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Parameter Learning in General Equilibrium: 
The Asset Pricing Implications†

By Pierre Collin-Dufresne, Michael Johannes, and Lars A. Lochstoer*

Parameter learning strongly amplifies the impact of macroeconomic 
shocks on marginal utility when the representative agent has a pref-
erence for early resolution of uncertainty. This occurs as rational 
belief updating generates subjective long-run consumption risks. 
We consider general equilibrium models with unknown parameters 
governing either long-run economic growth, rare events, or model 
selection. Overall, parameter learning generates long-lasting, 
quantitatively significant additional macroeconomic risks that help 
explain standard asset pricing puzzles. (JEL C52, D83, E13, E32, 
G12)

One of the classic tensions in macro-finance models is the apparent disconnect 
between macroeconomic risks and the risks reflected in asset prices. For example, 
Mehra and Prescott (1985) show in a standard rational expectations representative 
agent model that consumption is too smooth (its risk is too small) to explain the 
large risk premium and volatility of asset prices (the “equity-premium puzzle”).

When calibrating macro-finance models, however, we are confronted with 
an inconvenient truth: there is significant uncertainty over the structural param-
eters governing the dynamics of the model and also over the model specifica-
tion itself (see Hansen 2007). Although commonly assumed away in standard 
rational expectations models (e.g., Lucas 1978), the reality is that parameters 
such as the unconditional growth rate of the economy, the likelihood and sever-
ity of disaster events, or the persistence of long-run growth shocks are unknown.  
A long-standing critique of rational expectations models is the assumption 
that agents know “fixed, but unknown” parameters (e.g., Modigliani 1977). 
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At the same time, parameter or model learning is not inconsistent with rational 
decision making.1

This paper assumes economic agents learn about parameters from data, revis-
ing beliefs as new data arrive.2 We show that the process of updating of beliefs 
can serve as a major amplification mechanism for the pricing of macroeconomic 
shocks, with the potential to be the primary driver of the high and time-varying risk 
prices historically observed (see, e.g., Cochrane and Hansen 1992, Campbell 1999). 
The fundamental mechanism underlying the importance of parameter uncertainty 
is driven by two assumptions: (i) Bayesian learning and (ii) recursive preferences 
(Epstein and Zin 1989—henceforth, EZ). Bayesian learning implies that posterior 
estimates of parameters are martingales.3 Thus, revisions in parameter beliefs con-
stitute permanent shocks to investors’ expectations and are therefore a source of 
subjective long-run risks. Agents with recursive utility who have a preference for 
early resolution of uncertainty are averse to such long-run risks. Consequentially, 
uncertainty about future changes in parameter beliefs leads to higher risk prices, risk 
premia, and price volatility than in the known parameter case and, indeed, than in 
the standard time-separable utility case.

This paper analyzes asset pricing implications of priced parameter uncertainty in 
three distinct consumption-based exchange economies, each highlighting different 
aspects of how parameter learning impacts macroeconomic risk prices. The first 
case considers learning about the mean growth rate with i.i.d. normal log consump-
tion growth. This work-horse model yields analytical solutions to utility and key 
asset pricing moments for arbitrary risk aversion as long as the elasticity of inter-
temporal substitution (EIS) is one. This case is useful for intuition and for contrast-
ing how priced parameter uncertainty relates to the current main approach to deal 
with parameter learning, anticipated utility (AU) (Kreps 1998, Cogley and Sargent 
2008), as well as to the long-run risk model of Bansal and Yaron (2004)—hence-
forth, BY—and to the parameter uncertainty approach in Weitzman (2007).

The analytical expressions show how parameter learning amplifies macroeco-
nomic risk pricing and, specifically, that the amplification is a function of the degree 
to which the agent is averse to long-run shocks, the conditional volatility of updates 
in beliefs (related to the prior uncertainty), and the effective duration of the perma-
nent revision in beliefs in terms of its effect on current utility.

AU pricing, which at each point in time ignores parameter uncertainty by calcu-
lating utility and asset prices assuming current mean parameter beliefs are the true 
values, does not price long-run shocks arising from belief updates. In fact, we show 
that rationally accounting for parameter uncertainty leads to large welfare losses rel-
ative to the AU approach, when agents are averse to long-run consumption shocks.

1 Indeed, Lucas and Sargent (1978, p. 13) note, “…it has been only a matter of analytical convenience and not 
of necessity that equilibrium models have used the assumption of stochastically stationary ‘shocks’ and the assump-
tion that agents have already learned the probability distributions that they face. Both of these assumptions can be 
abandoned, albeit at a cost in terms of the simplicity of the model. While models incorporating Bayesian learning 
and stochastic nonstationarity are both technically feasible and consistent with the equilibrium modeling strategy, 
almost no successful applied work along these lines has come to light. One reason is probably that nonstationary 
time series models are cumbersome and come in so many varieties.” 

2 Model uncertainty can be viewed as a form of parameter uncertainty, since any model can be embedded in a 
more general specification with parameter restrictions. Unless explicitly noted, we will generally refer to both as 
parameter uncertainty/learning. 

3 This follows from the law of iterated expectations. For a parameter ​θ​ , ​​μ​t​​  ≡ ​ E​ t​​​[θ]​  = ​ E​ t​​​[​μ​t+j​​]​​ , ​j  >  0​. 



666 THE AMERICAN ECONOMIC REVIEW March 2016

Further, the mechanism here is entirely distinct from that of Weitzman (2007), 
who shows that variance uncertainty leads to fat-tailed consumption growth distri-
butions that can have a first-order impact on asset pricing. Our approach does not 
rely on fat tails or the possibility of extreme parameter values, but rather on the fact 
that updates in beliefs about the parameters governing consumption dynamics have 
a large impact on the long-run subjective consumption distribution.

The permanent nature of rational learning introduces long-run consumption risks 
that seem similar to BY. In both cases, long-run shocks to consumption are priced 
due to the EZ preferences. However, the long-run shocks arising from parameter 
learning are subjective. Beeler and Campbell (2012) argue that long-run risk mod-
els imply excess consumption growth predictability and a counterfactually high 
EIS in Hall (1988)-type regressions. In the parameter learning case, consumption 
growth is in truth i.i.d. and therefore neither valuation ratios nor the risk-free rate 
predict future consumption growth. In sum, parameter learning-generated, subjec-
tive long-run risks are distinct from the objective long-run risks introduced in BY.

Second, we analyze a rare events model, in the spirit of Rietz (1988), Barro (2006), 
and Nakamura et al. (2013), via a two-state Markov switching model for consump-
tion growth. The rare bad state is calibrated to the US Great Depression experience. 
This model has six parameters governing consumption dynamics and each uncertain 
parameter introduces at least one new state variable (governing parameter beliefs). 
To reduce the dimensionality of the problem, we propose a simple welfare-based 
metric to identify a smaller set of parameters which, when unknown, are the most 
asset pricing and utility relevant. This metric indicates that uncertainty about the 
transition probabilities leads to the biggest welfare loss and therefore has the largest 
asset pricing impact, while learning about state means has a moderate impact and 
learning about the variances of shocks has a negligible impact. This is an important 
intermediate result which shows that the impact of priced parameter uncertainty var-
ies substantially across parameters. We therefore solve the full, sequential learning 
model with unknown transition probabilities.

Learning is naturally slow given the rare nature of the bad state. Even with an 
effective prior training sample of 300 years, the risk premium increases five-fold 
relative to a known parameters case, while the price of risk increases three-fold. 
Given the lack of data on crisis states, there is substantial uncertainty regarding the 
persistence of the bad state, which, in turn, implies a commensurate increase in risk 
premia in bad states as agents experience relatively large belief revisions depending 
on its realized duration. The model features a conditional equity premium of 22 
percent and a conditional return volatility of 81 percent in this state, consistent with 
the historical data and much higher than the same model with known parameters. 
Finally, slow learning means that there are not counterfactually strong drifts in risk 
premia and valuation ratios even over the typical 100-year sample.

Third, we consider learning about model specification, a particular form of 
parameter uncertainty. Specifically, agents are uncertain whether the data are gener-
ated from an i.i.d. consumption growth model or from a long-run risk model with a 
small persistent component in consumption growth as in BY. There is considerable 
debate about the existence and degree of such risks, since a small persistent con-
sumption growth component is difficult to detect empirically.
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Interestingly, we find that even a small probability of the long-run risk model 
being true leads to a five-fold increase in the risk premium relative to the case where 
consumption growth is known to be i.i.d. This is due to model disaster risk which 
arises because the long-run risk model is associated with much lower utility level 
than the i.i.d. model. This negative skewness in utility outcomes is priced with EZ 
preferences and has similar effects on risk prices as the disaster models of Rietz 
(1988) and Barro (2006) even though it is not due to actual consumption disasters.

Further, the amount of model disaster risk is endogenously countercyclical, 
which leads to substantial countercyclical fluctuations in the price of risk and the 
risk premium. In particular, in recessions, when the small persistent component of 
consumption in the long-run risk model is low, the utility difference between the 
i.i.d. model and the long-run risk model is large. This leads to a high conditional 
price of risk and risk premium: in fact, higher than in either of the two alterna-
tive models. Conversely, in expansions, the price of risk and the risk premium are 
low as the conditionally high expected consumption growth in the BY model leads 
to a lower utility difference between the two models. Thus, even though each of 
the alternative models are homoskedastic, the price of risk and risk premium are 
strongly countercyclical in the case of model uncertainty.

In sum, parameter learning amplifies the impact of macroeconomic shocks on 
marginal utility when the representative agent has EZ preferences. In empirically 
relevant cases, this amplification is higher in bad states than in good states, leading 
to countercyclical risk premiums and Sharpe ratios as observed in the data. Further, 
learning about consumption disaster risk or model risk is slow, so that the ampli-
fication does not disappear quickly. It also does not lead to easily detectable and 
counterfactual predictability relations between returns and consumption shocks. We 
conclude that accounting for parameter uncertainty can be a first-order issue when 
relating macroeconomic risks to asset prices.

Our paper is related to a long list of papers studying the general equilibrium 
implications of parameter learning. The earlier literature focuses on the case of 
time-separable utility, which does not price the subjective long-run risks discussed 
above.4 Much of the literature on equilibrium learning implications with preferences 
of the EZ type studies the impact of rational or near-rational learning about sta-
tionary but unobservable state variables whose dynamics have known parameters.5 
Johannes, Lochstoer, and Mou (forthcoming) empirically document large drifts in 
parameter estimates, high levels of parameter uncertainty, and that shocks to beliefs 
correlate with equity returns, for a Bayesian agent who updates beliefs about US 
consumption dynamics in real-time. Our paper addresses the issue of rational pric-
ing of the risks generated by such updating of beliefs. The main asset pricing results 
in Johannes, Lochstoer, and Mou (forthcoming) ignore the pricing of these risks as 
they utilize AU pricing following Cogley and Sargent (2008).

4 Previous papers on learning with time-separable utility function include: Detemple (1986); Dothan and 
Feldman (1986); Gennotte (1986); Veronesi (2000, 2004); Cogley and Sargent (2008); Jobert, Platania, and Rogers 
(2006); Pástor and Veronesi (2003, 2006, 2009, 2012); David (1997); Moore and Shaller (1996); and David and 
Veronesi (2013). See the online Appendix for a concise review. 

5 These include Brandt, Zeng, and Zhang (2004); Croce, Lettau, and Ludvigson (2014); Lettau, Ludvigson, 
and Wachter (2008); Ai (2010); Boguth and Kuehn (2013); Bansal and Shaliastovich (2010, 2011); and Benzoni, 
Collin-Dufresne, and Goldstein (2011). 
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Also related is the literature that looks at alternative preferences, which though 
distinct from recursive utility might display similar quantitative effects to those we 
describe here, if combined with learning.6

I.  Intuition and a Benchmark Example

A. Intuition for Priced Parameter Uncertainty

This section shows that parameter uncertainty and rational updating generates 
subjective long-run consumption risks with strong asset pricing implications. To 
start, consider rational uncertainty over a vector of parameters ​θ​ affecting consump-
tion growth dynamics and denote the time-​t​ posterior density as ​p​(θ | ​y​​ t​)​​ , where ​​y​​ t​​ is 
the information set of the agent.7 The posterior distribution summarizes all relevant 
information known at time ​t​ about the parameters. In many cases, the posterior dis-
tribution is a known function of a set of sufficient statistics of the observables (e.g., 
the posterior mean and variance of ​θ​).

Importantly, because of the law of iterated expectation, the conditional expecta-
tion of any function of the unknown parameters is a martingale (i.e., unit root pro-
cess) in the filtration of the representative agent (see Doob 1949). Thus, updates in 
parameter beliefs lead to long-lived, indeed permanent, shocks to such conditional 
expectations.8 This is fundamentally why parameter learning endogenously gener-
ates long-run consumption risks.

To understand the impact on asset prices, consider a representative agent with EZ 
utility, ​V​ , over consumption, ​C​. To focus on growth dynamics, it is useful to normal-
ize by consumption levels: ​V ​C​ t​​ ≡ ​V​ t​​ /​C​ t​​​ , ​v​c​ t​​ ≡ ln​(V​C​ t​​)​​ , and ​Δ ​c​ t​​ = ln​(​C​ t​​ /​C​ t−1​​)​​. 
The normalized value function is

(1)  ​v​c​ t​​ = ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩
​
​  1 _ 
1 − 1 / ψ ​ ln​(1 − β + β ​E​ t​​ ​​{exp​[​(1 − γ)​ ​(v ​c​ t+1​​ + Δ ​c​ t+1​​)​]​}​​​ 

​(1−1/ψ)​/​(1−γ)​
​)​,

​ 
if ψ ≠ 1, γ ≠ 1

​       
​  β _ 1 − γ ​ ln ​E​ t​​​{exp​[​(1 − γ)​ ​(v​c​ t+1​​ + Δ ​c​ t+1​​)​]​}​,

​ 
if ψ = 1, γ ≠ 1

​,​ ​

where ​γ,​ ​ψ​ , and ​β​ capture relative risk aversion, the EIS, and time discounting, 
respectively. The stochastic discount factor (SDF) is

(2)	​ ​M​ t+1​​  =  β ​δ​t​​ exp​[− γΔ ​c​ t+1​​ − ​(γ − 1/ψ)​ v​c​ t+1​​]​,​

where ​​δ​t​​ = ​E​ t​​ ​​[exp​{​(1 − γ)​ ​(v​c​ t+1​​ + Δ ​c​ t+1​​)​}​]​​​ 
​(γ−1/ψ)​/​(1−γ)​

​​ when ​γ ≠ 1​.

6 Examples of such alternatives include general Kreps and Porteus (1978) preferences and smooth ambiguity 
aversion preferences of Klibanoff, Marinacci, and Mukerji (2009) and Ju and Miao (2012), as well as the fragile 
beliefs setup of Hansen and Sargent (2010). Strzalecki (2013) discusses the relation between ambiguity attitudes 
and the preference for the timing of the resolution of uncertainty. Epstein and Schneider (2007) discuss the differ-
ences between learning under ambiguity and Bayesian learning. 

7 Here, “rational” uncertainty implies that the dynamics of the posterior distributions of beliefs follow the stan-
dard laws of probability, such as Bayes’ rule. 

8 For an example, consider the case of a posterior mean, ​​μ​t​​ ≡ E​[θ | ​y​​ t​ ]​​. For any ​j  ≥  0​ ,

​E​[​μ​t+j​​ | ​y​​ t​ ]​  =  E​[E​[θ |  ​y​​ t+j​ ]​ |  ​y​​ t​]​  =  E​[θ |  ​y​​ t​ ]​  = ​ μ​t​​ ,​
which implies that ​​μ​t​​​ can be expressed as ​​μ​t+1​​  = ​ μ​t​​ + ​η​t+1​​ ,​ where ​E​[​η​t+1​​ | ​y​​ t​ ]​ = 0​. 
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Parameter uncertainty and the associated state variables generally affect both 
expectations of future consumption growth and normalized utility. When the rela-
tive risk aversion is equal to the reciprocal of the EIS, ​γ = ​ψ​​ −1​​ , the SDF reduces to 
that of a constant relative risk aversion utility agent (i.e., ​​M​ t+1​​ = β exp​(− γΔ ​c​ t+1​​)​​ ).  
That is, only the one-period ahead posterior conditional distribution of ​Δ ​c​ t+1​​​ mat-
ters for pricing. Instead, when relative risk aversion differs from the reciprocal of the 
EIS, ​γ ≠ ​ψ​​ −1​​ , the SDF has an additional term, ​​δ​t​​ exp​{− ​(γ − 1/ψ)​ v​c​ t+1​​}​​ , through 
which parameter belief updates impact the normalized value function/continuation 
utility to become priced risk factors. This impact can be large, even if the change in 
beliefs is small on a per period basis, as changes in beliefs permanently affect the 
subjective consumption dynamics.

B. Learning and Asset Pricing with i.i.d. Consumption Growth

To better understand the mechanism and analytically quantify the impact of 
parameter uncertainty, consider an i.i.d. normal consumption growth model:

(3)	​ ​y​ t+1​​  =  Δ ​c​ t+1​​  =  μ  +  σ ​ε​t+1​​ , ​

where ​​ε​t+1​​ ​ ∼​ i.i.d.​​  ​(0, 1)​​. For now, assume agents are uncertain about expected con-
sumption growth ​μ,​ but that ​σ​ is known.

The agent starts with the conjugate prior, ​μ  ∼   ​(​μ​0​​ , ​A​ 0​​ ​σ​​ 2​)​​ , and updates beliefs 
from realized consumption growth using Bayes’ rule. Given this prior, the posterior 
is ​p​(μ | ​y​​ t​ )​ =  ​(​μ​t​​ , ​A​ t​​ ​σ​​ 2​)​​. From the agent’s perspective, consumption dynamics 
evolve via (see the online Appendix for detailed derivations)

(4)	​ Δ ​c​ t+1​​  = ​ μ​t​​ + σ ​√ 
_

 1 + ​A​ t​​ ​ ​​ε ̃ ​​t+1​​ , ​

where ​​​ε ̃ ​​t+1​​  = ​ (Δ ​c​ t+1​​ − ​μ​t​​)​/ ​√ 
_

 ​σ​​ 2​​(1 + ​A​ t​​)​ ​  ∼   ​(0, 1)​​ under the agent’s filtration, 
and

(5)	​ ​μ​t+1​​  = ​ μ​t​​ + ​  σ ​A​ t​​ _ 
​√ 
_

 1 + ​A​ t​​ ​
 ​  ​​ε ̃ ​​t+1​​   and   ​A​ t+1​ −1 ​  = ​ A​ t​ −1​ + 1.​

Note that ​​μ​t​​​ and ​​A​ t​​​ are now state variables in the economy.9

The data are generated from a fixed parameters i.i.d. model, but the agent per-
ceives consumption growth to have time-varying mean and variance. The con-
ditional mean of ​Δ ​c​ t+1​​​ has a unit root, which implies shocks permanently shift 
expected consumption growth. Eventually, expected consumption growth settles 
down however, as its posterior variance, ​​A​ t​​ ​σ​​ 2​​ , declines deterministically to zero 
(learning converges).

9 Defining ​​ω​t​​  ≡ ​​ (​A​ t​ −1​ + 1)​​​ −1
​​ , beliefs have the familiar shrinkage form, ​​μ​t+1​​  = ​ ω​t​​ Δ ​c​ t+1​​ + ​(1 − ​ω​t​​)​ ​μ​t​​ ,​ com-

bining observed data with prior beliefs according to their precisions. 
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When ​ψ  =  1​ , many asset pricing relevant quantities can be computed analyt-
ically (see the online Appendix). The scaled log-value function is proportional to 
​​μ​t​​ ,​ ​v ​c​ t​​  = ​ a​ t​​ + b ​μ​t​​ ,​ where

(6)	​ ​a​ t​​  = ​  ∑ 
j=0

​ 
∞

 ​​  ​β​​    j+1​   ​ 1 − γ _ 
2
  ​ ​​(​ 

​A​ t+j​​ _ 
1 − β ​  +  1)​​​ 

2

​ ​  ​σ​​ 2​ _ 
1 + ​A​ t+j​​

 ​ ​

and the proportionality factor is ​b  =  β /​(1 − β)​​. Since ​β​ is typically close to one, ​
b​ is very large and utility is highly sensitive to changes in mean beliefs about ​μ​.10

The conditional Sharpe ratio (SR) of the log return to the consumption claim is11

(7)     ​     S​R​ t​​  = ​ 
​E​ t​​​[​r​ c, t+1​​]​ − ​r​ f, t​​ + ​σ​ t​ 2​​[​r​ c, t+1​​]​/ 2

   ____________________  
​σ​t​​​[​r​ c, t+1​​]​

 ​ 

	 =  γ ​√ 
_

 1 + ​A​ t​​ ​ σ + ​(γ − 1)​ ​  β _ 
1 − β ​  ​  ​A​ t​​ σ _ 

​√ 
_

 1 + ​A​ t​​ ​
 ​ .​

The first term is the familiar power utility term—risk aversion times the perceived 
conditional volatility of consumption growth. The second learning-induced term can 
be decomposed into three components: (i) the preference for the timing of the res-
olution of uncertainty, ​γ − 1/ ψ = γ − 1​ ; (ii) the utility-impact of the permanent 
belief shock, ​β/​(1 − β)​​ ; and (iii) the conditional standard deviation of shocks to 
beliefs (​​μ​t​​​), ​​A​ t​​ σ/​√ 

_
 1 + ​A​ t​​ ​​. Clearly the price of consumption risk is increasing in the 

amount of parameter uncertainty (​​A​ t​​​) if ​γ > 1​.12 But, given that Bayesian learning 
is efficient, how long do the effects last?

Table 1 shows a dramatic difference between power utility, where premia decrease 
quickly due to learning, and EZ preferences, where the impact is long lived. The 
preference parameters are ​β = 0.994​ , ​γ = 10​ , as in BY, and ​ψ = 1​. The power util-
ity case has ​ψ = ​γ​​ −1​ = 0.1​. Table 1 reports the annualized conditional Sharpe ratio 
of the consumption claim (price of risk) as a function of the prior standard deviation 
of ​μ​ , ​​σ​t​​​(μ)​​. The first column reports ​​A​ t​ −1​ = t​ , intuitively, the number of quarters 
of data used to update an initially flat prior. Throughout, priors are unbiased and 
centered at the truth, ​μ​.13 In all calibrations, we set the annual time-averaged mean 
and volatility of consumption growth to ​1.8 percent​ and ​2.2 percent​ , respectively, as 
observed using US real, per capita consumption from NIPA from 1929 to 2011. We 
solve all models at the quarterly frequency.

10 A typical parameter value used in the literature for quarterly calibrations is ​β = 0.994​ which yields ​b = 167​. 
11 If ​​W​ t​​​ the wealth of the representative agent is defined a the present value of the future aggregate consumption 

stream ​{ ​C​ t+1​​ , ​C​ t+2​​ , …}​ then the log return to the consumption claim is simply ​​r​ c​​ (t + 1)  =  log ​  ​W​t+1​​ _____ ​W​t​​ − ​C​t​​
 ​​. Note that 

the Sharpe ratio in (7) differs slightly from the standard Sharpe ratio definition, since we use log returns. So the 
numerator does not correspond to the expected return of an actual trading strategy. However, this definition is more 
convenient analytically in this conditionally Gaussian setup. With this definition ​S​R​ t​​​ is also equal to the conditional 
volatility of the log pricing kernel (​​σ​t​​ (log ​M​ t+1​​ )​) and to the market price of risk of consumption shocks. 

12 Indeed, since ​​√ 
_

 1 + ​A​ t​​ ​  ≈  1​ the price of consumption risk is ​≈  γ + ​(γ − 1)​ β ​A​ t​​ /​(1 − β)​​ which is clearly ​
>  γ​ when ​γ  >  1​. 

13 See Cechetti, Lam, and Mark (2000) or Cogley and Sargent (2008) for biased beliefs with power utility. 
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After observing 10 years or 40 quarters of data, the price of risk is “only” ​0.27​ 
with power utility, equal to the known parameters case. Thus, it is true that, with 
power utility, the asset pricing implications of parameter uncertainty vanish rapidly 
and learning has minimal asset pricing implications. With EZ preferences, however, 
the price of risk is ​1.27​ after 10 years of learning and, even after 100 years of learn-
ing, the price of risk is ​0.37​ , ​37 percent​ higher than the known parameters case. 
Thus, even though the uncertainty about ​μ​ declines quickly, the pricing effects of 
parameter uncertainty are long-lasting when ​γ > 1/ψ​.

Why does parameter uncertainty have such long-lived effects with EZ pref-
erences? It is not due to short-run consumption growth volatility since ​​√ 

_
 1 + ​A​ t​​ ​​ 

quickly converges to one, which is also the reason why there is little effect with 
power utility. Further, belief shocks are relatively small since innovations to ​​μ​t​​​ are 
approximately proportional to ​​A​ t​​​ and ​​A​ t​​ = ​t​​ −1​​. However, parameter uncertainty 
declines at a decreasing rate, thus learning “slows down” over time. While ​​A​ t​​​ falls 
quickly, the combination of aversion to long-run risks, ​γ − 1 > 0​ , and permanent 
shocks that impact marginal utility with a multiplier of ​β /​(1 − β)​​ translate into high 
risk prices as the total multiplier is ​​(γ − 1)​ β ​​(1 − β)​​​ −1​ = 1,491​.

Figure 1 graphs the impulse-response of subjective log consumption levels to 
a one standard deviation positive consumption shock for known and unknown ​μ​ , 
assuming ​​A​ t​​  =  0.01​ or ​25​ years of learning. With known parameters, consump-
tion shocks only affect current consumption. With unknown parameters, a positive 
consumption shock increases current consumption and the expected growth rate ​​μ​t​​​ , 
affecting consumption levels indefinitely into the future via the martingale property. 
The one-period consumption response is the same in both cases, but they have quite 
different long-run implications. The lower panel shows the response of the log SDF 
to this positive shock when learning about ​μ​ for both EZ and power utility. The 
response of the SDF is more than three times larger with EZ preferences.

Table 1—Learning about the Mean Conditional Moments

Degree of parameter
uncertainty


Epstein-Zin ( ​γ​ = ​10,​ ​ψ​ = ​1​) Power utility ( ​γ​ = ​10,​ ​ψ​ = ​1/ γ​ )

Annualized, conditional Annualized, conditional

​​A​ t​​  = ​  1 _ t ​​  ​​σ​t​​​(μ)​ =​ Sharpe ratio Risk-free Yield Sharpe ratio Risk-free Yield
​t​ (quarters)  ​​√ 

_
 ​A​ t​​ ​ σ​ 

percent
(​S​R​ t​​​) rate slope 

percent
(​S​R​ t​​​) rate slope 

percent

 ​ 40​ ​0.21​ ​1.267​ ​0.008​ ​− 0.28​ ​0.273​ ​0.167​ ​− 0.89​
​100​ ​0.14​ ​0.672​ ​0.024​ ​− 0.13​ ​0.271​ ​0.167​ ​− 0.35​
​200​ ​0.10​ ​0.472​ ​0.030​ ​− 0.07​ ​0.271​ ​0.167​ ​− 0.18​
​400​ ​0.07​ ​0.371​ ​0.032​ ​− 0.03​ ​0.270​ ​0.168​ ​− 0.09​
​800​ ​0.05​ ​0.321​ ​0.034​ ​− 0.02​ ​0.270​ ​0.168​ ​− 0.04​
​∞​ ​0​.00 ​0.270​ ​0.035​ ​0​.00 ​0.270​ ​0.168​ ​0​.00

Notes: This table shows various conditional, annualized moments for the “learning about the mean” economy. The 
first column gives the implicit training sample that corresponds to the current standard deviation of beliefs about ​μ​ 
if starting from a flat prior. The second column gives the actual conditional standard deviation of beliefs. The con-
ditional, annualized Sharpe ratio of consumption claim, the real risk-free rate, and the spread between the five-year 
yield and the risk-free rate (the yield slope) are given for the case of Epstein-Zin preferences with ​γ  =  10​ and ​
ψ  =  1​ , as well as the power utility case where ​γ  =  10​ and ​ψ  =  1/10​.
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Parameter uncertainty also affects the real (log) risk-free rate, ​​r​ f, t​​ = ​μ​t​​ + ​f​ t​​​ , where

(8)	​ ​f​ t​​  =  − ln β  + ​ 
​σ​​ 2​​(1 + ​A​ t​​)​ _ 

2
  ​  −  S​R​ t​​ σ ​√ 

_
 1 + ​A​ t​​ ​ .​

Since the EIS is one, the risk-free rate moves one-to-one with expected consumption 
growth (​​μ​t​​​ ). ​​f​ t​​​ is a deterministic function of the posterior variance affecting precau-
tionary savings. For ​γ  >  1​ , parameter uncertainty increases precautionary savings 
(through the term ​S ​R​ t​​ σ ​√ 

_
 1 + ​A​ t​​ ​​ ), thus decreasing the risk-free rate. Over time, as 
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Figure 1. Impulse-Response of Consumption and the SDF

Notes: The top plot shows the impulse-response to the subjective consumption dynamics, which 
are relevant for utility and pricing, in the case where the mean growth rate is known (solid line) 
and not known (dashed line). In particular, the shock occurs in quarter 3 and the lines correspond 
to the difference in expected log consumption in each future quarter based on information avail-
able at time 3 (after the shock) and information available at time 2 (before the shock). The low 
plot shows the corresponding impulse response for the log stochastic discount factor (SDF) for 
different cases where the agent is learning about ​μ​. The solid line corresponds to the anticipated 
utility case, the dashed line corresponds to the Epstein-Zin case, while the dashed-dotted line 
corresponds to the constant relative risk aversion (CRRA) (power utility) case.
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parameter uncertainty declines, the risk-free rate drifts upward, as shown in Table 1. 
For power utility, the risk-free rate appears constant.14

Parameter uncertainty also affects the shape of the default-free yield curve. 
Since ​​μ​t​​​ is a martingale, the current mean belief does not affect the slope. The 
​τ−​ year (continuously compounded) slope is

(9) ​ ​y​ t, τ​​ − ​r​ f, t​​  = ​  1 _ τ ​ ​ ∑ 
k=1

​ 
τ−1

 ​​​(​f​ t+k​​ − ​f​ t​​ − ​ 
​​(τ − k)​​​ 2​ ​σ​​ 2​
 _ 

2
  ​ ​ 

​A​ t+k−1​ 2  ​
 _ 

1 + ​A​ t+k−1​​
 ​ − ​ 

​(τ − k)​ σ ​A​ t+k−1​​  ___________  
​√ 
_

 1 + ​A​ t+k−1​​ ​
 ​  S ​R​ t+k−1​​)​.​

The first term, ​​f​ t+k​​ − ​f​ t​​​ , reflects expectations of future risk-free rates relative to 
today’s rate and impacts the slope positively. The second term is a small Jensen’s 
inequality term. The third term is the risk premium on long-term bonds, which is 
negative because negative shocks to consumption decrease the risk-free rate through 
a lower ​​μ​t​​​. As parameter uncertainty declines over time, this term shrinks. Overall, 
Table 1 shows that the slope is fairly flat (actually mildly negative for our parame-
ters) in the EZ case. With power utility and a low EIS value, ​ψ  =  0.1​ , the risk-free 
rate is quite volatile and the slope is more negative.

In summary, parameter learning and EZ utility with a preference for early resolu-
tion of uncertainty (​γ  >  1/ψ​) substantially increases risk premia, decreases risk-free 
rates, and generates a roughly flat yield curve. The case of an EIS ​≠ 1​ , which requires 
a numerical solution, is discussed in the online Appendix, and can be easily summa-
rized. When the substitution effect dominates the wealth effect (i.e., the EIS ​> 1​ ), 
the price-consumption ratio increases upon a positive revision of the beliefs about 
the growth rate. Overall, the primary effect of increasing the EIS is an increase in 
excess return volatility, which, in turn, increases the risk premia, both of which are 
important for matching historical asset price data.

Relation to Bansal and Yaron (2004).—The subjective consumption dynamics 
with learning, equations (​4​) to (​5​), seem similar to the exogenous dynamics in BY. 
In particular, both feature small, highly persistent shocks to expected consumption 
growth.15 Despite the similarities, there are important asset pricing differences.

First, unlike BY, who have persistent but transitory shocks to expected consump-
tion growth, parameter learning generates permanent shocks (i.e., truly long-run 
risk) in subjective consumption growth. Second, consumption growth with param-
eter uncertainty (equation (​3​)) is unpredictable, unlike BY’s model which implies 
significant predictability of consumption growth by price-dividend ratios and real 
risk-free rates for example. This “excess predictability,” which has been seen as a 
weakness of long-run risk models (see Beeler and Campbell 2012), is not present 
with learning-induced long-run risks.

Related, Hall (1988) estimates the EIS to be close to zero in regressions of con-
sumption growth on lagged risk-free rates, seemingly in contrast to the high EIS 
assumed here and to the predictions of long-run risk models such as BY. With param-
eter learning, however, simulated data regressions also generate EIS estimates close 

14 There is actually a slight (economically insignificant) upward drift of 0.1 bps over 10 to 100 years. 
15 In Bansal and Yaron, conditional expected consumption growth follows an AR(1) with monthly autoregres-

sion coefficient of 0.979: that is, with a half-life of about four years. 
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to zero, because consumption growth is actually i.i.d. and unpredictable in popula-
tion. Thus, parameter uncertainty implies there is no contradiction between a high 
EIS and Hall’s regression evidence. Finally, the real term structure in the model is on 
average only weakly downward-sloping, as opposed to strongly downward-sloping 
in BY. Backus, Chernov, and Zin (2014) and Beeler and Campbell (2012) argue that 
strongly downward-sloping real yield curves are counterfactual.

In sum, long-run risks due to parameter learning are substantively different from 
the long-run risks typically assumed in the literature along empirically relevant 
dimensions.

Relation to Anticipated Utility.—Anticipated utility is arguably the benchmark 
approach for dealing with parameter uncertainty, see, e.g., Cogley and Sargent 
(2008); Piazzesi and Schneider (2007); and Johannes, Lochstoer, and Mou (forth-
coming). AU agents learn about parameters over time, but ignore parameter uncer-
tainty when making decisions. That is, they calculate utility and asset prices treating 
the current posterior means as the “true” constant parameters. After observing addi-
tional data, agents update their parameter beliefs and recalculate utility and prices 
using the revised estimates, again assuming these estimates will never change. Thus, 
AU ignores the endogenous long-run risk channel generated by belief updating 
when pricing assets.

The AU case admits analytical solutions. To facilitate comparisons, for ​ψ = 1​16

(10)	​ v​c​ t​ AU​  = ​   β _ 
1 − β ​​(​μ​t​​ + ​ 1 _ 

2
 ​​(1 − γ)​ ​σ​​ 2​)​,​

the same as utility with i.i.d. normal consumption growth and known parameters 
(i.e., equation (​6​) with ​​A​ t​​ = 0​) and replacing ​μ​ with ​​μ​t​​​. This suggests there are 
key differences between the economics of priced parameter uncertainty and AU. To 
quantify these differences, we compute the fraction ​​α​t​​​ of wealth a rational EZ agent 
facing parameter uncertainty would be willing to forgo (at current time ​t​ ) to avoid 
parameter uncertainty and have parameters set to constants equal to current mean 
beliefs:

(11)  ​​α​t​​ = 1 − ​ 
exp​(v​c​ t​​)​ _ 

exp​(v​c​ t​ AU​)​ ​ = 1 − exp​(​ 
​σ​​ 2​​(1 − γ)​
 _ 

2
  ​   ​ ∑ 

j=0
​ 

∞
 ​​   ​β​​     j+1​​[​ 

​​(​A​ t+j​​ /​(1 − β)​ + 1)​​​ 
2​
  ______________  

1 + ​A​ t+j​​
 ​  − 1]​)​ ​

​​α​t​​​ is positive when the agent has a preference for early resolution of uncertainty 
(​γ > 1 = 1/ψ​) provided ​​A​ t​​ > 0​. Thus, under EZ preferences the AU assumption 
ignores a potentially major source of macroeconomic risk.

The third column reports the welfare loss of rationally accounting for parameter 
uncertainty relative to the AU case. The welfare loss can be quite large, ​53 percent​ 
after 10 years of learning, and still ​9 percent​ after 100 years of learning. In fact, 
parameter uncertainty is the main component of macroeconomic risk, as the agent 

16 The general solution for ​ψ  ≠  1​ is ​v​c​ t​ AU​  = ​  1 __ ρ ​ log ​  1 − β  ______________  
1 − β ​e​​ ρ​μ​t​​+ρ(1−γ)​σ​​ 2​/2​

 ​​ with ​ρ  =  1 − 1/ψ​. 
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would pay more to eliminate it than he would be willing to pay in the known mean 
case to get rid of all risk (in the latter case the agent would pay ​12 percent​ of total 
wealth to get rid of all consumption risk, i.e., to set ​σ = 0​).

To price assets, AU uses the SDF for a payoff at time ​t + j​ given by

(12)	​ ​M​ t, t+j​ AU  ​  = ​​ β ̃ ​  ​ t​ 
j
​ exp​(− γΔ ​c​ t, t+j​​)​, ​

where ​​​β ̃ ​​t​​  =  β exp ​​(​μ​t​​ + ​ 1 _ 2 ​​(1 − γ)​ ​σ​​ 2​)​​​ 
γ−1/ψ

​​. Thus, ex ante AU risk pricing is the 
same as if ​μ​ were known (assuming expected consumption growth is ​​μ​t​​ )​ , generating 
an ex ante Sharpe ratio and risk premium of log consumption claim returns of 
S​​R​​ AU​​  =  γσ and R​​P​​ AU​​  =  γ ​σ​​ 2​ , respectively. Thus, with AU, there is no ex ante 
pricing of parameter uncertainty.

The expected log return volatility with AU is ​σ​ , but, due to next period’s belief 
update, the actual realized conditional log return volatility is ​σ ​√ 

_
 1 + ​A​ t​​ ​​ the same as 

with rationally priced parameter uncertainty. For ​ψ = 1​ , the agents’ perceived ex ante 
return volatility remains the same. However, if ​ψ > 1​ and the substitution effect 
dominates, the actual return volatility becomes larger as the wealth-consumption 
ratio increases (decreases) upon a positive (negative) shock, while the opposite is 
the case if ​ψ < 1​. Thus, the AU assumption can either over or understate actual 
return volatility depending on the EIS.

Further, with AU the risk-free rate is only a function of ​​μ​t​​​ and ​​σ​​ 2​​:

(13)	​ ​r​ f, t​ AU​  =  − ln β  + ​  1 _ ψ ​ ​(​μ​t​​ + ​ ​σ​​ 2​ _ 
2
 ​)​  − ​  1 _ 

2
 ​ γ​(1  + ​  1 _ ψ ​)​ ​σ​​ 2​ .​

This implies that the yield curve is flat, as the AU agent prices bonds as if consump-
tion growth is i.i.d. The last three columns of Table 2 confirm that the price of risk, 
the risk-free rate, and the yield spread are always the same as in the corresponding 
known parameter E-Z case.

In sum, ignoring priced parameter uncertainty and using AU generates dramati-
cally different economic implications when agents have a preference for the timing 
of the resolution of uncertainty.

Relation to Weitzman (2007).—The asset pricing implications of learning are due 
to the subjective long-run risk channel that arises endogenously from the updating 
of beliefs. This is in stark contrast to the mechanism identified in Geweke (2001) or 
Weitzman (2007), where learning about the volatility parameter ​σ​ in a discrete-time 
setting leads to extreme tail risk in subjective consumption growth (its predictive 
distribution has fat tails).17

17 Geweke (2001) and Weitzman (2007) also consider learning about ​​σ​​ 2​​ with power utility and note that stan-
dard conjugate priors imply that the predictive distribution of consumption growth is t-distributed and thus expected 
utility may not exist. However, Bakshi and Skoulakis (2010) argue that their results are not robust as they disappear 
when the prior support of ​​σ​​ 2​​ is truncated even at very high values. Interestingly, we find similar results for EZ pref-
erences, based on a numerical solution discussed in the online Appendix. Since learning about ​​σ​​ 2​​ is more rapid than 
learning about ​μ​ and volatility has only a second-order effect on continuation utility, we find that the asset pricing 
effects of learning about ​​σ​​ 2​​ are negligible with Epstein-Zin preferences when priors about variance are truncated 
at reasonable values. 



676 THE AMERICAN ECONOMIC REVIEW March 2016

Normal distributions also allow for extreme values of ​μ​. To show that our results 
are not driven by extreme (and unreasonable) perceived tail events, consider a 
truncated normal prior ​p​(μ | ​y​​ t​ )​  ∼ ​ ​T​​​(​μ​t​​, ​A​ t​​ ​σ​​ 2​; ​μ _​, ​_ μ ​)​​ , where ​​μ _​​ (​​_ μ ​​) is the lower 
(upper) truncation bound for ​μ​. The prior is still conjugate and updating equations 
for the state variables ​​μ​t​​​ and ​​A​ t​​​ are unchanged from the untruncated case, although ​​μ​t​​​ 
and ​​A​ t​​ ​σ​​ 2​​ are no longer the conditional moments.

Analytical solutions are not available in this case and the model must be solved 
numerically using methods described in the online Appendix. We find that, when 
truncation bounds are set at ​0 percent​ and ​1 percent​ quarterly (i.e., ​0 percent​ and ​
4 percent​ in annual terms), our previous results are essentially unchanged. This 
confirms that it is the permanent shocks arising from parameter updating that matter 
in our model, not the possibility of extreme perceived values of ​μ​.

C. Discussion

The i.i.d. normal model conveys the main intuition for how parameter uncer-
tainty, in combination with Epstein-Zin preferences, amplifies the impact of macro-
economic shocks on marginal utility and, therefore, asset prices. This endogenous 
long-run risk channel induced by parameter learning provides a novel mechanism 
that has distinct implications from seemingly similar models such as BY or learning 
approaches such as AU.

However, as equation (​7​) and Table 1 indicate, the model implies a deterministic 
decrease in the price of risk, and therefore risk premia, that is sufficiently fast to 
induce a counterfactually strong upward time trend in valuation ratios such as the 
price-dividend ratio when looking at samples of length like those typically consid-
ered in the literature.18 Further, as argued by, e.g., Cochrane (2011), historical data 

18 While Fama and French (2002) argue that the market Sharpe ratio and risk premium indeed decreased 
over the available CRSP sample, the increase in valuation ratios over this sample, like price-dividend (including 

Table 2—Learning about the Mean Anticipated Utility

Degree of parameter uncertainty Anticipated utility (​γ​ = ​10,​ ​ψ​ = ​1​)

Welfare loss of
rational EZ versus AU

(​​α​t​​​) percent

Annualized, conditional

 ​​A​ t​​  = ​  1 _ t ​​  ​​σ​t​​​(μ)​ =​ Price of Risk-free Yield
 ​t​ (quarters)  ​​√ 

_
 ​A​ t​​ ​ σ​ percent risk rate slope

​  40​ ​0.21​ ​53​ ​0.27​ ​0.035​ ​0​
​100​ ​0.13​ ​29​ ​0.27​ ​0.035​ ​0​
​200​ ​0.10​ ​17​ ​0.27​ ​0.035​ ​0​
​400​ ​0.07​ ​9​ ​0.27​ ​0.035​ ​0​
​800​ ​0.05​ ​5​ ​0.27​ ​0.035​ ​0​
​∞​ ​0​.00 ​0​ ​0.27​ ​0.035​ ​0​ 

Notes: This table shows various conditional, annualized moments for the “learning about the mean” economy 
under anticipated utility (AU) pricing. The first column gives the implicit training sample that corresponds to the 
current standard deviation of beliefs about ​μ​ if starting from a flat prior. The second column gives the actual con-
ditional standard deviation of beliefs. The third column gives the welfare loss of going from AU pricing to ratio-
nally accounting for parameter uncertainty ex ante (Epstein-Zin (EZ) pricing). The conditional, annualized Sharpe 
ratio of consumption claim (price of risk), the real risk-free rate, and the spread between the five-year yield and the 
risk-free rate (the yield slope) are given for the case of Epstein-Zin preferences with ​γ  =  10​ and ​ψ  =  1​.
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indicate instead substantial countercyclical movement in the conditional market risk 
premium and Sharpe ratio.

In the following, we consider the impact of parameter uncertainty in two bench-
mark consumption-based asset pricing models—the long-run risk model of BY, 
and the disaster risk model following Rietz (1988) and Barro (2006). Parameter 
uncertainty in these models is highly realistic as they both feature more compli-
cated consumption dynamics governing rare or difficult to measure components of 
consumption growth. In these models, the nonstationarities induced by parameter 
learning do not imply counterfactually strong drifts in valuation ratios or decreases 
in risk prices even over long samples. In both sets of models, parameter learning 
induces strong countercyclical variation in risk prices and premia.

Unfortunately, it is not generally possible to study these models by allowing for 
parameter uncertainty in all parameters due the dimensionality of the problem, as 
parameter uncertainty typically adds more than one state variable for each uncertain 
parameter. Additionally, as shown above for the volatility parameters, parameter 
uncertainty does not appear to be important for all parameters. To understand the 
impact of parameter uncertainty in these classic models, we follow two steps. First, 
we propose a simple metric that allows us to identify which parameters are most 
relevant from the point of view of parameter uncertainty. The metric is essentially 
a measure of sensitivity of the value function to changes in parameters, taking into 
account prior uncertainty. We then analyze the fully dynamic model allowing for 
uncertainty only in these “most relevant” parameters. In rare-disaster model the 
most relevant parameters turn out to be related to the disaster transition probabili-
ties. Second, we consider model uncertainty. In that approach agents are uncertain 
about a set of different models that they each estimate ignoring parameter uncer-
tainty. That is, even though each model can have many parameters estimated with 
uncertainty, agents only consider the trade-off between the different model specifi-
cations.19 We apply this approach to the long run risk model of BY and consider the 
uncertainty in its model specification relative to the i.i.d. model.

II.  Parameter Uncertainty in Rare Disaster Models

Rare disaster models provide an excellent laboratory to understand priced param-
eter uncertainty as there are many parameters and the parameters describing disas-
ters are highly uncertain given their “rare” occurrence. Relative to the previous case, 
we find that parameter learning in this model generates larger and longer lasting 
effects, negligible nonstationarities over samples of the lengths we typically ana-
lyze, and large countercyclicality in the price of macroeconomic risks.

We follow Rietz (1988), Barro (2006, 2009), and Nakamura et al. (2013), who 
propose dynamics with large and rare consumption disasters. Empirical papers doc-
ument the difficulty in estimating disaster parameters, even with large data samples. 
For example, using more than a century of data and a broad panel of countries, 
Nakamura et al. (2013) estimate a disaster frequency of ​2.8 percent​ per year and 

repurchases) or price-earnings, is still relatively modest. 
19 This effectively makes uncertainty one-dimensional (in the case of two models) or ​n​-dimensional in the case 

of ​n + 1​ models. 
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a probability of exiting a disaster of ​13.5 percent​ per year. The standard errors are 
high: the ​two​ standard error bounds for the average duration of the bad state are 
respectively ​4.5​ and ​9​ years. There is also a large amount of uncertainty over the size 
(mean and variance) of consumption disasters.

We consider a parsimonious two-state Markov switching model,

	​ Δ ​c​ t​​  = ​ μ​​s​t​​​​  + ​ σ​​s​t​​​​ ​ε​t​​ ,​

where ​​ε​t​​ ​ ∼​ i.i.d.​​  ​(0, 1)​​ , ​​s​ t​​​ is a Markov chain with transition matrix

	​ Π  = ​ [​  ​π​11​​​  1 − ​π​11​​​  
1 − ​π​22​​

​  ​π​22​​
 ​ ]​.​

Without loss of generality, we label ​​s​ t​​ = 1​ the “good” or normal state and ​​s​ t​​ = 2​ 
the “bad” or rare event state. To focus on parameter uncertainty, we assume ​​s​ t​​​ is 
observed.

There are six parameters in this model. If all parameters were uncertain and using 
conjugate priors, there would be nine state variables, including time. To focus the 
results and avoid the curse of dimensionality, we would like to allow for parameter 
uncertainty in only a small number of parameters whose uncertainty matters most 
from an ex ante utility sense, and treat all the other parameters as known. Of course, 
the issue is then how to identify these parameters without solving a model where all 
parameters are uncertain.20

To do this, we propose using the fraction of wealth an agent would be willing to 
pay to avoid parameter uncertainty altogether by setting parameters equal to their 
prior mean.21 This metric was used earlier to compare rational parameter uncer-
tainty with AU. To operationalize the metric with multiple unknown parameters, we 
compare the continuation utility of an EZ agent who will learn the true parameter in 
one period, i.e., will face one period of parameter uncertainty, to that of an AU agent.

Formally, we define it as follows. Let ​​V​ t​ AU​​ be the utility level corresponding to 
the AU case and ​​V​ t​ One​​ be the utility level for the case where parameters are uncertain 
but revealed in one period. Both are defined recursively as a function of their ini-
tial priors and their certainty equivalent next period (see the online Appendix). The 
parameter uncertainty premium, ​​α​t​​​ , is defined as in equation (11) as

(14)	​ ​α​t​​  =  1 − ​ ​V​ t​ One​ _ 
​V​ t​ AU​

 ​ .​

The crucial point, which makes this metric simple and easy to compute, is that the 
certainty equivalent next period only depends on the known-parameter value func-
tion (which is much simpler to calculate), because of our assumption that agents 
only face one period of parameter uncertainty.

20 This question is related to Chen, Dou, and Kogan (2013), who provide an approach for understanding the 
economic importance of statistically hard to measure parameters in asset pricing models. 

21 This approach is related to Lucas (1987), who considers how much an agent would pay to eliminate business 
cycle risk and to Epstein and Farhi (2014), who consider what fraction of wealth an agent would pay to have all 
uncertainty resolved in one period. 
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In the online Appendix, we provide further intuition about this metric that con-
firms that the utility and asset pricing impact of parameter uncertainty will be great-
est for difficult-to-learn parameters (high prior dispersion) and for parameters that 
generate very low utility outcomes. While intuitive, the metric’s value is from quan-
tifying the impact of parameter uncertainty, without solving a full dynamic model.

A. Calibration of Priors and Preference Parameters

To analyze parameter uncertainty, we need to specify priors and preference 
parameters. We solve the model quarterly so that the time-averaged, annual log 
consumption growth mean and standard deviation are ​1.8 percent​ and ​2.2 per-
cent​ , respectively, matching the observed values from 1929 to 2011. The “true” 
parameters are calibrated as follows. The bad state mimics the Great Depression, 
when real, per capita log consumption declined ​− 4.6 percent​ per year from 1929 
to 1933 with ​2.94 percent​ volatility per year (​​μ​2​​ = − 1.15 percent​ and ​​σ​2​​ = 1.47 
percent​ quarterly). We set ​​π​11​​ = 383/384​ and ​​π​22​​ = 15/16​ , corresponding to one 
four-year depression per century. The mean and variance in the normal growth state 
are ​​μ​1​​ = 0.54 percent​ and ​​σ​1​​ = 0.98 percent​.22

We use standard, conjugate priors distributions: beta, normal, and inverse gamma 
distributions for the transition probabilities, mean parameters, and variance param-
eters, respectively. Priors are centered at the true values to insure unbiased beliefs. 
We choose the remaining prior parameters to encode various training sample lengths 
(e.g., 100, 200, or 300 years), that form “fictitious” samples which the agent would 
have used to form beliefs starting from a flat prior. For instance, a 200-year prior 
means the agent has current mean beliefs equal to truth and a prior variance equal to 
those from a dataset with two depressions (each lasting 16 quarters) and two normal 
time periods (each lasting 384 quarters). Given unbiased priors, the length of the 
history the agent can observe (e.g., 200 years) is sufficient to set the scale parame-
ters of all priors. To ensure existence of equilibrium for an EIS different from one, it 
is necessary to truncate the prior distributions.23 The truncation bounds are wide, so 
as to not rule out economically sensible values of the parameters and are described 
in detail in the online Appendix.

The preference parameters are consistent with recent work using disaster risk 
models. Following Nakamura et al. (2013); Gourio (2012); Bansal, Kiku, and Yaron 
(2013); and Bansal et al. (2014), we use EIS values of ​1.5​ and ​2.​ The literature pro-
vides a wide range of estimates for this parameter. Hall (1988) and Campbell (1999) 
argue the EIS is less than 1, but Attanasio and Weber (1989); Beaudry and van 
Wincoop (1996); Vissing-Jørgensen (2002); and Vissing-Jørgensen and Attanasio 
(2003) argue that the EIS is large and in fact greater than 1, with Gruber (2013) 
estimating a value of about 2. We set the risk aversion parameter ​γ​ to be ​2​ or ​4​ in our 

22 A two-state model with the “bad” state calibrated to the Great Depression clearly misses normal business 
cycle fluctuations. These could be introduced by adding an additional more frequent state. However, to retain 
parsimony we abstract from business cycle fluctuations in the conditional moments of consumption growth. The 
next section presents a model generating time variation in asset prices and risk premia at business cycle frequency. 

23 For instance, if the mean growth rate in the good state is allowed to be arbitrarily high, as is the case with a 
normal prior, utility will be infinite. Note, however, that conjugate priors remain conjugate under truncation, so the 
truncation does not significantly complicate the numerical model solution. 
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benchmark calibrations, similar to Barro (2006), and well within the upper bound 
of 10 argued as reasonable by Mehra and Prescott (1985). As in BY, and in earlier 
sections, we set ​β​ to ​0.994​.

B. Which Parameters Are Important and Why?

We first apply our metric to the rare events model to explore how uncertainty 
about different parameters affects utility and to identify the parameters for which 
uncertainty is particularly important. Table 3 quantifies the parameter uncertainty 
premium for each parameter. The benchmark model has known parameters equal to 
the posterior mean. Then, we introduce uncertainty about a single parameter, allow-
ing for differing degrees of uncertainty by varying the degree of prior information 
based on training samples of 100 and 300 years.

The parameter uncertainty premium reflects the different utility levels arising 
from consumption dynamics with and without parameter uncertainty. To further 
understand the source of the premium, we also report in Table 3 the difference in 
the conditional mean and standard deviation of next period’s log continuation utility 
normalized by consumption, ​v​c​ t+1​​​ , for cases with and without parameter uncertain-
ty.24 At time ​t + 1​ all parameters are known for both models, so the difference in 
these moments is entirely due to the parameter learning between time ​t​ and time ​
t + 1​.

Overall, the parameter uncertainty premium is decreasing in the length of the 
prior training sample (prior precision), increasing in risk aversion, and not highly 
sensitive to the EIS levels considered.25 Interestingly, Table 3 shows there is strong 
heterogeneity in the parameter uncertainty premium. Variance parameter uncer-
tainty has a near zero premium, mean parameter uncertainty has a modest premium, 
and transition probability uncertainty has large premia. The premium is higher for 
uncertainty about parameters governing the dynamics of the bad (high marginal 
utility) state.

The parameter governing the persistence of the bad state, ​​π​22​​​ , is associated with 
a particularly high and long-lasting parameter uncertainty premium: ​28 percent​ if ​
γ = 2​ and ​54 percent​ if ​γ = 4​ for the ​100​-year prior when ​ψ = 2​ , and ​11 percent​ 
if ​γ = 2​ and ​35 percent​ if ​γ = 4​ for the ​300​-year prior when ​ψ = 2​. This is par-
tially due to a lower expected level of next period’s utility as utility is concave in 
the transition probability, but also due to high conditional standard deviation in next 
period’s utility induced by learning about this parameter. The high volatility of the 
continuation utility arises for two reasons. First, transition probabilities concern-
ing rare states are hard to learn, which means prior uncertainty is relatively high. 
Second, the agent is particularly averse to persistent bad states and so utility with 
known parameters is very sensitive to the value of ​​π​22​​​.

The results for uncertainty about the mean growth rate illustrates that the effects 
of parameter uncertainty can be highly nonlinear in risk aversion. In this case, there 

24 If utility is nonlinear in a particular parameter, a mean-preserving spread in that parameter affects expected 
utility, which would also be reflected in the parameter uncertainty premium. 

25 Of course, we only consider levels of EIS such that ​γ  >  1 / ψ​. Setting the EIS to the inverse of the risk aver-
sion, as in power utility, would make the parameter uncertainty premium close to zero, as discussed earlier. 
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is an order of magnitude increase in the parameter uncertainty premium when going 
from ​γ = 2​ to ​γ = 4​ , though the premium even for the ​γ = 4​ case is still only about 
one-sixth or less of the premium for the transition probability of the same state.

It is also apparent from the different priors that learning about the transition prob-
abilities is slow and generates long-lasting implications. For instance, for the ​γ = 4​ , ​
ψ = 2​ case, the welfare loss of uncertainty in ​​μ​2​​​ drops by about two-thirds, from ​8.1 
percent​ (100-year prior) to ​2.6 percent​ (300-year prior). For ​​π​22​​​ , the welfare loss only 
drops by about one-third, from ​54 percent​ to ​35 percent​. Intuitively, there is on aver-
age only one observation per century about the transition probabilities. For the mean 
growth rates, however, there are ​384​ and ​16​ observations on average per century of 
data, and so learning is quicker for the mean parameters. Further, the persistence of 
the bad state has particularly adverse effects on utility in the known parameter case.

Uncertainty about the variance has negligible utility effects for two reasons. First, 
utility with known parameters is not very sensitive to variance parameters, which 
are second moments of the consumption dynamics. Second, variance parameters 
are relatively easy to learn so uncertainty about variance parameters is relatively 
low given that our priors have implicit in them long samples of prior learning. This 

Table 3—Which Parameters Matter the Most? The Rare Events Model

100-year prior 300-year prior

Par. unc.
Difference in (​v ​c​ t+1​​​ )

Par. unc.
Difference in (​v ​c​ t+1​​​)premium premium

Parameter percent Mean SD percent Mean SD

Panel A. Elasticity of intertemporal substitution (​ψ​) of ​2​ , risk aversion ​​(γ)​​ of ​4​
​​μ​1​​​ ​1.1​ ​0.00​ ​0.05​ ​0.4​ ​0.00​ ​0.02​
​​μ​2​​​ ​8.1​ ​− 0.02​ ​0.13​ ​2.6​ ​− 0.01​ ​0.06​
​​σ​1​​​ ​0.0​ ​0.00​ ​0.00​ ​0.0​ ​0.00​ ​0.00​
​​σ​2​​​ ​0.0​ ​− 0.00​ ​0.00​ ​0.0​ ​− 0.00​ ​0.00​
​​π​11​​​ ​5.6​ ​0.08​ ​0.23​ ​1.8​ ​0.00​ ​0.06​
​​π​22​​​ ​54​ ​− 0.40​ ​0.55​ ​35​ ​− 0.18​ ​0.34​

Panel B. Elasticity of intertemporal substitution (​ψ​) of ​1.5​ , risk aversion ​​(γ)​​ of ​4​ 
​​μ​1​​​ ​0.9​ ​0.00​ ​0.04​ ​0.3​ ​0.00​ ​0.01​
​​μ​2​​​ ​7.2​ ​− 0.03​ ​0.11​ ​2.3​ ​− 0.01​ ​0.05​
​​σ​1​​​ ​0.0​ ​0.00​ ​0.00​ ​0.0​ ​0.00​ ​0.00​
​​σ​2​​​ ​0.0​ ​− 0.00​ ​0.00​ ​0.0​ ​− 0.00​ ​0.00​
​​π​11​​​ ​4.7​ ​0.06​ ​0.20​ ​1.4​ ​0.00​ ​0.05​
​​π​22​​​ ​56​ ​− 0.42​ ​0.55​ ​35​ ​− 0.18​ ​0.33​

Panel C. Elasticity of intertemporal substitution (​ψ​) of ​2​ , risk aversion ​​(γ)​​ of ​2​ 
​​μ​1​​​ ​0.4​ ​0.00​ ​0.08​ ​0.1​ ​0.00​ ​0.04​
​​μ​2​​​ ​0.4​ ​− 0.00​ ​0.03​ ​0.1​ ​− 0.00​ ​0.01​
​​σ​1​​​ ​0.0​ ​0.00​ ​0.00​ ​0.0​ ​0.00​ ​0.00​
​​σ​2​​​ ​0.0​ ​− 0.00​ ​0.00​ ​0.0​ ​− 0.00​ ​0.00​
​​π​11​​​ −​0.1​ ​0.02​ ​0.15​ ​0.2​ ​0.00​ ​0.05​
​​π​22​​​ ​28​ ​− 0.29​ ​0.43​ ​11​ ​− 0.09​ ​0.19​

Notes: This table shows the parameter uncertainty premium, as defined in the main text, with differing degrees of 
uncertainty over different parameters in the two-state switching regime model. In all cases ​β  =  0.994​. Par. unc. 
premium denotes parameter uncertainty premium, Difference in (​v ​c​ t+1​​​) Mean and SD denote the difference in the 
conditional mean and standard deviation, respectively, of next period’s log utility (normalized by consumption) 
between the anticipated utility case and the case where the agent ex ante accounts for parameter uncertainty and 
knows that the parameter is revealed next period.
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differs from the conclusion of Weitzman (2007) and is due to the truncation of the 
prior distribution for the variance parameters.26

C. Long Sample Moments

We now turn to the full-fledged parameter learning model where parameter learn-
ing resolves dynamically over time. Given the results in the previous section, we 
analyze the case where the transition probabilities (​​π​11​​ ,​ ​​π​22​​​) are unknown, while the 
other parameters are known and set equal to their true values.27

As in Campbell and Cochrane (1999) and Bansal and Yaron (2004), equity is a 
claim to an exogenous dividend stream:

(15)	​ Δ ​d​ t+1​​  = ​ _ μ ​ + λ​(Δ ​c​ t+1​​ − ​_ μ ​)​ + ​σ​d​​ ​η​t+1​​ ,​

where ​​d​ t​​​ is the log of dividends, ​​
_ μ ​​ is the unconditional mean consumption growth 

rate, ​λ​ is a leverage parameter, and ​​η​t​​​ is an i.i.d. standard normal shock (independent 
of ​​ε​t​​​). This specification implies that the long-run growth rate of dividends and con-
sumption is equal, while the short-run response of dividends to consumption shocks 
is higher than that of consumption.28 Using the same sample as earlier, we esti-
mate the leverage parameter to be ​2.5​ by regressing annual real dividend growth on 
annual consumption growth. We set the idiosyncratic volatility ​​σ​d​​​ such that annual 
dividend volatility is ​12.9 percent​ , as in the data.29 We compute standard asset pric-
ing moments for the same-length sample (82 years) by averaging these moments 
across 20,000 simulated samples.

Table 4 shows the average log excess equity returns, equity return volatility, and 
real risk-free rates, as well as the average sample Sharpe ratio of gross equity returns 
and price of risk (Hansen and Jagannathan 1991 bound). All moments are annu-
alized. In panel A, ​γ = 4​ and ​ψ = 2​ , while in panel B, ​γ = 4​ and ​ψ = 1.5​. The 
data column gives the empirical sample averages. The real quarterly risk-free rate is 
constructed using nominal 90-day T-bill rates minus expected inflation, where the 
latter is obtained from an AR(4) for inflation estimated on the full sample. Market 
returns are obtained from the Center for Research in Security Prices (CRSP) files.

Overall, parameter learning leads to a substantial increase in risk premia, Sharpe 
ratios, and the price of risk, as well as a decrease in the risk-free rate. Importantly, 
the effects are quantitatively significant for these long-sample averages even with 
a prior that embodies 300 years of prior learning. Relative to the case of known 

26 See Bakshi and Skoulakis (2010) for a thorough discussion of this point and Table 3 above. 
27 The online Appendix gives extensive details for the numerical methods used to solve the model and presents 

results when the mean and/or variance parameters are unknown. We find that, consistent with the implications of 
Table 3 discussed previously, the impact of uncertainty about the mean and variance parameters is small relative to 
the impact from unknown transition probabilities also in the full learning model. 

28 In terms of exposure to parameter uncertainty, our dividend assumption is conservative relative to the more 
standard specification, ​Δ ​d​ t+1​​  =  λΔ ​c​ t+1​​ + ​σ​d​​ ​η​t+1​​​. In particular, the uncertainty about the long-run growth rate 
is the same for consumption and dividend, and ​​μ ̅ ​  =  E​(​s​ 1​​)​ ​μ​1​​ + ​(1 − E​(​s​ 1​​)​)​ ​μ​2​​​. Alternatively, one could assume 
consumption and dividends are cointegrated, which introduces another state variable and is computationally costly. 

29 Aggregate dividends are constructed using monthly ex- and cum-dividend CRSP market returns to get 
monthly market dividends. These monthly dividends are summed within each year and the annual growth rates are 
inflation adjusted. We replicate this approach in the model and match the volatility of this measure of log annual 
dividend growth to the data with ​​σ​d​​  =  6.65 percent​. 
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parameters, the risk-premium is about five to six times higher with parameter learn-
ing, the price of risk is about three to four times higher, and the equity Sharpe ratio 
is about two to three times higher.

As seen earlier in the i.i.d. case, parameter learning provides a powerful amplifi-
cation mechanism. Unlike the i.i.d. normal case, the risk premium decreases quite 
slowly due to the infrequent nature of the rare events. In fact, there is on average only 
about a 10 percent increase in the price-dividend ratios over the 100-year samples 
due to a very slowly decreasing discount rate. In the data, the price-to-cash dividend 
ratio has increased by about 90 percent over the same period. Although some of this 
is likely due to other factors (such as stock repurchases) than learning, this shows 
that the amount of nonstationarity in valuation ratios due to learning is not unrea-
sonable compared to historical data. Further, the amount of parameter uncertainty 
investors face in these calibrations is, in our view, conservative. For instance, using 
300-year prior in 1929 assumes agents effectively had data back to the early 1600s, 
around the time when the first stock exchange, the Amsterdam Stock Exchange, was 
opened and before the industrial revolution.

The results in panel A versus panel B of Table 4 show that similar results arise 
whether ​ψ = 2​ or ​ψ = 1.5​. The risk pricing of shocks to beliefs, which is driven 
by ​γ − 1 / ψ​ , is not strongly affected by the EIS at these parameter values. The main 
difference with a lower EIS is an increase in the real risk-free rate to a level higher 
than the data.30

The last column in Table 4 shows the sample moments that arise from an AU 
implementation of the model. In this case, we only show results with the 200-year 
prior. As expected, the risk premium, the price of risk, and the average real risk-free 
rates are roughly the same as in the known parameters case. Given that beliefs still 
fluctuate and since prices are recomputed based on revised beliefs each period, the 
return volatility is slightly higher under AU, which makes the average sample equity 
Sharpe ratio slightly lower. Thus, unlike the case of power utility analyzed in Cogley 
and Sargent (2008), AU does not yield a good approximation to the true equilibrium 
outcomes when agents have EZ preferences.

D. Conditional Dynamics

This section documents that parameter learning leads to strong countercyclicality 
in conditional risk premia, return volatility, and Sharpe ratios. For brevity, we con-
sider only the economy with ​γ = 4​ , ​ψ = 2​, and a 200-year prior.

Belief Dynamics and Valuations.—We illustrate the conditional dynamics though 
a 40-year sample where the economy enters a depression event in year 11 (quarter 
41). The realized depression length is random, given the two-state Markov switch-
ing model, and we consider average durations (4 years) as well as extreme durations 
of 1 quarter and 12 years, which correspond roughly to ​5 percent​ and ​95 percent​ 
outcomes of the true distribution of depression durations.

30 Note that this could be countered by allowing for a higher value of ​β​ : see Kocherlakota (1996). 
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Figure ​2​ plots mean beliefs about the transition probabilities for these cases, 
as well as the paths of corresponding log wealth-consumption ratios. Panel A 
shows ​​E​ t​​​[​π​11​​]​​ , which increases slightly until the onset of the depression event, at 
which point ​​E​ t​​​[​π​11​​]​​ falls sharply. There is, naturally, no learning about ​​π​11​​​ during a 
depression, but instead, as panel B shows, the agent starts learning about the per-
sistence of the bad state, ​​E​ t​​​[​π​22​​]​​. Belief revisions about ​​π​22​​​ are much larger than 
for ​​π​11​​​ as investors have less data and more dispersed beliefs. The longer the depres-
sion lasts, investors’ mean beliefs about ​​π​22​​​ increase. Note that an “average” depres-
sion implies that the beliefs about ​​π​22​​​ are the same before and after the depression, 
while a longer (shorter) depression realization leads to, in expectation, a permanent 
increase (decrease) in the mean belief relative to the belief before the depression 
event commenced. In all cases, beliefs change with each additional realization of the 
depression event, causing large shocks to beliefs during the bad state that are absent 
when this parameter is known.

The time-series of beliefs are reflected via variation in the log wealth-consumption 
ratio. In particular, at the onset of the depression event, the wealth-consumption 
ratio falls by more than ​30 percent​ , about twice as much as in the known parameters 
benchmark case: the amplification effect mentioned earlier. This larger response 
occurs for two reasons: (i) the sharp downward revision in beliefs about the prob-
ability of staying in the good state, ​​π​11​​​ , and (ii) a strong increase in the discount 
rate. The latter is due to the higher volatility of belief updates in the bad state. 
Throughout the depression event the wealth-consumption ratio keeps declining as 
the persistence of this state is revised upward.

 Table 4—Sample Moments Learning about the Probability and Persistence of a Great Depression

Priors (training sample)
Anticipated

utilityData 100 yrs 200 yrs 300 yrs  ​∞​ yrs

Panel A.  ​ψ  =  2​ 
​​E​ T​​​[​r​ m​​ − ​r​ f​​ ]​ ​(percent)​​  ​ 5.0​  ​5.63​  ​4.81​  ​4.26​  ​0.87​  ​0.93​ 

​​σ​T​​​[​r​ m​​ − ​r​ f​​ ]​ ​(percent)​​  ​20.2​  ​18.1​  ​18.4​  ​18.5​  ​17.3​  ​18.8​ 

​S​R​ T​​​[​R​ M​​ − ​R​ f​​ ]​​  ​0.35​  ​0.37​  ​0.32​  ​0.30​  ​0.14​  ​0.13​ 

​​E​ T​​​[​r​ f​​ ]​ ​(percent)​​  ​0.7​  ​0.81​  ​1.38​  ​1.69​  ​2.92​  ​2.93​ 

​​σ​T​​​[M]​/ ​E​ T​​​[M]​​ n/a  ​1.12​  ​0.90​  ​0.78​  ​0.27​  ​0.26​ 

Panel B.  ​ψ  =  1.5​ 
​​E​ T​​​[​r​ m​​ − ​r​ f​​ ]​ ​(percent)​​  ​ 5.0​  ​4.92​  ​4.27​  ​3.78​  ​0.67​  ​0.72​ 

​​σ​T​​​[​r​ m​​ − ​r​ f​​ ]​ ​(percent)​​  ​20.2​  ​17.4​  ​17.8​  ​18.0​  ​16.9​  ​18.1​ 

​S​R​ T​​​[​R​ M​​ − ​R​ f​​ ]​​  ​0.35​  ​0.35​  ​0.31​  ​0.28​  ​0.12​  ​0.12​ 

​​E​ T​​​[​r​ f​​ ]​ ​(percent)​​  ​0.7​  ​1.85​  ​2.26​  ​2.48​  ​3.33​  ​3.34​ 

​​σ​T​​​[M]​/ ​E​ T​​​[M]​​ n/a  ​1.06​  ​0.85​  ​0.74​  ​0.25​  ​0.24​ 

Notes: This table gives average sample moments from 20,000 simulations of 400 quarters of data from the two-state 
switching regime model of consumption growth, where the transition probabilities are unknown. ​​E​ T​​ [ x ]​ denotes the 
average sample mean of ​x​ , ​S​R​ T​​ [ x ]​ denotes the average sample Sharpe ratio of ​x​ , and ​​σ​T​​ [ x ]​ denotes the average 
sample standard deviation of ​x​. ​​R​ m​​​ and ​​R​ f​​​ denote the gross market return and real risk-free rate. Lowercase letters 
denote log of uppercase variable. All statistics are annualized and, except for the Sharpe ratio, given in percent. The 
time-preference parameter ​β​ and risk aversion ​γ​ are set to 0.994 and 4, respectively, in all cases. The data column 
shows the historical excess market return moments for the United States from end of 1929 to end of 2011.
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Figure 2. Beliefs, the W/C-Ratio and Depression Realizations

Notes: Panel A shows simulated paths for the mean beliefs about the probability of staying in 
the good state, ​​π​11​​​ for the case of a 200-year prior with unbiased initial mean beliefs. There are 
three simulated paths, with Depression realizations of 1 quarter, 4 years (the ex ante expected 
length), and 12 years. The tail outcomes correspond roughly to 5 percent and 95 percent out-
comes. Panel B shows the same for the probability of staying in the Depression state, ​​π​22​​​. 
Panel C  shows the corresponding log wealth-consumption (W/C) ratios, as well as the log 
wealth-consumption ratio for the benchmark case where parameters are known (dash-dotted 
line). The latter is only plotted for a four-year Depression realization.
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The differences in postdepression wealth-consumption ratios as a function of 
depression duration is similar in magnitude to the drop in the wealth-consumption 
ratio that occurs in a depression when parameters are known. In other words, a sig-
nificant additional risk with uncertain parameters is the permanent shock to wealth 
that is a function of the net belief update that results from observing the realized 
length of a depression event. This wealth shock is of the same order of magnitude 
as the depression event itself in the known parameters case and highlights how the 
assumption of known parameters potentially ignores a first-order source of macro-
economic risk.

The Conditional Risk Premium, Return Volatility, and Sharpe Ratio.—Table 5 
shows the annualized conditional log excess returns and return volatility of the 
dividend claim right before and just after the onset of a depression event. These 
moments are given for the case of a 200-year prior with ​γ = 4​ and ​ψ = 2​, where the 
depression events starts in quarter 41 of the simulated sample.

With parameter uncertainty, the conditional log risk premium and return volatility 
increase to ​22 percent​ and ​81 percent​ at the onset of the bad state, up from ​4 . 6 per-
cent​ and ​15 percent​ the quarter before. The annualized Sharpe ratio of simple returns 
increases from ​0.32​ to ​0.66​. For comparison, Martin (2015) argues that the risk pre-
mium at the onset of the financial crises briefly exceeded ​55 percent​ when annualized 
realized market volatility and the VIX index were greater than ​80 percent​. Realized 
volatility in the fall of ​1929​ also exceeded ​80 percent​. The fixed parameters case also 
features strong increases in these moments, but the conditional risk premium and 
return volatility at the onset of the depression event are still less than one-half of that 
in the case of uncertain transition probabilities due to the amplification effect.

The table also shows that the drop in the price-dividend ratio of the dividend 
claim at the onset of the depression is ​55 percent​ in the model with parameter 
uncertainty and ​50 percent​ in the model with known transition probabilities. In the 
Great Depression, the drop in the price-dividend ratio from the beginning of the 
Depression in 1929 to its lowest point in 1932 was ​79 percent​. For the recent finan-
cial crisis, the corresponding drop was ​50 percent​.

With AU, the conditional values are very close to the known parameters case. 
The slight differences arise as beliefs about the transition probabilities are updated 
in the ten years before the depression event and upon the event, but this effect on the 
conditional moments is minor relative to the effect of rationally priced parameter 
uncertainty.

Overall, the rare events model calibrated to US consumption dynamics and 
the Great Depression with realistic levels of parameter uncertainty performs well 
along a number of dimensions when compared to observed data and to the same 
model with known parameters. In particular, it predicts a high unconditional risk 
premium and a low risk-free rate, along with a very high risk premium and return 
volatility in the crisis period, and only requires a relative risk aversion coefficient 
of ​4​. Relative to the benchmark case with known transition probabilities, parameter 
uncertainty increases the Sharpe ratio and the risk premium by factors of about ​2.5​ 
and ​5​ , respectively, underscoring the importance of accounting for certain types 
of parameter uncertainty, namely the persistence of rare, bad states, when relating 
macroeconomic risks to asset prices.
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III.  Parameter Uncertainty in Long-Run Risk Models

The previous section discussed the implications of parameter uncertainty, when 
we can identify ex ante the few parameters that are most relevant. Here, we assume 
agents are uncertain about the model specification, assuming the parameters within 
the model are known. This “model” risk is just another form of parameter uncer-
tainty, as mentioned above and shown below. We find that realistic model learning 
can lead to substantial, endogenously time-varying model risk as the likelihood of 
the different models shifts over time. This in turn generates higher and more volatile 
risk premia.

We focus on the case where agents are uncertain about the presence of long-run 
risks and thus compare an i.i.d. model to a long-run risk (LRR) model as in Bansal 
and Yaron (2004).31 These two model alternatives are statistically hard to distin-
guish, but entail very different levels of risk and therefore of utility for the agent. 
The large difference in utility outcomes across the two models gives rise to priced 
model risk as the agent updates beliefs about which model is true.

In this case, consumption growth can be expressed as

(16)	​ Δ ​c​ t+1​​  = ​ (1 − M)​ ​{μ  +  σ ​ε​t+1​​}​  +  M​{μ  + ​ x​ t​​  +  σ ​ε​t+1​​}​,​

31 We consider the homoskedastic Case I model in Bansal and Yaron (2004). A similar problem is considered 
by Hansen and Sargent (2010), though their alternative model is not the i.i.d. case, but a case where there is still 
positive, but less autocorrelation in consumption growth than in the long-run risk model. Also, our focus is on the 
quantitative implications of rational learning for long-horizon claims when the agent has Epstein-Zin preferences, 
whereas Hansen and Sargent use “fragile beliefs” preferences for robustness. 

Table 5—Learning about the Probability and Persistence of a Great Depression: 
Conditional Moments

Model

Moment Unknown ​π′s​ Known ​π′s​ Anticipated utility

​​ 
P / ​D​ Beginning of depression​​  ____________  P / ​D​ Before depression​​

 ​ ​  ​0.45​  ​0.50​  ​0.47​ 

​​E​ t​​​[​r​ m.t+1​​ − ​r​ f, t+1​​ ​|​ depression​ Before  ​]​​  ​4.6%​  ​0.50%​  ​0.46%​ 

​​σ​t​​​[​r​ m.t+1​​ − ​r​ f, t+1​​ ​|​ depression​ Before  ​]​​  ​15%​  ​15%​  ​15%​ 

​S​R​ t​​​[​R​ m.t+1​​ − ​R​ f, t+1​​ ​|​ depression​ Before  ​]​​  ​0.32​  ​0.11​  ​0.11​ 

​​E​ t​​​[​r​ m.t+1​​ − ​r​ f, t+1​​ ​|​ depression​ 
Beginning of​]​​  ​22%​  ​10%​  ​9.0%​ 

​​σ​t​​​[​r​ m.t+1​​ − ​r​ f, t+1​​ ​|​ depression​ 
Beginning of​]​​  ​81%​  ​38%​  ​36%​ 

​S​R​ t​​​[​R​ m.t+1​​ − ​R​ f, t+1​​ ​|​ depression​ 
Beginning of​]​​  ​0.66​  ​0.45​  ​0.43​ 

Notes: This table gives conditional, annualized expected log excess returns and return volatility, as well as the 
annualized, conditional Sharpe ratio of simple returns, on the dividend claim for the two-state switching regime 
model. The moments are related to the simulated four-year Depression path of Figure 2. That is, they are based on 
a 200-year prior, where the Depression starts in quarter 41 of the sample. The Before depression numbers corre-
spond to conditional moments in quarter 40, while the Beginning of depression numbers correspond to conditional 
moments in quarter 41. P/D refers to the level of the price-dividend ratio. The next-to-last column gives the corre-
sponding numbers for the benchmark known-parameters case, while the last column gives the corresponding num-
bers using anticipated utility pricing.
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where ​​x ​ t+1​​ = ρ​x​ t​​ + φσ ​ε​t+1​​​ and ​​ε​t+1​​ ​ ∼​ i.i.d.​​  ​(0, 1)​​. ​M​ is a parameter that takes the 
value zero if the i.i.d. model is true and ​one​ if the LRR model is true. This “nesting” 
shows how model uncertainty can be viewed as a form of parameter uncertainty. 
Unlike the earlier cases where parameters were continuously distributed, here ​M​ 
takes two values. As before, we let ​μ = 0.45 percent​ , ​σ = 1.35 percent​. In addition, 
we follow BY and set ​ρ = ​​(0.979)​​​ 3​​ and ​φ = 0.044 ​√ 

___________
  1 + ​ρ​​ 2/3​ + ​ρ​​ 4/3​ ​​ , accounting 

for the fact that our calibration is quarterly while BY’s is monthly.
The agent does not know ​M​ , but instead learns from realized consumption data 

using Bayes’ rule. The agent’s current expected value of ​M​ equals the subjec-
tive probability that the i.i.d. model is true: ​​p​ t​​ = ​E​ t​​​[M]​​. The agent is assumed to 
observe ​​x​ t​​ .​ If the i.i.d. model is true, ​​x​ t​​​ is unrelated to consumption growth. If, on 
the other hand, the LRR model is true, ​​x​ t​​​ represents a small, persistent component 
in consumption growth.32

A. Model Risk Intuition

Valuable intuition about how model risk affects asset prices and risk premia can 
be obtained by following an approach similar to the one used to identify the “most 
relevant” parameters in Section IIB. Specifically, consider the case where the true 
model will be revealed in one period:

(17)	​ ​V​ t​ One​  = ​​ {​(1 − β)​ ​C​ t​ 1−1/ψ​  +  β ​μ​ One, t​ 
1−1/ψ​}​​​ 

1/​(1−1/ψ)​
​ ,​

where

(18)	​ ​μ​One, t​​  = ​​ {​p​ t​​ ​E​ t​​​[​​(​V​ t+1​ LRR​)​​​ 1−γ
​]​  + ​ (1 − ​p​ t​​)​ ​E​ t​​​[​​(​V​ t+1​ iid ​)​​​ 1−γ

​]​}​​​ 
1/​(1−γ)​

​ ,​

and ​​V​ t+1​ LRR​​ is the time ​t + 1​ value function for the LRR model, while ​​V​ t+1​ iid ​​ is  
the ​t + 1​ value function for the case of i.i.d. consumption growth. Two things are 
immediately clear.

First, the distance between the models’ value functions will be important for how 
model uncertainty impacts utility (a bigger difference all else equal lowers current 
utility as the certainty equivalent penalizes volatility). With ​​x​ t​​ = 0​ , the utility in the 
LRR model is lower than the utility in the i.i.d. model (because of aversion to LRR). 
Further, a low value of ​​x​ t​​​ makes this difference even larger, while a high ​​x​ t​​​ makes 
it smaller. Thus, model risk is time-varying as a function of the level of ​​x​ t​​​. Second, 
for low values of ​​p​ t​​​ the distribution of next period’s value function becomes more 
negatively skewed, even though the expected level of next period’s utility increases. 
This increased skewness is penalized in the certainty equivalent.

To illustrate these effects, Figure 3 shows the parameter uncertainty premium for 
different values of ​​p​ t​​​ , ​​x​ t​​​, and ​γ​. The AU case is calculated assuming ​​p​ t​​  = ​ p​​ AU​​ will 
be constant forever, which implies the consumption dynamics

32 The dynamics of ​​x​t​​​ can be thought of as the subjective dynamics that arises from the filtering of the observed 
consumption dynamics for some latent ​​​x ̂ ​​t​​​ that also follows an AR(1) process. 
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(19)	​ Δ ​c​ t+1​ AU ​  =  μ  + ​ p​​ AU​ ​x​ t​​  +  σ ​ε​t+1​​ , 

	​ x​ t+1​​  =  ρ ​x​ t​​  +  φσ ​ε​t+1​​ .​

Thus, for the AU case, a low value of ​​p​​ AU​​ implies there is little long-run risk in the 
consumption dynamics. Figure 3 shows that the parameter uncertainty premium can 
be substantial, more than ​30 percent​ when ​γ = 10​ and ​​x​ t​​​ is low. Interestingly, the 
premium peaks at ​​p​​ AU​ ≈ 0.4​ when ​γ = 5​ , ​0.2​ when ​γ = 10​ , and ​0.1​ when ​γ = 15​ , 
even though the variance of outcomes is maximized at ​​p​ t​​ = 0.5​. This is due to the 
impact of negative skewness on the certainty equivalent, which is stronger with 
higher risk aversion.

Intuitively, with a low current ​​p​ t​​​ , the agent experiences model disaster risk: there 
is a small probability that a low utility model is true and so relative to the current 
utility level, which is high since ​​p​ t​​​ is low, there is a large potential utility drop. 
Figure 3 also shows that variation in the current level of ​​x​ t​​​ can lead to large varia-
tion in the parameter uncertainty premium. Since ​​x​ t​​​ will be low in recessions and 
high in expansions, this channel gives rise to endogenously countercyclical model 
uncertainty risk.
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Figure 3. The Cost of Model Uncertainty: Applying the Metric

Notes: The figure shows the parameter uncertainty premium, as defined in the main text, when 
the agent is unsure whether consumption growth is i.i.d. or contains a small persistent com-
ponent as in Bansal and Yaron (2004). The state variables are the current belief about the 
model ​​p​ t​​​ , where ​​p​ t​​  =  1​ means the agent is certain the BY model is true, and ​​x​ t​​​, the current 
belief about expected consumption growth, conditional on the BY model being the correct 
model. In all cases, ​ψ  =  2​ , ​β  =  0.994​. In panel A, ​γ  =  10​ , while in panel B, ​​x​ t​​  =  0​.
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B. Long Sample Moments

We now analyze model learning over the full sample, with uncertainty resolving 
slowly. Learning is slow because it is hard to distinguish the two models empirically. 
Therefore, the asset pricing implications of model learning are long-lived. In par-
ticular, even if the i.i.d. model is true, asset prices reflect a substantial time-varying 
amount of long-run risks even after several centuries of learning. Thus, even if the 
probability of a bad model alternative is low, it has large, time-varying effects on the 
risk premium, return volatility, and Sharpe ratio.

Initial priors are given by ​​p​ 0​​  =  ℙ​(M = 0)​,​ and the agent updates beliefs via 
Bayes’ rule upon observing consumption realizations:

(20)	​ ​p​ t+1​​  =  ℙ​(M  =  0 | ​y​​ t+1​)​  ∝  p​(​y​ t+1​​ | ​y​​ t​ , M  =  0)​ ​p​ t​​ .​

The posterior probabilities are martingales. Letting ​p( ​y​ t+1​​ | ​y​​ t​ , M = 0)  
= ​p​ BY​​ ​(​y​ t+1​​ | ​y​​ t​)​​ and ​p​(​y​ t+1​​ | ​y​​ t​ , M = 1)​ = ​p​ iid​​​(​y​ t+1​​)​​ , the belief recursion is

(21)	​ ​p​ t+1​​  = ​   ​p​ BY​​ ( ​y​ t+1​​ | ​y​​ t​ ) ​p​ t​​   ________________________   
​p​ BY​​​(​y​ t+1​​ | ​y​​ t​)​ ​p​ t​​ + ​p​ iid​​​(​y​ t+1​​)​ ​(1 − ​p​ t​​)​

 ​ ,​

where ​​p​ BY ​​​(​y​ t+1​​ | ​y​​ t​ )​ ∼  ​(μ + ​x​ t​​ , ​σ​​ 2​)​​ and ​​p​ iid​​​(​y​ t+1​​)​ ∼  ​(μ, ​σ​​ 2​)​​. The value func-
tion normalized by consumption is a function of ​​p​ t​​​ and ​​x​ t​​​ and is computed numeri-
cally using value function iteration, with boundary values given by the cases ​​p​ t​​ = 0​ 
and ​​p​ t​​ = 1​. See the online Appendix for a detailed description of the numerical 
solution methodology.

Table 6 shows average sample moments for different calibrations correspond-
ing to combinations of the EIS and initial model probability: ​ψ ∈ ​{1.5, 2}​​ and 
​​p​ 0​​ ∈ ​{0.194,  0.0894,  0.0432}​​. We assume consumption growth is truly i.i.d., and 
the priors correspond to 100-, 200-, and 300-year training samples starting from an 
uninformative prior (​ℙ​[M = 0]​ = 0.5​).33 Since the true model used in these simula-
tions is i.i.d., the ​∞​-year prior correspond to ​​p​ 0​​ = 0​. The data column contains the 
same empirical asset pricing moments described in the previous section.

If agents knew the true (i.i.d.) consumption growth dynamics, the risk premium 
would be ​0.72 percent​ , the return Sharpe ratio would be ​0.12​ , and the price of risk 
(maximal attainable Sharpe ratio) would be ​0.28​ for ​ψ = 2​. Instead, with model 
uncertainty, the risk premium is between ​4.3 percent​ and ​4.7 percent​, depending on 
the prior, the Sharpe ratio is between ​0.33​ and ​0.35​ , and the price of risk is between ​
0.55​ and ​0.56​. Thus, even with low prior probabilities of the LRR model being true, 
there is a six-fold increase in the risk premium, three-fold increase in the Sharpe 
ratio, and a two-fold increase in the price of risk. These moments are quite close to 
values when the agents actually believe the LRR model to be true ( ​​p​ 0​​ = 1​)! Indeed, 
in that case, the risk premium is ​5 percent​ , Sharpe ratio is ​0.38​ , and the price of risk 
is ​0.64​. The case with ​ψ = 1.5​ shown in panel B is quite similar, though there is a 
very slight decrease in risk premium and Sharpe ratio.

33 The ensuing priors, ​​p​ 0​​​ , are calculated by simulating 20,000 economies for 300 years and taking the average 
model belief across samples after 100, 200, and 300 years. 
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Thus, the unconditional asset pricing moments reflect the worst-case model 
(even if unlikely), due to the priced model uncertainty. This is consistent with the 
“model disaster risk” intuition given in the previous section. When the probability 
of the worst-case model is low, the current utility level is relatively high and thus the 
worst-case model constitutes an unlikely, but large negative drop in utility. This neg-
ative skewness in model outcomes generates substantial extra risk for the EZ agent.

For comparison, the AU case is also shown for the case of the 200-year prior. In 
this case, where model uncertainty is not a priced risk, asset pricing moments are 
instead close to those of the true, i.i.d. consumption growth model, reflecting the 
low probability of the BY model. For instance, the Sharpe ratio of equities is ​0.18​ 
with AU (which prices in some long-run risk since the LRR model is given a small 
probability), while the corresponding Sharpe ratio under the i.i.d. model is ​0.12​.

C. Conditional Dynamics

This section shows that model uncertainty yields rich conditional dynamics 
in risk premia and Sharpe ratios, even though the consumption dynamics in the 
two reference models are homoskedastic. For brevity, we focus on the case where ​
ψ = 2​ and where the agent has a 200-year prior. Figure ​4​ plots the dynamics of the 

Table 6—Sample Moments Model Uncertainty: Long-Run Risk versus i.i.d.

Priors (training sample)

Data 100 years 200 years 300 years
 ​∞​ years
 (i.i.d.)

Objective
LRR model

Anticipated
utility

( ​​p​ 0​​​ = ​0.194​) ( ​​p​ 0​​​ = ​0.0894​) ( ​​p​ 0​​​ = ​0.0432​) ( ​​p​ 0​​​ = ​0​) ( ​​p​ 0​​​ = ​1​ ) ( ​​p​ 0​​​ = ​0.0894​)

Panel A. ​ψ  =  2​ 

​​E​ T​​​[​r​ m​​ − ​r​ f ​​]​ ​(percent)​​  ​ 5.0​  ​4.66​  ​4.51​  ​4.33​  ​0.72​  ​5.01​  ​1.53​ 

​​σ​T​​​[​r​ m​​ − ​r​ f​​ ]​ ​(percent)​​  ​20.2​  ​17.8​  ​17.8​  ​17.9​  ​14.9​  ​17.9​  ​15.2​ 

​S ​R​ T​​​[​R​ M​​ − ​R​ f​​ ]​​  ​0.35​  ​0.35​  ​0.34​  ​0.33​  ​0.12​  ​0.37​  ​0.18​ 

​​E​ T​​​[​r​ f​​ ]​ ​(percent)​​  ​0.7​  ​1.82​  ​1.86​  ​1.91​  ​2.78​  ​1.81​  ​2.17​ 

​​σ​T​​​[M]​/ ​E​ T​​​[M]​​ n/a  ​0.55​  ​0.54​  ​0.52​  ​0.27​  ​0.56​  ​0.32​ 

Panel B. ​ψ  =  1.5​ 

​​E​ T​​​[​r​ m​​ − ​r​ f​​ ]​ ​(percent)​​  ​ 5.0​  ​4.44​  ​4.28​  ​4.09​  ​0.72​  ​4.75​  ​1.38​ 

​​σ​T​​​[​r​ m​​ − ​r​ f​​ ]​ ​(percent)​​  ​20.2​  ​17.6​  ​17.7​  ​17.9​  ​14.9​  ​17.6​  ​15.2​ 

​S ​R​ T​​​[​R​ M​​ − ​R​ f​​ ]​​  ​0.35​  ​0.34​  ​0.33​  ​0.32​  ​0.12​  ​0.36​  ​0.17​ 

​​E​ T​​​[​r​ f​​ ]​ ​(percent)​​  ​0.7​  ​2.19​  ​2.23​  ​2.28​  ​3.03​  ​2.14​  ​2.54​ 

​​σ​T​​​[M]​/ ​E​ T​​​[M]​​ n/a  ​0.54​  ​0.52​  ​0.51​  ​0.27​  ​0.56​  ​0.31​ 

Notes: This table gives average sample moments from 20,000 simulations of 82-year samples, corresponding to the 
sample length in the data. The data column is based on US data from 1929 to 2011. The remaining columns show 
variations of the model where agents are unsure whether true consumption growth is i.i.d. or contains a small per-
sistent component as in Bansal and Yaron (2004). The priors are named by their implicit length of training sample 
and the prior probability of the long-run risk (LRR) model is given in parentheses. The rightmost column shows 
the case of anticipated utility for the 200-year prior. Panel A shows results when ​ψ  =  2​ , ​γ  =  10​ , and ​β  =  0.994​ , 
while panel B shows results when ​ψ  =  1.5​ , ​γ  =  10​ , and ​β  =  0.994​. ​​E​ T​​ [ x ]​ denotes the average sample mean of 
​x​ , ​S ​R​ T​​ [ x ]​ denotes the average sample Sharpe ratio of ​x​ , and ​​σ​T​​ [ x ]​ denotes the average sample standard deviation of ​
x​. Lowercase letters denote log of uppercase counterparts. The subscript ​m​ refers to the dividend claim (the “mar-
ket” portfolio), while the subscript ​f​ refers to the real risk-free rate. The parameters governing the dividend dynam-
ics are ​λ  =  2.5​ and ​​σ​d​​  =  0.0665​. All statistics are annualized.
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conditional price of risk ​​(σ​(​M​ t+1​​ | ​p​ t​​ , ​x​ t​​)​/ E​(​M​ t+1​​ | ​p​ t​​ , ​x​ t​​)​)​​ in this economy against the 
state variables ​​p​ t​​​ and ​​x​ t​​​.

When ​​p​ t​​ = 1​ , the agent is certain the BY economy is true, in which case, the 
annualized price of risk is constant and equal to ​0.51​.34 In the i.i.d. case, ​​p​ t​​ = 0​ , 
the price of risk is ​0.27​. For ​​p​ t​​ ∈ ​(0, 1)​​ the price of risk is different than a simple 
weighted average of the two boundary case economies: a crucial feature of priced 
model uncertainty. In particular, at ​​x​ t​​ = 0​ , the price of risk remains close to that 
in the worst-case LRR economy even for values of ​​p​ t​​​ close to zero, reflecting the 
model-disaster risk feature discussed above.

Unconditionally, the LRR model generates lower utility than the i.i.d. model, and 
the differences increase when ​​x​ t​​ < 0​ , as future expected consumption growth rates 
are lower than in the i.i.d. model. Thus, model uncertainty is “worse” in these states 
of the world, generating a higher conditional price of risk. Furthermore, the two 
risks in the economy, the shock to consumption and the model probability update, 

34 In the exactly solved LRR model, the price of risk actually varies a tiny amount with ​​x​ t​​​ , but to the third dec-
imal it is constant, as in the approximate solution for the homoskedastic case given in Bansal and Yaron (2004). 

1
0.8

0.6
0.4

0.2
00.01

0.005

0
−0.005

1.5

1

0.5

0
−0.01

P
ric

e 
of

 r
is

k

xt pt

Figure 4. Price of Risk for Case of Model Uncertainty

Notes: The figure shows the annualized, conditional price of risk in the economy where the 
agent is unsure whether true consumption growth is i.i.d. or contains a small persistent com-
ponent as in Bansal and Yaron (2004). The state variables are the current belief about the 
model ​​p​ t​​​ , where ​​p​ t​​  =  1​ means the agent is certain the BY model is true, and ​​x​ t​​​, the current 
belief about expected consumption growth, conditional on the BY model being the correct 
model. Preference parameters are ​γ  =  10​ , ​ψ  =  2​ , and ​β  =  0.994​.
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are reinforcing in these states. A low consumption growth value is bad in the i.i.d. 
model. However, when ​​x​ t​​ < 0​ , a low consumption growth realization also increases 
the likelihood of the LRR model. In fact, Figure ​4​ shows that when ​​p​ t​​ = 0.05​ and ​​x​ t​​​ 
is three standard deviations below its mean, the price of risk is about ​1.4​ , more 
than twice that of the riskiest alternative model of the world. On the other hand, 
when ​​x​ t​​ > 0​ the updates in beliefs hedge consumption shocks: a low consumption 
realization is bad (which is also the case in the i.i.d. model), but since ​​x​ t​​ > 0​ , the 
low consumption growth increases the likelihood that the i.i.d. model is true, which 
is good. Therefore, the total price of risk in these states can fall below either of the 
limiting economies. In fact, when ​​p​ t​​ = 0.05​ and when ​​x​ t​​​ is three standard devia-
tions above its mean, the annualized price of risk is only ​0.07​. Since ​​x​ t​​​ tends to be  
low/high in recessions/expansions, model uncertainty generates countercyclical 
risk prices.

Figure ​4​ also shows the tenuous nature of the full-information rational expecta-
tions assumption (see also Hansen 2007). It is not until ​​p​ t​​​ gets lower than ​0.01 per-
cent​ that the asset pricing implications of model uncertainty become negligible. 
It would take agents on average about 800 years to reach such a low model-belief 
starting from the initial prior ​​p​ 0​​ = 0.5​. In sum, one cannot outright dismiss a model 
as unimportant even though it is rejected by the data at conventional significance 
levels.35

D. Feeding the Model Actual Consumption Data

Finally, we consider the impact of model uncertainty on the postwar sample using 
the corresponding time series of US quarterly, real, per capita consumption growth. 
To be consistent with the model, we first remove autocorrelation of 0.25 induced by 
time-averaging of the data (see Working 1960) and then normalize the sample mean 
and variance of this modified consumption growth series to have mean and variance 
as assumed in the model calibration.36

The solid line in the top graph in Figure ​5​ shows the posterior probability of the 
LRR model, ​ℙ​(M = 0| ​y​​ t​)​​ , from ​1947:III​ to ​2010:IV​ , starting with the 200-year 
prior. The model probabilities vary substantially over the sample, from less than ​
0.05​ to about ​0.5​ , but there is not a clear time trend indicating that it is very hard 
to distinguish between the two models. Periods of either high consumption growth 
(late 1960s) or low consumption growth (the Great Recession) increase the prob-
ability of the LRR model relative to the i.i.d. model. At the end of the sample, the 
likelihood of the LRR model is ​0.5​ and at its maximum.

Panel B of Figure ​5​ shows the conditional price of risk, which varies substantially 
and is typically countercyclical in that it tends to increase in recessions (the bars in 

35 Of course, this conclusion depends on the agent having a preference for the timing of the resolution of 
uncertainty. With power utility preferences, the price of risk would be constant at ​γσ​. Basically, it is ​γ − 1/ψ​ that 
matters for the pricing of shocks to the continuation utility. With ​γ = 10​ this magnitude is ​9.5​ if ​ψ = 2​ , but only 
falls to ​8​ if ​ψ = 0.5​. Thus, the main implications shown here are robust to the level of the EIS, as long as ​ψ​ is not 
very close to ​1/γ​. 

36 We first construct ​​y​ t​​ = Δ ​c​ t​​ − 0.25 × Δ ​c​ t−1​​​ , using actual real per capita quarterly consumption growth 
data from 1947:II to 2010:IV. The modified consumption growth series is then constructed as ​​​   Δc ​​t​​  ≡  μ + ​σ​iid​​  

× ​ 
​y​ t​​ − ​E​ T​​​[​y​ t​​]​ _______ 

​σ​T​​​[​y​ t​​]​
 ​ ​ , where ​​E​ T​​​[·]​​ and ​​σ​T​​​[·]​​ denote the sample mean and variance, respectively. 
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the figure denote NBER recessions). This need not always be the case however. For 
instance, in the expansion of the late 1960s the price of risk increases as the LRR 
model becomes more likely. Through the recession of 2001, on the other hand, the 
price of risk decreases as the LRR model becomes more likely. This is due to high 
values of ​​x​ t​​​ perceived at the time based on the high growth in the 1990s. As can be 
seen from Figure ​4​ , the high current ​​x​ t​​​ makes the prospect of facing BY model’s 
consumption dynamics a conditionally less risky prospect as the agent then can 
enjoy higher expected consumption growth than in the i.i.d. case. The price of risk 
in this sample reaches its maximum of roughly ​0.85​ during the Great Recession, and 
its lowest point close to ​0.3​ in the mid 1960s. The dashed line denotes the constant 
price of risk of 0.64 in the benchmark LRR economy. Panel C of Figure ​5​ shows that 
the conditional risk premium largely inherits the dynamics of the price of risk. The 
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Figure 5. Model Uncertainty: Post-WW2 Sample Conditional Moments

Notes: The figure shows sample paths of the model probability ( ​​p​ t​​​), the annualized conditional 
price of risk, and the annualized conditional risk premium for the case of model uncertainty, 
where the agent is unsure whether true consumption growth is i.i.d. or contains a small per-
sistent component as in Bansal and Yaron (2004). The shocks are taken from the post-WWII 
real per capita consumption growth as explained in the main text. The solid line corresponds 
to the case where the initial subjective probability of the BY model being true is set to 0.0894, 
corresponding to the 200-year prior. The dashed line in panels B and C corresponds to the con-
ditional price of risk and risk premium, respectively, in the BY model. The bars correspond to 
NBER recessions.
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conditional, annualized risk premium varies substantially throughout the sample, 
from about ​3.5 percent​ to ​8 percent​. Again, the dashed line shows the constant risk 
premium of ​5 percent​ in the LRR economy.

Thus, model uncertainty induces large time-varying risk premiums and Sharpe 
ratios, often increasing these quantities to levels above what would prevail in the 
worst-case model since model uncertainty itself is an additional priced risk. The 
endogenously time-varying distance between the models, due to the conditional 
mean consumption growth rate in the LRR economy, ​​x​ t​​​ , leads to time-varying 
Sharpe ratios and risk premia, despite the fact that fundamentals (consumption and 
dividend growth) are homoskedastic.

IV.  Conclusion

Parameter uncertainty generates endogenous long-run risks, because updating 
beliefs about fixed parameters causes permanent shocks in the posterior means. 
Since agents with preferences for early resolution of uncertainty care about these 
long-run risks, parameter learning is a priced risk.

We first show this analytically in a simple i.i.d. model and then add parameter 
uncertainty to two popular asset pricing models (the Rietz-Barro disaster model and 
the Bansal-Yaron long-run risk model), which are natural candidates for parameter 
uncertainty. We find that parameter uncertainty can quantitatively dominate funda-
mental sources of risks in these models and generate realistic asset pricing moments 
both unconditionally and conditionally. In particular, countercyclical variation in 
equity Sharpe ratios and risk premia can arise even from homoskedastic fundamen-
tals due to endogenously countercyclical fluctuations in the amount of risk arising 
from parameter uncertainty. We also show that our learning channel is different from 
that identified by previous papers on learning, such as Weitzman (2007) or Cogley 
and Sargent (2008), for example.
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