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Abstract 

Asocial learning is a mechanism by which innovations 
develop, and social learning is a mechanism by which 
innovations spread. Penetration of an innovative behavior 
through a population is measured by the proportion of the 
population that possesses the innovation. Via agent-based 
modeling, we examine innovation diffusion with agents 
learning and interacting in space. Simulations show that 
innovation spread systematically deviates from differential 
equations of the proportion of the population that has the 
innovation. Mediation analysis confirms that boundary 
surface length of groups having the innovation accounts for 
these spatial effects. Proportion of asocial innovative learners 
increases surface length which, in turn, increases social 
imitative learning. 

Keywords: Social learning; asocial learning; imitation; 
innovation; spatial simulation; surface length; mediation 
analysis; agent-based modeling. 

Introduction 
Since Darwin’s theory of evolution, researchers have sought 
to understand how organisms adapt to their environment to 
maximize their reproductive potential. In addition to 
biological evolution, some lasting adaptations manifest 
themselves through animal phenotypes with no genetic 
changes. Innovative behaviors allow relatively quick 
adaptation to rapidly changing environments, and can 
spread and persevere (Laland, Boyd, & Richerson, 1996; 
Reader & Laland, 2003). For our purposes, innovation 
refers to an adaptive behavior pattern with relative novelty.  

Innovative behaviors can be acquired through either 
asocial or social learning. In asocial learning, an innovation 
is acquired through individual experience. In social 
learning, an innovation is acquired from a conspecific 
demonstrator (Heyes, 1994). Because individual discoveries 
are costly, they may occur in only a few key individuals 
through asocial learning and then diffuse through a 
population via social learning (Laland, Boyd, & Richerson, 
1996). The dynamics of innovation diffusion and imitation 
are an important aspect of collective social cognition and 
behavior, and thus relevant to integrative cognitive science 
(Goldstone & Gureckis, 2009). 

However, patterns of sequential spread in a population 
resembling those predicted by some models of social 
learning can result from asocial processes alone. It is not 
always clear which type of learning drives innovative 
acquisitions, so it is thus important to disentangle social 

from asocial learning. One useful method is diffusion curve 
analysis, or DCA (Reader, 2004; Franz & Nunn, 2009). 
Diffusion is the change in frequency of an innovative 
behavior in a population over time. In DCA, the shape of 
the curve is used to infer whether social or asocial learning 
is the mechanism of diffusion. 

Our purpose is to simulate the spatial diffusion of 
innovation and compare the results to DCA predictions. 
Although there is a rich literature on learning in laboratory 
experiments, understanding of how social learning occurs in 
the wild is limited. 

S-shaped logistic curves are predicted by DCA to 
characterize social learning. If the amount of social learning 
at a given time step is proportional to both the number of 
possible demonstrators and the number of possible learners, 
then it can be obtained as the product of the proportion of 
the population that knows the innovation and the proportion 
of the population that does not know the innovation (Laland, 
Boyd, & Richerson, 1996). This corresponds 
mathematically to the differential equation: 

)1( uuRu S −=Δ      (1) 

where RS is a constant rate of social learning, and u is the 
variable proportion of the population with the innovation. 

In a population of only innovators, assuming no social 
learning, the following differential equation applies: 

)1( uRu I −=Δ     (2) 

where RI is the rate of innovation. As more innovators learn, 
the number of naïve innovators decreases in a decelerating 
curve (Franz & Nunn, 2009). 

Social and asocial learning are not mutually exclusive. In 
an analysis of data from research by Hinde and Fisher 
(1949) on innovation spread in birds, Lefebvre (1995) 
concludes that milk-bottle-opening likely spread by some 
form of social learning from many unique points of origin. 
This is supported by evidence that some birds open bottles 
spontaneously without any prior experience with bottles or 
demonstrators (Sherry & Galef, 1984). Thus, asocial 
learning can occur alongside social learning, and Equations 
1 and 2 can be summed to accommodate this: 

)1()1( uRuuRu IS −+−=Δ    (3) 

Equation 3, however, applies only to a population where 
every member is capable of being an innovator and a social 
learner. It may be more realistic to assume that only a 
certain proportion of the population is capable of either of 
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these things. No explanatory power is lost in making this 
assumption as these proportions can be set to 1, and the 
resulting model is only slightly less parsimonious. To 
accommodate this variation in ability, Equation 3 can be 
modified by multiplying the innovation and social learning 
parts of the equation by their corresponding proportions, I 
and S, respectively: 

)1()1( uIRuuSRu IS −+−=Δ   (4) 

We refer to Equation 4 as the DCA equation. Based on 
the proportion of social learning compared to asocial 
learning, this differential equation generates a curve with 
either a logistic shape (greater social learning) or a 
decelerating shape (greater asocial learning). The DCA 
equation has been applied in various experimental contexts, 
including the diffusion of innovations in humans from peer 
and media influences (Lekvall & Wahlbin, 1973) and 
bystander effects in the diffusion of foraging techniques in 
pigeons (Laland, Boyd, & Richerson, 1996). 

The DCA equation relies on one key variable: the 
proportion of the population that knows the innovation. This 
proportion thus serves as both the dependent and 
independent variable in the differential equation. Here we 
test the results of spatial simulations against the predictions 
of the DCA equation. The diffusion of innovation is in part 
a spatial process, a fact captured by the simulations, but not 
by the DCA equation. We answer several questions. What 
are the essential differences between asocial and social 
learning and how can these two types of learning be 
identified in wild populations? Does the DCA equation 
account for all aspects of these issues, or are other 
approaches required? Are these features realistic, or are they 
artifacts of abstract simulations?  

To explore the spatial diffusion of an innovation, our 
simulations create a two-dimensional space containing 
agents. Depending on their genotype, agents can be 
innovators and/or social learners. Parameters of the 
simulation include the proportions of innovators and social 
learners, just as the DCA equation uses these factors as 
variables. Comparing the rate of learning in the simulation 
to the rate of learning predicted by the DCA equation could 
provide insight into any potential spatial factors affecting 
innovation diffusion. 

Methods 
The simulation is set on a torus, a 25 by 25 lattice in which 
each edge touches the opposite edge. Each of the 625 tiles 
contains one agent with on/off genes for innovation and 
social learning.  

Agents with an activated innovation allele can 
spontaneously discover the innovation at a fixed innovation 
rate of .025. Agents with an activated social-learning allele 
can copy the innovation from their neighbors: for every 
adjacent neighbor that knows the innovation, a social 
learner’s chance of learning the innovation increases by .25. 
The ten-fold difference between the success of social and 
asocial learning is based on an assumption of differential 
learning costs: if asocial learning has a greater cost and 

requires more resources than social learning, it should occur 
at a slower rate than social learning. The simulation 
experiment assigns genes to individual agents 
probabilistically depending on the proportion of social and 
asocial learners specified in simulation parameters. The 
simulation runs for 80 learning cycles, recording agent 
behavior, the times at which agents learn, and the neighbors 
from whom they learn if the learning is social. 

The effect of number of innovators was investigated in 
simulations with the proportion of innovators ranging from 
.05 to 1.0, holding the proportion of social learners at 1.0. 
The effect of number of social learners was studied with 
simulations varying proportion of social learners ranging 
from 0 to 1.0, holding the proportion of innovators at 1.0.  

Results 
Figures 1-6 plot the change in the proportion of the 
population that knows the innovation over time, averaged 
across five runs. Figures 1 and 2 depict the results from 
varying the proportion of the population with the asocial 
learning allele when the whole population has the social 
learning allele. Figure 1 shows predictions of the DCA 
equation, and Figure 2 presents simulation results.  
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Figure 1: Diffusion curves predicted by DCA equation 
with asocial learning rate = .025, social learning rate = .25, 

proportion of social learners = 1, and the proportion of 
asocial learners varying from .05 to 1.  
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Figure 2: Simulations with asocial learning rate = .025, 
social learning rate = .25, proportion of social learners = 1, 

and proportion of asocial learners varying from .05 to 1. 
 

These results reveal subtle but noticeable differences 
between the DCA equation and the simulations. For Figures 
1 and 2, the whole population is capable of social learning; 
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what changes across curves is the proportion of the 
population capable of asocial learning. In Figure 1, the 
curves determined by the DCA equation appear more 
parallel than they do in the simulation results of Figure 2. 

We can understand these differences by considering the 
DCA equation itself. This equation (4) has a social learning 
component (left half) and an asocial learning component 
(right half). Recall that the DCA equation’s key variable is 
the proportion of the population that knows the innovation. 
At the beginning, the innovative behavior is introduced into 
the population by asocial learning, so the proportion of the 
population that can do asocial learning has a large effect as 
seen in Figure 1. Because this proportion of asocial learners 
is different in every curve, the curves differentiate quickly. 
However, as the proportion of the population that knows the 
innovation increases, the social learning component of the 
DCA equation has a greater effect. Because all of the curves 
in Figure 1 have the same social learning settings, with the 
proportion of social learners S set to 1 and the rate of social 
learning RS set to .25, their learning rates are very similar 
after this original differentiation, causing the observed 
parallelism. Thus, the parallel nature of the equation-
produced curves in Figure 1 is a direct consequence of using 
the proportion of the population that knows the innovation 
as the key independent variable.  

The lack of parallelism in simulation curves can be 
quantified by examining the maximum learning slope for 
each curve, which represents the amount of learning when u, 
the proportion of the population that knows the innovation, 
equals .5. This is the point that maximizes the product u(1-
u) and thus also maximizes innovation spread according to 
the DCA equation. Figure 3 presents mean maximum slopes 
of diffusion curves as a function of the proportion of the 
population with the innovation allele. 
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Figure 3: Maximum slope of curves (where u = .5) from the 
DCA equation and the simulations. 

 
Figure 3 indicates that the maximum slope of each curve 

from the DCA equation is relatively stable across variation 
in number of innovators, consistent with a constant social 
learning component in the DCA equation. The 
corresponding simulations, however, do not follow this 
pattern; rather than being stable, the maximum slope 
increases with the proportion of innovators.  

As Figure 6 indicates, there is no discrepancy between the 
asocial learning component of the DCA equation and 

asocial learning in simulations. Thus we can infer that this 
increase in maximum slope across number of innovators is 
due to social learning. This implies that increasing the 
proportion of the population with the asocial learning allele 
speeds innovation spread in the simulation, which is exactly 
what we see in Figures 1 and 2.  

Analogously, Figures 4 and 5 depict results from 
adjusting the proportion of the population with the social 
learning allele when the whole population has the asocial 
learning allele. Figure 4 shows predictions of the DCA 
equation while Figure 5 presents simulation results. Again, 
the curves produced from the simulations have a greater 
maximum learning slope than the curves predicted by the 
DCA equation, and these discrepancies increase with the 
proportion of the population that is capable of social 
learning. 
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Figure 4: Diffusion curves predicted by DCA equation 
with asocial learning rate = .025, social learning rate = .25, 

and proportion of social learners varying from 0 to 1. 
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Figure 5: Simulations with asocial learning rate = .025, 
social learning rate = .25, proportion of social learners 

varying from 0 to 1, and proportion of asocial learners = 1.  
 
With purely asocial learning (S = 0), the DCA equation 

closely tracks simulation results. The absolute differences 
between the equation and simulations averaged below .01 
across all time steps. The lowest navy blue curves in Figures 
4 and 5 are nearly identical. These two curves are re-plotted 
in Figure 6 to emphasize the overlap. This is the only 
simulation curve that the DCA equation successfully 
predicts. This predictive success makes sense because 
asocial learning in the simulation occurs as a random event 
based on a fixed probability, just as in the equation. 
Therefore, discrepancies between all other DCA and 
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simulation curves must result from social learning or 
possible interactions between social and asocial learning. 

A possible cause of the increase in social learning as the 
proportion of innovators increases (Figure 3) is boundary 
surface length, the length of the perimeter surrounding 
groups of agents that know the innovation. These 
boundaries mark the area where naïve agents can learn the 
innovation. Thus, increasing this area should increase the 
speed of innovation spread. 
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Figure 6: Diffusion curve predicted by the DCA equation 
compared to simulation results. Asocial learning rate = .025 

and proportion of asocial learners = 1. 
 
According to this analysis of the simulations, the spatial 

distribution of the agents that know the innovation affects 
social learning. Consider each innovator as a start point for 
an island of social learners. There will be more such islands 
when there are more initial innovators. More innovation 
islands generate more surface length and therefore more 

social learning. This suggests an interaction effect with the 
proportion of innovators in the population: when there are 
multiple initial innovators, there is a higher likelihood that 
more social learning will occur as a result of greater surface 
length. When there are fewer initial innovators, less social 
learning will occur as a result of less surface length. 

Figure 7 shows two plots from simulations exemplifying 
this argument. These two tori present simulation outputs, 
each depicting the point where one-half the population 
possesses the innovation. In 7A, where the proportion of 
innovators = .05, there are two islands, resulting from a few 
early innovators. In 7B, where the proportion of innovators 
= 1, there are upwards of nine islands due to more 
innovators. Although the proportion of the population 
possessing the innovation is the same in both worlds, 
surface length is much greater for the simulation that was 
initialized with a higher proportion of innovators.  

Thus, an explanation for the discrepancies between the 
predictions of the DCA equation and the simulation results 
is that asocial learning increases the number of start points 
for social learning, and therefore the emerging amount of 
surface length. Because surface length determines the 
amount of social learning that can take place, social learning 
and innovation spread increase substantially as surface 
length increases. Thus, increasing asocial learning increases 
social learning in the simulation (Figure 2) but not in the 
DCA equation (Figure 1; see Figure 3 for direct 
comparison). This explanation can be further validated by a 
mediation analysis (MacKinnon et al, 2007). 

 
 

A: Few innovators         B: Many innovators 

      
 
Figure 7: Two worlds with innovator proportions of .05 (A) and 1.0 (B). Time of acquisition is indicated by color saturation.  

Innovators are outlined in pink. 
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Mediation analysis is a type of linear regression that 
evaluates the relative effects of an independent variable 
(here, proportion of asocial learners) and a mediating 
variable (here, surface length) on a dependent variable 
(here, amount of social learning). The idea is that the 
independent variable affects the dependent variable, not 
only directly, but also indirectly via a mediating variable.  

A mediation analysis of the simulation data across the six 
increasing proportions of asocial learners shows that 90.2 
percent of the variance in the amount of social learning 
caused by variance in the proportion of asocial learners is 
mediated by surface length (total effect = 19.233 [β = .945], 
mediation effect = 17.351 [β = .912 * .934 = .852], p < 
0.0001). As shown in Figure 8, the direct effect of the 
proportion of asocial learners on the amount of social 
learning becomes non-significant after controlling for the 
mediating variable of surface length, implying full 
mediation. This mediation analysis lends statistical support 
to the idea that surface length is the mechanism through 
which asocial learning causes social learning to speed up.  

 
Figure 8: Standardized regression (beta) coefficients for 
meditational analysis. The path from X to Y falls to non-

significance after controlling for the mediating variable of 
surface length (as indicated by the small coefficient in 

parentheses). 
 

In summary, the simulations indicate that increasing 
social learning by adding more asocial learners increases 
surface length, and therefore increases the speed of social 
learning. This goes beyond the DCA equation which takes 
only the proportion of the population that knows the 
innovation as its independent variable.  Also, speed of 
innovation spread is reduced as the number of agents with 
the social learning allele decreases.  

Discussion 
Our results show a difference between the DCA equation 
and the simulations, and this difference derives from the 
spatial factor of surface length. In the simulation, surface 
length is causally related to both social and asocial learning. 
Asocial learning increases surface length and surface length, 
in turn, increases social learning. The DCA equation, whose 
only independent variable is the proportion of the 
population that knows the innovation, does not capture this 
spatial factor. It is possible that the DCA equation could be 

improved on by a more sophisticated mathematical model 
that incorporates surface length.  

A fundamental question is whether or not these results 
apply to the real world. After all, the results are a 
consequence of the design of the simulations. There is a 
high viscosity in the design, meaning that agents can only 
learn from their directly adjacent neighbors. This 
characteristic is presumably the cause of the spatial effect. If 
an agent could learn from any other randomly-selected 
agent, then the spatial arrangement of agents would have no 
bearing on the results. Therefore, the results are only 
applicable to real-world scenarios where social learning 
depends highly on spatial proximity. With tools like the 
telephone and internet, which allow social learning to take 
place across oceans, these results may not apply to diffusion 
of innovation for many human populations. This is not to 
say that diffusion in humans is random, but rather that these 
present simulations may be too constrained to model it. 
However, the current results do seem applicable to 
populations where social learning is heavily dependent on 
proximity, which would include a lot of human learning 
based on face-to-face interactions.  

This consideration points to a distinction between 
geographic and social-network analysis. The simulations we 
present here are examples of geographic analysis, with 
agents learning from their immediate neighbors. Social 
networks can transcend spatial proximity by using 
communication technologies to cover great distances. This 
difference is not just one of viscosity but also of structural 
complexity, because social networks are often more 
complicated than geographic relationships.  

Franz and Nunn (2009) developed a method of social 
network analysis called network-based diffusion analysis, or 
NBDA. NBDA uses the social network of a population and 
the times at which they learn innovations to probabilistically 
determine whether the learning mechanism is social or 
asocial. Their method of social network analysis seems 
promising, although it requires the researcher to determine 
the social network of a population. Such specification may 
not be feasible in excessively large populations. There are 
also cases where a geographic analysis may be more 
appropriate because some environments are in fact viscous 
(e.g., Lefebvre, 1995).   

Also, Franz and Nunn’s main interest was in detecting 
social or asocial learning when one such learning method 
was exclusively present. In contrast, our research used 
various, systematic combinations of these two learning 
mechanisms. Model sensitivity to such combinations of 
social and asocial learning is more interesting and important 
than detection of pure cases. Studying such combinations is 
critical to discovering interactions between social and 
asocial learning, as highlighted in our results.  

A lattice structure permitting interaction only between 
immediately adjacent neighbors is actually a special case of 
a network that provides only those links (or edges). Thus, a 
generalization of our results would entail testing whether an 
analog of surface length would facilitate information 

.945* (.093) 
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diffusion in networks of various topologies. Such an 
analogy might be the number of directed links between 
agents who possess, and agents who lack, an innovation.  If 
such links indicate direction of causal influence, then it 
would be important to count the links from knowledgeable 
to naïve agents; if links indicate friendship choice, then 
count the links from naïve to knowledgeable agents, 
because agents are likely to be influenced by those they 
consider to be friends.  

The original aim of this project was to look for ways to 
disentangle social learning from asocial learning through a 
spatial analysis of the diffusion of innovative behavior. The 
results suggest that a greater proportion of asocial learners 
results in more innovation islands and greater surface 
length. Although it may be difficult to determine surface 
length in wild populations, counting islands in a topographic 
analysis of observations of innovative behavior would seem 
feasible.  

The spatial effect of surface length provides a mechanism 
to disentangle social and asocial learning that is not 
available in diffusion curve analysis. This kind of spatial 
analysis could become another valuable tool to measure and 
understand the differences between social and asocial 
learning. One next step is to apply the ideas developed from 
this simulation to real biological data. In doing so, we may 
be able to contribute new understanding of how adaptive 
innovations spread and how they interact with evolution. 
Another planned thrust is to study how evolution selects the 
best proportions of social and asocial learning alleles under 
different environmental conditions (Laland et al., 1996; 
Shultz, Hartshorn, & Hammond, 2008; Shultz, Hartshorn, & 
Kaznatcheev, 2009). In such research, faster learning cycles 
can be nested within slower evolutionary cycles.  
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