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Simultaneous Con�dence Bands and Hypothesis

Testing in Varying-CoeÆcient Models�

Jianqing Fan Wenyang Zhang

Department of Statistics Department of Statistics

University of California The Chinese University of Hong Kong

Los Angeles, CA 90095-1554 Shatin, Hong Kong

Abstract

Regression analysis is one of the most commonly used techniques in statistics. When the

dimension of independent variables is high, it is diÆcult to conduct eÆcient nonparametric

analysis straightforwards from the data. As an important alternative to the additive and other

nonparametric models, varying-coeÆcient models can reduce the modeling bias and avoid \curse

of dimensionality" signi�cantly. In addition, the coeÆcient functions can easily be estimated

via a simple local regression. Based on local polynomial techniques, we provide the asymptotic

distribution for the maximum of the normalized deviations of the estimated coeÆcient functions

away from the true coeÆcient functions. Using this result and the pre-asymptotic substitution

idea for estimating biases and variances, simultaneous con�dence bands for the underlying co-

eÆcient functions are constructed. An important question in the varying coeÆcient models is

if an estimated coeÆcient function is statistically signi�cantly di�erent from zero or a constant.

Based on newly derived asymptotic theory, a formal procedure is proposed for testing whether

a particular parametric form �ts a given data set. Simulated and real-data examples are used

to illustrate our techniques.

KEY WORDS: Varying-coeÆcient models, simultaneous con�dence band, maximum de-

viation, bandwidth, bias, variance.
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1 Introduction

Regression analysis is one of the most commonly used techniques in statistics. The aim of the anal-

ysis is to explore the association between dependent and independent variables and to identify their

impact on the dependent variable. If the mean response is linear, the linear regression technique

is very useful. However, this assumption is restrictive, and it is not always granted. Motivated by

various applications, many useful data-analytic modeling techniques have been proposed to extend

the traditional parametric models; see for example the books by Hastie and Tibshirani (1990),

Green and Silverman (1994), Wand and Jones (1995) and Fan and Gijbels (1996), among others.

For high-dimensional regression analysis, it is diÆcult to make eÆcient statistical analysis straight-

forwards from the data without imposing some forms on the model. Many powerful approaches

have been incorporated to avoid so-called \curse of dimensionality". Examples include additive

modeling (Breiman and Friedman, 1995; Hastie and Tibshirani 1990), low-dimensional interaction

modeling (Friedman 1991, Gu and Wahba, 1992, Stone et al. 1997), multiple-index models (H�ardle

and Stoker 1990, Li 1991), and partially linear models (Wahba 1984; Green and Silverman 1994),

and their hybrids (Carroll et al. 1997), among others. An important alternative to the additive and

other models is the varying-coeÆcient model (Cleveland, et al. 1991 and Hastie and Tibshirani,

1993), in which the coeÆcients of the linear models are replaced by smooth nonparametric func-

tions and hence the regression coeÆcients are allowed to vary as functions of other factors. The

varying-coeÆcient model is de�ned by the following linear model:

Y =

pX
j=1

aj(U)Xj + "; (1.1)

for given covariates (U;X1; � � � ;Xp)
0 and response variable Y with

E("jU;X1; � � � ;Xp) = 0;

and

Var("jU;X1; � � � ;Xp) = �2(U):

By selecting X1 � 1, the model allows varying intercept in the model. Due to generality of the

functions aj(U), the modeling bias can be reduced signi�cantly while the \curse of dimensionality"

is avoided. Moreover, it is well-recognized that (Hastie and Tibshirani, 1993 and its discussion),

the model has wide applications. It is a useful extension of thresholding models in Tong (1990) and

Chen and Tsay (1993) in the time series setup. It also appears natural in the longitudinal data

analysis where one wishes to explore the extent to which covariates a�ect response changing over

time. See for example Hoover et al. (1997), Wu, Chiang and Hoover (1998), and Fan and Zhang
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(2000) for novel applications of the model to longitudinal data. The varying coeÆcient models are

also useful for analyzing functional types of data. See Ramsay and Silverman (1997) and Brumback

and Rice (1998) for details.

Assuming the coeÆcient functions aj(U) possess similar degree of smoothness, Hastie and Tib-

shirani (1993) proposed an estimate for aj(U) via the dynamic linear model (West et al. 1985; West

and Harrison 1989) and an approach based on penalized least squares (Wahba 1990). Alternatively,

local polynomial �tting is an attractive method both from theoretical and computation point of

view. The idea of local polynomial regression has been around for a long time. It was systemati-

cally studied by Stone (1977, 1980) and Cleveland (1979). Recent work on local polynomial �tting

includes Fan (1993), Ruppert and Wand (1994), Fan and Gijbels (1996), among others, in which a

detailed picture is given on the merits of local polynomial �tting: the techniques have high minimax

eÆciency; they correct automatically excessive biases at boundary without using boundary kernels

and adapt to various design points.

Based on local polynomial modeling, Fan and Zhang (1997) derived the asymptotic mean-square

errors for the one-step and two-step procedures. In longitudinal data analysis, Wu et al. (1998)

derived pointwise asymptotic normality for kernel smoothers and constructed con�dence regions

based on Bonferroni's adjustments. Zhang and Lee (1998) established the pointwise asymptotic

normality of the estimated coeÆcient functions under model (1.1). Their results can be only used

to construct the pointwise con�dence intervals. This is unsatisfactory in many applications. For

example, investigators often want to know if an estimated coeÆcient function is signi�cantly away

from zero or if an estimated coeÆcient function is really varying. This amounts to testing if the

whole function is zero or constant. Hence a con�dence band is needed for this case. In the present

paper, we provide the asymptotic distributions for the maximum of the normalized deviations of

the estimated coeÆcient functions from the true coeÆcient functions. The result is deeper than

the pointwise asymptotic normality of Zhang and Lee (1998) and has other important statistical

applications. With the maximum deviation result, one needs to estimate the bias and variance

of the estimated coeÆcient functions. Our method is inspired by the pre-asymptotic substitution

method of Fan and Gijbels (1995) in a nonparametric regression setup. It is demonstrated that

the resulting simultaneous con�dence intervals have approximate right coverage probability. This

statement is also veri�ed by our simulation studies.

An important inference question is if the coeÆcient function aj(U) in model (1.1) is zero or

not so that one can assess if the variable Xj is statistically signi�cant or not. The question can

easily be answered by examining if the function zero is in the simultaneous con�dence band or

not. Further, one may naturally ask if a particular coeÆcient function aj(�) is really varying. This
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amounts to testing if aj(�) = �, an unknown constant. A semiparametric method of estimating �

is proposed and the asymptotic distribution of the test statistic is derived based on the maximum

deviation. The idea is extended readily to testing a parametric null hypothesis: aj(u) = a0(u; �),

where a0(u; �) is a family of parametric models. While the testing statistic here is based on the

maximum deviation, which appear natural in our context of constructing simultaneous con�dence

bands, other methods are also applicable in our context. In particular, the sieve likelihood method

proposed recently by Fan et al. (1999) was demonstrated to be a powerful and wide-applicable

nonparametric test. For various useful ideas of nonparametric hypothesis testing, see the recent

book by Hart (1997).

The paper is organized as follows. In section 2, we briey introduce the local polynomial �tting

technique and its necessary notation. The asymptotic distributions of the normalized maximum

deviations of the estimated coeÆcient functions from the true coeÆcient functions are derived. The

result is used to construct simultaneous con�dence intervals in Section 4, where techniques for esti-

mating biases and variances are introduced. The simultaneous con�dence bands are demonstrated

to have right coverage probability asymptotically and empirically. In Section 5, we introduce various

testing statistics for several hypothesis testing problems based on the maximum deviation theory.

The null distributions of these testing statistics are derived. Section 6 analyzes an environmental

data. Technical proofs are relegated to Section 7.

2 Estimation methods

Throughout this article, we assume that the coeÆcient functions aj(�); j = 1; � � � ; p; in model (1.1)

has q+1 continuous derivatives. Given a random sample f(Ui;Xi1; � � � ; Xip; Yi); i = 1; � � � ; ng from

model (1.1), the local polynomial modeling of order q will be adopted to estimate the coeÆcient

functions aj(�), j = 1; � � � ; p. It has been shown in Ruppert and Wand (1994) and Fan and Gijbels

(1996) that local polynomial �ts with odd orders outperform those with even orders. Hence, q is

taken to be an odd integer. For each given point u0, we approximate the function locally as

aj(u) �

qX
l=0

1

l!
a
(l)

j
(u0)(u� u0)

l; (2.1)

for u in a neighborhood of u0, where a
(l)

j
(�) is the lth derivative of aj(�). This leads to the following

local least-squares problem: Minimize

nX
i=1

8<:Yi �
pX

j=1

qX
k=0

cj;k(Ui � u0)
kXij

9=;
2

Kh(Ui � u0); (2.2)
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with respect to cj;k, j = 1; � � � ; p, k = 0; � � � ; q, for a given kernel function K and a bandwidth h,

where Kh(�) = K(�=h)=h: Let

Y = (Y1; � � � ; Yn)
T ; W = diag (Kh(U1 � u); � � � ;Kh(Un � u)) ;

and

X =

0BBBB@
X11 � � � X11(U1 � u)q � � � X1p � � � X1p(U1 � u)q

...
. . .

...
. . .

...
. . .

...

Xn1 � � � Xn1(Un � u)q � � � Xnp � � � Xnp(Un � u)q

1CCCCA :

From the solution to the least-squares problem (2.2), we obtain the estimator of a1(u) as:

â1(u) = eT
1;�

�
X

T
WX

�
�1

X
T
WY; (2.3)

where ei;j denotes the unit vector of length j with 1 at position i, and � = p(q + 1). Estimate for

the other components can be obtained similarly.

The variance �2(u) is a quantity that describes the noise level. Apart from the intrinsic interest

as a parameter of the model, an estimator of this variance is essential in model selection and in

carrying out statistical inferences about the coeÆcient functions, such as construction of con�dence

intervals and hypothesis testing. For �2(u), we use the normalized weighted residual sum of squares

from the local polynomial �t of order q to estimate it:

�̂2(u) =
1

tr

�
W�

�
X

T
WX

�
�1

X
T
W

2
X

� nX
i=1

(Yi � Ŷi)
2Kh(Ui � u); (2.4)

where

Ŷ = (Ŷ1; � � � ; Ŷn)
T = X

�
X

T
WX

�
�1

X
T
WY:

Throughout this paper, we will use the following notation:

�i =

Z
tiK(t)dt; u = (�q+1; � � � ; �2q+1)

T ; and �i =

Z
tiK2(t)dt:

Let � be a (q + 1) � (q + 1) matrix with the (i; j)th element �i+j and ~� be the matrix similar

to � except replacing �i by �i. Denote by D the observed covariates vector, namely

D = (U1; � � � ; Un;X11; � � � ; X1n; � � � ;Xp1; � � � ;Xpn)
T :

Set


(u) = E
n
(X1; � � � ;Xp)

T (X1; � � � ;Xp)jU = u
o
; � = ("1; � � � ; "n)

T ;

With the above notation, we are ready to present our results.
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3 Limiting distributions of maximum deviations

Without loss of generality, we assume that we are interested in constructing the simultaneous

con�dence intervals on the interval [0; 1]. For completeness, we present explicitly the following

technical conditions.

(a) For an s > 2, j = 1; � � � ; p, EjY j2s <1, and EjXj j
2s <1.

(b) The density function of U , f(u), is continuous and positive on the interval [0; 1].

(c) The matrix 
(u) is non-singular and �2(u) 6= 0. Further, assume that the elements in 
(u)

and the function �(u) are continuous.

(d) For j = 1; � � � ; p, E(X2s
j
jU = u) is bounded.

(e) The second derivative of f(u) and the second derivative of �2(u) are bounded.

(f) The kernel function K(z) is a symmetric density function, and is absolutely continuous on its

support set [�A; A].

(f1) K(A) 6= 0 or

(f2) K(A) = 0,K(z) is absolutely continuous andK2(z), (K 0(z))2 are integrable on the (�1; +1).

(g) For j = 1; � � � ; p, a
(q+1)

j
(�) is continuous.

For any function g(u), de�ne kgk1 = sup
u2[0; 1]

jg(u)j and for any matrix A(u) = (aij(u))p, set

kAk1 =

0@ pX
i=1

pX
j=1

kaijk
2

1

1A1=2

:

We �rst introduce a useful lemma which will be applied to prove our main result. It is interesting

in its own right. Let (U1; �1), � � �, (Un; �n) be independent and identically distributed random

sample from (U; �). We assume that U and the kernel function K(�) satisfy the above regularity

conditions, and � satisfy

(a') for an s > 2, Ej�js <1;

(b') the function jr(u)j is bounded away from zero for u 2 [0; 1], and has a bounded �rst derivative

on [0; 1], where r(u) = E(�2jU = u);

(c') sup
x

R
jyjsf(x; y)dy = cs <1, where f(x; y) is the joint density function of U and �.
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Let

m(u) =
1p

nhf(u)r(u)

nX
i=1

�iK

�
Ui � u

h

�
;

and

M(u) =m(u)�Em(u):

For the process M(u), we have the following lemma:

Lemma 1 Under assumptions (a'){(c') and (e), (f), if h = n�b, for some 0 < b < 1 � 2=s, we

have

P
n
(�2 log h)1=2

�
�
�1=2

0
kMk1 � dn

�
< x

o
�! exp

�
�2e�x

	
where with �0 =

R
K2(t)dt,

dn = (�2 log h)1=2 +
1

(�2 log h)1=2

(
log

K2(A)

�0�1=2
+
1

2
log log h�1

)
;

if assumption (f1) holds, and

dn = (�2 log h)1=2 +
1

(�2 log h)1=2
log

�
1

4�0�

Z
(K 0(t))2dt

�
;

if assumption (f2) is valid.

For kernel density estimation, Bickel and Rosenblatt (1973) obtained the asymptotic distribution

of the maximum of the normalized deviation of the estimate from its expected value. Lemma 1 is

a parallel result for regression. From Lemma 1, we can obtain

sup
u2D

����� 1n
nX

i=1

[Kh(Ui � u)�i �E fKh(Ui � u)�ig]

����� = OP

 �
log(1=h)

nh

�1=2
!
;

which was obtained by Mack and Silverman (1982) under weaker conditions. See Lemma 2 in

Section 7.

The proof of Lemma 1 can be obtained by the technique of the proof for Lemma 3 in Gruet

(1996) and the technique in Bickel and Rosenblatt (1973).

From now on, let

� = eT
1;p


�1(X1; � � � ;Xp)
T "; r1(u) = E(�2jU = u) = eT

1;p

�1(u)e1;p�

2(u);

�1;0 =

Z
K2

1
(t)dt; K1(t) = eT

1;q+1
��1(1; t; � � � ; tq)TK(t):

Note that the even positions of eT
1;q+1

��1 consist of zeros (see Fan, Gijbels, Hu, and Huang 1996).

Thus, K1(t) is symmetric. De�ne the bias of an estimated coeÆcient as

bias(âj(u)jD) = E(âj(u)jD) � aj(u):

We now give our main theorem as follows.
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Theorem 1 Under the assumptions (a)-(g) and h = n�b, 1=(2q + 3) � b < 1� 2=s, we have

P

�
(�2 log h)1=2

�
�
�1=2

1;0

�nhr�1

1
f
�
1=2 �

â1 � a1 � bias(â1jD)
�

1

� dv;n

�
< x

�
�! exp

�
�2e�x

	
;

where dv;n is de�ned the same as dn in Lemma 1, except �0 is now replaced by �1;0 and K(t) is

replaced by K1(t).

Remark 1 If the supremum in Theorem 1 is taken on an interval [c; d] instead of [0,1], Theorem

1 continues to hold under suitable conditions, by using transformation arguments. The result reads

as follows:

P

(
(�2 logfh=(d � c)g)1=2

 
�
�1=2

1;0
sup

u2[c;d]

�����nhr�1

1
f
�
1=2 �

â1 � a1 � bias(â1jD)
������ ~dv;n

!
< x

)
�! exp

�
�2e�x

	
;

where ~dv;n is the same as dv;n in Theorem 1 except that h is now replaced by h=(d� c).

4 Applications to constructing con�dence bands

4.1 Con�dence bands

Since f(u), 
(u), �2(u) and bias(â1(u)jD) are unknown, Theorem 1 can not be directly used to

construct the simultaneous con�dence band for a1(u). Now, we give an estimating procedure for

these unknown quantities.

By (2.3), the bias is given by

bias(â1(u)jD) = eT
1;�

�
X

T
WX

�
�1

X
T
W�;

where

� = (�1; � � � ; �n)
T ; �i =

pX
j=1

 
aj(Ui)�

qX
k=0

1

k!
a
(k)

j
(u)(Ui � u)k

!
Xij :

Following the pre-asymptotic substitution method of Fan and Gijbels (1995), the bias can be

approximated by

e1;�

�
X

T
WX

�
�1

X
T
W�

using the Taylor expansion, where the i-th element of the n� 1 vector � equals to

pX
j=1

�
1

(q + 1)!
a
(q+1)

j
(u)(Ui � u)q+1 +

1

(q + 2)!
a
(q+2)

j
(u)(Ui � u)q+2

�
Xij :
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Moreover, for j = 1; � � � ; p, by local polynomial �t of order q + 2 with an appropriate pilot band-

width h� ( = O
�
n�1=(2q+5)

�
, which is optimal for estimating a

(q+1)

j
), we can obtain the estimators

â
(q+1)

j
(u) and â

(q+2)

j
(u). This gives an estimator of bias(â1(u)jD) as follow:

dbias(â1(u)jD) = e1;�

�
X

T
WX

�
�1

X
T
W�̂ ;

where the ith element of the n� 1 vector �̂ equals to

pX
j=1

�
1

(q + 1)!
â
(q+1)

j
(u)(Ui � u)q+1 +

1

(q + 2)!
â
(q+2)

j
(u)(Ui � u)q+2

�
Xij : (4.1)

As for the unknown quantities f(u), 
(u) and �2(u), a natural strategy is to estimate them

separately, and then replace them by their corresponding estimators in Theorem 1. This strategy

will involve too much asymptotic substitutions which are not elegant and accurate.

Except for a constant factor, nhr�1

1
(u)f(u) in Theorem 1 is the asymptotic variance of â1(u).

Hence, it can be directly estimated from its pre-asymptotic counterpart. To see this, note that

Var(â1(u)jD) = eT
1;�

�
X

T
WX

�
�1
�
X

T
W	WX

� �
X

T
WX

�
�1

e1;�;

where 	 = diag(�2(U1); � � � ; �
2(Un)). Let G = Ip
diag(1; h; � � � ; h

q). Using Lemma 2 in section 7,

and by a simple calculation, we havehnG�1
X

T
W	WXG

�1
� �2f

 ~�


1

= OP

 �
log(1=h)

nh

�1=2

+ h

!
:

This together with (7.2) and (7.3) in section 7, using the properties of Kronecker product, by simple

calculation, we obtain

Var(â1(u)jD) =
eT
1;q+1

��1~���1e1;q+1

nhf(u)
r1(u)

 
1 +OP

 �
log(1=h)

nh

�1=2

+ h

!!
; (4.2)

uniformly for u 2 [0; 1]. Note that

eT
1;q+1

��1~���1e1;q+1 = �1;0:

Thus, the quantity �1;0

n
nhf(u)

o
�1

r1(u) is naturally approximated by Var(â1(u)jD).

The Var(â1(u)jD) can be approximated by

eT
1;�

�
X

T
WX

�
�1
�
X

T
W

2
X

� �
X

T
WX

�
�1

e1;��
2(u);

using the approximate local homoscedasticity. The unknown conditional variance �2(u) can be

estimated by using (2.4). To take advantage of the pilot estimation in assessing the bias, we can
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estimate �2(u) by the weighted residual sum of squares from a local (q + 2)-order polynomial �t

with bandwidth h�, resulting in

dVar(â1(u)jD) = eT
1;�

�
X

T
WX

�
�1
�
X

T
W

2
X

��
X

T
WX

�
�1

e1;��̂
2(u): (4.3)

This estimate is a by product from our pilot estimation of the bias. It involves less asymptotic

substitution than separate estimation procedure and hence would expect to make better estimate

of the variance. The above method can be justi�ed by the following asymptotic result.

Theorem 2 Under the conditions of Theorem 1, we have

P

�
(�2 log h)1=2

�nVar(â1jD)o�1=2�
â1 � a1 � bias(â1jD)

�
1

� dv;n

�
< x

�
�! exp

�
�2e�x

	
:

Furthermore, if a
(q+2)

j
(�) and �00(�) are continuous on [0; 1] and the pilot bandwidth h� is of order

n�1=(2q+5)
, then

P

�
(�2 log h)1=2

�ndVar(â1jD)o�1=2�
â1 � a1 � dbias(â1jD)�

1

� dv;n

�
< x

�
�! exp

�
�2e�x

	
;

provided that nh2q+4 log3 h! 0.

Theorem 2 gives the following 1� � con�dence interval of a1(u) on [0; 1]:

�
â1(u)� dbias(â1(u)jD)��1;�(u); â1(u)� dbias(â1(u)jD) + �1;�(u)

�
;

where

�1;�(u) =
�
dv;n +

h
log 2� log f� log(1� �)g

i
(�2 log h)�1=2

�ndVar(â1(u)jD)o1=2 :
That is, in the interval [0; 1], the probability of the true curve a1(u) sandwiched between the curves

â1(u)�dbias(â1(u)jD)��1;�(u) and â1(u)�dbias(â1(u)jD)+�1;�(u) is 1��. The con�dence band

for other components can be obtained similarly.

4.2 Simulations

In this section, we use two simulated examples to illustrate our method for constructing simul-

taneous con�dence bands. The empirical coverage probabilities are observed. In both simulated

models, we use model (1.1) with p = 2, where X1 and X2 are normally distributed with correlation
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coeÆcient 2�1=2, U follows a uniform distribution on [0; 1] and " � N(0; �2). Further, U; " and

(X1; X2) are independent. The coeÆcient functions are taken as

Example 1: a1(u) = cos(2�u) a2(u) = 4u(1 � u)

Example 2: a2(u) = sin(2�u) a2(u) = 4u(1 � u):

For each simulated example, we took n = 500 and noise to signal ratio about 1:5, namely

�2 = 0:2VarfE(Y jU;X1; X2)g:

The local linear �t with the Epanechnikov kernel K(t) = 0:75(1� t2)+ was used for estimating

the regression coeÆcient functions. 95% simultaneous con�dence bands are considered. The band-

width is selected by a two-stage method based on residual squares criterion (RSC) (Zhang and Lee,

1998). The original idea of this method was proposed by Fan and Gijbels (1995). It is well known

that it is diÆcult to estimate the bias since the bias involves high-order derivatives. Our modi�ed

method is to use the two-stage method to select the bandwidth ĥopt for estimating the coeÆcient

functions, and then use 0:5ĥopt as the bandwidth for constructing con�dence bands. With this

small bandwidth, we ignore the bias in the construction of simultaneous con�dence band.

Table 1: Coverage probabilities based on 500 simulations

� = 0:01 � = 0:05

Coverage probabilities for a1(u) a2(u) a1(u) a2(u)

Example 1 0.99 0.99 0.91 0.94

Example 2 0.99 0.99 0.92 0.92

Table 1 summary the empirical coverage probabilities based on 500 simulations for � = 0:01

and 0:05. The Monte Carol errors are of size
p
:95� :05=500 � 0:01 for � = 0:05. The coverage

probabilities are quite close to the claimed con�dence levels. Figure 1 depicts typical simultaneous

con�dence bands. The lengths of the simultaneous con�dence bands are 3.17 times as large as the

estimated standard errors.

5 Application to hypothesis testing

For varying-coeÆcient models, we often wish to know if an estimated coeÆcient function is signi�-

cantly away from zero or if the estimated coeÆcient function is really varying. More generally, we

11
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Figure 1: Typical 95% simultaneous con�dence bands for Example 1 (top panel) and Example 2 (bottom

panel). The solid curves are the true curves, and the dashed curves are the 95% con�dence bands.

wish to test

H0 : aj(u) = a0(u) ! H1 : aj(u) 6= a0(u)

for a given a0(�). A natural test is to see if a0(�) falls in the con�dence band or not. This is

equivalent to using the test statistic

(�2 log h)1=2
�ndVar(âj jD)o�1=2�

âj � a0 � dbias(âj jD)�
1

� dv;n

�
and rejecting H0 when the test statistic exceeds the asymptotic critical value c� = � log(�0:5 log �).

The above procedure extends readily to the composite null hypotheses. Consider the testing

12



problem:

H0 : aj(u) = a0(u; �) ! H1 : aj(u) 6= a0(u; �)

where � is an unknown parameter. We �rst estimate � via for example the least-squares method.

If the estimator �̂ of � satis�es

ka0(�; �̂)� a0(�; �)k1 = oP

�
hq+1(log h)�1

�
;

which is usually true since �̂ can be estimated at root-n rate, then we can apply Theorem 2 to �nd

the null distribution of the test statistic

(�2 log h)1=2
�ndVar(âj jD)o�1=2�

âj � a0(�; �̂)� dbias(âj jD)�
1

� dv;n

�
:

This test amounts to checking if a0(�; �̂) falls in the con�dence band.

The following is devoted to testing if the coeÆcients are really varying. Without loss of gener-

ality, we consider the problem

H0 : ap(u) = c ! H1 : ap(u) 6= c: (5.1)

Firstly, we propose a method to estimate c under the null hypotheses. Under the null hypotheses,

the model is

Y =

p�1X
j=1

aj(U)Xj + cXp + ":

Set

Xi =

0BBBB@
X11 � � � X11(U1 � Ui)

q
� � � X1p � � � X1p(U1 � Ui)

q

...
. . .

...
. . .

...
. . .

...

Xn1 � � � Xn1(Un � Ui)
q
� � � Xnp � � � Xnp(Un � Ui)

q

1CCCCA
and

Wi = diag(Kh(U1 � Ui); � � � ;Kh(Un � Ui)):

The estimate procedure for c consists of two steps. In the �rst step, we ignore the fact that c

is a constant, and treat it as an unknown function ap(U). Based on local polynomial modeling, we

obtain an estimator âp(�). Each of fâp(Xi)g is an estimator of the unknown parameter c under the

null hypothesis. In the second step, we average over these estimates to obtain a stabilized overall

estimator:

ĉ =
1

n

nX
i=1

âp(Ui) =
1

n

nX
i=1

eT`;�(X
T

i WiXi)
�1
X

T

i WiY;

where ` = (p� 1)(q+1)+1. Here for simplicity of presentation, we assume that the design density

U has support on [0; 1] and it is continuous and positive on [0; 1]. Otherwise, a weighting scheme

is needed so that only those U 0

i
s in the positive density regions are used. For the estimator ĉ, we

have the following theorem.
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Theorem 3 Under the assumptions (a)-(d) and (g), if nh= log h �!1, then the conditional bias

of ĉ is

bias(ĉjD) = OP

�
hq+2 + hq+1

�
� log h=nh

�
1=2�

;

and the conditional variance of ĉ is

Var(ĉjD) =
1

n

n
eT
1;q+1

��1(�0; � � � ; �q)
T
o
2

E
n
eTp;p


�1(U)ep;p�
2(U)

o�
1 + oP (1)

�
:

Based on Theorems 2 and 3, we test the problem (5.1) by computing the statistic

(�2 log h)1=2
�ndVar(âpjD)o�1=2�

âp � ĉ� dbias(âpjD)�
1

� dv;n

�
and rejecting H0 for large values of the test statistic.

6 Application to an environmental data set

We now illustrate the methodology via an application to an environmental data set. The data

set consists of a collection of daily measurements of pollutants and other environmental factors in

Hong Kong between January 1, 1994 and December 31, 1995 (Courtesy of Professor T.S. Lau). Of

interest is to study the association between levels of pollutants and number of daily total hospital

admissions for circulation and respiration and to examine the extent to which the association varies

over time. We consider the relation among the number of daily hospital admission (Y ) and level

of pollutant Sulphur Dioxide X2 (in �g=m3), level of pollutant Nitrogen Dioxide X3 (in �g=m3),

level of dust X4 (in �g=m3). We took X1 = 1 | the intercept term, and U = t = time. We �rst

centered each of the three pollutants by their averages. For simplicity of notation, the resulting

variables are still denoted as X2, X3 and X4. The model

Y = a1(t) + a2(t)X2 + a3(t)X3 + a4(t)X4 + "

is used to �t the given data. Because of centering, the intercept can be interpreted as the expected

number of admissions when pollutants are set at their averages. In our applications, the Epanech-

nikov kernel was employed and the bandwidths were chosen to be 20% of the interval length. The

estimated coeÆcient functions along with the 95% simultaneous con�dence bands were depicted in

Figure 2.

A natural question is if these estimated coeÆcient functions are statistically signi�cantly dif-

ferent from zero, and if so, whether they are really time varying. We now use our con�dence-band

method to answer this question. Table 2 presents the P-values for the test.
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Figure 2: 95% simultaneous con�dence bands for coeÆcient functions. The solid curves are the estimated

coeÆcient functions, and the dashed curves are the 95% con�dence bands.

From Table 2, one can see that the covariate X2, Sulphur Dioxide, is not signi�cant at level 5%.

In fact, from the Figure 2, the coeÆcient function for this variable is close to zero on the whole

interval. All other variables are statistically signi�cant, but the variable X4, the level of dust, is not

very highly signi�cant. Indeed, by choosing the bandwidth to be 25% of the time interval under

the study, the P-value for testing whether X4 is signi�cant or not becomes 0.048. The e�ects of

intercept and Nitrogen Dixide X3 are really varying with time, as shown in Table 2.

We now delete the insigni�cant variable X2 and �t the varying coeÆcient model again. Figure

3 summarizes the result by plotting the intercept a1(t), which can be interpreted as the trend

of hospital admissions (the expected number of admissions when the pollutants are set at their

15



Table 2: P-values for testing if a coeÆcient function is zero or if a coeÆcient

function is really time-varying

Null hypothesis a1(u) a2(u) a3(u) a4(u)

H0 : aj(�) = 0 0.0000 0.0999 0.0111 0.0287

H0 : aj(�) = c 0.0000 0.3440 0.0135 0.0761
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Figure 3: The expected number of admissions are decomposed as the trend (left) and the contributions due

to pollutants.

averages) and the �tted function â3(t)X3(t)+ â4(t)X4(t), which can be understood as the expected

number of hospital admissions due to pollution.

7 Proof

To obtain the proof of the theorems, the following lemma, which follows immediately from a result

in Mack and Silverman(1982), is required.

Lemma 2 Let (X1; Y1); � � � ; (Xn; Yn) be i.i.d random vectors, where Yi's are scalar random vari-

ables. Assume further that Ejyjs < 1 and sup
x

R
jyjsf(x; y)dy < 1, where f denotes the joint

density of (X;Y ). Let K be a bounded positive function with a bounded support, satisfying a Lips-
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chitz condition. Then

sup
x2D

����� 1n
nX
i=1

[Kh(Xi � x)Yi �E fKh(Xi � x)Yig]

����� = OP

 �
log(1=h)

nh

�1=2
!
;

provided that n2"�1h �!1 for some " < 1� s�1
.

Obviously, Lemma 2 is also a corollary of Lemma 1, except di�erent technical assumptions.

Proof of Theorem 1.

Obviously

kâ1 � a1 � bias(â1jD)k1 = sup
u2[0;1]

jeT
1;�

�
X

T
WX

�
�1

X
T
W�j: (7.1)

Let I1(u) = eT
1;�

�
X

T
WX

�
�1

X
T
W�; and G = Ip
diag(1; h; � � � ; h

q). We approximate the process

I1 as follows.

First of all, we approximate the random matrix in I1 by a deterministic one. By Lemma 2 and

simple calculation, we have 1nG�1
X

T
WXG

�1
� f

 �


1

= OP

 �
log(1=h)

nh

�1=2

+ h

!
: (7.2)

Using the fact

(A+ hB)�1 = A�1
� hA�1BA�1 +O

�
h2
�

and (7.2), we have

nG(XT
WX)�1

G = (f

 �)�1 +OP

 �
log(1=h)

nh

�1=2

+ h

!
; (7.3)

uniformly for u 2 [0; 1]. By Lemma 7.2, we have 1nG�1
X

T
W�


1

= OP

 �
log(1=h)

nh

�1=2
!
:

Using this and substituting (7.3) into I1, we obtainI1 � 1

n
eT
1;� (f

 �)�1

G
�1
X

T
W�


1

= OP

 
h

�
log(1=h)

nh

�1=2

+
log(1=h)

nh

!
: (7.4)

Next, we consider the asymptotic distribution of

I2 =
1

n
eT
1;� (f

 �)�1

G
�1
X

T
W�:

Let K1;h(t) = K1(t=h)=h. Then,

I2(u) =
1

nf(u)

nX
i=1

�iK1;h(Ui � u);
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where �i = eT
1;p


�1(Xi1; � � � ;Xip)
T "i. By Lemma 1, we have

P

�
(�2 log h)1=2

�
�
�1=2

1;0

�nhr�1

1
f
�
1=2

I2


1

� dv;n

�
< x

�
�! exp

�
�2e�x

	
:

This together with (7.1) and (7.4) yield the result of Theorem 1.

Proof of Theorem 2. First of all, using (4.2) and Theorem 1, we have

(� log h)1=2
nVar(â1jD)o�1=2�

â1 � a1 � bias(â1jD)
�

�

n
nh(r1�1;0)

�1f
o
1=2�

â1 � a1 � bias(â1jD)
�

1

=
n
(� log h)1=2�

�1=2

1;0

(nhr�1

1
f)1=2

�
â1 � a1 � bias(â1jD)

�
1

o� r1�1;0

nhfVar(â1jD)

�
1=2

� 1

1

= oP (1):

The �rst part of Theorem 2 follows from Theorem 1.

To prove the second part of Theorem 2, we �rst derive the rate of convergence for the bias and

variance estimators. By using Lemma 2 and the standard arguments as in the proof of Theorem

1, we have

k
dbias(â1jD)� bias(â1jD)k1 = OP

�
hq+1(log nh)1=2fn�2=(2q+5) log1=2 n+ o(h)g

�
; (7.5)

where the rate n�2=(2q+5) log1=2 n comes from the pilot estimation of a
(q+1)

j
(�) and the term o(h)

comes from the coeÆcient in front of â
(q+2)

j
(�).

Next, we derive the rate of convergence for the variance estimator �̂2(�). Let

cn(u) = tr

�
W�

�
X

T
WX

�
�1

X
T
W

2
X

�
:

Recall �̂2(�) was estimated from the pilot estimation with a local polynomial �t of order (q + 2)

with the pilot bandwidth h�. Then, using the notation � in Section 4.1 and the de�nition of �̂2(�),

we have

�̂2(u) = c�1

n (u)Y T
�
I �WX(XT

WX)�1
X

T
�
W

�
I �X(XT

WX)�1
X

T
W

�
Y

= c�1

n (u)(� + �)T
�
W�WX

�
X

T
WX

�
�1

X
T
W

�
(� + �)

= c�1

n (u)�T
�
W�WX

�
X

T
WX

�
�1

X
T
W

�
�

+c�1

n (u)�T

�
W�WX

�
X

T
WX

�
�1

X
T
W

�
�

+2c�1

n (u)�T
�
W�WX

�
X

T
WX

�
�1

X
T
W

�
�:
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By (7.2), (7.3) and Lemma 2, we havec�1

n �
T

�
W�WX

�
X

T
WX

�
�1

X
T
W

�
�


1

= OP

�
h2q+4

�

�
;

and c�1

n �
T

�
W�WX

�
X

T
WX

�
�1

X
T
W

�
�


1

= OP

 �
� log h�

nh�

�1=2

hq+2

�

!
:

In addition, we note thatc�1

n �
T
WX

�
X

T
WX

�
�1

X
T
W�


1

= OP

�
log h�

nh�

�
;

and

kc�1

n �
T
W�� �2k1 = OP

 �
� log h�

nh�

�1=2

+ h2
�

!
:

Thus, using all of the above expressions, we get

k�̂2 � �2k1 = OP

 �
� log h�

nh�

�1=2

+ h2
�

!
= OP

�
n�2=(2q+5)

�
: (7.6)

Furthermore, using Lemma 2 and argued as in the proof of Theorem 1, we havehnG�1
X

T
W

2
XG

�1
� f

 ~�


1

= OP

 �
log(1=h)

nh

�1=2

+ h

!
:

This result together with (4.2), (4.3), (7.2), (7.3) and (7.6), by simple calculation, we have

dVar(â1(u)jD)
Var(â1(u)jD)

= 1 +OP

 �
log(1=h)

nh

�1=2

+ h+ n�2=(2q+5)

!
;

uniformly for u 2 [0; 1]. Hence,

(� log h)1=2
ndVar(â1jD)o�1=2�

â1 � a1 � bias(â1jD)
�

�

n
Var(â1jD)

o
�1=2�

â1 � a1 � bias(â1jD)
�

1

= (� log h)1=2
nVar(â1jD)o�1=2�

â1 � a1 � bias(â1jD)
�

1

nVar(â1jD)=dVar(â1jD)o1=2 � 1


1

= oP (1):

This together with (7.5) leads to

P

�
(�2 log h)1=2

�ndVar(â1jD)o�1=2�
â1 � a1 � dbias(â1jD)�

1

� dv;n

�
< x

�
�! exp

�
�2e�x

	
:

This completes the proof.

Proof of Theorem 3:
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The conditional bias of ĉ is

bias(ĉjD) = E
�
âp(U1)jD

�
� c

=
1

(q + 1)!
eT`;�(X

T

1
W1X1)

�1
X

T

1
W1 �0BBBBBBB@

0 � � � 0

X21(U2 � U1)
q+1

� � � X2p(U2 � U1)
q+1

...
. . .

...

Xn1(Un � U1)
q+1

� � � Xnp(Un � U1)
q+1

1CCCCCCCA

0BBBBBBB@

a
(q+1)

1
(U1)

...

a
(q+1)

p�1
(U1)

0

1CCCCCCCA
+OP

�
hq+2

�
:

Using Lemma 2, we have

1

n
G
�1
X

T

1
W1

0BBBBBBB@

0 � � � 0

X21(U2 � U1)
q+1

� � � X2p(U2 � U1)
q+1

...
. . .

...

Xn1(Un � U1)
q+1

� � � Xnp(Un � U1)
q+1

1CCCCCCCA
=

�
f(U1)
(U1)
 u+OP

��
� log h=nh

�
1=2��

hq+1:

This together with (7.2), and using the properties of Kronecker product, we obtain

bias(ĉjD) = OP

�
hq+2 + hq+1

�
� log h=nh

�
1=2�

:

The conditional variance of ĉ is

Var(ĉjD)

=
1

n2
(1; � � � ; 1)

0BBBB@
eT
`;�
(XT

1
W1X1)

�1
X

T
1
W1

...

eT
`;�
(XT

nWnXn)
�1
X

T
nWn

1CCCCA	

�

0BBBB@
eT
`;�
(XT

1
W1X1)

�1
X

T

1
W1

...

eT
`;�
(XT

nWnXn)
�1
X

T

nWn

1CCCCA
T 0BBBB@

1

...

1

1CCCCA
=

1

n2

nX
i=1

nX
j=1

eT`;�(X
T

i WiXi)
�1
X

T

i Wi	WjXj(X
T

j WjXj)
�1e`;�

Using Lemma 2 and the properties of Kronecker product, and by some calculation, we have

Var(ĉjD) =
1

n

n
eT
1;q+1

��1(�0; � � � ; �q)
T
o
2

E
n
eTp;p


�1(U)ep;p�
2(U)

o�
1 + oP (1)

�
:

Hence, the result follows.
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