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Gene regulatory networks (GRNs) play an important role in cellular systems and are important for understanding biological
processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene
expression data but do not consider the topology information in their inference process, while incorporating this information can
partially compensate for the lack of reliable expression data. Here we develop a Bayesian group lasso with spike and slab priors
to perform gene selection and estimation for nonparametric models. B-spline basis functions are used to capture the nonlinear
relationships flexibly and penalties are used to avoid overfitting. Further, we incorporate the topology information into the Bayesian
method as a prior. We present the application of our method on DREAM3 and DREAM4 datasets and two real biological datasets.
The results show that ourmethod performs better than existingmethods and the topology information prior can improve the result.

1. Introduction

Gene regulatory network plays an important role in diverse
cellular functions. A reliable method to identify the structure
and dynamics of such regulation is important for understand-
ing complex biological processes and is helpful for treatment
of diseases. With the development of high throughout tech-
nologies in recent years, gene expression data has provided a
useful way to investigate the cellular system.

Generally, there are two types of gene expression data
used to predict the structure of GRNs, which are steady-state
data and time-series data. The steady-state data measures
the steady-state levels in different samples, while time-series
data measures the expression levels at several successive
time points. Since the time-series data contains the dynamic
information of the network while the steady-state data does
not [1], we focus on the time-series data in this paper.

Over the last several years, a number of network inference
methods have been developed to tackle this problem, includ-
ing Bayesian network [2, 3], dynamic Bayesian network [4, 5],
Boolean network [6, 7], ordinary differential equation [8, 9],
andmutual information [10, 11]. A comprehensive review can
be found in [12, 13]. Among thesemethods, dynamic Bayesian

network has become the major focus for inferring gene regu-
latory network because it can infer causal interactions, model
cyclic interactions, and has less computational complexity
than ordinary differential equation.

Inferring a GRN from time-series data is known to be
challenging partly due to the high number of genes relative to
the number of data points.More importantly, the interactions
between genes are typically nonlinear; thus linear model
may be inefficient to recognize the nonlinear interactions.
A flexible way to solve this problem is to use B-spline
functions to describe the nonlinear interactions, and the B-
spline functions have been used to infer GRNs in previous
studies [14, 15]. A key problem in spline regression is the
knot selection which greatly influences the curve fitting.
Reference [14] suggested using penalized-splines to avoid
overfitting and reduce the number of parameters to be
estimated. Among many penalized methods, lasso [16] is the
most popular method due to its ability to select and estimate
simultaneously and can produce exact 0 estimates. Group
lasso [17] was also developed to select grouped variables.
Reference [18] proposed group lasso or Bayesian group lasso
when spline regression was used because the predictors
belong to a same gene forming a natural group. Reference [19]

Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2017, Article ID 8307530, 8 pages
http://dx.doi.org/10.1155/2017/8307530

http://dx.doi.org/10.1155/2017/8307530


2 Computational and Mathematical Methods in Medicine

also developed a Bayesian adaptive group lasso to perform
simultaneous model selection and estimation for B-spline
regression. However, Bayesian spline regressionmethods still
predict a lot of false positive interactions because of the
indirect effects existing in the GRNs.

Recently, [20] proposed a new method which uses
network topology information to improve gene regulatory
network inference; they used a prior that both prokaryotic
and eukaryotic transcription networks exhibit an approxi-
mately scale-free out-degree distribution while the in-degree
distribution is a more restricted exponential function; this
structure property is described in [21]. Reference [20] also
pointed out that 79% or more genes regulators are less than 3.
This property means that most genes in a GRN are regulated
by a few regulators and may be possible to be combined with
the B-spline regression to improve the results of the GRN
inference.

In this paper, we work with a dynamic Bayesian network
and use spline regression to detect the nonlinear interactions
between genes. A Bayesian group lasso is also used to avoid
overfitting and reduce the number of parameters to be
estimated. Comparing with group lasso, Bayesian group lasso
is a better choice because there are 2 major advantages of
Bayesian selection methods: (1)The tuning parameter can be
set flexibly. (2)The topology information can be incorporated
easily. Further, instead of taking a traditional Bayesian group
lasso, we use a Bayesian group lasso model with spike and
slab priors since this problem only requires the sparsity on
the group level and spike and slab priors can exclude or
include the entire group of B-spline basis functions. Finally,
we incorporate the topology information as a prior in the
Bayesian approach which controls the size of the selected
model. This method is assessed by applying to DREAM3 and
DREAM4 datasets and two real biological datasets.

2. Method

2.1. The Nonlinear Regression Model for GRN Inference. Con-
sider an 𝐺 × 𝑇 matrix 𝑌, where 𝑇 is the number of the gene
expression levels measured times and 𝐺 is the number of
genes. A DBN model represents probabilistic relationships
between genes via a directed acyclic graph 𝜗. In this graph,
genes are represented by a set of nodes 𝑉 = {𝑉1, . . . , 𝑉𝐺}
and the interactions between genes are represented by a set
of directed edges 𝐸 ⊆ {(𝑖, 𝑗) : 𝑖, 𝑗 ∈ 𝑉}. A directed edge from
node 𝑖 to node 𝑗 means gene 𝑖 is a regulator of gene 𝑗. The
probability distribution of genes 𝑌𝑡 given its parents can be
expressed as

𝑝 (𝑌𝑡 | 𝑌𝑡−1) = 𝐺∏
𝑔=1

𝑝 (𝑌𝑔,𝑡 | 𝑃𝑎 (𝑌𝑔,𝑡)) , (1)

where𝑌𝑔,𝑡 is the gene 𝑔 expression level at time 𝑡 and 𝑃𝑎(𝑌𝑔,𝑡)
is the set of all the parent nodes of gene 𝑔 at time 𝑡. In the case
of the regression-based DBN, the conditional distribution𝑝(𝑌𝑔,𝑡 | 𝑃𝑎(𝑌𝑔,𝑡)) can be written as

𝑦𝑔,𝑡 = 𝑓𝑡 (𝑦−𝑔,𝑡−1) + 𝜀𝑔, 𝑔 = 1, . . . , 𝐺, 𝑡 = 1, . . . , 𝑇, (2)

where 𝑦𝑔,𝑡 is the expression level of gene 𝑔 and 𝑦−𝑔,𝑡−1 is the
vector without 𝑦𝑡−1:

𝑦−𝑔,𝑡−1 = (𝑦1,𝑡−1, . . . , 𝑦𝑔−1,𝑡−1, 𝑦𝑔+1,𝑡−1, . . . , 𝑦𝐺,𝑡−1) . (3)

We assume that the GRN is a time-invariant network; thus𝑓𝑡(⋅) = 𝑓(⋅) and the error term 𝜀𝑔 ∼ 𝑁(0, 𝜎2). Although𝑓(⋅) can be characterized by any nonlinear functional rep-
resentation, [15] suggested using B-spline basis functions
instead of using Fourier basis, wavelets, or other nonlinear
basis functions because of the pattern of the relationship
between genes is unknown. Therefore, we also use B-spline
basis functions in this article and the regulatory relationships
can be written as

𝑦𝑔,𝑡 = 𝜇𝑔 + 𝑓 (𝑦1,𝑡−1) + ⋅ ⋅ ⋅ + 𝑓 (𝑦𝑔−1,𝑡−1)
+ 𝑓 (𝑦𝑔+1,𝑡−1) + ⋅ ⋅ ⋅ + 𝑓 (𝑦𝐺,𝑡−1) + 𝜀𝑔, (4)

where 𝜇𝑔 is the intercept and 𝑓(𝑦𝑖,𝑡) = ∑𝑀𝑘=1 𝛽𝑖𝑘𝐵𝑖𝑘(𝑦𝑖,𝑡).{𝐵𝑖𝑘(𝑦𝑖,𝑡)} are𝑀 B-spline basis functions of degree 𝑙 and 𝛽𝑖𝑘
is the parameters to estimate from data. Let {𝜅𝑖} be the set of𝑟 equally spaced knots with min{𝑦𝑖} = 𝜅𝑖1 < 𝜅𝑖2 < ⋅ ⋅ ⋅ < 𝜅𝑖𝑟 =
max{𝑦𝑖}, and 𝑀 = 𝑟 + 𝑙. We get rid of the subscript 𝑔 for
the variables for simplicity of notation. Then the regression
equation can be written as

𝑦 = 𝜇 + 𝑋𝛽 + 𝜀, (5)

where 𝑋 is the bases matrix of size 𝑇 × 𝑀𝐺 and 𝛽 is the
corresponding coefficients vector.

2.2. Incorporating the Topology Information and Bayesian
Inference. Weuse the Bayesian group lassomethod proposed
in [22]; the hierarchical Bayesian model is

𝑌 | 𝑋, 𝛽, 𝜎2 ∼ 𝑁𝑛 (𝑋𝛽, 𝜎2𝐼𝑛) ,
𝛽𝑔 | 𝜎2, 𝜏2𝑔 ∼ 𝛾𝑁𝑚𝑔 (0, 𝜎2𝜏2𝑔𝐼𝑚𝑔) + (1 − 𝛾𝑔) 𝛿0 (𝛽𝑔) ,

𝑔 = 1, 2, . . . , 𝐺,
𝜏2𝑔 ∼ Gamma(𝑚𝑔 + 12 , 𝜆22 ) ,

𝑔 = 1, 2, . . . , 𝐺,
𝜎2 ∼ Inverse Gamma (𝑎, 𝑏) ,
𝛾𝑔 ∼ Bernoulli (𝑝) ,
𝑝 ∼ Beta (𝑐, 𝑑) ,

(6)

where𝑚𝑗 = 1 for 𝑗 = 1 and𝑚𝑗 = 𝑀 otherwise. Here we use a
spike and slab prior on 𝛽 and get the ranking of the potential
regulatory links from 𝛾. Although we can place a positive and
very small 𝑝 as a prior when the in-degree of the target gene
is small, there are still a lot of false positive interactions to be
predicted. Inspired by the idea of maxP technique proposed
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by [20], we use a prior proposed in [23], to place a restriction
on 𝛾, that only allow the model to be of small size.

𝛾 ∼ Bernoulli (𝑝) 󵄨󵄨󵄨󵄨𝛾󵄨󵄨󵄨󵄨 ≤ 𝑘,
𝛾 = 0 otherwise. (7)

Here the integer-valued hyperparameter 𝑘 restricts the maxi-
mum number of parents for the target gene in each iteration.
However, there are still some genes regulated by a large
number of genes. Therefore, a fixed 𝑘 will affect the accuracy
of the prediction. Thus a uniform prior on [1, 𝑚] is placed
on 𝑘, where 𝑚 is a predetermined integer. Then the model
becomes

𝑌 | 𝑋, 𝛽, 𝜎2 ∼ 𝑁𝑛 (𝑋𝛽, 𝜎2𝐼𝑛) ,
𝛽𝑔 | 𝜎2, 𝜏2𝑔 ∼ 𝛾𝑁𝑚𝑔 (0, 𝜎2𝜏2𝑔𝐼𝑚𝑔) + (1 − 𝛾𝑔) 𝛿0 (𝛽𝑔) ,

𝑔 = 1, 2, . . . , 𝐺,
𝜏2𝑔 ∼ Gamma(𝑚𝑔 + 12 , 𝜆22 ) ,

𝑔 = 1, 2, . . . , 𝐺,
𝜎2 ∼ Inverse Gamma (𝑎, 𝑏)

𝑝 (𝛾) = {{{
𝛾 ∼ Bernoulli (𝑝) , 󵄨󵄨󵄨󵄨𝛾󵄨󵄨󵄨󵄨 ≤ 𝑘,
𝛾 = 0, otherwise,

𝑝 ∼ Beta (𝑐, 𝑑) ,
𝑘 ∼ uniform (1, 𝑚) .

(8)

The likelihood is

𝑝 (𝑦 | 𝑋, 𝛽, 𝜎2)
∝ (𝜎2)−𝑛/2 exp(−(𝑦 − 𝑋𝛽)𝑇 (𝑦 − 𝑋𝛽)2𝜎2 ) . (9)

According to the prior and the likelihood above, the joint
posterior distribution on data is

𝑝 (𝛽, 𝜎2, 𝜏2, 𝛾 | 𝑌,𝑋) ∝ (𝜎2)−𝑛/2

⋅ exp(−(𝑦 − 𝑋𝛽)𝑇 (𝑦 − 𝑋𝛽)2𝜎2 )

⋅ 𝐺∏
𝑔=1

[𝛾 (𝜎2𝜏2𝑔)−𝑚𝑔/2 exp(− 𝛽𝑇𝑔𝛽𝑔2𝜎2𝜏2𝑔)
+ (1 − 𝛾) 𝛿0 (𝛽𝑔)] 𝐺∏

𝑔=1

(𝜆2)(𝑚𝑔+1)/2 (𝜏2𝑔)(𝑚𝑔+1)/2−1

⋅ exp(−𝜆22 𝜏2𝑔)(𝜎2)−𝑎−1 exp(− 𝑏𝜎2)𝑝𝑐−1 (1
− 𝑝)𝑑−1 𝑝 (𝛾) 𝑝 (𝑘) .

(10)

The Gibbs sampling scheme is as follows: We use𝛽−𝑔 = (𝛽1, . . . , 𝛽𝑔−1, 𝛽𝑔+1, . . . , 𝛽𝐺) to denote the co-
efficient vector 𝛽 without the 𝑔th group and 𝑋−𝑔 =(𝑋1, . . . , 𝑋𝑔−1, 𝑋𝑔+1, . . . , 𝑋𝐺) to denote the covariate matrix
corresponding to 𝛽−𝑔. The full conditions of (𝛾𝑔 = 1, 𝛽𝑔) and(𝛾𝑔 = 0, 𝛽𝑔) are

𝑝 (𝛾𝑔 = 1, 𝛽𝑔 | rest) ∝ (2𝜋𝜏2𝑔𝜎2)−𝑚𝑔/2
⋅ exp(−𝛽𝑇𝑔Σ𝑔𝛽𝑔 − 2𝑢𝑇𝑔𝛽𝑔2𝜎2 )𝑝 (𝛾𝑔 = 1) ,

𝑝 (𝛾𝑔 = 0, 𝛽𝑔 | rest)
∝ exp(−𝛽𝑇𝑔𝑋𝑇𝑔𝑋𝑔𝛽𝑔 − 2𝑢𝑇𝑔𝛽𝑔2𝜎2 )𝑝 (𝛾𝑔 = 0)
⋅ 𝛿0 (𝛽𝑔) ,

(11)

where 𝜇𝑔 = Σ𝑔𝑋𝑇𝑔(𝑌 − 𝑋−𝑔𝛽−𝑔) and Σ𝑔 = (𝑋𝑇𝑔𝑋𝑔 +(1/𝜏2𝑔)𝐼𝑚𝑔)−1.
Integrating out 𝛽𝑔, we have

𝑝 (𝛾𝑔 = 1, 𝛽𝑔 | rest) ∝ 𝑝 (𝛾𝑔 = 1) (𝜏2𝑔)−𝑚𝑔/2 󵄨󵄨󵄨󵄨󵄨Σ𝑔󵄨󵄨󵄨󵄨󵄨1/2

⋅ exp{{{
(𝑋𝑇𝑔 (𝑌 − 𝑋−𝑔𝛽−𝑔))𝑇 Σ𝑔 (𝑋𝑇𝑔 (𝑌 − 𝑋−𝑔𝛽−𝑔))2𝜎2 }}} ,

𝑝 (𝛾𝑔 = 0, 𝛽𝑔 | rest) ∝ 𝑝 (𝛾𝑔 = 0) .
(12)

From these equations, we can draw 𝛾𝑔 through

𝑝 (𝛾𝑔 = 0 | rest) = 𝑝
𝑝 + (1 − 𝑝) (𝜏2𝑔)−𝑚𝑔/2 󵄨󵄨󵄨󵄨󵄨Σ𝑔󵄨󵄨󵄨󵄨󵄨1/2 exp ((𝑋𝑇𝑔 (𝑦 − 𝑋−𝑔𝛽−𝑔))𝑇 Σ𝑔 (𝑋𝑇𝑔 (𝑦 − 𝑋−𝑔𝛽−𝑔)) /2𝜎2) . (13)
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Then the full conditional posterior distribution of 𝛽𝑔 is
𝑝 (𝛽𝑔 | 𝛾𝑔 = 1, rest) ∝ exp(−𝛽2𝑔 − 2𝜇𝑔2𝜎2Σ𝑔 ) . (14)

Thus, the full conditional distribution of 𝛽𝑔 is a normal
distribution:

𝛽𝑔 | 𝛾𝑔 = 1, rest ∼ 𝑁(𝑢𝑔, 𝜎2Σ𝑔) ,
𝑝 (𝛽𝑔 = 0 | 𝛾𝑔 = 0, rest) = 1. (15)

The full conditions of (𝜏2𝑔, 𝛾𝑔 = 1) and (𝜏2𝑔, 𝛾𝑔 = 0) are
𝑝 (𝜏2𝑔, 𝛾𝑔 = 1) ∝ (𝜏2𝑔)−1/2 exp(− 𝛽𝑇𝑔𝛽𝑔2𝜎2𝜏2𝑔 − 𝜆22 𝜏2𝑔) ,
𝑝 (𝜏2𝑔, 𝛾𝑔 = 0) ∝ (𝜏2𝑔)(𝑚𝑔+1)/2−1 exp(−𝜆22 𝜏2𝑔) .

(16)

Then the full conditional distribution of 𝜏2𝑔 is
1𝜏2𝑔 , 𝛾𝑔 = 1 | rest ∼ Inverse Gaussian( 𝜆𝜎󵄩󵄩󵄩󵄩󵄩𝛽𝑔󵄩󵄩󵄩󵄩󵄩2 , 𝜆

2) ,
1𝜏2𝑔 , 𝛾𝑔 = 0 | rest ∼ Inverse Gamma(𝑚𝑗 + 12 , 𝜆22 ) .

(17)

The full conditional distribution of 𝜎2 is
𝑝 (𝜎2 | rest) ∝ (𝜎2)−𝑛/2−(1/2)∑𝐺𝑔=1𝑚𝑔𝑍𝑔−𝑎−1

⋅ exp(−(𝑦 − 𝑋𝛽)𝑇 (𝑦 − 𝑋𝛽) + 𝛽𝑇𝐷−1𝜏 𝛽 + 𝑏2𝜎2 ) . (18)

Then the conditional posterior distribution of 𝜎2 is
𝜎2 | rest ∼ Inverse Gamma(𝑛2 + 12

𝐺∑
𝑔=1

𝑚𝑔𝑍𝑔
+ 𝑎, 12 [(𝑌 − 𝑋𝛽)𝑇 (𝑌 − 𝑋𝛽) + 𝛽𝑇𝐷−1𝜏 𝛽] + 𝑏) ,

(19)

where 𝑍𝑔 = {1, if 𝛾𝑔 = 0; 0, if 𝛾𝑔 ̸= 0} and 𝐷𝜏 =
diag{𝜏21 , 𝜏22 , . . . , 𝜏2𝐺}. And it can be verified that the conditional
posterior distributions of other parameters are

𝑝 | rest ∼ Beta(𝑐 + 𝐺∑
𝑔=1

𝑍𝑔, 𝑏 + 𝐺∑
𝑔=1

𝑚𝑔 − 𝐺∑
𝑔=1

𝑍𝑔) ,
𝑘 | rest ∼ uniform( 𝐺∑

𝑔=1

𝑍𝑔, 𝑚) .
(20)

And a Monte Carlo EM algorithm is used to estimate 𝜆:
𝜆(𝑘) = √ 𝑝 + 𝐺∑𝐺𝑔=1 𝐸𝜆(𝑘−1) [𝜏2𝑔 | 𝑌] , (21)

where 𝑝 equal to 1 + 𝑚𝑗 × (𝐺 − 1) is the number of the total
regressors and 𝐸𝜆(𝑘−1)[𝜏2𝑔 | 𝑌] can be replaced by the sample
average of 𝜏2𝑔 generated in the 𝑘−1th step of theGibbs sampler.
We choose the second half of the samples and the result is the
average of the samples.

3. Results

To demonstrate the effectiveness of the topology information
and the B-spline functions, ourmethod is used to infer GRNs
from in silico time-series data and real biological data; a linear
model with topology information and a nonlinear model
without topology information are also applied as competing
methods. Here we use the time-series data in DREAM3 and
DREAM4 challenges as the in silico data, and we use a cell
cycle regulatory subnetwork in Saccharomyces cerevisiae and
Human Hela cell network as the real biological datasets. We
generate 10000 samples from the posterior distribution and
choose the second half of the samples to derive the results.
The posterior estimates of all the parameters are obtained
through the posterior averages of the chains. For the B-spline
functions, we adopt the setting as [14] and use a cubic B-
spline with 10 interior knots. Here we choose 𝑚 = 5 in our
experiments.

3.1. Application to In Silico Networks. We first evaluate our
method on DREAM4 challenges networks of sizes 10 and
100 [24–26]. The size 10 network data consists of 5 simulated
networks, each of which consists of 21 time points and
5 replicates. The size 100 network data also consists of 5
simulated networks, each of which consists of 21 time points
and 10 replicates. We also evaluate our method on DREAM3
challenges networks of sizes 10, which is also used in [27].This
data consists of 5 simulated networks, each of which consists
of 21 time points. There are also steady-state data provided
by the DREAM4 challenge. However, we only focus on time-
series data in this article. Although the winning entry in
DREAM4 competition used only the knock-out data [28] and
combining the time-series and steady-state data can achieve
much better results [27, 29], it is infeasible to do knock-out
experiments for all genes in practice and generally the knock-
out experiments only are done for a small part of genes [30].

Each of the five networks is inferred using all available
time-series data, and the area under the receiver operating
characteristic (AUROC) curve and the area under precision-
recall (AUPR) curve are computed according to the gold stan-
dard network topology provided by DREAM3 and DREAM4
challenge. The prediction performances on the DREAM4
10-gene networks and 100-gene networks are summarized
in Tables 1 and 2. Table 1 shows that the Bayesian lasso
and Bayesian group lasso perform similarly on size 10 data
while the BGL prior has a better performance than the
methods above in both average AUROC and AUPR. For
net 2 and net 5, the BGL prior outperforms other methods
significantly. We also compared our method with another 2
dynamic Bayesian network methods [31]; the result of our
method is also comparable to these methods. Table 2 shows
that the nonlinear model performs poorly on this dataset;
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Table 1: The prediction performances on the DREAM4 10-gene networks.

Method Net 1 Net 2 Net 3 Net 4 Net 5 Average

AUROC

BL 0.7956 0.6334 0.6356 0.8292 0.8034 0.7394
BGL 0.7956 0.6537 0.6507 0.8422 0.8194 0.7523

BGL prior 0.8267 0.7188 0.6640 0.8472 0.8547 0.7823
G1DBN 0.73 0.64 0.68 0.85 0.92 0.7640
VBSSM 0.73 0.66 0.77 0.80 0.84 0.7600

AUPR

BL 0.4222 0.3711 0.3926 0.5235 0.4683 0.4355
BGL 0.4613 0.3582 0.3781 0.5392 0.3368 0.4147

BGL prior 0.4750 0.4090 0.3062 0.6207 0.5022 0.4626
G1DBN 0.37 0.34 0.45 0.69 0.77 0.5240
VBSSM 0.38 0.41 0.49 0.46 0.64 0.4760

Table 2: The prediction performances on the DREAM4 100-gene networks.

Method Net 1 Net 2 Net 3 Net 4 Net 5 Average

AUROC

BL 0.7180 0.6040 0.6748 0.6551 0.7269 0.6758
BGL 0.5768 0.5915 0.6148 0.5692 0.5829 0.5878

BGL prior 0.7117 0.6745 0.7062 0.6859 0.7327 0.7029
G1DBN 0.68 0.64 0.68 0.66 0.72 0.6760
VBSSM 0.59 0.56 0.59 0.67 0.71 0.6240

AUPR

BL 0.1177 0.0830 0.1154 0.1103 0.0776 0.1008
BGL 0.0318 0.0984 0.0440 0.0685 0.0409 0.0567

BGL prior 0.508 0.0656 0.0967 0.1021 0.0730 0.0776
G1DBN 0.11 0.10 0.13 0.10 0.11 0.1100
VBSSM 0.08 0.05 0.11 0.10 0.09 0.0860

Table 3: The prediction performances on the DREAM3 10-gene networks.

Method Ecoli 1 Ecoli 2 Yeast 1 Yeast 2 Yeast 3 Average

AUROC

BL 0.4948 0.6880 0.6200 0.4412 0.4091 0.5306
BGL 0.5339 0.7813 0.5525 0.5348 0.4646 0.5734

BGL prior 0.6237 0.7876 0.6363 0.5034 0.4987 0.6099
Inferelator 1.0 0.49 0.52 0.56 0.45 0.48 0.5000
Additive ODE 0.53 0.54 0.45 0.53 0.48 0.5060

AUPR

BL 0.2455 0.5325 0.2981 0.2979 0.2009 0.3150
BGL 0.2076 0.6096 0.2749 0.2871 0.2199 0.3220

BGL prior 0.2427 0.6144 0.2795 0.2544 0.2347 0.3251
Inferelator 1.0 0.15 0.21 0.22 0.33 0.28 0.2380
Additive ODE 0.16 0.20 0.10 0.31 0.23 0.2000

while the topology information can remarkably improve
the prediction performance of the nonlinear model, the
Bayesian group lasso with topology information outperforms
the Bayesian group lasso methods in both AUROC and
AUPR, and these methods also have higher AUROC than
linear model, although the AUPR is a little worse. Compared
with the results of the other 2 DBN methods, the result of
the Bayesian lasso is similar to them and our method still has
the highest averageAUROC.Theprediction performances on
the DREAM3 10 gene networks are summarized in Table 3.
We also compared our method with another additive model
based on ODE [27] and Inferelator 1.0 [32]. For Ecoli 1, Ecoli

2, Yeast 2, and Yeast 3, the 3 additive models perform better
than the linear model; for Yeast 1, although BL performs
much better than BGL, the BGL prior still gets slightly better
results.The average results show that BGL prior outperforms
the other methods in both AUROC and AUPR.

3.2. Application to IRMA Network. The IRMA network
data is a subnetwork embedded in Saccharomyces cerevisiae
consisting of 5 genes: CBF1, GAL4, SWI5, GAL80, and
ASH1. Both of the two time-series gene expressions include
switch-on data and switch-off data. The switch-on data is
taken from 5 experiments and the switch-off data is taken
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Table 4: The prediction performances on IRMA network.

Method TP FP TN FN PR RR 𝐹
BL 5 9 3 3 0.3571 0.6250 0.4545
BGL 4 3 9 4 0.5714 0.5000 0.5333
BGL prior 5 3 9 3 0.6250 0.6250 0.6250
Morrissey’s method 1 1 13 5 0.5 0.1667 0.2500
TSNIF 5 2 10 3 0.7143 0.6250 0.6667
BANJO 5 6 6 3 0.4545 0.6250 0.5263

Table 5: The prediction performances on Hela network.

Method TP FP TN FN PR RR 𝐹
BL 2 9 54 7 0.1818 0.2222 0.2000
BGL 5 18 45 4 0.2174 0.5556 0.3125
BGL prior 5 14 49 4 0.2632 0.5556 0.3571
Morrissey’s method 3 15 48 6 0.1667 0.6667 0.2222
TALasso 3 7 56 6 0.3 0.3333 0.3158
grpLasso 4 13 50 5 0.2353 0.4444 0.3076
CNET 4 7 56 5 0.3636 0.4444 0.4000

from 4 experiments with a total of 142 samples measured
by [33] and also used in [20, 34]. The IRMA network is
well studied and is a gold standard network. This network
also has a fixed topology and the genes in the network
are not regulated by other yeast genes. Here we use the
precision rate (PR = TP/(TP + FP)), recall rate (RR =
TP/(TP + FN)), and 𝐹-measure = (2 ⋅ PR ⋅ RR)/(PR +
RR) to evaluate the performance and select a best threshold
as [35]. The signs of the interactions and self-regulations
are not considered; thus the total number of the potential
interactions is 20. Table 4 shows the inference performance
for the IRMA network. The nonlinear model still performs
better than linear model. The method with the prior has
a higher TP than the Bayesian group lasso, which implies
that the topology information improves the performance.
Comparing with another B-spline based method [14] and the
method used and compared in [36], although our method
cannot achieve the best performance, it is still comparable to
the TSNIF and performs much better than another B-spline
based method.

3.3. Application to Hela Network. We then apply our method
on the cell cycle genes in human cancer cell lines (HeLa)
which were analyzed by Whitfield [37]. A subnet consisting
of 9 Hela cell genes was extracted by Sambo et al. [38] and
the topology of this gene regulatory network is determined in
the BioGRID database. They also developed a method called
CNET to analysis the Hela network. This network is also
analyzed by Lozano et al. [39] and Shojaie and Michailidis
[40]; they proposed 2 𝑙1 penalized method, grpLasso, and
TAlasso to infer causal interactions.

Here we use the third experiment of Whitfield [37] as the
previous studies, consisting of 47 samples. The results of
CNET, grpLasso, and TAlasso are taken from [40]. Table 5
shows the inference performance for the Hela network.

Comparing with the BGL, the BGL prior has a higher
precision. Comparing with other methods, the penalized
method seems to perform better than another B-spline based
method and has a similar performance to the other 2 𝑙1
penalized methods and all the true positives of Morrissey’s
method are also found by BGL and BGL prior. On the other
hand, the interactions from RFC4 to CDC2 and CDC2 to
CCNE1 are found not only by BGL and BGL prior, but also
by 2 of other 3 comparable methods. It may be because
these interactions exist in real regulatory network but are not
included in the BioGRID dataset.

4. Conclusion

In this study, we propose a fully Bayesian method, based on
B-spline, group lasso, and topology information to infer gene
regulatory network from time-series data. We use B-spline
functions to capture the nonlinear interactions between
genes, 𝑙1 norm penalty to prevent overfitting, and topology
information, the knowledge of the exponential decrease in in-
degree thatmost genes have only a small number of regulators
as a prior. A spike and slab prior is used to facilitate variable
selection by putting a multivariate point mass at 0𝑚×1 for
an 𝑚-dimensional coefficients group. The performance of
the proposed method is demonstrated by applications to
the DREAM4 in silico data of sizes 10 and 100 network
challenges and the real biological data of IRMA and Hela
cell network. The results show that the topology information
indeed contributes to the gene regulatory network inference
which can improve the AUROC remarkably of the DREAM4
in silico data and improve the results of the IRMA network
and Hela cell data. B-spline regression model also performs
better than linear model in real biological data. Therefore,
our method is an effective way of inferencing gene regulatory
network from the time-series data.
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