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a b s t r a c t

T-optimum designs for model discrimination are notoriously difficult to find because of
the computational difficulty involved in solving an optimization problem that involves
two layers of optimization. Only a handful of analytical T-optimal designs are available
for the simplest problems; the rest in the literature are found using specialized numerical
procedures for a specific problem. We propose a potentially more systematic and general
way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The
strategy requires that we first reformulate the original minimax or maximin optimization
problem into an equivalent semi-infinite program and solve it using an exchange-based
method where lower and upper bounds produced by solving the outer and the inner
programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is
used to handle the subproblems, thus finding the optimal design and the least favorable
parametric configuration that minimizes the residual sum of squares from the alternative
or test models. We also use a nonlinear program to check the global optimality of the
SIP-generated design and automate the construction of globally optimal designs. The
algorithm is successfully used to produce results that coincide with several T-optimal
designs reported in the literature for various types of model discrimination problems with
normally distributed errors. However, our method is more general, merely requiring that
the parameters of the model be estimated by a numerical optimization.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Professor Jack Kiefer was an early proponent of using a rigorous mathematical framework to find optimal experimental
designs for solving practical problems. In Kiefer [24,25] he introduced continuous designs, inwhich the design is represented
by a measure. As a result, the problems of the dependence of the structure of the design on sample size are avoided.
He advocated using such designs for practical reasons; research in this area has continued, largely motivated by rising
experimental costs and the need to use resources more efficiently. Book length treatments of this topic include Pukelsheim
[34], Fedorov and Hackl [16], Uciński [41], Atkinson et al. [4], Berger and Wong [7] and Fedorov and Leonov [17]. Early
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applications of optimal designswere concentrated in the engineering, manufacturing and industrial sectors but applications
are increasingly also seen in the biomedical and social sciences.

Optimal designs can depend sensitively on the assumedmodel. They can lose substantial efficiency if the assumedmodel
is wrong. In practice, the underlying model is unknown and frequently a few plausible alternative models are considered
for studying the problem at hand. An optimal discrimination design provides the best strategy for collecting observations to
identify the true model among those postulated. Optimal design problems for estimating model parameters are quite well
studied but the search for the optimal discrimination design has received considerably less attention. One reason is that
finding an optimal discrimination design is an appreciablymore difficult task than finding a D-optimal design for estimating
model parameters [45]. Unlike D-optimality, we now have an optimality criterion that requires two levels of optimization.
To date, effective algorithms for finding these optimal designs for a general regression model remain elusive.

The theoretical framework for experimental design formodel discriminationwas established in a series of papers, such as
Fedorov andMalyutov [18], Atkinson and Cox [3], Atkinson and Fedorov [5,6]. The criterion used for model discrimination is
commonly known as T-optimality. The typical setup assumes thatwewant to discriminate between two parametricmodels,
one of which is a fully parameterized ‘‘true model’’ and the other a ‘‘test model’’ with unknown parameters. The T-optimal
design maximizes the lack of fit sum of squares for the second model by maximizing the minimal lack of fit sum of squares
arising from a set of plausible values of the unknownparameters. Additional theoretical developments can be found in Ponce
de Leon and Atkinson [33], Dette [9], Fedorov and Hackl [16], Wiens [46] and Dette and Titoff [12]. López-Fidalgo et al. [29]
extend the method to models in which the errors of observation do not follow a normal distribution. T-optimality has been
applied to discriminate among various classes of models, ranging from polynomial models [5,11], to Fourier regression
models [10], Michaelis–Menten kinetic models [30], enzyme kinetics [2] and dynamic systems described by sets of ordinary
differential equations [41,27,39].

There are analytical descriptions of T-optimal designs for only the simplest situations because of the complexity of
the optimization problem. The algorithms commonly used to find T-optimal designs are based on modifications of the
Wynn–Fedorov algorithm, which were initially proposed for D-optimal designs; see for example, Atkinson and Fedorov [5].
The method requires a user-selected starting design to initiate the search process before it iterates by sequentially adding
one or more selected new points from the design space to the current design. At each iteration a new design is formed
by mixing the new point or points appropriately chosen with the current design. The generated design accumulates many
points or clusters of points over time and a judicious collapsing of these points into a smaller number of distinct points
is periodically required. These are the core steps in the Wynn–Fedorov algorithm formed by aggregating ideas of Wynn
[47] and Fedorov [15] and commonly used in computer algorithms for finding different types of optimal designs such as
Ds-optimal designs for estimating a selected subset of the model parameters or L-optimal designs for estimating a selected
linear function of the model parameters.

Two other approaches have been employed for determining optimal discrimination designs. Dette and Titoff [12] sug-
gest the Remes algorithm from numerical approximation theory and demonstrated the method for problems with a single
explanatory variable. Atkinson [2] employs a Quasi-Newton algorithm for convex optimization after applying a transforma-
tion on the design region and design weights to ensure that all constraints are satisfied. See also Atkinson et al. [4, Section
9.5] where more details on the method and examples can be found. However, both methods seem somewhat specialized
and may not extend to find optimal discrimination designs for more general problems.

Algorithms based on Semi-Infinite Programming (SIP), a branch of mathematical programming, are becoming increas-
ingly popular for solving the minimax programs in computer science, engineering and economics [37]. Several algorithms
belonging to exchange methods, discretization methods and local reduction methods have been developed [36]. Coupled
with global nonlinear programming (NLP) solvers, they are able to solve minimax programs of moderate dimension. Inter-
estingly, there are only a couple of applications of mathematical programming SIP-based approaches to find minimax-type
optimal designs even though the approach provides a general framework and a systematic approach that is guaranteed find
such optimal designs. Our goal in this paper is to apply SIP-based algorithms to systematically find optimal discrimination
designs and demonstrate their effectiveness using several examples for a variety of situations. Only non-sequential exper-
imentation is considered here; readers interested in a sequential approach to design a study for model discrimination can
refer to Atkinson and Fedorov [5,6].

Gribik and Kortanek [21] established a theoretical and general framework for searchingminimax designs via SIP. Žakovíc
and Rustem [48] found minimax D-optimal designs and Duarte and Wong [14] found various types of minimax optimal
designs using SIP based on an exchange method. Kuczewski [27] and Skanda and Lebiedz [39] used a SIP algorithm to find
T-optimal designs for dynamic models using algorithms similar to that proposed by Žakovíc and Rustem [48] for general
minimax problems.

Uciński and Bogacka [42] used a SIP based algorithm to find T-optimal designs for dynamic models. The SIP procedure
relies on the relaxation paradigm proposed by Shimizu and Aiyoshi [38] for minimax problems. All optimization problems
included in the SIP procedure are solved with a global solver employing a stochastic NLP solver with an adaptive random
search scheme to generate initial solutions. There seems to be no application of SIP to finding T-optimal designs for
discriminating between algebraically specified models. Uciński and Bogacka [42], Kuczewski [27] and Skanda and Lebiedz
[39] deal with dynamic models and aim to determine the optimal discrimination design in the time domain (time instants
where samples are to be gathered). Our paper aims to present and test a SIP based algorithm for finding T-optimal designs
for algebraic models, both linear and nonlinear. It shares several properties with the procedure proposed by Uciński and
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Bogacka [42]. We include a check from the equivalence theorem which allows us to automate the finding of the optimal
number of support points.

Section 2 provides the background, and introduces the T-optimality criterion along with a practical tool for checking
whether a design is optimal among all designs on the given design space. It also presents the conceptualization of the
minimax program representing the T-optimality criterion as a SIP, and briefly reviews the exchange method for handling
semi-infinite programs. Section 3 applies the SIP based algorithm to find T-optimal designs and an automated procedure
for confirming the optimality of the SIP-generated design. We report these T-optimal designs for various discrimination
problems in Section 4 and offer a conclusion in Section 5.

2. Background

This section is divided into two parts. The first discusses the statistical setup and use of continuous designs as a practical
tool to solve general design problems. The second part provides background on SIP-based methods and how they relate to
finding an optimal discrimination design and more generally solving minimax design problems.

2.1. Continuous designs

In this paper, we focus on continuous designs on a given compact design space of the regressors X ⊂ Rnx . A continuous
design is characterized by the number of design points it has from the design space X, the locations of the points and the
proportions of the total number of observations n to be taken at each of the design points. Let xi ∈ X be the ith design point
or support point of the design, let k be the number of design points and let wi be the proportion of observations to be taken
at xi, i = 1, . . . , k. Clearly,wi is positive and less than unity (unless k = 1) andw1+w2+· · ·+wk = 1. The total sample size
n is usually predetermined by cost considerations. Continuous designs have continuous weights in wi ∈ [0, 1] which lead
naturally to the formulation of the optimal design problem as a mathematical programwith convex properties. Advantages
of working with continuous designs are that they are easier to find and understand than exact designs that depend on n. We
denote such a continuous design with k points by

ξ =


x1 · · · xi · · · xk
w1 · · · wi · · · wk


and denote the set of all continuous designs with k points on X by Ξ ≡ Xk

× [0, 1]k.
For exact designs, we require that all n × wi’s are positive integers. In this case, we would have to solve a much harder

non-convex optimization problem. Pukelsheim and Rieder [35] describe an efficient method for rounding a continuous
design to obtain a nearly optimum exact design of size n. Goos and Jones [20] give examples of finding exact D-optimal
designs using a coordinate-exchange algorithm.

For model discrimination design problems, we seek a continuous design that is efficient for identifying the best fitting
model from a given class ofmodels.When there are twomodels and the outcome variable is Y , we designate one as the ‘‘true
model’’ ηt(x, θ1) = E(Y |x, θ1) and the other as the ‘‘test model’’ η2(x, θ2) = E(Y |x, θ2). The vectors of model parameters θ1
and θ2 may have different dimensions, but lie in known sets Θ1 and Θ2, i.e. θ1 ∈ Θ1 ⊂ Rp1 and θ2 ∈ Θ2 ⊂ Rp2 . Following
convention, we assume the ‘‘true model’’ is fully parameterized and so the dependence on θ1 can be discarded and we may
write its mean function simply as ηt(x).

A common design criterion called T-optimality for model discrimination was proposed by Atkinson and Fedorov [5] and
Atkinson et al. [4]. The T-optimal design is defined by:

ξT = argmax
ξ∈Ξ

min
θ2∈Θ2


X

[ηt(x)− η2(x, θ2)]2 ξ(dx)

= argmin
ξ∈Ξ

max
θ2∈Θ2
−


X

[ηt(x)− η2(x, θ2)]2 ξ(dx). (1)

Employing results from Rustem and Howe [37], problem (1) is equivalent to the bilevel program

ξT = argmin
ξ∈Ξ
−


X


ηt(x)− η2(x, θ∗2 )

2
ξ(dx)

s.t.
k

i=1

wi = 1

θ∗2 = arg max
θ2∈Θ2
−


X

[ηt(x)− η2(x, θ2)]2 ξ(dx),

(2)

showing that the T-optimality criterion can be equivalently viewed as a maximin, a minimax or a bilevel optimization
problem with the outer program having convex properties and the inner problem being concave or convex. An important
quantity in the above definition is the least favorable parametric configuration θ∗2 in Θ2, which is frequently problematic to
determine numerically and presents a constant source of difficulty for finding the optimal discrimination design, and more
generally for minimax or maximin optimal designs in practice.
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The search for the optimal discrimination design ξT is nested within the number of support points of the design. To avoid
the complexity of simultaneously find the design and the number of support points, a nonconvex optimization problem, we
fix k and start the search over all k-point designs. The resulting design ξ k

T may or may not be optimal among all designs on
Ξ . An equivalence theorem similar to those given in Kiefer andWolfowitz [26] and Kiefer [25] is then used to checkwhether
ξT = ξ k

T . The mathematical program to solve the problem is:

∆(ξ k
T ) = min

ξ∈Ξ
max
θ2∈Θ2
−

k
i=1

[ηt(xi)− η2(xi, θ2)]2 wi

s.t.
k

i=1

wi = 1.

(3)

A common choice for initializing k is the number of parameters in the model plus one. A theoretical justification for the
choice of the value of k is possible only in specialized settings. For example, Dette and Titoff [12] proved that, for nested
polynomials in one variable, k = p2 + 1. Our numerical results in Section 4 support such a value for k. For T-optimality, the
theorem asserts that the design ξ k

T is optimal among all designs on X if and only if
ηt(x)− η2(x, θ k

2 )
2
≤ −∆(ξ k

T ), ∀x ∈ X, (4)

with equality at the support points of ξ k
T and θ k

2 is defined similarly as θ∗2 [4]. The function on the left hand side of the above
inequality is called the sensitivity function. Of course if the trial value of k is indeed the number of support points of the
optimal discrimination design, the equivalence theorem holds and we have ξ k

T = ξT and θ k
2 = θ∗2 . The theorem applies to

continuous designs, but not to exact designs.

2.2. Semi-Infinite Programming

Hettich and Kortanek [23] and López and Still [28] provide surveys of the theory, applications and recent development of
SIPmethodology. Broadly speaking, the numerical methods employed to solve SIP problems fall into three classes: exchange
methods, discretization based methods and local reduction based methods [22]. Here we use an exchange based procedure
similar to the one proposed by Blankenship and Falk [8], and further expounded in Žakovíc andRustem [48] among others. To
this end, consider the general minimax program formalization used by Rustem andHowe [37] and Žakovíc and Rustem [48]:

min
y

max
z

f (y, z)

s.t. gl1(y, z) ≤ 0, l1 ∈ {1, . . . ,NI}

hl2(y, z) = 0, l2 ∈ {1, . . . ,NE}

y ∈ Y, z ∈ Z,

(5)

where y ∈ Y ⊂ Rny are the outer problem decision variables and z ∈ Z ⊂ Rnz are the decision variables of the inner prob-
lem. The set Y ≡ {y : gl1(y, z) ≤ 0, hl2(y, z) = 0, l1 ∈ {1, . . . ,NI}, l2 ∈ {1, . . . ,NE}} encapsulates all constraints involving
y and the setZ encapsulates all constraints involving z, with gl1(y, z) representing the inequality constraints and hl2(y, z) the
equality constraints. BothY andZ are compact sets, all the functions gl1(y, z) and hl2(y, z) are differentiable andZ is a set de-
pendent on y. The function f (y, z) is assumed to be differentiable in y and z and convex as a function of the outer problemde-
cision variables y. No assumptions relative to the convexity properties of f (y, z)with respect to inner level decision variables
are considered. This formulation has an outer problem (i.e. the min problem) and an inner problem (i.e. the max problem)
andwe solve theminimax program in two phases, Phase 1 and Phase 2 iteratively, until a convergence condition is satisfied.

At the nth iteration, there exists τ n
∈ R : maxz∈Z f (y, z) ≤ τ n if and only if f (y, z) ≤ τ n, ∀z ∈ Z. Accordingly, we may

formulate an equivalent semi-infinite program using a relaxation procedure to find the solution of the minimax problem as
follows [38]:

min
y∈Y,τn∈[τ L,τU ]

τ n

s.t. f (y, z) ≤ τ n

gl1(y, z) ≤ 0, l1 ∈ {1, . . . ,NI}

hl2(y, z) = 0, l2 ∈ {1, . . . ,NE}

y ∈ Y, z ∈ Z.

(6)

Here τ L and τU are finite values bounding τ n and since they are unknown,wemay consider τ L equal to a finite large negative
value and τU equal to a finite large positive constant. The problem (6) involves a finite number of variables and an infinite
number of constraints as a result of the dependency of Z(y).

The reformulation of problem (6) to an equivalent problem with a finite number of constraints requires that we replace
Zwith a discrete set. At the first iteration, we denote this set byZ1

= {z0}where z0 is feasible solution of the inner program
prescribed in Section 3. At the nth iteration, this set is Zn and has n elements originating in previous iterations. At the next
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iteration, this set becomes Zn+1 with n+ 1 elements formed by augmenting Zn with a solution for the Phase 2 problem (9),
denoted by zn, following the rule:

Zn+1
= Zn

∪ {zn}. (7)

The Phase 1 program, denoted as P1,A, to solve is therefore:

min
y∈Y,τn∈[τ L,τU ]

τ n

s.t. f (y, z) ≤ τ n

gl1(y, z) ≤ 0, l1 ∈ {1, . . . ,NI}

hl2(y, z) = 0, l2 ∈ {1, . . . ,NE}

y ∈ Y, z ∈ Zn.

(8)

The problem P1,A solves the outer level of (5) and each solution y minimizes the objective function for a set of discrete
points z ∈ Zn. Afterwards, we fix y and solve the following program corresponding to the inner program of the problem (5),
denoted by P1,B:

ζ n
= max

z∈Z
f (y, z)

s.t. gl1(y, z) ≤ 0, l1 ∈ {1, . . . ,NI}

hl2(y, z) = 0, l2 ∈ {1, . . . ,NE}

y fixed, z ∈ Z.

(9)

The solution of (9), zn, with the subscript n representing the iteration counter, are stationary/Karush–Kuhn–Tucker (KKT)
points of the inner problem and are appended to the set Zn employing (7). Then we repeat the cycle and keep iterating
between the outer problem corresponding to Phase 1 and the inner problem, corresponding to Phase 2, until convergence
occurs. The discrete set Zn contains the accumulating successive KKT points of the inner program that produce successively
tighter relaxations of (8).

We observe that the number of constraints f (y, z) ≤ τ n for the problem (8) increases by one per iteration as a result of
the increase in the number of elements forming the set of discrete points Zn. Solving problem P1,A provides a global lower
bound to the minimax problem and solving problem P1,B produces a local upper bound (obtained for a particular point y).
Therefore, τ n

≥ τ n−1 but no conclusion can be drawn for ζ n in successive iterations, ζ n being the optimum of problem P1,B.
The convergence test checks the condition |(ζ n

− τ n)/τ n
| ≤ ϵ1, where ϵ1 is a positive small constant provided by the user

to assess the relative error. When the condition is satisfied the solution has been found. Theoretical results prove that the
procedure described above converges in a finite number of iterations for ϵ1-optimal solutions [8,27].

Here we assume all constraints in the problem (5) are decoupled. This assumption is reasonable since in the optimal
design problem the constraints are functions of the regressors or of the parameters and not on both types of variables.
Strategies for this more complicated case are provided by Polak [32, Ch. 3], Mitsos et al. [31] and Tsoukalas et al. [40].

3. Algorithms

In this section we describe the SIP algorithms for finding T-optimal designs. This approach assumes that we want to find
a k-point T-optimal design where k is pre-specified. In our algorithm k is initialized to the number of parameters in the
problem plus one. If at convergence, the T-optimal design found by SIP is not optimal according to the equivalence theorem,
we will repeat the search among designs with k + 1 points. Our experience is that usually a couple of such iterations will
produce the SIP-generated T-optimal design that is optimal among all designs on the design space.

3.1. SIP formulation for T-optimal designs

In this section, we apply the general techniques in Section 2 to solve Problem (3) by finding the optimal discrimination
design supported at k points. Accordingly we include a superscript k in the variables in the mathematical codes below. At
the nth iteration of the SIP-based procedure, the generated design ξ k,n has xk,ni as its ith support point with corresponding
weightwk,n

i , i = 1, . . . , k, and they are found by solving the preceding optimization problem. This formulation corresponds
to a direct application of the Phase 1 problem (8):

min
ξk,n∈Ξ ,τ k,n∈[τ L,τU ]

τ k,n

s.t. −
k

i=1

[ηt(x
k,n
i )− η2(x

k,n
i , θ k

2 )]
2 w

k,n
i ≤ τ k,n

k
i=1

w
k,n
i = 1

θ k
2 ∈ Θ

k,n
2 .

(10)



16 B.P.M. Duarte et al. / Journal of Multivariate Analysis 135 (2015) 11–24

For a fixed design ξ k,n, the program P1,B for Phase 2 is:

ζ k,n
= max

θ2∈Θ2
−

k
i=1

[ηt(x
k,n
i )− η2(x

k,n
i , θ2)]

2 w
k,n
i . (11)

Let θ
k,n
2 solve problem (11) and let Θ

k,n+1
2 = Θ

k,n
2 ∪ {θ

k,n
2 } be the set of stationary/KKT points. The iteration between

problems ((10)–(11)) allows convergence to the solution of the minimax problem and determines the optimal design, ξ k
T .

When convergence occurs∆(ξ k
T ) = ζ k,n (at ϵ1-error optimality) and the parametric combination at which the design is least

efficient is θ
k,o
2 = θ

k,n
2 , the argument of problem (11), corresponding to the least favorable parametric configuration in Θ2

found at the nth iteration.
The algorithm proposed requires an initial feasible instance of θ2 employed to form the discrete set Θ

k,1
2 . We generate

a feasible initial solution by solving the above program, denoted by P k
0 . The formalization assumes that a feasible solution

can be found when we maximize the sum of squares for the lack of fit. The design obtained is T-optimal in distinguishing
models for the most efficient combination of parameters for model discrimination.

min
ξk,0∈Ξ ,θ2∈Θ2

−

k
i=1

[ηt(x
k,0
i )− η2(x

k,0
i , θ2)]

2 w
k,0
i

s.t.
k

i=1

w
k,0
i = 1.

(12)

Here θ
k,0
2 is the argument of the problem (12) and Θ

k,1
2 = {θ

k,0
2 }.

The above search for the T-optimal design using the SIP-basedmethod is summarized inAlgorithm1below. To initiate the
algorithm, the following input parameters are required: the tolerance level for testing convergence, the number of support
points k, bounds for τ k,n which may be large negative and positive constants, bounds for X and bounds for the parameters
included in the ‘‘test model’’. The algorithm then iterates to find ξ k

T , the optimal discrimination design supported at k points,
the least favorable parametric configuration vector of parameters, θ k,o

2 and the minimal value of the T-optimality criterion,
∆(ξ k

T ).

Algorithm 1 Algorithm to find a T-optimal design for k support points.

procedure FindDesign(ϵ1, k, τ L, τU , θ L, θU , ξ k
T , θ

k,o
2 , ∆(ξ k

T ))
Solve P k

0 ◃ Find an initial feasible solution
n← 1
θ
k,0
2 ← arg(P k

0 ), Θ
k,1
2 ← {θ

k,0
2 }

while |(ζ k,n
− τ k,n)/τ k,n

| ≤ ϵ1 do
Solve P k

1,A ◃ Solve the Phase 1 program
τ k,n
← arg(P k

1,A)

Fix ξ k,n

Solve P k
1,B ◃ Solve the Phase 2 program

ζ k,n
← arg(P k

1,B), θ
k,n
2 ← arg(P k

1,B)

Θ
k,n+1
2 ← Θ

k,n
2 ∪ {θ

k,n
2 } ◃ Update the set of KKT points

n← n+ 1 ◃ Update the iteration counter
end while
ξ k
T ← ξ k,n, θ

k,o
2 ← θ

k,n
2 , ∆(ξ k

T )← ζ k,n

end procedure

3.2. Checking the T-optimality of the k-support point design

The algorithm to find k-point T-optimal designs was discussed in Section 3.1. The task now is to have an automated
process to check whether the k-point design obtained by solving the minimax program (3) is globally optimal among all
designs on the design space. This task is addressed by iteratively solving a new nonlinear program P k

2 . If the design space
is one-dimensional, a univariate graphical plot will suffice to ascertain whether the equivalence theorem is satisfied. When
the design space is multi-dimensional, with each dimension representing a different regressor, this task is harder because
it is not easy to visually ascertain whether a high-dimensional plot satisfies the conditions of the equivalence theorem. Our
procedure conducts a numerical search over X automatically and so facilitates the decision making process whether the
T-optimal design is found.

In practice, we start with k equal to p2 + 1 and increase it by one sequentially until the SIP-generated T-optimal design
satisfies the conditions in the equivalence theorem. Problem P k

2 below finds the maximum value of the sum of squares for
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the lack of fit of the models in X for the k-point design ξ k
T , and the optimal singleton parametric combination θ

k,o
2 :

αk
= max

x∈X
[ηt(x)− η2(x, θ

k,o
2 )]2 +∆(ξ k

T ). (13)

The equivalence theorem is validated if and only if αk
≤ ϵ2, ϵ2 being a small positive constant supplied by the user.

Algorithm 2 presents the complete procedure, that finds the T-optimal design and automates the search for the optimal
number of support points.

Algorithm 2 Algorithm to find a T-optimal design

procedure OptimalTDesign(ϵ2, p2, ϵ1, τ L, τU , θ L, θU , ξ k
T , θ

k,o
2 , ∆(ξ k

T ))
k← p2 + 1 ◃ Initialization of k
Solve FindDesign(ϵ1, k, τ L, τU , θ L, θU , ξ k

T , θ
k,o
2 , ∆(ξ k

T ))
Solve P k

2 ◃ Check T-optimality for k = p2 + 1
αk
← arg(P k

2 )

while αk
≥ ϵ2 do

k← k+ 1
Solve FindDesign(ϵ1, k, τ L, τU , θ L, θU , ξ k

T , θ
k,o
2 , ∆(ξ k

T ))
Solve P k

2 ◃ Solve the NLP problem to check T-optimality
αk
← arg(P k

2 )
end while

end procedure

Another indication that k is well chosen is that when the number of support points is greater than that for the optimal
design there are one or more points with null weights. However, this indication can only be found if we solve the problem
for such a k.

To implement the Semi-Infinite Programming based algorithm we require global NLP solvers to guarantee the global
optimality of the solutions of problems ((10)–(13)). Here one uses the solver OQNLP from the GAMS package, which is formed
by a general modeling language and a battery of mathematical programming solvers for several types of problems [19].
OQNLP is a multistart heuristic algorithm designed to find global optima of nonlinear programs. The algorithm calls a NLP
solver frommultiple starting points, saves all the feasible solutions found and picks the best as the optimum of the problem
[43]. The starting points are computedwith a random sampling driver that uses normal independent probability distribution
functions for each decision variable. OQNLP does not guarantee that the final solution is a global optimum but it has been
successfully tested on a large set of problems. To build the initial sampling points the variables need to be bounded, which
we have since the design space and the region of plausible values are all compact by assumption.

The NLP solver called by OQNLP is CONOPT, which in turn uses the Generalized Reduced Gradient (GRG) algorithm [13].
The maximum number of starting points allowed is set to 3000 and the procedure terminates when 100 consecutive NLP
solver calls result in a only fractional improvement of less than 10−4 in the criterion value. In all our problems the absolute
and relative tolerances of the solvers were all respectively set equal to 10−8 and 10−7. The tolerances ϵ1 and ϵ2 required by
Algorithms 1 and 2 were both set equal to 10−5. In all cases the bounds for τ k,n were set to−104 and+104.

4. Results

We now apply the SIP-based algorithm to find the optimal discrimination design for discriminating among models. The
selected applications are from the literature where we can compare results and verify the usefulness of the SIP-approach
for finding T-optimal designs.

In Section 4.1 we first consider a benchmark problem to test our proposed SIP-based approach. Accordingly we provide
more details, including analysis of the convergence properties of the SIP algorithm. In Section 4.2, we consider 8 optimal
discrimination design problems; the first 4 concern univariate polynomial models all defined on a common design space
X = [−1,+1] and the next 3 concern nonlinear models with one or two regressors. In the last problem, case (8) has 3
models for discrimination by design and so the optimization setup is more complicated.

Table 1 displays the T-optimal designs for cases (1)–(7) and Table 2 displays the T-optimal design for case (8). For each
case, we list the optimal discrimination design, the least favorable parametric configuration vector of parameters, θ k,o

2 , that
gives the largest lack of fit sum of squares, the optimum value for the design criterion and the CPU time in seconds (secs)
required to solve the optimization problem. All results were obtained using a 12 GB RAM Intel Core i7 machine running 64
bitsWindows7 operating systemwith 2.80GHz. The solvers used to handle all NLP programs are fromGAMSpackage, version
23.5. Throughout, we let ηt denote the mean function of the ‘‘true model’’ and let η1 and η2 denote the mean functions of
the test or alternative models. We assume the p2 × 1 vector of unknown parameters θ2 in η2 is from a user-selected set Θ2
which we assume is a Cartesian product of the parameter space for each component.
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Table 1
T-optimal designs for Cases (1)–(7) and their characteristics.

Case k T-optimal design θ k,o optimum value CPU (s)

1 2

−0.5000 1.0000
0.5003 0.4997


{1.8742} −1.265625 7.526

2 3

−1.0000 0.0000 1.0000
0.2500 0.5000 0.2500


{1.5000, 1.0000} −0.250000 207.324

3 5

−1.0000 −0.5432 0.1803 0.7731 1.0000
0.0555 0.1594 0.2580 0.3408 0.1864


{0.8936, 0.5416, 1.9550, 2.4591} −0.022747 361.575

4 5

−1.0000 −0.8090 −0.3090 0.3090 0.8090
0.2004 0.3586 0.2642 0.1376 0.0391


{0.9997, 0.6882, 0.9989, 2.2480} −0.003906 335.324

5 3

0.9808 3.6603 5.0000
0.4548 0.3665 0.1787


{2.0837, 2.8740} −0.231310 252.643

6 4

3.0580 5.4390 30.0000 30.0000
0.0000 11.6506 22.7304 0.0000
0.2498 0.4415 0.2496 0.0590

 {11.8718, 7.6432, 12.7019} −0.533095 187.869

7 4

1.8152 4.0914 30.0000 30.0000
0.0000 4.1462 0.0000 10.1666
0.0461 0.5498 0.0666 0.3375

 {8.3470, 2.1013, 0.6554} −0.867212 222.576

k — number of support points.

Table 2
T-optimal design for Case (8) with its characteristics.

Case k T-optimal design θ k,o Optimum value CPU (s)

8 5

−1.0000 −0.7364 −0.0989 0.6247 1.0000
0.2022 0.3306 0.2263 0.1664 0.0744

 
1.0284, 0.5634,−1.9201,

−0.8252, 0.5930, 1.8928,−0.1876


0.003195 804.695

k—number of support points.

Fig. 1. Evolution of the upper and lower bounds of the 4-point T-optimal design in case (1).

4.1. Test case

We first consider the problem discussed in Atkinson and Fedorov [5] and Atkinson et al. [4] where

ηt = 4.5− 1.5 exp(x1)− 2.0 exp(−x1) (14)

η2 = θ1 + θ2 x1 + θ3 x21 (15)
X = [−1,+1], Θ = [−10, 4] × [−10, 4] × [−10, 4]

and compare their T-optimal design with the one from our SIP based algorithm. The alternative model is clearly linear with
respect to the parameters θi, i = {1, 2, 3} and nonlinear in the regressors. For this application, we set the initial number of
support points to be 4 and find the optimal discrimination design among all 4-point designs. The SIP requires 28 iterations;
Fig. 1 presents the evolution of the lower and upper bounds. The absolute error, defined in Algorithm 1 as |ζ k,n

− τ k,n
|,
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Fig. 2. Mean responses from the ‘‘True model’’ and the ‘‘test model’’ in case (1) with the vertical lines representing the support points of the T-optimal
design.

Fig. 3. Sensitivity function of the T-optimal design with the vertical lines representing the support points in case (1).

corresponds to the absolute difference between the upper and the lower bounds at the nth iteration. A value of magni-
tude 10−3 is reached in 9 iterations; the subsequent iterations are necessary to converge to a relative error, defined as
|(ζ k,n

− τ k,n)/τ k,n
|, of 10−5. It is noteworthy that the convergence condition used in Algorithm 1, which relies on the rel-

ative error, is responsible for an important fraction of the iterations. This trend cannot be generalized, but depends on the
specific problem. The analysis of the behavior of the upper bound reveals that its value is close to 10−6 during the first 20
iterations, due to the ability of the inner program to determine a parametric combination that nearly produces a null lack
of fit sum of squares for the design produced in Phase 1. Thereafter, the value of the upper bound decreases to the optimum
value of −0.003906 (see Case 4 in Table 1). The behavior of the lower bound, always increasing, is in agreement with the
theoretical result presented in Section 2.1. Another aspect to mention is that the algorithm for the T-optimal design ξ 4

T con-
verges in 20 iterations but the convergence of θ4,o requires 8 additional iterations. This trend cannot be generalized to all
problems, but in this case the least favorable parametric configuration is more difficult to find than the optimal design.

The optimal design found is:
−1.0000 −0.6693 0.1438 0.9570
0.2536 0.4250 0.2497 0.0718


for θ4,o

= {1.0288, 0.5550,−1.9292}. The optimum of the semi-infinite program is −0.001087, requiring a CPU time of
613.3970 s. The design obtained is in strong agreement with the results of Atkinson et al. [4], and satisfies the conditions
for the equivalence theorem. Therefore the T-optimal design found, based on 4 support points, is globally optimal. Fig. 2
illustrates the lack of fit of themodels for the best fitting combination of parameters, and the support points. Fig. 3 illustrates
graphically the validation of the equivalence theorem.
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4.2. Additional test cases

We now consider 8 more cases for further testing the effectiveness of our proposed algorithms. The first 4 concern only
univariate polynomial models all defined on a common design space X ∈ [−1,+1]; the next 3 cases are nonlinear models
with one or two regressors. Unlike the first 7 cases where only 2 models are involved, the last example, case (8), is to
discriminate between 3 linear models, two of them considered as ‘‘test models’’.

Case (1): This example is taken from Atkinson and Fedorov [5] and Atkinson et al. [4], where interest is to find the T-optimal
design to discriminate between a ‘‘true’’ quadratic model and a constant model. We have

ηt = 1+ 1 x1 + 1 x21 (16)

η2 = θ1 (17)
X ∈ [−1,+1], Θ ∈ [0, 4].

Case (2): We now wish to find the T-optimal design to discriminate between the quadratic polynomial from a linear model
on the same design space.

ηt = 1+ 1 x1 + 1 x21 (18)

η2 = θ1 + θ2 x1 (19)
X = [−1,+1], Θ ∈ [0, 4] × [0, 4].

We note that with nested linear models that differ by a single parameter, the optimal discrimination design problem is the
same as that for finding the best design to estimate that single parameter, i.e. we want to find the Ds-optimal design.

Case (3): Dette et al. [11] considered finding T-optimal designs for discriminating among polynomials. The true model is a
polynomial of degree n and the test models are polynomials of degree (n − 2). A particular example of such a situation is
when n = 5 with

ηt = 1+ 1 x1 + 1 x21 + 1 x31 + 1 x41 + 1 x51 (20)

η2 = θ1 + θ2 x1 + θ3 x21 + θ4 x31 (21)
X = [−1,+1], Θ = [0, 4] × [0, 4] × [0, 4] × [0, 4].

Case (4): A special instance of Case 3 was considered by Atkinson [1] and Dette et al. [11] where the coefficient of the term
xn−11 in the ‘‘true model’’ is 0. We have

ηt = 1+ 1 x1 + 1 x21 + 1 x31 + 0 x41 + 1 x51 (22)

η2 = θ1 + θ2 x1 + θ3 x21 + θ4 x31 (23)
X = [−1,+1], Θ = [0, 4] × [0, 4] × [0, 4] × [0, 4].

The interesting feature of this problem is that the optimal design is not symmetric and not unique. The 5-point optimal
design found by SIP is shown in Table 1. It has support points that range from−1 to 0.8090 and so is not supported at one of
the extreme ends of the design space. The symmetrized design with a support range from−0.8090 to 1 is also optimal, as is
any convex linear combination of the two designs. The sensitivity plot based on the equivalence theorem in Fig. 4 supports
this claimed behavior, since any 5 of the 6 points with the same peaks can be selected as the equivalence theorem is satisfied
not only at the points of the design, but also at x1 = 1. This is therefore a potential support point of the optimal design. The
convex linear combination of the two designs can be chosen to maximize some secondary design criterion.

Case (5): This example is taken from López-Fidalgo et al. [30] who were interested in finding the T-optimal design to dis-
criminate between aMichaelis–Menten kinetic rate model augmented with a linear term and the simpleMichaelis–Menten
model.

ηt =
x1

1.0+ x1
+ 0.1 x1 (24)

η2 =
θ1 x1

θ2 + x1
(25)

X = [10−5, 5.0], Θ = [10−3, 30] × [10−3, 10].

The test model is linear in θ1 but nonlinear in θ2.

Case (6): This optimal discrimination design problem was discussed and addressed by Atkinson [2]. Here the interest is
to find an optimal design to discriminate between two models for studying enzyme activity in the presence of chemical
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Fig. 4. Sensitivity function of the T-optimal design with the vertical lines representing the support points in case (4).

inhibitors. Bothmodels are direct extensions of theMichaelis–Mentenmodel discussed in Case (5). The null or ‘‘truemodel’’
assumes there is competitive inhibition and the ‘‘test model’’ assumes there is non-competitive inhibition.

ηt =
25.8 x1

4.36 (2.58+ x2)+ 2.58 x1
(26)

η2 =
θ1 θ3 x1

(θ2 + x1) (θ3 + x2)
(27)

X = [10−5, 30.0] × [10−5, 40.0], Θ = [10−3, 100] × [10−3, 18] × [10−3, 18].

The test model is nonlinear in the parameters θ2 and θ3, but not in θ1.

Case (7): This problem was also addressed by Atkinson [2] and corresponds to the opposite of Case (6). It is assumed that
the inhibition in the ‘‘true model’’ is non-competitive and the inhibition in the ‘‘test model’’ is competitive.

ηt =
51.6 x1

(4.36+ x1) (5.16+ x2)
(28)

η2 =
θ1 θ3 x1

θ2 (θ3 + x2)+ θ3 x1
(29)

X = [10−5, 30.0] × [10−5, 40.0], Θ = [10−3, 100] × [10−3, 18] × [10−3, 18].

Table 1 presents the T-optimal designs found for the above cases. The results obtained agree with the literature, and
in many cases the two sets of results are identical. This shows that the SIP-based strategy works for these examples and is
flexible enough to handle polynomials and non-linearmodels in amodel discrimination problem. Fig. 5 is the 2-dimensional
plot of the sensitivity function for Case (6), and confirms that the 4-point design found by SIP is optimal for discrimination
among all designs on the design space.

Case (8): This case tests our algorithm in a higher-dimensional problem where we want to find the T-optimal design for
discriminating among three rival models considered in Atkinson and Fedorov [6]. We have

ηt = 4.5− 1.5 exp(x)− 2 exp(−x) (30)

η1 = θ1 + θ2 x+ θ3 x2 (31)
η2 = θ4 + θ5 sin(0.5 π x)+ θ6 cos(0.5 π x)+ θ7 sin(π x) (32)
X = [−1, 1], Θ = [−10, 4]7.

The two alternative models have a total of 7 unknown parameters with θ = [θ1, θ2, θ3, θ4, θ5, θ6, θ7]
T and there is only

one regressor x ∈ X . Atkinson and Fedorov [6] formulated the problem as aminmaxmin programwhere the outer program is
to find optimal weights for the lack of fit sum of squares associated with each alternative model. Here, we view the problem
differently and interpret the weights as known probabilities, with each representing the probability that the alternative
model is the true model. To fix ideas, we assume that the weights for this example are both equal to 0.5, but other values
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Fig. 5. Sensitivity function for the T-optimal design in Case (6).

can also be used in the same way. The minimax program corresponding to the T-optimal design for this case is:

min
ξ∈Ξ

max
θ∈Θ

−

k
i=1


0.5 [ηt(xi)− η1(xi, θ1, θ2, θ3)]2 + 0.5 [ηt(xi)− η2(xi, θ4, θ5, θ6, θ7)]2


wi

s.t
k

i=1

wi = 1.
(33)

The results in Table 2 are in close agreement with those from Atkinson and Fedorov [6] verifying once again that our
SIP-based algorithm is able to solve more complex discrimination design problems.

There are two observations from the above examples. First, the CPU times required by our algorithm to find the optimal
discrimination design can differ substantially from problem to problem. A main reason is that each problem requires
differing amounts of time to solve the program P k

1,A in each iteration. This problem is computationally intensive because it
finds the globally optimal solutions by validating the conditions listed in Section 3 and inmany cases, the algorithm requires
between 3000 and 5000 calls of the NLP solver. Further this solution depends on the assumed dimension of the cartesian
regions X and Θ2, and on the efficiency of the sampling driver used to generate initial solutions for the NLPs solved.

Second, the T-optimal designs for the first seven cases have k = p2 + 1 support points. This number is that obtained on
theoretical grounds by Dette and Titoff [12] for T-optimal designs when all models of interest are polynomials. Case (8) in
Table 2 has 7 parameters but leads to an optimal discrimination designwith 5 support points. This number also validates the
theoretical result if we adopt the rule thatwhen there are 2 ormore testmodels, p2 should refer to the number of parameters
in themean function of themodel with themost parameters among the alternativemodels. In this example, themodel with
more parameters among the two models is η2(xi, θ4, θ5, θ6, θ7) with 4 parameters, resulting in the T-optimal design having
5 points. The implication from our numerical results suggest that the theoretical result from Dette and Titoff [12] on the
number of support points in a T-optimal design may apply to a larger class of models than polynomials.

5. Conclusions

Traditional statistical methods of finding optimal designs, such as Wynn–Fedorov algorithms, can run into convergence
problems when the optimization problem becomes complex as in minimax or maximin optimization. The goal of this paper
was to explore alternative, and potentially more flexible and powerful, methods to find optimal designs for discriminating
between two or more models. We first formulated the minimax optimization problem as one belonging to a class of non-
smooth mathematical programs before applying Semi-Infinite Programming tools for numerical solution of the minimax
optimization problemusing an exchange based algorithm. To do this, the continuous domain of the parameters is discretized
so that we can reformulate the original SIP problem with an infinite number of constraints as a relaxation program with a
finite number of constraints.

The discretization points that populate the discrete set of parametric combinations are solutions of the inner program;
the solution of the SIP is obtained through convergence of the solutions of the outer and the inner programs. Our approach
includes an initial step to find a feasible initial parametric combination to start the iterative procedure. We automate the
search for the global T-optimal design and confirm the optimality of the SIP-generated design using an equivalence theorem.
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If the SIP-generated design is not T-optimal, the next search will be among designs with one more support point. Our
experience is that usually just a couple of such increases will suffice before the process finds the T-optimal design. All
programs were solved using a stochastic global NLP solver.

We tested our SIP approach with a number of discrimination design problems for linear and nonlinear models. In all
cases, our results from the SIP approach were in agreement with the results reported in the literature. The main advantages
of our proposed approach are its flexibility and the relatively low computational resources required to find the T-optimal
designs when compared with traditional methods. We are encouraged by SIPmethodology and plan to test its ability to find
optimal discrimination designs more broadly in more complicated problems. For example, a good test case is to find robust
T-optimal designs where we do not require one of the twomodels to be fully known [44]. Mathematical programming tools
such as SIP and Semi-definite programming have already been commonly and effectively used by engineers for decades but
not by statisticians. We hope that our work here will encourage statisticians to explore such programming tools in their
research work.
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