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ABSTRACT: Despite a large and rapidly growing body of
small molecule bioactivity screens available in the public
domain, systematic leverage of the data to assess target
druggability and compound selectivity has been confounded by
a lack of suitable cross-target analysis software. We have
developed bioassayR, a computational tool that enables
simultaneous analysis of thousands of bioassay experiments
performed over a diverse set of compounds and biological
targets. Unique features include support for large-scale cross-
target analyses of both public and custom bioassays, generation
of high throughput screening fingerprints (HTSFPs), and an optional preloaded database that provides access to a substantial
portion of publicly available bioactivity data. bioassayR is implemented as an open-source R/Bioconductor package available from
https://bioconductor.org/packages/bioassayR/.

■ INTRODUCTION

Diverse collections of small molecules have been screened over
the past decade against a wide array of distinct protein target
families. The resulting high throughout screening (HTS) data
are available in community driven databases such as PubChem
Bioassay, ChEMBL, ZINC, ChemDB, and many others (list in
Table S1 of the Supporting Information).1−4 As demonstrated
by many data mining efforts, these bioactivity resources provide
an opportunity for studying the selectivity patterns and
molecular mechanisms of small molecule−target interactions
on a broad scale.1,5−11 These insights have the potential to lead
to the discovery of drug candidates and protein target sites
relevant for medical or chemical genomics applications. The
data can also be used to identify and exclude drug candidates
with largely unselective binding properties (e.g., promiscuous
binders) that have been found to be of limited use to most
application areas.8,12,13 Moreover, the bioactivity data can be
used to develop multitarget treatments specific to one or
several cross-connected pathways; to identify alternative uses
for existing drugs; or to predict potential side and toxic
effects.14−16 Data from single target screens (i.e., a bioassay
with a specific target protein) can also be helpful for prioritizing
potential target sites in multiplexed or high-content screens,
where a specific target protein is usually unknown.
Furthermore, large-scale compound bioassay data can be used
to create an inventory of molecular functions and proteins that
are accessible or resistant to perturbations by small molecules.
These “druggability profiles” can be used to guide decision
processes in selecting the most efficient target sites for a specific
research application in drug discovery and other small molecule
driven research disciplines.17

Most of the small molecule bioactivity data available in the
above-mentioned public databases were generated by system-
atic screening efforts of the Molecular Libraries Program

(MLP), the Chemical Biology Program of the Broad Institute,
and a variety of smaller public efforts.18 The online interfaces of
these databases provide many useful search and download
options for focused analysis of a small number of molecules or
target proteins.1,2 Although several projects have developed
statistical methods and sample scripts applicable to cross-target
analysis, there is currently no general purpose software
infrastructure available to perform these tasks in a systematic
and fully customizable manner.5−9,13,19

To address this deficit, we have developed bioassayR, a
computational package for the statistical programming language
R that enables simultaneous analysis of numerous bioassay
experiments performed across diverse compounds and bio-
logical targets.20 bioassayR is distinct from existing tools for
analyzing high throughput screening data in several important
ways: (i) its focus on the simultaneous tracking and
comparative analysis of a large number of assays of distinct
experimental design and source; (ii) its flexible data structures
optimized for performance with large data and interoperability
with existing statistical software; (iii) its integration with
numerous R language cheminformatics and bioinformatics tools
curated by the Bioconductor and CRAN projects, including
ChemmineR, ChemmineOB, rcdk, cellHTS, fmcsR, and
eiR.20−26 For example, users can analyze their own HTS data
(e.g., processed with cellHTS) alongside public bioactivity data;
or process bioactivity fingerprints (HTSFPs) with function-
alities provided by ChemmineR. HTSFPs summarize the
activity of compounds across many protein targets. Several
studies have demonstrated their effectiveness in predicting and
categorizing bioactivity in a manner complementing rather than
overlapping with structure based predictions.27−33 In addition,
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they can be used as trainings data sets for predicting active
ligand-target pairs with supervised machine learning algo-
rithms.34,35 The HTSFP tools implemented in bioassayR will
generate fingerprints for any custom set of compounds and
targets, optionally merge assays with similar or identical targets,
and compare activity profiles by either continuous z-scores or
binary active/inactive values. The z-score based HTSFPs
exhibit greater predictive power in hit expansion experiments,
whereas binary HTSFPs require less computational overhead,
enabling all-against-all bioactivity profile comparison for
hundreds of thousands of compounds.30

■ METHODS AND IMPLEMENTATION

Software Design and Workflow Overview. bioassayR’s
data model is designed around four interconnected data objects
(R language S4 classes), each with an internal structure

optimized for different bioactivity analysis routines. They are
introduced below in more detail, and Figure 1 provides an
illustration. In short, the bioassay data is organized in an SQL
database called bioassayDB; data from single and many assays
are imported into bioassay and bioassaySet objects, respectively;
and the compound−target matrix summarizes the compound vs
target activities from many assays. The bioassayDB serves as a
large data repository that can efficiently organize and query
millions of assays simultaneously, whereas the other objects
facilitate analysis of a subset of these data selected to answer a
specific biological question. Table S2 in the Supporting
Information lists selected cross-target analysis functions that
query the data within these objects. Users can optionally use a
prebuilt bioassayDB database that contains publicly available
bioactivity data against a wide range of protein targets.

Figure 1. Design overview and workflow. bioassayR stores bioactivity data in four interconnected objects. (A) Data from a single bioassay
experiment is imported into a bioassay object. (B) Any number of bioassay objects can be loaded into the bioassayDB SQL database that is optimized
for time efficient searching. (C) Filter and query methods are available to identify compounds or assays of interest. These query results can be
imported into a bioassaySet object that stores activity data as a sparse matrix where columns represent compounds and rows assays (targets). This
organization facilitates many typical cross-target analysis routines, e.g., target selectivity analyses. (D) To reduce both redundancy and sparseness in
the data, assays involving the same or similar targets can be collapsed into a single row using the perTargetMatrix function.
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bioassay Object: Importing Data. The bioassay object
(Figure 1 section A) stores data from a single bioassay
experiment, and acts as a gateway for importing new assay data,
as well as for editing and investigating data from one assay at a
time. This object stores the assay identifier (aid), data source,
assay type, target species, scoring method, target identifiers,
target categories, and activity scores.
bioassayR provides users with the option of performing

analyses either on their own bioactivity data, on a prebuilt
database of public domain bioactivity data, or both simulta-
neously. Four options exist for importing data as a bioassay
object: (i) data in the standard PubChem CSV and XML
formats can be parsed with a built in function; (ii) data already
represented as an R data.f rame or tabular file with activity
values can be directly converted into a bioassay object; (iii) raw
screening data from a microtiter plate reader can be analyzed
using the cellHTS2 R package, and converted into a bioassay
object; (iv) extracting a single assay from an already existing
bioassayR database, such as the prebuilt PubChem BioAssay
database described below.26 All four options are demonstrated
with examples in the package documentation. Once repre-
sented as a bioassay object, these data can be viewed, edited, or
loaded into a bioassayDB database for analysis alongside other
assays.
bioassayDB Object: Multiple Assay SQL Database. The

bioassayDB object (Figure 1 section B) stores a connection to a
SQL database optimized for efficient aggregate search-based
analysis across multiple assays. Users can load, edit, or delete
individual bioassay objects, and then query these data. Many
analysis and query functions are provided to investigate the data
within a bioassayDB object (see Table S2 in the Supporting
Information). The database is contained within a single file that
can be easily shared among users. Internally, the database stores
data from a large number of individual bioassay objects, in
addition to target protein domain data, and target identifier
mappings. Multiple types of identifier mapping and annotation
data can be stored, for example to translate target identifiers
into those used by common databases such as UniProt, or to
annotate proteins by storing categorization data such as a
sequence-similarity clustering bin for each protein.36

bioassaySet Object: Storing Multiple Assays in a
Matrix. Query results from bioassayDB can be stored as a
bioassaySet (Figure 1 section C). This matrix-like object along
with its accessor methods abstracts complicated analysis tasks
across large numbers of compounds and bioassays. By
representing bioactivity data as a compound vs assay matrix,
the full range of matrix operations in R can be leveraged to
analyze these data efficiently. For example, rows can be
compared to compute the similarity between the activity
profiles of two molecules. Sparse matrix compression is utilized
to avoid unnecessary usage of system memory by untested
compound−target combinations. In a typical workflow, a user
will first query the database to find a list of compounds or
assays of interest, and then extract these into a bioassaySet for
further analysis.
To address questions of compound vs target bioactivity,

bioassayR can transform a bioassaySet into a compound−target
matrix by merging assays that share common or similar target
proteins, such as close orthologs from different species.
Replicates and similar-target assays can be summarized into
single values by either specifying a custom summary statistic, or
choosing among several provided. The compound vs target
matrix can be generated from either discrete “active” or

”inactive” activity categories, or from continuous activity scores
to serve as either binary or continuous numeric HTSFPs,
respectively. The scaleBioassaySet function will scale and center
continuous scores to create a z-score fingerprint. Optionally,
omitting inactive values from the discrete activity categories will
produce a matrix suitable for analysis with binary matrix
algorithms. This data structure can serve as a bipartite graph (or
bigraph) connecting compounds and targets, allowing users to
analyze these data with the numerous graph and network
analysis algorithms available for the R programming language.

Prebuilt PubChem BioAssay Database. To enable
efficient analyses across large numbers of compounds and
protein targets, we provide downloadable instances of the
bioassayDB database preloaded with public bioactivity data.
This frequently updated database file includes all screens from
PubChem BioAssay involving known target proteins. PubChem
BioAssay data has been chosen since it includes assays from
many sources such as ChEMBL, and therefore represents a
substantial portion of all publicly available bioactivity data. At
the time of this writing the data contains activity results from
roughly 1.2 million structurally distinct compounds tested
against protein 6339 targets. As many compound−target
combinations have not been tested, these data are sparse with
roughly half (572 947) of the compounds having screening
results for at least 10 distinct protein targets. Among these
“highly screened” compounds, 895 are currently FDA approved
drugs. PubChem BioAssay provides bioactivity data both as
continuous numeric scores, and active/inactive categories.
To extend the utility of these data, we provide and include

within the prebuilt database additional annotation details for
each protein target. The database includes both NCBI Protein
GI numbers and UniProt identifiers for all protein targets, Pfam
domains identified with the HMMER software, and amino acid
sequence similarity-based clustering performed with
kClust.36−39 The UniProt identifiers allow users to obtain
further annotation details including Gene Ontology (GO)
terms programmatically by connecting to external annotation
databases.40 The Pfam domain mappings provide groupings for
local similarities and across wider evolutionary distances,
whereas the sequence similarity cluster are more suitable for
identifying groups of sequences sharing a defined degree of
sequence similarity.
The included annotation data expand the usefulness of

bioassayR for several applications. For instance, the annotations
can be used for merging similar assays into a compound−target
matrix as described in the above “bioassaySet Object” section.
When searching for compounds active against a desired protein,
users can expand the search to include compounds found active
against protein targets that share sequence similarity, domains,
or GO terms with the query. This method can identify
compounds that are likely active against a target of interest,
even if little or no screening data exists for that specific target.
In drug discovery experiments where a specific protein target
has not yet been identified, these data can help identify protein
targets worth investigating based on presence of a specific
protein domain, molecular function, or orthologue that has
been previously found to be involved in the desired therapeutic
effect.

Identifying Compounds with Selective or Promiscu-
ous Bioactivity. Bioactive small molecules can be classified
according to the quantity of distinct molecular targets they are
active against. Target selective compounds bind to a small
number of target proteins, whereas “promiscuous binders”,
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indiscriminately bind to a large number of targets. Patterns of
target selectivity in widely used drugs can also be used as a
template for identifying drug candidates with similar selectivity
profiles.
Several bioassayR functions facilitate identification of target

selective compounds and the reverse, compound selective
targets, across a large set of bioassay experimental results. The
targetSelectivity function will return the target selectivity for a
query compound. To find compounds active against a target or
a set of targets in a pathway of interest, the function
activeAgainst will return all active compounds, whereas
selectiveAgainst will return only compounds most selective
against the specified target, along with a corresponding
selectivity score for each. To consider only compounds that
have been tested in numerous assays, the screenedAtLeast
function will identify compounds that have participated in a
specified minimum quantity of screens. To find all targets of a
query compound, the functions activeTargets and inactiveTargets
will return the list of active and inactive targets, respectively.
The crossReactivityProbability function uses a beta-binomial
statistical model to estimate the probability that a given
compound is a promiscuous binder.13

Clustering Small Molecules by Bioactivity Profile.With
bioassayR, large-scale screening data can be used to cluster
small molecules based on the similarity of their bioactivity
profiles across many target proteins. To cluster small molecules
by bioactivity, it is necessary to choose an appropriate similarity
measure, such as correlation coefficients that are appropriate for
continuous activity data, and the Jaccard or Tanimoto
coefficient for categorical or binary data.41 Next, the chosen
similarity measure is used to compute a distance matrix (d) for
all possible pairwise comparisons of bioactivity profiles, by
subtracting the similarity values (s) from one: d = 1 − s. The
distance matrix can then be used as direct input to a variety of
clustering algorithms, including hierarchical clustering, k-means
or multiple dimensional scaling (MDS).
The bioassayR clustering workflow starts by generating a

compound−target bioactivity matrix, as described above, with
either continuous or discrete category activity scores. For
continuous scores, several similarity functions available in R,
such as the base function cor can be used to create a distance
matrix based on Pearson correlation coefficients. The associated
ChemmineR package will create a distance matrix for binary
bioactivity fingerprints generated by bioassayR. Comparisons
among binary ChemmineR fingerprints have less CPU and
memory overhead than continuous z-score based comparisons,
and therefore are suitable for all-against-all comparisons of
larger compound sets.
By default, the bioassayR HTSFPs features resolve missing

(untested) activity values by assuming inactivity, where a “0” is
used for binary fingerprints, and a z-score of “0” is used for
continuous fingerprints. When computing the similarity
between two compound bioactivity profiles, this can lead to
false negatives (lower than the true similarity value) if the
compounds share few common screened targets.30 A more
accurate estimate of similarity can be obtained by using
machine learning methods that impute the missing values;
however, this introduces false positives that are often less
desirable than false negatives in drug discovery efforts.30 The
bioassayR function screenedAtLeast can limit false negatives
without introducing false positives by including only highly
screened compounds in the analysis. Alternatively, the
compound vs target matrix can be subset with a biclustering

algorithm to limit similarity comparison to a densely screened
subset of a larger sparse compound vs target matrix. Lastly,
bioassayR also provides a similarity function (trinarySimilarity)
that avoids assuming inactivity for missing compound−target
activity values by operating on a trinary bioactivity matrix that
uses a “0” for untested or missing values, a “1” for inactive
values, and a “2” for active values. This function computes
similarity based only on the mutually screened targets between
two compounds, and returns an “NA” if insufficient shared
assays exist to make a meaningful comparison. The strategy of
performing the comparison only on mutually screened targets,
with a minimum threshold for informative data was inspired by
the continuous score “Assay Performance Profile Similarity”
metric published by Dancǐḱ et al.13

■ RESULTS AND DISCUSSION
In the Supporting Information, we highlight three example use
cases demonstrating the utility of bioassayR. First, we
investigate the diversity of public screening data provided by
PubChem BioAssay, and show that these data contain
compounds active against a large number of novel protein
targets that are not currently accessible with FDA approved
drugs. Second, we use bioassayR to cluster FDA approved
drugs by bioactivity profiles as well as molecular structure to
demonstrate that many drugs exhibit distinct bioactivity
patterns that cannot be inferred from structure alone. Third,
we demonstrate how bioassayR can be used to enrich a
screening library with active compounds and how to guide the
time-consuming target site identification processes in high-
content screening. The vignette (user manual) of the package
contains additional examples including loading custom screen-
ing data, identifying target selective compounds, and perform-
ing custom database queries.
It is important to point out that HTS data are noisy and error

prone due to several causes including experimental noise, and
incorrect annotation. Although public bioactivity databases
have implemented strategies to identify and reduce errors, we
caution bioassayR users to expect some level of error and mis-
annotation depending on the source and type of data used.42

The impact of these errors on analysis results can be minimized
by incorporating replicates and confirmatory screening results
from different sources using the bioassayR functions described
above. If appropriate, error can also be reduced by limiting
analysis to the subset of public bioactivity data that has been
manually curated and carefully annotated with a machine
readable, nonambiguous structured vocabulary from sources
such as the BioAssay Research Database (BARD).11,43

The bioassayR package is a flexible computational environ-
ment for simultaneous analysis of large numbers of high-
throughput small molecule bioactivity screens. By organizing
large bioactivity data for rapid access and manipulation within
the R programming language, bioassayR leverages the
substantial breadth of these data as a reference to identify
regions of the genome and proteome accessible to small
molecule probes, elucidate mechanisms of action for bioactive
molecules, and identify off-target effects that currently lead to a
high attrition rate in drug discovery efforts.44 bioassayR
provides features to inform the design and analysis of
bioactivity and drug discovery experiments; for example to
build compound libraries enriched for a desired bioactivity,
reducing the search space for effective drugs, druggable protein
targets, and chemical genetic probes. bioassayR has functions to
identify compounds that have demonstrated activity against
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targets and pathways of interest, or other targets with sequence
or annotation similarity to targets of interest. To build drug
discovery libraries with reduced chances of off-target effects,
bioassayR will rank compounds for selectivity against a desired
target and exclude compounds that show activity against a large
number of other targets. To identify compounds or
combinations of compounds likely to exhibit a desired
polypharmacology (activity against multiple targets), bioassayR
will identify all active compounds among a set of query targets.
To assess the potential druggability of protein targets,
bioassayR will report the quantity and target selectivity of
known active drugs and other compounds. To identify
compounds with activity similar to existing drugs or other
compounds with a known utility, the HTSFP features enable
clustering by cross-target activity profiles. Custom screening
data can also be analyzed side-by-side with public data to study
the selectivity profiles among newly identified actives across
numerous targets, or to assess the level of agreement with any
public data that the custom assay replicates.
In addition to providing numerous analysis functions,

bioassayR also serves as a bridge to facilitate analysis of large
screening data with other machine learning, statistical inference,
network analysis, and bioinformatics tools. Many of these tools
support the output formats produced by bioassayR with little or
no changes. In conclusion, bioassayR lowers the barrier to
address questions related to the target selectivity of small
molecules with large-scale bioactivity data.
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