
UC Davis
Computer Science

Title
Generalizing Tanglegrams

Permalink
https://escholarship.org/uc/item/0bg5p8ch

Authors
Venkatachalam, Balaji
Gusfield, Daniel

Publication Date
2018-07-26

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0bg5p8ch
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Generalizing Tanglegrams

Balaji Venkatachalam
Google Inc.

ijalabv@gmail.com

Dan Gusfield
Department of Computer Science

UC Davis
dmgusfield@ucdavis.edu

26th July, 2018

Abstract

Tanglegrams are a tool to infer joint evolution of species. Tanglegrams are widely used in ecology to
study joint evolution history of parasitic or symbiotically linked species. Visually, a tanglegram is a pair
of evolutionary trees drawn with the leaves facing at each other. One species at the leaf of one trees is
related ecologically to a species at a leaf of another tree. Related species from the two trees are connected
by an edge. The number of crossings between the edges joining the leaves indicate the relatedness of
the trees. Earlier work on tanglegrams considered the same number of leaves on both the trees and one
edge between the leaves of the two trees. In this paper we consider multiple edges from a leaf in the
trees. These edges correspond to ecological events like duplication, host switching etc. We generalize
the definition of tanglegrams to admit multiple edges between the leaves. We show integer programs for
optimizing the number of crossings. The integer program has an XOR formulation very similar to the
formulation for the tanglegrams. We also show how the ideas for distance minimization on tanglegrams
can be extended for the generalized tanglegrams. We show that the tanglegram drawings used in ecology
can be improved to have fewer crossings using our integer programs.

1 Introduction

Tanglegrams [?] have been used as a tool, primary in ecology, to study co-evolution, horizontal gene
transfer, host-parasite interactions, mutualism. Tanglegrams are a visual way of inferring how different
the evolutionary trees of two species under consideration are.

In earlier works [?, ?] tanglegrams have been considered an equal number of leaves in both the trees
and a one-one mapping between the leaves. In this work allow multiple edges from a leaf in one tree to
multiple leaves in the other tree.

Biological motivation In Coevolution of Life on Hosts, Clayton et al. [?] show that there are
coevolution phenomena like “duplication”, “host switching”, “cohesion” etc., where a host or a parasite
can be linked to multiple parasites or hosts, respectively. For example, one species of a parasite might
be dependent on multiple hosts due to host switching.

Generalizing Tanglegrams Tanglegrams considered in earlier works have exactly one edge from
the leaf of one tree to another. That is, leaf i in the first tree is connected to leaf labeled i in the second
tree. Let us call these as match edges. The generalized tanglegram includes edges between i of the first
tree and j of the second tree, for i 6= j. Let us call these as switch edges.

The crossing minimization problem now is the minimize the crossings between all the leaf edges. The
goal of distance minimization is to minimize the sum of the distances for all the lead edges – match edges
and switch edges.

In the next section, we describe integer programs for crossing minimization. In the following section
we describe integer programs for distance minimization. We describe integer programs for both the DP
formulation and the related distance formulation. We then show that the formulation can improve the
crossings in the drawings used in ecology, and shown the book by Clayton et al. [?].

1

2 Integer Linear Program for Crossing minimization

The formulation for crossing minimization is based on the following intuition: if the leaf i is to the left
of leaf j in both of the trees, then the edges connecting the is and the js do not cross. The edges cross
if there is an inversion in the order. To realize this, for the first tree, we introduce binary variables xi,j

for all leaf pairs (i, j) such that i < j. xi,j is set to 1 iff i appears before j in the linear order. For every
internal node k, we introduce a variable yk. Let c1 and c2 be the two children of k. In a layout yk is set
to 1 if c1, c2 are placed to the left and right, respectively, otherwise yk = 0. For all leaves i in the subtree
below c1 and j in the subtree below c2, if i < j then xi,j = 1 ⇐⇒ yk = 1, i.e., xi,j = yk. If j < i, then
yk = 1− xi,j . Analogously, for the second tree, we define these constraints over variables x′

i,j and y′
k.

2.1 Crossing between match edges

If i is to the left (or right) of j in the drawing of both trees in the tanglegram, then there is no crossing.

i j

i j




xi,j = 1

x′
i,j = 1

i j

j i




xi,j = 1

x′
i,j = 0

j i

i j




xi,j = 0

x′
i,j = 1

j i

j i




xi,j = 0

x′
i,j = 0

i and j cross only when the order is reversed. That is, (i, j) cross iff xi,j 6= x′
i,j . We let zi,j = xi,j⊕x′

i,j .
We can rewrite the XOR as the following linear inequalities: zi,j - xi,j + xi,j ≥ 0; zi,j + xi,j - xi,j ≥ 0; zi,j
- xi,j - xi,j ≤ 0; zi,j + xi,j + xi,j ≤ 2.

The objective function for minimizing the number of crossings between the match edges is, therefore,
minΣi<jzi,j .

2.2 Crossing between switch edges and match edges

We will first consider the case of switch edges crossing match edges. That is, switch edge (i, j) crossing
with match edge (k, k). We will define a variable zi,j,k to denote the switch edge (i, j) crossing match
edge (k, k). Notice that the variable name is well defined — there are no clashes between the variable
names. The first variable of the subscript is the switch edge leaf in T1, the second is the leaf of the second
tree T2 and the third variable is the match edge for all k ∈ [n] i, j.

We will first consider all possible k for i < j. Then we will consider all cases of k for j < i.

Case 1: i < k < j We will first consider the case of k being between i and j. Since we define xi,j

variables only for i < j, we have xi,k and x′
k,j . There are four cases, for every combination of the values

being 0 or 1 for these variables. In each case, i, j, k denote the positions of the leaves on the two trees.
The corresponding values of xi,k and x′

ik, j are shown.

i k

k j




xi,k = 1

x′
k,j = 1

i k

j k




xi,k = 1

x′
j,k = 0

k i

k j




xi,k = 0

x′
k,j = 1

k i

j k




xi,k = 0

x′
k,j = 0

From these pictures zi,j,k is the XNOR of xi,k and xk,j .

zi,j,k = ¬(xi,k ⊕ x′
k,j)

Case 2: i < j < k We will next consider the case of k being bigger than both j and j.

2

i k

j k




xi,k = 1

x′
j,k = 1

i k

k j




xi,k = 1

x′
j,k = 0

k i

j k




xi,k = 0

x′
j,k = 1

k i

k j




xi,k = 0

x′
j,k = 0

This has the XOR relationship between xi,k and x′
j,k.

zi,j,k = xi,k ⊕ x′
j,k

Case 3: k < i < j We will finally consider the case of k being smaller than both j and j.

k i

k j




xk,i = 1

x′
k,j = 1

k i

j k




xk,i = 1

x′
k,j = 0

i k

k j




xk,i = 0

x′
k,j = 1

i k

j k




xi,k = 0

x′
j,l = 0

Again, like in Case 2, there is an XOR relationship between xk,i and x′
k,j .

zi,j,k = xk,i ⊕ x′
k,j

We will next consider the case of j < i.

Case 4: j < k < i We will first consider the case of k being between i and j.

k i

j k




xk,i = 1

x′
j,k = 1

k i

k j




xk,i = 1

x′
j,k = 0

i k

j k




xk,i = 0

x′
j,k = 1

i k

k j




xk,i = 0

x′
j,l = 0

From these pictures zi,j,k is the XNOR of xi,k and xk,j .

zi,j,k = ¬(xk,i ⊕ x′
k,j)

For the other two cases k < j < i is similar to k < i < j (case 2 above) and j < i < k is similar to
i < j < k (case 3 above). That is, zi,j,k has an XOR relationship between the x and the x′ variables.

Note We are forced to use XNOR in a few cases because we have defined xi,j only for i < j. Had we
also introduced xj,i = ¬xi,j , then we can simplify all the above cases to zi,j,k = xi,k ⊕ xj,k.

2.3 Crossing between switch edges

We will next consider the case of crossings between switch edges. Consider switch edges (i, j) and (k, l),
where i and k are on tree T1 and j, l are in T2. Since we define xi,j variables only for i < j, we have xi,k

and x′
j,l.

For switch edges (i, j) and (k, l), without loss of generality let i < k. That is, we consider the edges
in lexicographically smaller pair as the first edge. We create a node zi,j,k,l for this pair of edges. Again,
this is well defined and there are no clashes in variable names.

There are two cases, j < l and j > l.

3

Case 1: i < k and j < l In the figures below all the configurations are considered. i, j, k, l denote
the positions of the leaves on the two trees. The corresponding values of xi,k and x′

ij, l are shown.

i k

j l




xi,k = 1

x′
j,l = 1

i k

l j




xi,k = 1

x′
j,l = 0

k i

j l




xi,k = 0

x′
j,l = 1

k i

l j




xi,k = 0

x′
j,l = 0

From these pictures zi,j,k,l is the XOR of xi,k and x′
j,l.

zi,j,k,l = xi,k ⊕ x′
j,l

Case 2: i < k and l < j All configurations for this case are below.

i k

l j




xi,k = 1

x′
l,j = 1

i k

j l




xi,k = 1

x′
l,j = 0

k i

l j




xi,k = 0

x′
j,l = 1

k i

l j




xi,k = 0

x′
l,j = 0

From these pictures zi,j,k is the XNOR of xi,k and xl,j .

zi,j,k,l = ¬(xi,k ⊕ x′
l,j)

Note Similar to the note of the previous subsection, had introduced both xi,j and xj,i, then zi,j,k,l =
xi,k ⊕ x′

j,l.

2.4 Objective function

The number of crossings is the sum of the crossings of the match edges together with the crossings
between the switch edges and the match edges and the crossings between the switch edges. Thus the
objective function is:

min
∑
i<j

zi,j +
∑

(i,j)∈switch

zi,j,k +
∑

(i,j),(k,l)∈switch

zi,j,k,l

3 Distance minimzation

We describe two different formulations for the distance minimization problem. The first formulation is
based on the dynamic programming idea used in the one-tree distance minimization problem. The second
uses the simple fact that the order of its children in an internal node determines the relation between
the leaves in the two subtrees.

3.1 Dynamic Programming Formulation

In the dynamic programming algorithm for one-tree distance minimization (Section 3.2 of the journal
paper), every subtree is rooted at every possible position so that its leaves are located starting at position
i for all i ∈ [n]. Here, we will generate equations to allow placing each subtree of either tree at every
position. The constraints will eliminate mutually incompatible configurations. The sum of the distances
of the matching edges can be calculated for each legal layout of the trees. The objective is to determine
the optimal solution among all possible layouts.

For a vertex k, we set a binary variable yk,p = 1 when the subtree beneath it is placed starting at
position p. For instance, yroot,1 = 1 always. If k is an internal node, let i and j be its children with l and
r leaves in the subtrees below them. Either i is placed as the left child or the right child. If i is placed

4

as the left child then its leaves take positions p through p + l − 1 and the leaves below j take positions
p + l through p + l + r − 1.

yk,p = 1 implies that the node i is placed at position p or p + r. This implication is written by the
inequality yi,p + yi,p+r ≥ yk,p. Similarly, yj,p + yj,p+l ≥ yk,p. Both i and j cannot be the left (or right)
child of k simultaneously, so yj,p + yi,p ≤ 1.

Every leaf must occur exactly once. For every leaf l, therefore,
∑

r∈[n]
yl,r = 1. Every position must

have exactly one leaf, so r ∈ [n],
∑

l∈leaves
yl,r = 1. We use variables y′ and similar inequalities for the

second tree.
To calculate the distance contributed by each leaf, we introduce the variable zl,r,r′ . Binary variables

zl, r, r′ = 1 only when the leaf l is present at positions r, r′ in the two trees, respectively. zl,r,r′ contributes
|r − r′| to the distance value.

Switch edges To account for the distance contributed by the switch edges, we will introduce variables
zu,v,r,r′ for every switch edge (u, v). zu,v,r,r′ = 1 only when u in T1 is at position r and v is at position
r′ in T2.

Therefore, the objective function is:

min
∑
leafl

∑
r∈[n]

∑
r′∈[n]

|r − r′|zl,r,r′ +
∑

(u,v)∈switch

∑
r∈[n]

∑
r′∈[n]

|r − r′|zu,v,r,r′

3.2 Related Distance Formulation

In this formulation, we will use the relative distance between the pair of leaves on the same tree. This
distance is determined by the order of the children at the least common ancestor.

Consider an internal node i with m leaves in its subtree and let its two children be c1, c2. Let j, k
be leaves in subtrees c1, c2, respectively. Let xj denote the position of leaf j in the linear order, [n].
Introduce a binary variable yi for each internal node i to model the choice of c1 or c2 being the left child.
yi = 1 when c1 is the left child (and j is to the left of k). The opposite is implied by yi = 0. Now the
order of the children c1, c2 determine the distance between the leaves in its subtrees.

yi = 1 ⇐⇒ −(m− 1) ≤ xj − xk ≤ −1yi = 0 ⇐⇒ 1 ≤ xj − xk ≤ m− 1 (1)

These implications are written as the following inequal- ities: xj − xk + 1 ≤ m(1− yi) and xj − xk +
myi ≥ 1.

Next, we need to ensure that all leaves 1 ≤ xj ≤ n and all xjs are unique. The uniqueness constraints
can be written in a number of ways. We model them as a matching problem. It has been observed in
the ILP literature that the vertices of the matching polytope are all lattice points and, therefore, the
ILP software need not apply further reduction techniques [25]. As usual, we define similar inequalities
on variables x′

i and y′
i for similar constraints on the second tree.

Finally, the optimization criterion is

min
∑
i∈[n]

|xi − x′
i|+

∑
(i,j)∈switch

|xi − xj |

.
The first term is the sum of the distances of the match edges and the second term is the sum of

the distances of the switch edges. As before, we will convert the absolute values to linear forms using
standard techniques [3].

4 Experiments

In Clayton et al. [?] Figure 12.2B has 13 crossings. The integer program shows a drawing with only 10
crossings in the optimized drawing.

For Fig 10.6 in the book, the number of crossings is improved from 12 to 8 crossings.

5

5 Conclusions

In this paper we considered recent evolutionary events like host-switching, cohesion, and duplication by
which one host (or parasite) species can be related to multiple parasite (or host) species. These are
represented by tanglegrams with multiple edges between related leaves of the two trees. This generalizes
the tanglegrams considered in the computer science literature. We showed that the XOR formulation
for crossing mimization extends to the generalized tanglegrams. We also described integer programs for
distance minimization that extend the integer programs from the earlier work. These show that the
drawings considered in ecology literature can be improved to a drawing with fewer crossings.

References

[1] Balaji Venkatachalam, Jim Apple, Katherine St. John, Dan Gusfield, “Untangling Tanglegrams:
Comparing Trees By Their Drawings”. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, Vol. 7, No. 4, Pages 588–597 2010.

[2] K. Buchin, M. Buchin, J. Byrka, M. Nollenburg, Y. Okamoto, R. I. Silveira, and A. Wolff. “Drawing
(complete) binary tanglegrams: Hardness, approximation, fixed-parameter tractability”. In Graph
Drawing. Springer-Verlag, 2008.

[3] Dale Clayton, Kevin P. Johnson, and Sarah E. Bush. “Coevolution of Life on Hosts: Integrating
Ecology and History”, Chicago University Press, 2015.

[4] R. D. M. P. (Ed.). “Tangled Trees: Phylogeny, Cospeciation, and Coevolution”. University Of
Chicago Press, 2002.

6

