
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Probabilistic Judgment by a Coarser Scale: Behavioral and ERP Evidence

Permalink
https://escholarship.org/uc/item/0bp0189d

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 26(26)

ISSN
1069-7977

Authors
Sun, Yanlong
Wang, Hongbin
Yang, Yingrui
et al.

Publication Date
2004
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0bp0189d
https://escholarship.org/uc/item/0bp0189d#author
https://escholarship.org
http://www.cdlib.org/


 

Probabilistic Judgment by a Coarser Scale: Behavioral and ERP Evidence  
 

Yanlong Sun (Yanlong.Sun@uth.tmc.edu)1 
Hongbin Wang (Hongbin.Wang@uth.tmc.edu) 1 

Yingrui Yang (yangyri@rpi.edu) 2 
Jiajie Zhang (Jiajie.Zhang@uth.tmc.edu) 1 

Jack W. Smith (Jack.W.Smith@uth.tmc.edu) 1 
 

1 The University of Texas Health Science Center at Houston, Houston, TX 77030 USA 
2 Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY 12180 USA 

 
 

Abstract 
 

We hypothesize that statistically unsophisticated people 
perceive event likelihood with a coarser scale with a limited 
number of categories, before they report exact numerical 
probability values. Refinement of the scale beyond a certain 
level would therefore not improve overall judgmental 
accuracy and consistency but just impose a heavier burden on 
their limited computational capacity. An experiment of 
probabilistic judgment was conducted to test this hypothesis. 
Results from both behavioral data and event-related potentials 
in EEG recordings supported our hypothesis. 

 

Introduction 
Assessing the likelihood of uncertain events is an essential 
aspect of human reasoning and decision-making. In the 
absence of adequate formal models for computing the 
probabilities, people often rely on intuitions and heuristics 
to assess uncertainty. The question of how lay people and 
experts evaluate the probabilities of uncertain events has 
attracted enormous research interest. (For a historical review, 
see, e.g., Goldstein & Hogarth, 1996). Proponents of the 
“heuristics and biases” program argued that intuitive 
probabilistic judgment is often systematically biased and 
error-prone (Kahneman, Slovic, & Teversky, 1982). Various 
violations of normative models, including overconfidence, 
base-rate neglect, and the conjunction fallacy, have been 
attributed to applications of a small number of distinctive 
judgmental heuristics. However, others argued that the 
human mind has evolved to deal with the structure of the 
social and physical environment rather than to solve abstract 
probability problems (Chase, Hertwig, & Gigerenzer, 1998; 
Gigerenzer et al., 1999; Wang, Johnson, & Zhang, in press). 
When external information is presented effectively, people 
can be good intuitive statisticians (e.g., Cosmides & Tobby, 
1996). For instance, Gigerenzer and colleagues found that 
when problems were stated in terms of frequencies instead 
of probabilities, the stable errors of judgments disappeared 
(Gigerenzer, 1991; Sedlmeier & Gigerenzer, 2001). For a 
recent collection of different perspectives on interpreting 
human intuitive probabilistic judgment, see Gilovich, 
Griffin, & Kahneman, 2002. 

The theoretical claim that the human mind is not adapted 
to process probabilities has been a magnet for controversy 
(e.g., Gigerenzer, 1994; Gigerenzer & Hoffrage, 1995; 
Kahneman & Tversky, 1996). In spite of the centrality of 
the question, the internal representations and functional 
neural foundations underlying human probabilistic 
judgment are poorly understood. Until recently, most 
research has relied on observations and interpretations of 
behavioral experiments. In this paper we report a study that 
investigates the internal representations of human intuitive 
probabilistic assessment, from both behavioral and 
neurological perspectives. 
 
Uncertainty Assessment by Approximation 
A common scheme in psychological experiments of 
probabilistic judgment is to ask participants to report 
probabilities in numerical values, such as the chance of 
breast cancer in percentage given a positive test result (e.g., 
Sedlmeier & Gigerenzer, 2001). One question with this 
scheme, however, is that participants’ response of numerical 
probability values may not genuinely reflect the true internal 
representation of their likelihood assessment. The following 
example illustrates this point. When asked to give a 
numerical estimate of the probability of a certain event 
provided with probabilities of other events, people often 
give incoherent answers (e.g., Osherson et al., 2001): 
 

(a) Prob (Clinton is re-elected to the Senate in 2006) = .75 
(b) Prob (Giuliani runs for the Senate in 2006) = .5 
 
Participants’ response: 
(c) Prob (Clinton is re-elected to the Senate in 2006 and 
Giuliani runs for the Senate in 2006) = .1 
 
Apparently, the numerical estimate of .1 is incoherent 

with the other two given probabilities, and the correct 
answer should be at least .25. However, it is possible that 
participants did not distinguish small increments on the 
continuous scale of probabilities. The estimate of .1 
probably is only an approximation by the idea that the 
chance for Clinton may drop dramatically if Giuliani joins 
in the competition, rather than the result of exact 
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calculations. In other words, the incoherence is likely to be 
produced by the application of a coarser scale, rather than 
by some systematically biased heuristic. 

We propose two hypotheses on the internal 
representations when people intuitively assess the event 
likelihood without exact calculations. First, the task of 
judgment of probabilities can be partitioned into two 
separate phases: the internal representation and the response 
(see Figure 1). The internal representation of event 
likelihood is the result of an approximate estimation of 
presented information (cues) on a coarser scale (internal 
scale). Only when subjects need to report probability values 
(e.g., in a typical psychological experiment), the internal 
scale is projected onto a finer continuous scale (response 
scale). Second, the internal scale has only a limited number 
of categories that represent different magnitudes of the 
perceived event likelihood. Together, these two hypotheses 
allow us to distinguish two fundamentally distinctive types 
of internal representations underlying human probabilistic 
judgment. We illustrate each of them in detail next. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Internalization by Anchoring and Adjustment 
The hypothesis that people’s perception of the event 
likelihood may not be infinitely refined is based on the 
notion that human beings have limited computational 
capacity. Miller (1956) suggested that the number of levels 
of any variable that can be internalized is not only finite but 
also small. Miller’s finding has been widely cited in 
psychometric research on whether there is an optimal 
number of response alternatives in designing a scale. Many 
researchers believe that a further refinement of scales is 
meaningless if it is beyond human information processing 
capacity (for a review, see Cox, 1980). 

In assessing the event likelihood, the number of 
categories on the internal scale is determined by the way 
these categories are formed. Previous studies show that 
people often use the “anchoring and adjustment” heuristic in 
judgments of belief and value (Tversky & Kahneman, 1974). 
Tversky and Kahneman presented anchoring as a process in 
which “people make estimates by starting from an initial 
value that is adjusted to yield a final answer” (1974, p. 

1128). Chapman & Johnson (2002) provided a review on 
recent development in understanding the mechanisms of 
anchoring. One important implication of anchoring is that 
the number of categories on the internal scale is limited, 
rather than infinitely refined, since there are only a limited 
number of anchors that can be processed at the same time 
(see Figure 1). Note that it is not to suggest that people can 
not distinguish two very alike events with subtle difference. 
However, such distinction can only be achieved based on a 
side-by-side comparison, as one of the two events serves as 
an anchor. 

The anchors can be directly provided by external cues, 
predefined action thresholds, or by knowledge retrieved 
from memory (for example, availability heuristic, Tversky 
& Kahneman, 1974). In the example of incoherent estimate 
mentioned before, the anchors would be likely provided by 
the probabilities stated in the first two statements, .75 and .5. 
Thus, there would be only three categories of likelihood 
divided by these two numbers, more likely than .75, less 
likely than .5, and a category in the between. When asked to 
report a numerical probability estimate to the third statement, 
the category of the lowest possibility was projected onto a 
continuous scale As a result, a small number such as .1 was 
likely to be generated. It is very conceivable, however, that 
in a different occasion the same person would give an 
answer of .2 instead of .1 to the same question without 
changing his or her perception of the event. 

In everyday life situations, it is often the case that one of a 
few options is chosen based on predefined action thresholds 
rather than on exact probability values. It was found that 
physicians often significantly overestimated the probability 
of disease given a positive test result. In one study, 95 out of 
100 physicians estimated the probability of breast cancer 
between 70% and 80% given a positive mammography 
while the correct answer is merely 7.8% (Eddy, 1982). 
Nevertheless, such large deviations do not necessarily mean 
that they are poor physicians. Probably to a physician, what 
matters most is a dichotomy whether a test result is positive. 
Consequently, a two-category internal representation (for 
example, “more likely” and “less likely”) would be adopted 
until further diagnosis is conducted. When the physicians 
were asked to report an exact numerical value, they simply 
just obtained a number that would represent the category of 
the highest likelihood on the internal scale. Thus, a large 
number was likely to be reported. 

 
Coarser Scales versus Finer Scales 
The above argument actually suggests the need to partition 
the errors of intuitive probabilistic judgment. By 
distinguishing the internal representation from the numerical 
responses, we in effect partition the errors into two sources: 
systematic errors when the external information is 
internalized onto a coarser scale, such as overconfidence, 
availability bias, and conjunction fallacy (e.g., Kahneman, 
Slovic, & Teversky, 1982), and “random errors” when the 
internal representation are projected onto the continuous 
scale of numerical values. From Figure 1, it can be seen that 
a large portion of errors is elicited by the projection of a 

Internal Scale 
Cues 

Responses 

0% 

100% 

Figure 1. Internal representation on a coarser scale 

Anchors 
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coarser scale onto a continuous scale. Thus, a direct 
comparison between human perception of event likelihood 
and criteria derived from a normative model very likely has 
exaggerated the irrationality of human intuitive judgment. In 
the previous example of incoherent estimate, incoherence 
would be greatly reduced if a coarser scale is used to 
evaluate participants’ responses. 

We reason that in assessing uncertainty, people prefer a 
coarser scale (e.g., fewer categories) to a finer scale (e.g., 
more categories) as the internal representation, since the 
former may function effectively and demand less 
computational load in a variety of cognitive tasks. People 
assess the event likelihood only to the extent that it is 
adequate to reach a conclusion or choose an action. For 
example, when a person needs to decide whether or not to 
bring an umbrella to work based on the chance of rain, a 
chance of 70% and a chance of 80% probably would not 
make much difference in such a decision. Sometimes a finer 
judgment can be obtained but such refinement might have 
little effect to improve the choice. For example, Kareev and 
colleagues suggested that the limited capacity of working 
memory could actually help the early detection of 
covariation (Kareev, 1995; Kareev, Lieberman & Lev, 
1997). In Sun & Tweney (2002), researchers found that 
participants chose their actions based on a heuristic of using 
small samples, and their performance in the task was very 
close to that obtained by the optimal strategy. 

Our hypothesis that there exists a coarse representation of 
uncertainty for intuitive probabilistic judgment is consistent 
with the large body of literature on mental presentations of 
quantity and numbers. Dehaene and colleagues (Dehaene, 
1997; Dehaene et al, 1998) have suggested that there is a 
coarse and analog mental number line, which is the 
foundation of a "number sense" and shared by humans and 
animals. Recent studies using brain-imaging techniques 
have provided further support for the existence of such 
coarse scale representations. It has been found that the 
approximation and exact calculation tasks of large numbers 
(as compared to rote arithmetic operations) put heavy 
emphasis on the left and right parietal cortices, which may 
encode numbers in a non-verbal quantity format (e.g., 
Dehaene et al., 1999; Pesenti et al., 2000; Stanescu-Cosson 
et al., 2000).  

To test our hypotheses, we conducted an experiment in 
which participants performed a task of probability 
estimation. The task was to estimate the winning 
probabilities of poker hands in a standard “draw poker” 
game when presented with the highest two cards out of the 
five cards on a hand. The reason we selected this task is that 
it provides an objective criterion for evaluating participants’ 
estimates. Most importantly, this task offers a distribution of 
probabilities ranging from zero to close to 100% with 
extremely small increments. This feature allows us to look 
into the refinement of the internal scale when people need to 
make estimates intuitively. We compared two conditions in 
the experiment. The coarser-scale condition required 
probability estimation within an increment of 30% (e.g., less 
than 30%, 30% ~ 60%, and greater than 60%). The finer-

scale condition required probability estimation within an 
increment of 10%. Both behavioral data and the event 
related potentials (ERP) in EEG recordings were collected. 
The experiment results supported our hypotheses. First, 
estimates by the finer scale showed significantly worse 
performance in terms of overall accuracy and consistency. 
Second, significant ERP difference was found over the 
parietal area between two conditions, indicating that 
different levels of effort were involved in the application of 
different internal scales. 
 

Method 
Participants Six graduate students in the Houston medical 
center area participated in the experiment. All participants 
were right-handed males. The averaged age was 27 years 
old. None of the participants reported having any in-depth 
knowledge of probabilistic theories. All participants 
reported having some experience of playing poker games 
but only at a novice level. 
Procedure The stimuli in the experiment (two-card poker 
hands) consisted of 18 levels of winning probabilities, 
ranging from 5% to 90% with a step of approximately 5% 
(as in a one-deck and two-person game). With suit 
variations, there were 36 different hands used in the 
experiment. (Note that in this experiment, the suit variation 
does not change the winning probability since the highest 
hand is a one-pair of aces.) Participants were introduced 
with the rules of hand ranking before the experiment (e.g., a 
pair is higher than single cards; the Ace is higher than the 
King, and etc.) without being informed of the corresponding 
probability values. 

Figure 2 shows the procedure of the experiment. Stimuli 
were displayed on a 17-inch CRT monitor. To reduce eye 
movements, the viewing angle of the displays on the screen 
was limited to 2%. After the fixation display, two poker 
cards were presented. Participants were instructed to form 
an estimate of winning probability in their mind 
immediately. After the second fixation, a number was 
displayed and the participants needed to compare their 
estimate to the displayed number as quickly as possible. A 
Microsoft PC mouse was used to collect the responses (the 
left button for “less than,” and the right button for “greater 
than”).  
 
 
 
 
 
 
 
 
 
 

There were two experimental conditions: the coarser-scale 
condition and the finer-scale condition. In the coarser-scale 
condition, participants were instructed to estimate 
probabilities in three categories (less than 30%, 30% ~ 60%, 
and more than 60%). The number displayed as the 

+ 
Response 
Criterion 

Figure 2. Experiment Procedure 

+ 30 

Fixation 
500ms 

Fixation 
500ms 

Cards 
1500ms 
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comparison criterion is either 30 or 60, randomly selected. 
In the finer-scale condition, participants were instructed to 
form the estimate accurate to the single digit. The 
comparison criterion was either 5% plus or 5% minus 
(randomly selected) the true winning probability. For 
example, a pair of aces has a winning probability of 90%. 
Then, participants needed to compare their estimates with 
either 85% or 95%, depending on which number was 
displayed. Each participant completed both conditions. The 
order of two conditions was balanced among participants. 
Each condition consisted of 72 trials in 2 trial list cycles, 
and each of the 36 poker hands was displayed once in each 
cycle. The order of trials was randomly shuffled. Response 
time was recorded as the latency after the onset of 
comparison criterion. During the experiment, ERPs were 
sampled at 250 Hz with a 128-electrode geodesic sensor net 
(GSN) reference to the vertex (Tucker, 1993). 

 
 

Results 
Behavioral Results Table 1 shows the comparison between 
two experimental conditions on participants’ probabilistic 
estimates in three categories, accuracy, consistency, and 
response time. Accuracy was calculated as the percentage 
when participants made the comparison correctly. For 
example, if the true winning probability was 70 percent, and 
the number displayed as the comparison criterion was 60, 
the correct response should be “greater than.” (In case of 
identical numbers, either response was counted as correct.) 
All participants showed higher levels of accuracy in the 
coarser-scale than in the finer-scale condition. On average, 
the accuracy was 76.4% in the coarser-scale condition, and 
56.0% in the finer-scale condition, with a difference of 
20.4% (t(5) = 4.576, p < 0.01, two-tailed). Furthermore, we 
compared participants’ accuracy in two trial list cycles in 
each condition and found little improvement in accuracy 
over the trials. The low accuracy level in the finer-scale 
condition was not significantly different from random guess 
(comparing to the expected value of 50%, t(5) = 1.836, p 
= .12, two-tailed), indicating that participants were not able 
to distinguish winning probabilities of poker hands in the 
increment of 10%. 

To evaluate participants’ judgmental consistency, we 
calculated Pearson correlations in their responses over two 
identical sets of stimuli (36 poker hands in each set) in each 
condition. All six participants in the coarser-scale condition 
and only one participant in the finer-scale condition showed 
correlations significantly different from zero (n = 36). The 
averaged correlation was .472 in the coarser-scale condition, 
and .076 in the finer-scale condition, with a difference 
of .396 (t(5) = 7.906, p = .001, two-tailed). This finding was 
consistent with the difference in accuracy between two 
conditions, supporting the speculation that participants were 
more likely to make a random guess in the finer-scale 
condition. 
 
 

Table 2 Comparing Coarser-scale and Finer-scale 

 Coarser-scale Finer-scale 
 

Difference 
Accuracy 76.4% (8.61) 56.0% (8.05) 20.4% 

Consistency .472 (.060) .076 (.094) .396 

RT 
664.1ms 
(233.75) 

798.4ms 
(298.93) -123.2ms 

N = 6. Standard deviations were listed in parentheses. All 
three comparisons were significant p < .05 (two-tailed). 

 
 
The response time was also significantly different 

between two conditions. The averaged RT was 664.1ms in 
the coarser-scale condition and 798.4ms in the finer-scale 
condition, and the former was 123.2ms faster that the latter 
(t(5) = -3.118, p < 0.05, two-tailed). Since the response time 
was recorded as the latency after the onset of comparison 
numbers rather than the onset of poker cards, it is not clear 
whether probability estimation or number comparison, or 
both, produced the difference. Previous studies found that 
the time to make magnitude comparisons decreases linearly 
as the numerical distance between two numbers (e.g., Moyer 
& Landauer, 1967). Nevertheless, the large RT difference in 
our experiment indicated that the task of probability 
estimation and comparison as a whole might take more 
efforts in the finer-scale condition than in the coarser-scale 
condition. 

 
ERP Results We rejected trials with voltages exceeding ± 
100 µV. The remaining trials were segmented then averaged 
in synchrony with stimulus onset (display of poker cards) in 
a window of 1100ms (100ms before and 1000ms after 
stimulus onset), digitally transformed to an average 
reference, band-pass filtered (0.5 to 20 Hz), and corrected 
for baseline over 100ms before stimulus onset. 
Experimental conditions (Coarser vs. Finer) were compared 
on the 10 central-parietal electrodes by a repeated-measure 
ANOVA. We found significant ERP difference between two 
conditions at 400 ± 20ms (peak values) following stimulus 
onset (Greenhouse-Geisser F(1,5) = 12.511, p <0.05), where 
the finer-scale condition yielded more positive voltages over 
parietal electrodes. Figure 3 shows the wave forms of 
electrode CP1 (GSN 38) and the voltage difference map 
(finer-scale minus coarser scale) by spherical spline 
interpolation. The comparison between the left and right 
hemispheres over the parietal area was not significant 
(Greenhouse-Geisser F(1,5) = 5.339, p = .127). At the 
current stage of the study, we have not found significant 
voltage differences over other brain areas. Furthermore, 
examinations on latency did not reveal any significant 
differences between two experimental conditions. 

Examination of the waveforms showed that the ERP 
difference occurred after the P300 component, when 
participants were viewing identical displays and had not yet 
received the comparison stimuli. The P300 and its sub-
components p3a and p3b have been considered as a process 
that indexes the ensuing memory storage operations, as 

1294



 

P300 amplitudes were found related to memory of previous 
stimulus presentations (e.g., Fabiani, Karis, & Donchin, 
1990; Johnson, 1995; Paller, McCarthy, & Wood, 1988; for 
a recent review, see Polich, 2003). Our results are also 
consistent with those of Dehaene and colleagues (Dehaene 
et al., 1999; Naccache & Dehaene, 2001), who showed that 
200-400ms after the stimulus onset is critical to distinguish 
among different numerical operations with distinctive 
semantic implications. Based on this observation, we 
speculate that the difference in ERPs in our experiment 
probably was due to different working memory load. 
Specifically, when judging the winning chance of a certain 
poker hand, other poker hands (either from previous trials or 
by temporary construction) were used as anchors to build 
categories on the internal representation. Fewer anchors 
were needed in the coarser-scale condition. On the contrary, 
the finer-scale condition demanded more effort because 
more hands needed to be considered at the same time. This 
speculation is consistent with the participants’ oral report 
after the experiment. For example, one participant reported 
that he had to think of more hands with “nearby” rankings 
in the finer-scale condition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

General Discussion 
In sum, the findings in our experiment were consistent with 
our hypotheses of the internal representation of a coarser 
scale in intuitive judgment of event likelihood. The analyses 
of behavioral data suggested that if participants were only 
able to distinguish event likelihood with a coarser scale, a 
large portion of errors would be produced when they were 
forced to estimate probabilities with a finer scale. This kind 
of errors was manifested in both judgmental accuracy and 
consistency. The low accuracy level (close to random guess) 

and the low consistency level (close to zero) in the finer-
scale condition indicated that participants were not able to 
distinguish winning probabilities of poker hands in the 
increment of 10%. Therefore, if the internal scale indeed 
had a limited number of categories, most likely this number 
was not greater than 10. It is interesting to point out that in 
our experiment, there were 36 different hands at 18 equally 
distributed levels of winning probabilities. If these hands 
were presented externally at the same time in the order of 
their rankings, it is reasonable to assume that any participant 
can report probability values accurate to the 5% increment 
by anchoring and adjustment. Nevertheless, their poor 
performance in the finer-scale condition indicated that the 
number of anchors that can be processed internally was 
quite limited. Furthermore, the ERP difference occurred 
when participants were viewing identical displays, 
indicating that participants followed the experimental 
instruction in forming their estimates at different levels of 
refinement. And estimating by a finer scale appeared to 
require more computational effort.  

Note that the present study is still at its preliminary stage 
and there are many questions left to be answered. For 
example, more replications are needed and the ERP analyses 
can be extended such as comparisons over other brain areas 
and source localization. It would also be interesting to test 
someone who is an expert at poker and to see whether the 
performance would be better, especially in the finer-scale 
condition. Another example is that the model of a coarser 
internal scale can be further examined by manipulating the 
external representations, as previous studies indicated the 
important roles of the interaction between internal and 
external representations in human numerical cognition (e.g., 
Zhang & Norman, 1995; Zhang & Wang, in press). Upon 
further experiments and analyses, we believe that the 
present study will provide a better understanding of human 
intuitive probabilistic judgment. 
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