noted UPD of chromosome 15 for one proband, and an extended region of 

homozygosity on chromosome 16 for a second proband. However, there was no prior 

indication of UPD in the other six cases.
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All eight instances of UPD were classified as maternal heterodisomy, based on the presence 

of heterozygous maternal SNPs. The heterodisomic inheritance was for chromosomes 4 

(x2), 8, 9, 14, 15 and 16 (x2). UPD was not found in any SSC probands, and was therefore 

enriched in cases (binomial, p=0.026).

MEs identify irregularities in WES trios

We identified 26 samples with an elevated average ME percentage (Supp. Figure S3). We 

hypothesized the increased rates of MEs could be due to DNA contamination or sample 

switches. We tested all 26 trios for DNA contamination using the program VerifyBamID 

(Jun et al., 2012). Six probands were confirmed to have DNA contamination. These samples 

had a mean ME percentage of 18.9% (Supp. Figure S3), and showed elevated rates of MEs 

across the entire genome (Figure 4C). The other twenty trios had dramatically higher rate of 

MEs (mean = 43.5% MEs; Supp. Figure S3), which were distributed across every 

chromosome (Figure 4D). We investigated the source of the MEs and identified three trios in 

which the child had inherited only paternal alleles, suggesting the mother’s sample was 

switched, and nine trios with only maternally-inherited alleles, suggesting either that the 

father’s sample was switched, or incorrect paternity. Eight trios had MEs where both 

paternal and maternal alleles were missing in the child, suggesting the child’s sample was 

switched.

All samples with likely sample mix-ups, DNA contamination or UPD were excluded from 

further analysis. Samples with an average ME percentage above 8% should be examined for 

possible DNA contamination or sample mix-ups. UPD can be detected by examining the 

percent of MEs on each chromosome and identifying chromosomes with an elevated rate 

(>5–8%) of MEs.

ME clusters are non-random in the genome

Before applying MEM to WGS data, we first needed to determine if the increased SNV 

density in WGS data relative to WES data could lead to ME clusters by chance alone. To test 

this, we generated a null model of SNV clusters across the genome. We only considered 

heterozygous SNVs, and also applied additional filters for genotypes generated from WGS 

as shown in Supp. Table S2. After applying these quality filters, the median number of MEs 

per proband among the 350 PCGC WGS trios was 317. We then ran 1000 permutations of 

selecting 317 informative SNV positions from one trio, assuming those were MEs, and 

implemented MEM with a 100-kb window and 10-kb slide. We calculated the number of 

windows with SNV clusters divided by the number of windows with at least 1 SNV. The null 

model had a mean of 0.3% of windows with a SNV cluster (Supp. Figure S4). In contrast, 

21.4% of windows with at least 1 ME among the PCGC WGS probands had a ME cluster 

and they were infrequent across the genome (Supp. Figure S4). From these results, we 

inferred that ME clusters in WGS were likely non-random and were likely identifying 

underlying deletions.

Mendelian error clusters identify deletions from GIAB Ashkenazi trio

To test the robustness of MEM for calling deletions from WGS, we identified putative 

deletions using MEM based on genotypes generated using Illumina short read WGS data for 

Manheimer et al. Page 9

Hum Mutat. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an Ashkenazi Jewish (AJ) trio sequenced by the GIAB consortium (Zook et al., 2016). We 

processed filtered SNV genotypes from the Illumina WGS data in this trio using the 

parameters listed in Table 1 and searched for ME clusters. Using the MEM pipeline we 

identified 32 putative deletions (Supp. Table S3) that contained an average of 9.4 MEs, with 

a mean size of 31.5 kb.

To determine the accuracy of the MEM deletion calls, we intersected them with draft 

benchmark deletions provided by GIAB. Requiring a 20% reciprocal overlap between 

deletions, 27/32 MEM deletions overlapped with those from GIAB. After removing the 20% 

overlap requirement 31/32 MEM deletions overlapped. The five deletions that did not 

overlap by 20% were visualized in IGV, where we found evidence for a deletion in 4/5. 

Therefore, MEM identified deletions with 97% precision from WGS for the GIAB AJ 

proband. Of note, one 215-kb MEM deletion overlapped two GIAB deletions. Visualization 

in IGV confirmed the presence of two separate deletion events at this locus, which the 

distribution of MEs also supports (Supp. Figure S5). We also analyzed deletions with two 

MEs and compared them to deletions called by GIAB. There were 19 deletions with two 

MEs, and four had a 20% reciprocal overlap with GIAB deletions. When we removed the 

20% reciprocal overlap requirement 14/19 overlapped with GIAB deletions. Visualizing the 

10 deletions that did not overlap by 20% in IGV, 9/10 had evidence for a deletion. Of note, 

one MEM deletion overlapped two GIAB deletions and the presence of two deletions was 

confirmed in IGV. Therefore, two MEs identified deletions with a PPV of 68%. This is 

significantly lower than the 97% PPV obtained when using three MEs so we decided to 

continue requiring three MEs to define a deletion with the MEM pipeline.

Next, we looked at the deletions identified by GIAB that MEM did not identify (n=24,090). 

These do not include deletions in segmental duplication regions but do include 14,690 

deletions at tandem repeat loci. Due to the challenges of sequencing tandem repeats with 

short read sequencing we would not expect MEM to accurately identify deletions with 

tandem repeats, as variant calling is unreliable in these regions. The MEM false negatives 

(FNs) had a median size of 39 bp and a mean size of 306 bp and were attributable to 

inadequate number of MEs in those deletions as 93.5% did not include any MEs before 

filtering. Only 1% of the MEM FNs were related, at least in part, to the filtering of MEs, 

having >2 MEs prior to filtering.

We also compared the MEM calls for the AJ trio to calls from CNVnator and Lumpy. Of the 

32 MEM deletion calls, 27 (84%) and 23 (72%) overlapped with calls from CNVnator and 

Lumpy, respectively. There were 127 and 393 calls from CNVnator and Lumpy, respectively, 

that were not made by MEM, with the vast majority (72% and 95%, respectively) containing 

no MEs. ME filtering accounted for 21% of FNs from CNVnator calls and 6% of FNs from 

Lumpy calls.

MEM identifies deletions from WGS trios

Based on the promising results from GIAB, we proceeded to apply the MEM pipeline to 

identify deletions from 300 WGS case trios from the PCGC, and 517 healthy trios from the 

SSC. For the PCGC trios, the median number of MEs per proband was 317 MEs 

(distribution in Supp. Figure S1). MEM identified 6,073 regions with ME clusters 
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(mean=20.2/proband; distribution in Supp. Figure S6) that ranged in size from 4 bp to 9 Mb, 

with a median size of 3.2 kb and a mean size of 20.1 kb (Supp. Table S3). Eleven percent of 

regions included exons. We used the first and last MEs as coordinates for the putative 

deletions. For PCGC trios that have both WES and WGS data we compared the deletions 

identified by MEM from both data sets. MEM identified 11 deletions from WES, all of 

which were detected by MEM with WGS. All of the deletions were the same size or larger 

when detected by WGS except for one. This is expected as the increased SNP density of 

WGS provides more informative sites for MEM, thus facilitating a better estimate of the 

deletion size.

To determine if the ME clusters in WGS data identified true deletions, we integrated 

normalized read depth data from CNVnator. Each region was labeled with a CNVnator score 

where 0 corresponds to a homozygous deletion, 0.7–1.5 to a heterozygous deletion, 1.5–2.4 

to being normally diploid and >2.4 to a duplication. The vast majority (97%) of MEM 

deletions had a CNVnator score between 0.7 – 1.5 suggesting MEM was identifying true 

heterozygous deletions (Supp. Figure S7). We visualized MEM deletion calls with a 

CNVnator score >1.5 in IGV. Based on this manual curation, we concluded that the majority 

(66%) were false positives, but 34% were heterozygous deletions: 10% covering the entire 

region and 24% being either a deletion of a portion of the region or two smaller deletions 

located close together. In addition, we visualized in IGV a test set of MEM deletions with a 

range of CNVnator scores. The vast majority of false positives (93.5%) had a score of 1.5 or 

greater, while 100% of the true or possible deletions had a score between 0.7 and 1.5 (Supp. 

Figure S8). Overall, our comparison with read depth data supports a PPV of 92% (Supp. 

Formula 1) for identifying heterozygous deletions from WGS with MEM.

As with WES, we used the first and last MEs in the cluster as the minimum coordinates for 

the deletions identified by MEM. With WGS, we were able to further investigate the size of 

the deletions and the accuracy of these coordinates. Heterozygous SNP genotypes are 

inconsistent with a heterozygous deletion, as they indicate that two alleles are present. 

Therefore, the heterozygous SNP genotypes closest to the MEs represent the maximum 

extent of each deletion, with the breakpoints located in between the flanking heterozygous 

SNPs and the outermost MEs. We identified the maximum size of each deletion and 

compared this to the minimum size for all deletions (Supp. Figure S9). The majority of 

deletions have similar minimum and maximum sizes, which are very similar, however, at 

smaller sizes, the relative error on deletion size increases. Overall, the median difference 

between the maximum and minimum sizes is 3.6 kb. Of note, this analysis was not 

appropriate for WES data due to the sparse nature of the data.

Next, we wanted to identify which MEM deletions were de novo. As MEM does not 

differentiate between de novo and inherited deletions; therefore, we utilized the CNVnator 

scores (based on read depth) from the proband and the parents for each MEM deletion. We 

used two sets of filters (Supp. Table S4) and identified 37 putative de novo deletion calls 

(mean = 0.12 de novo deletions/proband) After visualization in IGV, we determined that 

20/37 represented likely true de novo deletions, while 17 were inherited. We compared these 

to de novo deletions identified by CNVnator, Lumpy and a third WGS tool called SvABA 

that uses genome-wide local assembly to identify SV (Wala et al., 2017). The deletions 
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called by the other SV tools were confirmed by ddPCR. Of the 20 de novo deletions found 

by MEM, five were also identified by CNVnator, Lumpy, and SvABA, three were identified 

by CNVnator and SvABA but not Lumpy, and 12 were not found by the three other tools. 

Thirteen additional de novo deletions were identified with a combination of CNVnator, 

Lumpy and SvABA: all three tools but not MEM (n=7), CNVnator and SvABA (n=2), 

CNVnator and Lumpy (n=1), CNVnator only (n=2), and SvABA only (n=1). None of these 

deletions, which had a median size of 6.5 kb, included any MEs, suggesting MEM is less 

sensitive for deletions smaller than ~10 kb in WGS.

MEM is computationally efficient

We compared the computational resources required for MEM and the other CNV detection 

tools used in this study for deletion identification in one trio (Table 1). Runtime and memory 

for all tools were based on the use of an Intel Haswell 2.4 GHz processor with 64 GB 

memory and Cray nodes. We did not utilize parallelization for any of the tools. Runtime and 

memory for MEM was calculated for Step 1 of the MEM pipeline (ME extraction). All other 

steps in the MEM pipeline can be performed on the command line and do not require 

significant time or memory. Of note, resources required for the preliminary steps for all tools 

(DepthOfCoverage for XHMM, Samblaster for Lumpy, and variant calling for MEM) were 

not included.

For WES, MEM required 5.5 sec and an average of 12 MB of memory per trio. XHMM 

required 453 sec and on average 81 MB of memory. For WGS, MEM required 407 sec and 

an average of 7 MB of memory per trio. CNVnator required 77,629 sec and, on average, 709 

MB of memory. Lumpy/SVTyper required 4,238 sec and an average of 4,898 MB of 

memory. SVTyper produced genotypes for deletions only and not other types of SV 

(duplications, translocations, inversions). For both WES and WGS, MEM performed 

significantly faster and required significantly less memory compared to other CNV detection 

tools. Of note, ME extraction execution time grows sub-linearly based on the number of 

trios present in the VCF, however average memory required does not increase significantly.

Discussion

A variety of tools have been developed to identify CNVs including XHMM and CoNIFER 

for WES, and CNVnator, Lumpy and SvABA for WGS. Each of these tools has limitations 

such as a requirement for 50 samples, the need for extensive computational resources, or that 

up to 20% of CNVs will fail to confirm. In addition, false negative calls in parents lead to a 

high false positive rate for de novo deletion CNV calls, making the identification of true de 
novo CNVs difficult and time intensive. As documented in this report, we developed a novel 

pipeline, MEM: the Mendelian Error Method, to identify deletion CNVs based on ME 

clustering. This orthogonal method identifies deletions with a PPV >90% for both WES and 

WGS, and identifies additional de novo deletions compared to other SV callers.

Previous studies have explored the utility of SNV genotypes to identify deletions using SNV 

genotype data from the HapMap project (Conrad et al., 2006) or genome-wide association 

studies (GWAS) associated with autism (Aguiar et al., 2018). Conrad et al. 2006 presents the 

principal on which MEM is based, and uses a similar clustering method to identify putative 
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deletions. This study expands the principal and clustering method to WES and WGS data. 

NGS data has additional considerations regarding the accuracy of SNV calling and SNV 

density. A particular challenge with NGS data is to distinguish between MEs due to 

sequencing errors and those due to underlying deletions. Of note, Conrad et al. 2006 

reported a similar false positive rate as MEM and also concluded that three MEs in a cluster 

allows for a highly specific identification of deletions. DELISHUS (Aguiar et al., 2018) is 

another pipeline that was developed on the basis of MEs representing deletions. This tool 

combines evidence from multiple trios in order to identify small, recurrent deletions. This 

requires identifying maximal cliques of MEs, a computationally long and expensive process 

with a polynomial-based run time, as opposed to MEM, which runs in linear time and is 

computationally inexpensive. In addition, recurrent deletions can be identified by utilizing 

the output of MEM to statistically compare the number of case and control samples with ME 

clusters in a region, and looking for a statistical enrichment following correction for multiple 

hypothesis testing. One interesting aspect of the DELISHUS pipeline is the addition of 

genotype combinations that could represent a de novo deletion (heterozygous genotypes in 

the parents and homozygosity of one allele in child). This genotype combination would not 

be identified with MEM as it is not a ME. However, following identification of deletions 

with MEM these loci could be identified within the region of the deletions to help indicate if 

the deletion is de novo. The specificity of this approach would need to be evaluated. A third 

study by Corona et al. 2007 demonstrates a haplotype-based method that utilizes likelihood 

ratios and provides a p value confidence level for each putative deletion (Corona et al., 

2007). The advantages highlighted are based on the SNP density of genotype data from the 

HapMap project, while in this study the use of WGS greatly increases the SNV density and 

increases our ability to identify smaller (<200kb) deletions. In addition, the use of 

haplotypes requires phasing, which can be difficult in the presence of MEs (Aguiar et al., 

2018).

When used with WES, we demonstrate that MEM has several advantages compared to 

XHMM. First, MEM can be used on a single trio, while XHMM requires a minimum of 50 

samples to accurately normalize read depth and calculate z-scores. Second, MEM requires 

substantially less memory and runtime compared to XHMM. Third, MEM can be used as a 

method for quality control, as it can identify UPD, sample mix-ups and DNA contamination. 

MEM is also a worthwhile complementary tool to XHMM as MEM identified additional de 
novo deletions that XHMM missed due to spurious evidence of inheritance or seemingly 

inconsistent loss of exons. In addition, MEM identified deletions with less than 3 exons with 

high precision, albeit with low sensitivity. The combination of evidence from both XHMM 

and MEM can increase our ability to identify smaller deletions with high precision and 

increased sensitivity, as well as reducing the need for PCR-based validation, which is 

expensive and time-consuming.

CNV identification from WGS data is still under development. We propose MEM as a 

worthwhile addition to the WGS CNV identification toolbox as it can be efficiently 

implemented in less than a day and identifies deletions with a >90% PPV. It can be 

implemented on a large cohort without significantly increasing the computational 

requirements, and identifies additional de novo deletions compared to CNVnator, Lumpy 

and SvABA. While there are other SV tools for WGS data (e.g., Delly, Pindel), the methods 
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utilized by CNVnator, Lumpy and SvABA, represent three primary ways to identify CNVs: 

changes in read depth, discordant/split reads and local assembly, yet MEM identified 

additional de novo deletions. Equally helpful is the orthogonal nature of MEM, which may 

reduce the need for PCR validation for deletions identified by MEM and a second tool.

MEM’s primary limitation is the need for a complete trio, as many cohorts only recruit 

singletons. The trio design is necessary in order to identify MEs and, therefore, cannot be 

avoided. With the trio data we identified deletions on autosomes, but did not attempt to 

identify deletions on chromosome X, which should theoretically be possible in females. 

Another limitation of MEM is that the number of informative SNVs inherently limits our 

ability to identify MEs and deletions. To estimate the sensitivity of MEM, we calculated the 

average SNV density per kilobase for each chromosome based on WGS of 148 parents 

(Supp. Table S5; Supp. Figure S10). Genome wide, there was an average of 1.1 SNVs per 

kilobase. To estimate the number of MEs per kilobase, we multiplied this average by 8/27 

(~0.3) because out of 27 possible genotype combinations, eight or about 30% of all 

genotype combinations represent MEs that could occur within a deletion (Supp. Table S5; 

Supp. Figure S10). Therefore, 10-kb deletions, will on average, include 3.3 MEs and be 

identified by MEM. Based on these factors, MEM is also limited regarding the size of the 

deletions it can detect with high recall. WES deletions <200 kb are identified with 24% 

recall, while deletions >200 kb are identified with 100% recall. Of note, although the smaller 

deletions are not identified with high sensitivity, the PPV remains high when they are called 

(78%). Based on deletions identified in GIAB AJ trio, MEM identifies deletions from WGS 

with a range of sizes (100 – 660,000 bp); however, we estimate that MEM has ~1% recall 

for deletions smaller than 3 kb and only 18% recall for deletions 3–10 kb. Deletions >10 kb 

are identified with 45% recall. For this reason MEM applied to WGS is particularly valuable 

as a secondary and orthogonal method to confirm deletions identified by other tools, as the 

PPV is 92 – 97% with WGS data.

MEM’s sensitivity was also reduced by ME filtering, which accounted for ~5% of the false 

negatives. Filtering is necessary in order to remove MEs caused by poor genotyping or other 

errors and to achieve a high PPV. One parameter of this filtering is the requirement of 

adequate total read depth (≥10 reads) to help ensure the genotypes are reliable. We did not 

attempt to include genotypes with a lower total read depth, as the minimum of 10 is standard 

practice when filtering for SNVs called by GATK Best Practices. We would predict that 

lowering the minimum depth requirement would result in the inclusion of additional 

genotyping errors that could appear as MEs and lead to a higher rate of false positives. 

Although we found the filtering of genotypes necessary to ensure a high PPV, this can lead 

to the presence of only one or two MEs in a deletion, rather than the required cluster of 

three. We visualized deletions with one or two filtered MEs, but with three or more 

unfiltered MEs, and found even the presence of just one or two MEs after filtering 

corresponded to a deletion in 88% of calls (data not shown). Therefore, when verifying 

deletions identified with other tools we suggest noting the number of filtered and unfiltered 

MEs, to help evaluate the nature of the deletion.

Interestingly, three regions with ME clusters identified with MEM were scored as inherited 

duplications by ddPCR. We analyzed these cases further and determined that in one case one 
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parent had a heterozygous deletion of the region, while the other parent carried four copies 

of the region. The child had inherited the deletion, making MEs possible, as well as, we 

believe, a triplication, to result in the appearance of a duplication. In other cases, it is has 

been noted that some CNVs are complex events with multiple breakpoints comprising both 

deletions and duplications in close proximity (Quinlan et al., 2010). We hypothesize that this 

phenomenon likely underlies our other observations, and that in these few cases the primer 

placement for ddPCR targeted a region of duplication rather than the deletion found my 

MEM.

The pursuit of disease-causing CNVs in family trios often focuses on the identification of de 
novo or rare CNVs. MEM identifies both inherited and de novo deletions, however one is 

unable to distinguish between inherited and de novo deletions without the use of a secondary 

tool that identifies deletions in parents. In this study, we integrated read depth data from 

XHMM and CNVnator for WES and WGS, respectively, and identified de novo deletions 

based on an absence of read depth changes in the parents in the MEM deletion region. In 

order to identify rare CNVs from a large cohort, one must eliminate regions with deletions in 

the general population. This is included in the MEM pipeline in Steps 4 and 5. If population 

data are not available, one could determine the number of samples with deletions in each 

region identified by MEM as an alternative. Deletion regions found in multiple samples are 

less likely to be disease-causing.

We applied MEM to trios from the PCGC to identify deletions that are causal for CHD that 

had not been seen with previous studies (Glessner et al., 2014). With MEM, we identified 

and quantified two genetic mechanisms associated with CHD; BP1-BP2 deletions in 

15q11.2 and UPD. Deletions in the region 15q11.2 BP1-BP2 account for ~0.3% of CHD 

cases in the PCGC cohort. Although 15q11.2 deletions are associated with a wide range of 

phenotypic anomalies, CHD have been reported in ~9% of carriers (Cox and Butler, 2015), 

which explains the presence of an inherited mutation present in both a proband with CHD 

and their apparently unaffected parent.

Using MEM, we also identified whole-chromosome maternal heterodisomy in ~0.3% of 

CHD cases in the PCGC cohort. The likely genetic mechanism for maternal heterodisomic 

UPDs is non-disjunction and subsequent trisomy rescue. Thus, there is a possibility that 

probands with UPD may be mosaic for trisomy of the UPD chromosome, and this mosaic 

trisomy could be the underlying cause of the probands’ CHD. UPD could also lead to CHD 

due to changes in methylation of imprinted genes. One example from the chromosomes 

affected in PCGC probands is chromosome 8, which harbors the known CHD gene CHD7 
(MIM:608892) that is maternally methylated (Joshi et al., 2016). Maternal heterodisomy 

would lead to hypermethylation and altered expression of CHD7.

In conclusion, MEM is an orthogonal tool that identifies deletion CNVs with over 90% PPV 

and is a valuable addition to CNV detection pipelines for both WES and WGS. As NGS data 

becomes more accessible, the need to identify CNVs from WES and WGS data will only 

increase. This is particularly true with relation to disease causing CNVs as CNVs have been 

implicated in a number of different human diseases including congenital heart disease, 

schizophrenia, developmental delay and autism spectrum disorders. MEM helps overcome 
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some of the challenges associated with identifying pathogenic CNVs due to limited 

specificity of current SV tools.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of MEM principle
Diagram of trio where proband inherited a deletion from parent 1. Tools report homozygous 

genotypes (bold) that violate Mendelian laws of segregation in the case of hemizygosity due 

to a heterozygous deletion. Adapted from McCarroll et al. 2006 (Mccarroll et al., 2006).
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Figure 2. MEM pipeline for WES and WGS data
The pipeline outlined here is specific for identification of heterozygous deletions that are 

relevant to phenotypes associated with case trios, in this study congenital heart disease.
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Figure 3. 
A) Comparison of de novo deletions called by XHMM and MEM. B) Size distribution of de 
novo deletions called by XHMM. Colors in stacked histogram indicate which tools detected 

the deletion (red = MEM and XHMM detected, green = MEM detected and not XHMM, 

blue = XHMM detected and not MEM).
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Figure 4. MEs plotted by chromosome
A) MEs in a trio after quality filtering. B) Sample with UPD on chromosome 9. C) Trio with 

DNA contamination. D) Trio with a sample mix.
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Table 1

Computational resources required for NGS CNV detection tools

Tool Runtime (seconds) Max Memory (MB) Average Memory (MB)

MEM WES 5.5 21 12

XHMM 453 278 81

MEM WGS 407 21 7

CNVnator 77,629 7,674 709

Lumpy/SVTyper 4,238 12,876 4,898
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