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ABSTRACT OF THE DISSERTATION 

Technical Challenges in Perceptual Learning Research 

by 

Theodore Jacques 

Doctor of Philosophy, Graduate Program in Psychology 
University of California, Riverside, September 2019 

Dr. Aaron R. Seitz, Chairperson 
 

There is considerable variability in the observed effects of perceptual learning, 

and consequently considerable debate about the underlying mechanisms of learning. 

Resolving these irregularities and debates requires careful experimental control and 

precise application of research methods. At times, improving consistency between labs 

and methods is the best solution, but sometimes the best choice is to develop a new 

approach. Here we describe first a traditional perceptual learning experiment aimed at 

understanding individual differences. Then, when it was discovered that important data-

analytic assumptions were violated by that experiment, we describe the development of 

novel data analytic techniques to help understand the results. Finally, we discuss the 

development of an entirely new paradigm to help understand aspects of perceptual 

learning that are at present difficult to measure reliably.  
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General Introduction 

A good research question can be articulated clearly and simply in a way that even 

non-experts can understand. What factors influence a person’s ability to learn a task? 

This simple phrasing outlines a focus on the underlying mechanisms of learning, and 

communicates an intellectual perspective that views learning as a process whose rules can 

be understood. In practice as we unpack this question experimentally we recognize it as a 

multi-faceted problem encompassing a variety of aspects of the learning experience such 

as pre-existing aptitude in the relevant cognitive domains (qualities of the learner), the 

design of the learning experience itself (qualities of the task), and the ways that subjects 

interface with the task (strategy and task-learning). By understanding the ways that these 

factors interact with one another we can understand, predict, and improve the learning 

process for a variety of applications. 

Perceptual learning provides a convenient perspective for understanding the 

learning process. By focusing on low-level perceptual tasks and by eliminating many of 

the confounds in language and knowledge that make other types of learning more 

complex we can concentrate more effectively on the mechanisms underlying learning. 

And although perceptual learning provides a useful model system for learning in general, 

there are a variety of direct applications for perceptual learning including treatment of 

patients with visual impairments (Polat et al., 2009), the training of radiologists (Sowden 

et al., 2000; Kellman, 2013), machine learning (Bredeche et al., 2006), and even sports 

(Deveau et al., 2014). 
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In spite of the basic sensory foundation of the stimuli used in our experiments, 

perceptual learning researchers have observed a wide variety of mechanisms and learning 

outcomes, enough to account for many aspects of the learning process and to fuel a robust 

theoretical discourse. Indeed, we observe significant variability in the reliability of 

perceptual learning (Hung & Seitz, 2014; Huang et al., 2017; Liang et al., 2015; Zhang & 

Yu, 2016; Xiao et al., 2008), and it is the diverse combination of the subject-specific and 

task-specific factors that explain such a wide variety of outcomes. Therefore, a deeper 

understanding of the interactions between these factors is a necessary step towards 

expanding our understanding of this field. 

The qualities of the learner refer to individual differences in pre-existing cognitive 

abilities. Unfortunately, these factors are largely unaccounted-for in perceptual learning 

literature (Dobres & Seitz, 2010; Herzog & Fahle, 1997; Hung & Seitz, 2011). Two 

possible causes of this issue are the difficulty in running participants across multiple 

sessions and the small sample sizes that typify experiments in the field (Hung & Seitz, 

2014). The qualities of the task refer to the particular methodological paradigm chosen to 

measure learning and the properties of the stimulus. Details of stimulus presentation vary 

considerably (Karni & Sagi, 1991; Harris, Gliksberg & Sagi, 2012; Wang, Cong & Yu, 

2013), and systematically manipulating these details is not a frequent topic of inquiry (see 

Yotsumoto et al., 2009 and Deveau, 2014 for two examples), although there is recent 

interest in this issue in the domain of brain game development (Deveau et al., 2015, 

Mohammed et al., 2017). The interaction between the subject and the task is more 

difficult to define, but certainly any approach to addressing this question would require 
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the ability to measure subject behaviors at very high temporal resolution such as trial-to-

trial measures of learning. To date, we know of no such method in the existing literature. 

This work describes my efforts to further our understanding of these important 

topics. It also addresses some of the ways that existing research methodologies were 

insufficient for addressing my research questions. Consistent research methodologies are 

important in understanding perceptual learning, as mentioned earlier there is large 

variability in the observed reliability of perceptual learning and one example is the 

finding of task-specific disruption of perceptual learning (Seitz et al., 2005). Following 

an unsuccessful replication attempt by a different group (Aberg & Herzog, 2010), the 

original lab subsequently replicated both their own original results and the failure to 

replicate (Hung & Seitz, 2011). It is likely that the differences in outcome between the 

first two experiments were due to subtle methodological changes in the administration of 

the task between labs. This example illustrates how researchers in the same field need to 

be mindful of even small aspects of their task administration even when using the same 

task. The high variability of findings in perceptual learning research makes this a 

particularly important concern, especially in light of the so-called “replication crisis” in 

psychology (Maxwell et al., 2015). In spite of this need, it is not always possible or 

desirable to perfectly replicate the methods of previous researchers, in particular when 

the same tasks are being used to address different research questions between 

experiments. In such circumstances, existing methods can be inadequate and novel 

approaches must be developed. Consequently, this work can be thought of as a 
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progressive departure from traditional methods as the need arose in pursuit of my 

research goals.  

Dissertation Structure 

This work is divided into three chapters. The first chapter describes a perceptual 

learning study conducted to understand moderating variables in perceptual learning, with 

the additional feature of an unusually large sample size. This chapter is representative of 

a typical study in the field and most directly addresses research questions in perceptual 

learning. Over the course of three experiments we explored the ways that differences in 

the task structure  (roving the order of trial difficulty and the inclusion of a second 

training session intended to induce interference in learning) and the personal qualities of 

the subjects (pre-existing visual attention skill and experience with action video games) 

influenced learning and transfer in the well-studied Texture Discrimination Task (TDT, 

see Figure I.1). One of our 

primary findings was that 

roving the order of trial 

difficulty reduced overall 

performance, and this 

finding led to our first 

major problem with the 

standard practices in the 

field. This practice relates 

 
Figure I.1. Sample Texture Discrimination Task stimulus. The 
peripheral stimulus is located in the upper-left hand quadrant. 
The central target is a rotated L. 
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to a phenomenon known as “stimulus-independent lapses” (Wichmann & Hill, 2001), 

moments when subjects are inattentive to the task that reduce overall performance. These 

lapses have been known for decades, and some research has gone into understanding their 

impact on perceptual data (Harvey, 1986; Swanson & Birch, 1992). One of the standard 

methods for data analysis in the TDT is to fit the data with a psychometric function and 

report thresholds, and although it is possible to account for lapse rate in the psychometric 

function (see Prins & Kingdom, 2018 for a discussion of the topic), one of the most 

common ways to deal with these lapses is to simply drop subjects with low overall 

performance whose data could interfere with our interpretation of the results of the study.  

However, we understood that the trial difficulty manipulation was partially 

responsible for low overall performance in our subjects, and so in this case the standard 

practice could not be used (the typical approach assumes that these lapses are the only 

reason for low baseline performance). Therefore, the second chapter deals with our 

departure from the traditional approach by describing this methodological concern in full 

detail and outlines the novel alternative method we developed for identifying these 

subjects. We use this approach to separate our subjects into psychometrically-fit and non 

psychometrically-fit groups, present additional statistical analyses of the data from the 

initial TDT experiment, and finally discuss the impact of these additional analyses on the 

conclusions drawn in chapter one.  

The final chapter describes the development of an entirely new paradigm for 

perceptual learning research. We created this technique in response to perceived 

inadequacies in existing methods of estimating perceptual learning, particularly the ways 
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that discrete testing sessions can interfere with learning and the measurement of learning 

over short time scales. Our novel method combines the wealth of information eye 

tracking can provide about human gaze behaviors with well-established image processing 

techniques to make inferences about subjects’ learning process throughout the training 

procedure. Subjects are trained to locate a Gabor patch in a visual noise field, and are 

allowed to freely move their eyes in search of the target. The eye tracker allows us to 

passively observe their behavior and identify changes in perceptual bias during the course 

of the training.  Chapter three describes the method in sufficient detail for other 

researchers to apply the technique to their own research questions. It also includes 

empirical results from a small validation study using the method that illustrates the types 

of data relevant to perceptual learning that eye tracking can provide.  

In the service of the over-arching goal of understanding perceptual learning, it is 

at times necessary to blaze new trail and develop entirely new approaches. This can be 

necessary due to the assumptions we make about the behavior of subjects, or due to 

limitations in existing approaches. Our aim with this work is to demonstrate the validity 

of these new methods, and to improve our understanding of this important topic in 

cognition.  
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Abstract 

There is currently substantial controversy regarding the reliability of observed patterns of 

perceptual learning. Contributing to this controversy are a lack of accounting for 

individual differences and how variations in training can give rise to different patterns of 

learning. Here, in three experiments we investigate the impact of individual differences in 

attention and experience with action video game use, as well as task-specific factors, on 

perceptual learning in a large sample of subjects using a Texture Discrimination Task 

(TDT). We find a significant impact of visual attention skill but not video game use on 

learning and transfer in the TDT, as well as a substantial impact of the order of trial 

difficulty on overall performance but not learning. Of note we fail to find evidence for 

interference between training with different backgrounds that have been observed in 

previous studies with the TDT. Together these results suggest that, while differences 

between individuals and differences in task structure play a role in learning, previous 

findings on the impact of action video game use and attention in perceptual learning may 

be idiosyncratic to particular training circumstances.  
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Introduction 

In recent years, there has been substantial controversy regarding the reliability of 

observed patterns of perceptual learning (Hung & Seitz, 2014; Huang et al., 2017; Liang 

et al., 2015; Zhang & Yu, 2016; Xiao et al., 2008) and in turn the mechanisms that give 

rise to perceptual learning (Harris, Gliksberg & Sagi, 2012; Law & Gold, 2009; Gu et al., 

2011; Xiao et al., 2008, Yu, Klein & Levi, 2004). Factors contributing to variation of 

observed findings across studies include a lack of accounting for individual differences in 

learning (Dobres & Seitz, 2010; Herzog & Fahle, 1997; Hung & Seitz, 2011), the small 

sample sizes that typify most perceptual learning studies, and that variations in training 

can give rise to different patterns of learning (Hung & Seitz, 2014). Here, we address 

some of these issues in the context of the well-studied Texture Discrimination Task 

(TDT; Karni & Sagi, 1991) by examining in a large set of participants how variations in 

training and individual differences in attention and experience with action video game 

use may mediate and moderate perceptual learning.  

The TDT is perhaps the best studied task in the field of perceptual learning and 

has provided fundamental insights regarding the degree to which learning can be specific 

to trained stimulus features (Sagi, 2011), the role of adaption in learning (Harris, 

Gliksberg & Sagi, 2012), the longevity of learning (Karni & Sagi, 1993), the roles of 

sleep in consolidation of learning (Censor, Karni & Sagi, 2006; Mednick, Nakayama, & 

Stickgold, 2003; McDevitt, Duggan, & Mednick, 2015), and the temporal phases of how 

learning is consolidated in the brain (Yotsumoto et al., 2009), among other findings. 

Notably, across studies, details of stimulus presentation during training have varied 
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considerably (Karni & Sagi, 1991; Harris, Gliksberg & Sagi, 2012; Wang, Cong & Yu, 

2013) indicating that observed thresholds and patterns of specificity depend substantially 

upon the details of the training regime. For example, Harris and Sagi (2012) found that 

adaptation can explain a substantial degree of location specificity of learning. However, 

their results also show much faster transfer of learning even in the adapted condition than 

in Karni and Sagi (1991), perhaps due to changing from a methods of limits to the 

method of constant stimuli in their training regime, as examined more directly by Harris 

and Sagi (2015). A related issue is how different stimulus features are interleaved. 

Yotsumoto et al. (2009) investigated how sequentially training on different target or 

background orientations facilitated or interfered with learning. They found, similar to 

prior results of training on hyperacuity stimuli (Seitz et al., 2005) or motor learning 

(Brashers-Krug et al., 1996), that this led to a disruption of learning. These results, 

combined with results from other perceptual learning paradigms (Hung & Seitz, 2011) 

suggest that details of how different stimulus types are distributed during training can 

have a significant impact on what is learned. 

Other research suggests that non-stimulus specific cognitive factors can play an 

important role in perceptual learning. For example, in the context of the TDT, Wang et 

al., (2013) suggest learning can be accounted for by a narrowing of the window of 

temporal attention. They found that by separately training individuals to detect the 

orientation of masked gratings or Cs accounted for most of the learning observed from 

directly training on the TDT itself.  Although, other data suggests that this temporal 

learning can be interpreted as a low-level change in temporal integration between targets 



 13 

and masks, rather than simply an effect of attention (Censor et al., 2009). However, the 

role of attention in perceptual learning is consistent with recent EEG studies showing that 

substantial differences in baseline alpha and alpha desynchronization occur through 

perceptual learning on a task that required attention to a very brief stimulus presentation 

period (Bays et al., 2014).  Relatedly, there is a robust literature suggesting that 

experience with action video games both leads to improved attention abilities (Green & 

Bavelier, 2003; Green & Bavelier, 2012) and that action video game use influences 

learning on the TDT (Berard et al., 2015). Together these data suggest that differences in 

attention abilities may explain individual differences in both initial thresholds and 

learning rates. 

The present study was devised to directly address these moderating and mediating 

factors on perceptual learning in the context of the TDT task. We assessed individual 

differences using a questionnaire of action video game use (Bavelier et al., 2011) and 

through the measurement of visual attention via the Useful Field of View (UFOV; Ball et 

al., 1988) task. We examined how these moderating factors interacted with factors 

thought to mediate learning, specifically differences in the distribution of stimulus 

difficulties during training and how training with different stimulus types can interfere 

with learning (Seitz et al., 2005; Yotsumoto et al., 2009; Berard, et al., 2015, McDevitt et 

al., 2015). Our sample of more than 150 participants allowed for one of the largest 

datasets reported on the TDT task to provide for robust results of the most consistent 

patterns of learning on this task.  
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Methods 

Subjects – Undergraduate college students, 84 in Experiment 1, 51 in Experiment 2, and 

85 in Experiment 3 from the University of California, Riverside (UCR) gave written 

consent in accord with policies of UCR’s Human Subject Review Board and participated 

in exchange for research course credit. Of these, 10 in Experiment 1 and 13 in 

Experiment 2 were excluded from the analysis due to missing or incomplete data. In 

Experiment 3, only 42 subjects successfully completed the practice session. See Table 1.1 

for details of subject age, gender, and gaming experience for those subjects who were 

included in the analysis. A more detailed breakdown of subject totals by experiment and 

condition is available in the supplemental material. Of note, performance levels varied 

considerably across participants and as such we also divide participants into 

Psychometrically-Fit (PF) and Non-Psychometrically-Fit (NPF) groups (see supplement 

for details, including breakdown of PF and NPF groups related to each analysis).  For the 

main body of the paper, all subjects are included in all statistics, and PF and NPF group 

analyses appear only in the supplement, with the exception of mention of notable 

differences between conditions. Of note, low numbers of female AVGP and low numbers 

 

Total 
Subjects 
(number 
female) 

Age 
Range 

Mean Age 
(standard 
deviation) 

NVGP 
(number 
female) 

“in between” 
(number 
female) 

AVGP 
(number 
female) 

Experiment 1 74 (32)* 18-26 19.51 (1.60) 24 (16) 23 (10) 27 (6) 

Experiment 2 38 (13) 18-24 19.74 (1.52) 9 (7) 11 (4) 18 (2) 

Experiment 3 42 (14) 18-24 19.36 (1.57) 8 (4) 15 (8) 19 (2) 

 * One participant declined to indicate both gender and age 
 
Table 1.1. Summary breakdown for participant demographics for each experiment. 
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of male NVGP are commonly found in studies of action video game players, which also 

may impact some analyses. Subjects were screened to ensure that they had not 

participated in any previous experiment involving a texture discrimination task. All 

subjects had normal or corrected-to-normal vision and reported being able to see the 

stimuli with no difficulty. Subjects’ video game playing habits were not used as selection 

criterion for the study. Experiment 3 did include an exclusion criterion not present in 

Experiments 1 and 2. In Experiments 1 and 2 subjects were allowed unlimited practice 

sessions (time allowed), while in Experiment 3 subjects who could not reach adequate 

levels of performance in the TDT practice sessions within 5 attempts were excluded from 

the study (notably 43 subjects, about half of the recruited sample, were unable to pass this 

practice that was targeted to ensure that participants could perform the task well enough 

to increase the likelihood of a valid 70% threshold similar to the subjects reported in 

Yotsumoto et al., 2009).  

Apparatus - An Apple Mac Mini running Matlab (Mathworks, Natick, MA) and 

Psychtoolbox Version 3 (Brainard, 1997; Pelli, 1997) was used for stimulus generation 

and experiment control. In Experiment 1, stimuli were displayed on a 16-inch Viewsonic 

PF817 monitor at a resolution of 1400x1050 pixels at 100 Hz by an NVIDIA GeForce 

9400 graphics card (NVIDIA Corporation, Santa Clara, CA). In Experiments 2 and 3, 

stimuli were displayed on a 16-inch NEC FP2141SB monitor at a resolution of 

1600x1200 pixels at 100 Hz by an NVIDIA GeForce 9400 graphics card. 

Procedure - All three experiments followed the same procedure. On day 1, subjects 

began by completing the video game questionnaire and the UFOV task before a brief 
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practice session on the TDT. Then subjects completed either one or two sessions of TDT 

task, depending on their experimental condition. On day 2, all subjects conducted two 

sessions of the TDT task, in Experiments 1 and 2 subjects got an additional practice 

session with the TDT on the second day, while subjects in Experiment 3 did not complete 

the practice on day 2. 

 

UFOV Task - To measure visual 

attention we used a Useful Field of 

View (UFOV) task similar to that 

described by Ball et al. (1988). This 

display (see Figure 1.1) consisted of a 

target array followed by a mask 

stimulus (presented for 320ms). In 

each trial, a fixation point was 

displayed and subjects initiated each 

trial with a keypress. The target array contained a central stimulus (smiling cartoon face, 

long or short hair) and a set of hollow white squares spaced at 45° intervals around the 

screen in three rings of eight items each presented at 6.67°, 13.33°, and 20° eccentricity. 

The display size was 20°, viewed at a distance of 40cm (Experiment 1) or 39cm 

(Experiments 2,3). The target stimulus consisted of a white star located in either the 6.67° 

or the 20° ring. Subjects responded using the keyboard to indicate the length of the hair 

of the central stimulus and the mouse to indicate the location of the peripheral stimulus.  

 
Figure 1.1.  Useful Field of View task stimulus. The 
white star (target) is located in the inner ring and 
replaces the distractor box at that location. 
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The duration of the target array varied according to 4 independent randomly 

interleaved 4-down, 2-up staircases (2 starting at an initial value of 300ms; 2 starting at 

100ms; one set for each target eccentricity) with consecutive correct trials (e.g. streaks) 

allowing for sequential steps in cases of consistent performance. For the first 16 trials 

only the 300ms staircases were active. The task terminated when all 4 staircases had 

reached a total of 8 reversals, or if each staircase had presented 72 trials. Prior to 

beginning the task, subjects were shown an example stimulus array, and then given two 

practices. The first consisted of the central target only; the second included the peripheral 

target with no distractors (white squares).  

TDT Task - We modeled the TDT task as closely as possible to that described by 

Yotsumoto et al. (2009). In Experiment 1 (our Roving condition), stimulus difficulties 

were randomly intermixed throughout training; in Experiments 2 and 3 (our Sequential 

conditions) different stimulus difficulties were presented in sequential blocks of 

increasing difficulty. In each Experiment, subjects were randomly assigned to one of two 

conditions. In the interference condition, on the first day participants trained first using 

either vertical or horizontal background bars (A), then after a brief break trained a second 

time using the orthogonal background stimulus (B). Because we counterbalanced the 

initially-trained orientation across participants, we use the labels A and B to reflect “first 

trained” and “second trained” rather than “vertical” or “horizontal” background lines. 

Both sessions were repeated on the second day, thus we refer to the interference 

condition as the AB-AB group. The non-interference group trained only one session (A) 

on day 1, and then on the second day trained first on A and then on the orthogonal 
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background (B). Therefore we call the non-interference group the A-AB group. When 

referring to specific sessions for a given participant, we will use the terminology “Day 1-

A” or “A1” to refer to the first session on the first day and so on. 

In each trial, 

subjects first viewed a 

fixation point for 

1000ms and were then 

presented with a 19x19 

target array (20ms 

duration) followed by a 

mask (100ms duration) 

and were asked to 

judge the orientation (vertical or horizontal) of a peripheral target (see Figure 1.2) 

composed of three bars oriented 45° offset from a background of vertical or horizontal 

bars (0.73°x0.13°, randomly jittered by up to 0.2° around an array of points spaced by 

1°). The target array was centered on the element closest to a point randomly chosen 

within 5-9° from the center of the display in either the upper left or upper left quadrant 

(randomly assigned per subject). The display size was 19°x19° of visual angle, viewed at 

a distance of 60cm (Experiment 1) or 69cm (Experiments 2,3). Subjects also completed a 

central task discriminating between a “T” and an “L” presented in place of the central 

element of the target array. The time interval between the target array and mask (SOA; 

180, 160, 140, 120, 100, 80, and 60ms) varied either randomly (7 SOAs, each presented 

 
Figure 1.2. Texture Discrimination Task stimulus. The vertically-
oriented (peripheral target) stimulus is located in the upper-left hand 
quadrant. The central target is a rotated L. 
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once every 7 trials in a random order, Experiment 1) or increased incrementally by block 

(Experiments 2,3). The mask patterns were 19 x 19 arrays of randomly oriented “v” 

shapes. Subjects were given up to 2000ms to respond via keyboard, and received auditory 

feedback on the central task only. All sessions consisted of 273 trials divided into 39 

mini-blocks of 7 trials of random SOAs (Experiment 1) or 7 blocks of 39 trials of 

increasing difficulty (Experiments 2,3).  Prior to training on both days, all subjects were 

shown sample stimuli and completed a series of practice sessions.  

Practice sessions consisted of sets of 8 trials at longer SOAs (Experiment 1: 

300ms x3, 240ms x3, 180ms x2; Experiments 2,3: 750ms x3, 600ms x3, 500ms x2). 

Subjects received feedback at the end of each set, and were required to achieve at least 7 

correct trials in two consecutive practice sets before moving on to the training. Subjects 

were given as many opportunities as necessary to reach this level of performance, so long 

as there was enough time, although in Experiments 1 and 2, subjects who failed to 

achieve this in 20 sets were omitted from the study. In Experiment 3, subjects were 

required to reach this level of performance within 5 sets, and those who failed to achieve 

this in 5 sets were omitted from the study. This latter condition was run to address the 

possibility that the extra practice may have influenced the resultant pattern of learning. 

Statistical Methods –We define learning for subjects in both the A-AB and AB-AB 

conditions as the difference in performance between the A1 and A2 sessions in each 

experiment. However, looking at transfer in the TDT required us to compare between 

different sessions depending on condition. In the A-AB groups transfer is the relationship 

between the A1 and the B2 sessions (e.g on different days), while for the AB-AB groups 
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this is between the A1 and the B1 sessions (e.g. both on day 1). In both cases we are 

comparing the first presentation of the A stimuli to the first presentation of the B stimuli. 

However, we note that the magnitude of transfer, and perhaps the mechanisms, cannot be 

directly compared between these conditions. Statistical analyses of learning and transfer 

are conducted using between-subject comparisons of these within-subject difference 

scores. Additionally, although learning is defined in the same way in both the A-AB and 

the AB-AB conditions, because we need to consider transfer separately between 

conditions we analyze both learning and transfer separately between conditions in our 

discussions of visual attention and gaming. The differences in the way transfer is defined 

in each condition are a consequence of the experimental design and therefore separating 

learning and transfer by condition for all experiments is necessary regardless of our 

results suggesting a lack of retroactive interference in our results. 

Subjects in each experiment were divided into “high” and “low” visual attention 

skill (HiVA vs. LoVA; see Figure 1.3) groups based on a median split of the average of 

the estimate of subjects’ thresholds for each of the 6.67° and 20° rings. The thresholds for 

each eccentricity was derived from the average of independent staircases, and the average 

of those two thresholds were used as selection criteria. This value was also used to 

determine the correlation between visual attention skill and video game experience.  

Subjects were categorized into three groups based on their video game playing 

habits. Those who played at least 5 hours per week of first-person shooter or action 

games for the past six months were considered “action video game players” (AVGP). 

Those who reported not playing any first-person shooter or action games in the past six 
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months were classified as “non video game players” (NVGP). Those who met neither 

criterion were classified as “in between” (“Tweeners”), who were left out of the main 

analyses. This method is the same as that used by Bavelier et al., (2011), where subjects 

self-report on video game experience. Only action video game play (defined narrowly as 

first-person-shooter and similar action games) is used as a criterion. Anecdotally, NVGP 

subjects usually play close to zero games, and subjects who play a variety of games (but 

not enough to qualify as AVGP) are most likely to appear as “Tweeners”. 

We conducted statistics on learning and transfer using both a proportion-correct 

based analysis and a threshold-based analysis. Our primary analyses involve accuracy on 

trials in which the subject responded correctly to the central stimulus, thus chance 

performance is 50%. We calculate baseline statistics (performance on the first training 

session on day 1) using the mean proportion-correct across all SOAs for that session, but 

 
Figure 1.3. Performance in all experiments on the UFOV. Values shown are the calculated thresholds for 
the inner 6.67° and outer 20° target rings. Subjects are divided by their median (across experiments) 
performance on the UFOV (A; HiVA in green, LoVA in green) and by their video game experience (B; 
NVGP in blue, AVGP in yellow). 
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for statistics on learning and transfer we look at the difference between the means for the 

two sessions in question.  

To calculate thresholds, we fit the data with a psychometric function and 

calculated a 70% threshold for performance. We fit constrained psychometric functions 

on a session-by-session basis and used this as selection criterion for further analysis. 

Some subjects, particularly in Experiment 1, exhibited high variance in their performance 

leading to behaviorally implausible best-fits. For example, roving the order of difficulty 

levels in Experiment 1 resulted in a significant reduction of overall performance and 

many subjects failed to reach the threshold. Under other circumstances, a low baseline 

would result in rejecting subjects for failure to comply with the task. Since this is the 

result of our manipulation, we view the statistics based on proportion correct, which 

allows us to include all participants, to be more valid. Therefore, we constrained the 

function to exclude unrealistic behavior such as implying reduced performance at higher 

SOAs. From there, we used the MSE for each best fit to identify subjects whose behavior 

varied most significantly from the norm and further separated our participants into 

Psychometrically-Fit (PF) and Non-Psychometrically-Fit (NPF) groups. A detailed 

description of our selection method is be found in the Supplemental material. With few 

exceptions, the proportion-correct based analysis and the threshold-based analysis 

generate similar conclusions; see the Supplemental material for a complete outline of 

both analyses. Due to the agreement between the two analyses, for the main body of this 

article we present the proportion-correct results so as to include as many subjects as 

possible.   
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Results 

Performance on the UFOV and relationship to Action Video Game Experience 

Overall performance on the UFOV is comparable to findings previously reported in the 

literature (Dye, Hauser & Bavelier, 2009). Consistent with previous research we found a 

significant, but small, correlation between video game experience and threshold on the 

UFOV for the subject pool as a whole (r = -0.23; p = 0.020), however, this effect is 

relatively modest with less than 5% of the variance in performance on the UFOV task 

being explained by action video game experience. All subjects were included in this 

analysis, with no omissions based on subject performance. This weak correlation 

accounts for the mixed impact of visual attention and video game play on learning and 

transfer (discussed in later sections).  

Moderating Effect of Roving vs. Sequential Difficulty Levels on Baseline TDT 

Performance 

Subjects’ overall performance is shown in Figure 1.4 for each experiment, session and 

training condition. Performance in the Sequential conditions (Experiments 2 and 3) on 

the initial training session (Day 1-A) is very consistent between Experiments 2 and 3 and 

is also consistent with previous research using these SOA values (Yotsumoto et al., 

2009). In the Roving condition  (Experiment 1), initial performance in this session was 

significantly impaired (F1,1022 = 24.04; p < 0.001). Despite these baseline differences 

between conditions, we found almost no interactions between this effect and the effects 

of attention skill and action video game experience on learning and transfer. 
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All subjects were included in this analysis, with no omissions based on subject 

performance. Therefore we present all experiments together in the remaining sections of 

the manuscript. Detailed breakdowns for each experiment, divided by both visual 

attention skill and video game experience may be found in the Supplemental Data.  

   
Figure 1.4. Performance in all three experiments (Exp 1: Cyan; Exp 2: Black; Exp 3: Purple) for each 
session of the TDT by mean across SOAs for each session (A, B) and by SOA (C,D) for A-AB (A, C) 
and AB-AB (B, D) conditions. Errorbars reflect standard error of the mean.  
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Moderating Effects of Visual Attention 

 

We first examined the extent to which visual attention skill (VA) as assessed by the 

UFOV moderated performance, learning and transfer in the TDT. For our comparison of 

visual attention we used the median split described above (HiVA vs. LoVA; see Figure 

1.3). Across the three experiments there were 76 HiVA subjects and 78 LoVA subjects 

included in this analysis. All subjects were included in this analysis, subjects were 

selectively excluding from analysis only during the PF and NPF analyses (see 

supplemental material). Visual attention had a highly significant impact on baseline 

performance (see Figure 1.5 A,B) in session A1 in this task (F1,1022 = 39.31, p < 0.001, 

proportion-correct statistics) which did not interact with other measures of interest. This 

effect was also found in threshold-based analysis, and the PF groups for both types of 

statistic, but was absent in the NPF groups. Moving forward, for brevity we will report 

the whole-experiment proportion-correct results alone, provided the other analyses 

produced the same results. See the Supplemental Material for complete statistical results. 

In the A-AB groups we found a highly significant effect of VA on the amount of learning 

(F1,490 = 15.11, p < 0.001) and transfer (F1,490 = 10.58, p = 0.001), although this did not 

appear in the threshold-based statistics.  We saw a trend towards a significant effect for 

the AB-AB subjects, for both improved learning (F1,504 = 3.52, p = 0.061) and transfer 

(F1,504 = 3.52, p = 0.061), although our PF groups and the threshold-based analysis were 

not significant. 
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Interestingly, while VA had a significant impact on learning and transfer it did not 

interact significantly with other factors of interest like experimental condition or even 

trial difficulty in any of our analyses (Figure 1.5). These results suggest that existing 

attention abilities have a substantial effect on performance and a moderate effect on 

learning of the TDT task.   

Figure 1.5. Effects of Visual Attention on learning and transfer. Baseline performance (session A1) in 
all three experiments for A-AB (A) and AB-AB (B) conditions for proportion correct. Change in 
percent correct in learning (C, D) and transfer (E, F) in A-AB (C, E) and AB-AB (D, F) conditions. 
Subjects are divided by visual attention skill (VA), with HiVA (green) and LoVA (red) indicated 
separately. Errorbars reflect standard error of the mean. Group totals are listed below each column. 
Graphs reflect mean performance per session (A, B) and difference between mean performance on 
relevant sessions for comparison (C, D, E, F). 
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Moderating Effects of Action Video Game Experience 

 

Next we looked at the effect of action video game play on performance, learning and 

transfer in the TDT. Across the three experiments there we have a large number of 

participants eligible for the analyses (41 NVGP subjects and 64 AVGP), however 

numbers of participants in individual conditions (noted in Figure 1.6) were more modest. 

Action video game play did not have a consistent or significant impact on baseline 

performance (see Figure 1.6 A,B) in session A1 in this task (F2,994 = 0.21, p = 0.810). In 

the A-AB groups we found significant effects of video game experience on the amount of 

learning (F1,308 = 5.16, p = 0.026) but not on transfer (F1,308 = 0.33, p = 0.565) but this 

effect on learning did not replicate in our PF groups. For AB-AB there were no 

significant effects on either learning (F1,343 = 0.02, p = 0.882) or transfer (F1,343 = 0.05, p 

= 0.826). Action video game experience did not interact with other factors of interest like 

experimental condition or even trial difficulty in any of our analyses (Figure 1.6). These 

results suggest that, although there is a statistically significant relationship between action 

video game play and attention, the relationship is not impactful enough to ensure that 

both factors display similar effects on learning and transfer in the TDT.  
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Figure 1.6. Effects of Action Video Game play on learning and transfer. Baseline performance (session A1) 
in all three experiments for A-AB (A) and AB-AB (B) conditions for proportion correct. Change in percent 
correct in the learning (C, D) and transfer (E, F) in A-AB (C, E) and AB-AB (D, F) conditions. Subjects are 
divided by video game experience, with NVGP (blue) and AVGP (yellow) indicated separately. Errorbars 
reflect standard error of the mean. Group totals are listed below each column. Graphs reflect mean 
performance per session (A, B) and difference between mean performance on the relevant sessions for 
comparison (C, D, E, F). 
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Interactions between visual attention and action video game play on the TDT 

Thus far we have treated each experiment separately and evaluated the effects of visual 

attention and of action video game independently from one another. Because separated 

subjects using a median split for the visual attention analyses, the two groups are 

approximately evenly divided between experiments. However, due to the self-report 

nature of video game experience some of the groups are unevenly distributed between 

experiment and condition. Therefore, we combined across experiments and conducted 

additional analyses of learning and transfer with these factors included together (See 

Figure 1.7). For learning, we found a significant main effect of gaming (F1,322 = 5.12, p = 

0.024), but not visual attention (F1,322 = 2.38, p = 0.124) and no interaction between the 

two for our A-AB subjects. 

For the AB-AB subjects there were no significant effects, but there was a trend towards a 

main effect of visual attention (F1,357 = 2.59, p = 0.108). For transfer, we found no 

 
Figure 1.7. Effects of Visual Attention and Action Video Game Play on Learning and Transfer Across 
Experiments. Change in performance for learning (A, C) and transfer (B, D) in the TDT. Errorbars 
reflect standard error of the mean. Group totals are listed below each column. Graphs reflect the 
difference between mean performance on the relevant sessions for each comparison. 
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significant effects for either the A-AB or AB-AB subjects, although there was a trend for 

a main effect of visual attention in the AB-AB group (F1,357 = 2.75, p = 0.098). These 

results again fail to support a consistent relationship between video game play and 

learning on the TDT or a consistent interaction between video game play and attention in 

moderating learning and transfer effects.  

Moderating effects of interference on the TDT 

 

We next examined whether the presence of the second training session in the AB-AB 

condition led to interference in learning for the A condition, as has been found in prior 

research (Yotsumoto et al., 2009; 

McDevitt et al., 2015) and whether 

visual attention skill or video game 

play moderated such interference. 

As we can see in Figure 1.8, we 

failed to find evidence of 

interference in any of the 

experiments. We conducted this 

analysis twice, once with VA as a factor and again with video game play as a factor. In 

contrast to interference, we found the subjects in the AB-AB condition demonstrated 

learning regardless of whether we include either visual attention (F1,994 = 11.94, p < 

0.001) and video game play (F1,651 = 9.52, p = 0.002; These refer to the main effect of 

condition for the whole subject population; note this value excludes “Tweeners”). There 

 
Figure 1.8. Interference in TDT. Learning for each 
experimental condition for all three experiments 
(Exp 1: Blue; Exp 2: Black; Exp 3: Purple). 
Errorbars reflect standard error of the mean. Graphs 
reflect the difference between mean performance on 
the relevant sessions for comparison.  
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is a trend towards an interaction between condition and video game play (F1,651 = 3.04, p 

= 0.082), however, while we would expect the presence of an interference condition to 

reduce learning, as we can see in Figure 1.6, we actually found that learning was 

improved for the NVGP in the AB-AB. Condition does not interact significantly with any 

of the other factors in these analyses. These results suggest that interference between 

background textures is not a ubiquitous effect of TDT training, and that it isn’t easily 

predicted by attention skill or action video experience. Further, this effect is not the result 

of floor effects, as this result holds true in the PF/NPF analysis.  

 

Discussion 

 

The purpose of this study was to systematically examine how individual differences may 

moderate, and how differences in training task structure may mediate learning and 

transfer in perceptual learning. Results showed a significant effect of visual attention on 

all measures of interest but an inconsistent relationship between action video game play 

on performance and learning for the TDT. In terms of the distinct aspects of the task 

itself, randomizing the order of trial difficulties has a significant impact on participants’ 

overall performance on the task. Finally, we were unable to replicate interference 

between background orientations in the TDT, and in some cases found substantial 

learning in the AB-AB condition comparable to the non-interference A-AB condition. 

Together, these results show that both individual and task factors impact performance on 



 32 

the TDT, however, not all relationships previously reported in the literature are simply 

replicated.    

 

Our most robust finding was that visual attention skill had a significant effect on all 

aspects of performance on the TDT. Improved ability to allocate visual attention resulted 

in better baseline performance, enhanced learning, and improved transfer. The TDT is a 

task that relies upon split attention, and so it was unsurprising that individuals with 

superior skills in this area showed superior performance. This is consistent with research 

showing that attention can play a key role in mediating perceptual learning (Szpiro & 

Carrasco, 2015; Donovan, Szpiro & Carrasco, 2015; Schoups et al., 2001).  Of note, there 

are multiple aspects of attention and even visual attention which influence perceptual 

learning that may be involved in the texture discrimination task. Wang et al. (2013) found 

that much of TDT learning can be attributed to temporal learning by either narrowing the 

temporal window of attention or increasing the speed of processing. Therefore it may be 

the case that if we had measured visual attention using a different task which relies less 

on rapid temporal processing we would draw different conclusions on the relationship 

between VA and learning. 

 

The finding that action video game play was at best inconsistently related to performance 

on the TDT is unexpected. Action video game play has been shown to have wide-ranging 

effects on a wide variety of tasks (Green & Bavelier, 2012; Bejjanki et al., 2014). 

However, we found only a weak relationship between action video game play and the 
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UFOV and performance and learning on the TDT task. These findings are in contrast to 

recent research using the TDT that has found that video game experience (although not 

action video games) has a significant impact on performance (Kim et al., 2015). 

Furthermore, it is thought that extensive experience with action video game play can 

facilitate learning (so-called “learning to learn”; Bavelier et al., 2012). However, because 

action video game play was not correlated with UFOV performance in this sample (and 

visual attention was strongly related to performance in the TDT) this may help explain 

why we find little relationship between action video game play and learning in this 

population. It is unclear whether this is due to cohort changes in the use of technology, 

including mixed games that may not be considered action video games,(Dale & Green, 

2017) or whether other factors are at play here. Including a larger sample with multiple 

study locations may be required to reconcile the extent to which these results are valid to 

other populations. 

 

Previous research (Seitz et al., 2005) suggests that retrograde interference can be induced 

by immediately training a second task condition after an initial training session, causing a 

disruption of learning for the first-trained condition. This was initially found using a 

hyperacuity task (Seitz, et al., 2005) as well as with contrast stimuli (Adini et al., 2004) 

and the TDT (Yotsumoto et al., 2009; McDevitt, Duggan & Mednick, 2015). However, 

findings of retrograde interference are inconsistent in the PL literature, for example 

Aberg and Herzog (2010) failed to find retrograde interference in a number of training 

conditions including an attempt to replicate Seitz et al., (2005); although Hung and Seitz 
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(2011) replicated both studies (Seitz et al., 2005 and Aberg & Herzog; 2010) and 

suggested the discrepancy between them as being related to differences in eye-

movements across the studies. In the case of the TDT it has been found that interference 

can be rescued through REM sleep (McDevitt, Duggan & Mednick, 2015) suggesting that 

factors like sleep can mediate findings of interference. Alternatively, it is possible that the 

use of the UFOV task prior to TDT training may have led to an increased transfer effect, 

which would be consistent with Wang et al.’s (2004) findings of the relative importance 

of temporal learning on the TDT. The UFOV task requires focused attention on briefly-

presented stimuli, much like the TDT. And while there are significant differences such as 

the unknown location of the target in the UFOV, there may be enough similarities to 

stimulate the effects we found in this study. Further, while we attempted to carefully 

replicate the conditions of Yotsumoto et al. (2009), some parameters still differed; for 

example we used a 20ms target duration whereas their targets were present for only 

13ms.  Future investigations will need to understand what factors make the key difference 

in these tasks. This is further complicated by the fact that many of our subjects were 

unable to reach the same standards of performance as those in Yotsumoto et al.’s (2009) 

study. This reduction in overall performance may be responsible for the differences we 

see in retrograde interference between these studies. Again, while we cannot claim that 

retrograde interference does not occur in the TDT, our results do suggest that it is not 

ubiquitous and that further research is required to understand the conditions where it may 

or may not be observed. 
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In spite of the extensive sample size and replication of previously-used task parameters 

there are still several important limitations on these results. In particular, participants in 

our sample found the trial difficulties (SOAs) to be exceptionally difficult. In 

Experiments 1 and 2 subjects had ample practice sessions to prepare themselves for the 

task, but some required many repetitions in order to reach adequate performance. This 

previous experience may have had a deleterious impact on their overall performance and 

learning. We conducted Experiment 3, which limited practice sessions, to address the 

potential impact of practice sessions and found that the addition of extra practice trials 

had a limited effect on the overall pattern of results. However, details of practice sessions 

have been shown to play an important role in perceptual learning in other training 

contexts (Ahissar & Hochstein, 1997; Seitz, Nanez, et al., 2005).  

 

We also note that performance was poor in a number of participants that this may impact 

the overall pattern of results. First, this can have a direct influence on learning, as a 

number of studies show that difficulty during training can have a significant impact on 

perceptual learning (Hung and Seitz, 2014; Weinliang and Seitz, 2018; Ahissar & 

Hochstein, 1997), and has been argued to potentially give rise to a different profile of 

learning across the brain systems that underlie learning (Maniglia and Seitz, 2017). 

Further, this also has an influence on how learning is characterized in that this differs 

from how studies characterize learning in the TDT (Karni & Sagi, 1993; Harris & Sagi, 

2015), however, it is consistent with other studies (e.g. Yotsumoto et al., 2009). While 

many results are consistent across methods of analyses, some are not. We give a detailed 
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presentation of the results in the supplemental information so that readers can come to 

their own conclusions regarding the impact of the different approaches to analysis.  

 

In conclusion, we find that individual differences and training variants play a key role in 

shaping perceptual learning. While factors such as attention skill and how trials of 

different difficulties are interleaved have substantial impact on the TDT, other factors 

such as video game experience and block-wise interference showed less consistent 

impact on performance and learning. It is also likely that differences in performance 

levels experienced during training may moderate these effects (CITE Wenliang and Seitz, 

J. Neurosci 2018). These results challenge previous findings in the literature and suggest 

that larger sample sizes, and clearer understanding of subject and task factors is required 

to better understand how, and why, effects of perceptual learning differ across studies. 
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Abstract 

 

The possibility of “stimulus independent lapses” in attention by participants during 

perceptual learning training tasks can cause significant noise in data collection and 

interpretation. These lapses are typically resolved by excluding subjects who exhibit poor 

performance. As part of an existing study investigating moderating effects on learning 

and transfer in a Texture Discrimination Task we found reduced performance was due in 

part to one of the experimental manipulations. Here we discuss a novel approach for 

accounting for data influenced by these lapses independent from baseline performance 

scores. Then we discuss the impact of these subsequent analyses on the conclusions 

drawn based on the whole-dataset analyses. We found that our initial conclusions were 

supported by these latter analyses.   
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Introduction 

This chapter deals with the novel data analytic methods we developed in order to 

conduct a follow-up analysis for the Texture Discrimination experiment described in 

detail in Chapter 1. Much of this work was inspired by one comment we received from a 

reviewer during the first round of peer review for that manuscript. To begin the chapter, 

we will briefly review the circumstances of the question and the line of reasoning which 

ultimately led to such a substantial development of novel techniques. Next we will 

describe those novel approaches in detail, and finally conclude the chapter with a 

discussion of the empirical results they produced relative to the perceptual experiment in 

Chapter 1. 

The reviewer comment which inspired this work was focused on the type of data 

we selected to report our results. In Chapter 1 we present and discuss results almost 

exclusively based on proportion-correct. This is the most straightforward way to present 

Texture Discrimination data, since it requires no intermediate steps to transform the 

results. However, this is not the standard method of reporting in the field. Typically, the 

raw proportion-correct results are fit with a psychometric function and the stimulus 

intensity corresponding to the intercept between the function and a particular 

performance level (the threshold) is used instead (see Karni & Sagi, 1991; Ahissar & 

Hochstein, 1997; Stickgold, James & Hobson, 2000, and many more besides). Both 

methods are derived from the same numbers and reflect the same information (and indeed 

can be seen on the same figure) and roughly correspond to the difference between 

focusing on the x-axis or the y-axis of a graph. The reviewer asked why we chose to 
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report performance in terms of proportion-correct, when reporting a threshold is the 

standard in the field.  

In the process of fitting the data with a psychometric function and calculating the 

threshold we had stumbled into a numerical problem. Psychophysical data often takes the 

form of a particular proportion correct at each of several difficulty levels and the Texture 

Discrimination Task (TDT) is no exception. In the TDT the target stimulus is followed by 

the presentation of a visual mask and the amount of time before the mask appears (the 

Stimulus Onset Asynchrony (SOA)) defines the level of difficulty for the trial. Longer 

SOAs are easier and shorter SOAs are harder. Logically, fitting a psychometric function 

to report a 70% threshold necessitates that performance values on the measured SOAs 

should include this level of performance. In our experiment we duplicated the stimulus 

intensities used in a previous TDT article by Yotsumoto et al. (2009) and so we expected 

our chosen SOAs would span the sensitivity range for our subjects. However, upon 

conducting the study we were confronted by the fact that many of our subjects had not 

reached this level of performance even on the longest SOAs in our study. Furthermore, 

we understood that one of our experimental manipulations (roving trial difficulty, as 

discussed in Chapter 1) was causing this reduction in performance and therefore these 

low levels of performance could not be summarily dismissed. 

Identifying the cause of reduced performance is critical in perceptual learning, 

and most often reduced performance is attributed to subject error. Wichmann & Hill 

(2001) refer to this type of subject error as “stimulus-independent lapses” and significant 

effort has gone into understanding their influence on the subsequent computation of the 
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psychometric function (Harvey, 1986; Swanson & Birch, 1992). Perceptual tasks are 

often dull and repetitive, and so maintaining focus on task is a major concern in 

perceptual learning. These “lapses” are a polite way to talk about those moments when 

subjects simply aren’t paying attention like they should. When a subject is not properly 

focused on the task, their responses will be effectively random and their level of 

performance will drop towards chance. In truth there are many possible reasons for why a 

particular subject might show lower performance than others, but the fact that reduced 

performance also interferes with the ability to compute a threshold has given researchers 

a convenient excuse to resolve both problems at once. Typically, any subject with low 

overall performance is assumed to have made many “lapses” throughout the experiment, 

and their data is discarded on the basis that they did not follow instructions. This is 

frequently done even if there may be other factors contributing to reduced performance, 

and typically the factors at play are not explored in detail in favor of simply excluding 

participants. While this approach may be common in Texture Discrimination research 

and similar perceptual learning tasks, in this experiment we were unable to follow suit. 

As discussed in Chapter 1, we had found that our subjects showed reduced performance 

due to one of our manipulations. Therefore, we knew that we could not simply discard 

these subjects as “noise” in our data and that doing so would eliminate critical 

information relevant to our research questions. Ultimately we did discard these subjects 

and attempt to re-do our analyses to try and appease the reviewer (these results will be 

discussed later), however this line of reasoning revealed a new problem we could not 

ignore. 



 46 

We could not discard low-performing subjects on the basis that they were “bad” 

subjects who did not follow instructions, but deliberating on the issue had highlighted the 

likelihood that our data set probably did contain “bad” subjects nonetheless. Could we be 

sure that the results we were reporting were not influenced by data from subjects who 

were inattentive or otherwise not participating to their best ability? The method to 

address this question is theoretically straightforward: if we can identify “bad” subjects 

and separate them from our “good” subjects, then repeating the analyses on each group 

separately will reveal the true results. If the effects we observed in the whole-subjects 

analysis appear in both subsequent analyses we can conclude that the effects are valid 

independent from subject “goodness” or “badness”, and if they are visible in the “good” 

group but not the “bad” group then we can still say with some confidence that our 

interpretations are accurate. We were able to eventually separate our subjects in this way, 

and it was this process which includes our novel data analytic techniques. In the next 

section we will outline the numerical and logical methods used, and finally we will 

discuss the results of our follow-up data analysis. 

Methods 

Our ultimate objective in order to understand the results from Chapter 1 was to 

separate “good” subjects from “bad” subjects on the basis of a single criterion. As 

discussed earlier, we could not use mean performance on a given session as this criterion 

despite the fact it is the most frequent metric chosen for this purpose. However, during 

the course of fitting the data with a psychometric function we realized that the mean 
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square error for our fits, usually a measure of goodness-of-fit, represented a viable 

alternative criterion.  

Psychometric Function Fitting 

We fit psychometric functions using numerical least-squares methods in Matlab 

(Mathworks, Natick, MA) and discovered that in some cases the best-fitting function 

resulted in behaviorally-implausible predictions. For example, we would expect subjects 

to do better on easier trials and so the slope parameter for a Logistic function (a 

commonly-used psychometric function) should be positive. However, in rare cases we 

found that the best-fitting slope parameter was negative or approximately zero, 

suggesting our subjects performed better on shorter SOAs and more poorly on longer 

SOAs. This is logically nonsense, and so we proceeded to constrain the psychometric 

functions to only “sensible” values to ensure behavioral plausibility in the resulting fit. 

By itself constraining the function is not particularly novel or unique. However, we 

recognized that while the mean squared error term reflects goodness-of-fit in the context 

of an unconstrained model, in the context of a constrained model the appropriate 

interpretation of this term changes and it becomes useful in this application to identify 

“bad” or atypically-behaving subjects. 

The mean squared error (MSE; see D'Agostino, 1986 for additional resources on 

this subject) is frequently used as a goodness-of-fit measure. To calculate the MSE, find 

the shortest distance between each data point and the fitted function (the error of the fit), 

then square the distances. Finish by taking the mean for all data points in the set, hence 

the mean-squared-error. Logically, a good fit will describe a curve that lies close to each 
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datapoint and so a good fit will have a low MSE. We used the lowest MSE from three 

different functions to select the best one for use later, and this is the way this value is 

used most frequently. However, due to the fact that we are using constrained models and 

the MSE takes a different meaning, we can apply the logic in reverse to determine which 

subjects are “good” and which are “bad”, 

Recall that we used functions which were constrained to behaviorally-plausible 

parameters, thus the MSE for the constrained models actually corresponds to the degree 

to which a subject’s data resembles normal human task behaviors. If the subject’s data 

has a particularly high MSE, it suggests that that subject is performing randomly relative 

to a normal behavioral pattern. Intermittent lapses in attention or other task-unrelated 

changes in behavior will result in a more randomly distributed pattern of responses and 

the measured results will differ significantly from the smooth pattern of a focused and 

attentive subject. Therefore, the correct interpretation of a comparatively high MSE in the 

context of a constrained model is as an indication of random, unfocused behavior. By 

first selecting for the lowest overall MSE to determine the best fitting function, and then 

selecting for the highest MSEs for all subjects in a session we were able to identify those 

subjects deviating most from expected patterns of behavior – our “bad” subjects. 

To this end, we fit each individual session using three functions, a constrained 

Weibull function, a constrained logistic function, and an unconstrained linear function. 

Subjects in the A-AB group had each of their 3 sessions fit individually, and likewise the 

AB-AB group had each of their 4 sessions treated separately. The Weibull fit was 

constrained to a lapse rate between 0 and 1, a location parameter between the maximum 
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and minimum SOAs for the experiment (180 and 60ms), and a positive slope parameter 

(0 to +inf). The Logistic fit was constrained to force upper and lower asymptotes between 

0 and 1, a slope parameter between 0 and 1, and a location parameter between the 

maximum and minimum SOAs. The linear fit was unconstrained, and was included to 

account for particularly poor fits of the primary two types. Each fit was accompanied by a 

corresponding MSE, which was used in three ways. First, to identify which of the three 

functions provided the best fit, second as our metric of “goodness” and “badness”, and 

third if the function for that subject intersected the 70% threshold we included that 

subject in subsequent threshold-based analyses (with one caveat, discussed below).  

Psychometrically-Fit (PF) Subject Selection 

One additional step is necessary before we can finally divide our participants into 

groups. These groups are derived from the degree to which subjects correspond to a 

typical psychometric function, so henceforth we will refer to them as Psychometrically-

Fit (PF) and Non-Psychometrically-Fit (NPF) groups. In Chapter 1 we describe a 

perceptual learning experiment which investigated measures of learning and transfer in 

the TDT. Therefore, we needed to consider subjects not simply on the basis of a single 

session, but on the basis of two sessions together. For the Learning-PF group, this 

corresponded to the A-sessions on days 1 and 2. For the Transfer-PF group the sessions 

involved differed based on the experimental condition of each subject (see Chapter 1 for 

a more detailed discussion of this aspect of the experiment). 

Our goal was to divide the subjects into two groups of approximately equal size. 

For dividing subjects into groups we considered only the best-fitting function for each 
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session independently, even if this meant mixing-and-matching different fitting methods 

within any given subject. On a session-by-session basis we identified the best ~70% of 

subjects based on the lowest µ + ½σ of mean squared error. PF-Learning and PF-Transfer 

subjects were required to meet this criterion for both sessions of the comparison being 

made. Thus we are not simply in need of a single cutoff criterion, but a joint-criterion for 

two sessions. Subjects in the threshold-based statistics section of our results also needed 

to meet this joint criterion for both sessions, this is the caveat we mentioned above. 

The MSE cutoff of half of a standard-deviation above the mean (for that session) 

was chosen due to an interesting mathematical quirk. For a normal distribution, µ + ½σ 

accounts for approximately 70% of the sample population. And if the two sessions were 

independent, then the probability of a subject falling in both categories would be 70%-

squared, or about 49%. We know that the distribution of MSEs per session is not in fact 

normal and that two sessions for the same subject cannot possibly be considered 

mathematically independent, however for the purposes of dividing our subjects into two 

groups of approximately equal size this is a useful standard for a joint-cutoff criterion. To 

our knowledge no articles have previously reported a joint criterion, so we have no 

alternative algorithm for comparison. Although we have not conducted extensive 

statistical tests or replications to validate this approach for formal recommendation, it is 

clear from the group totals that this method is adequate for the desired goal of an 

approximately-median split between subject groups. See Table 2.1 for a complete list of 

the total subjects in each group of our subsequent data analysis, including breakdowns by 

visual attention and action video game experience (as discussed in Chapter 1).   
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Whole 

Experiment 
PF-

Learning 
PF-

Transfer 
NPF-

Learning 
NPF-

Transfer 

Experiment 1 
Total 

Subjects 
74 41 39 33 35 

A-AB HiVA 12 7 6 5 6 

 LoVA 24 10 11 14 13 

 NVGP 10 4 4 6 6 

 AVGP 16 9 7 7 9 

AB-AB HiVA 20 12 10 8 10 

 LoVA 18 12 12 6 6 

 NVGP 14 7 10 7 4 

 AVGP 11 9 6 2 5 

Experiment 2 
Total 

Subjects 
38 26 26 12 12 

A-AB HiVA 12 9 8 3 4 

 LoVA 7 5 4 2 3 

 NVGP 4 3 3 1 1 

 AVGP 7 5 3 2 4 

AB-AB HiVA 7 6 6 1 1 

 LoVA 12 6 8 6 4 

 NVGP 5 4 3 1 2 

 AVGP 11 7 8 4 3 

Experiment 3 
Total 

Subjects 
42 28 22 14 20 

A-AB HiVA 13 9 8 4 5 

 LoVA 8 4 3 4 5 

 NVGP 5 4 2 1 3 

 AVGP 8 5 6 3 2 

AB-AB HiVA 12 8 6 4 6 

 LoVA 9 7 5 2 4 

 NVGP 3 2 2 1 1 

 AVGP 11 9 6 2 5 

 
Table 2.1. Subject breakdown for PF and NPF groups by experiment and experimental condition. 
Note that NVGP and AVGP totals will not sum to the experiment total due to omission of the “in 
between” subjects in the video game analysis. These subjects are included in the visual attention 
totals. 
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Results 

Proportion-Correct Analysis 

Results in the proportion-correct analysis refer to the results in Figures 2.1-2.4. In 

these figures we include baseline Day 1-A performance for both all subjects, and learning 

and transfer results for only the relevant analyses. Statistical results for all groups, along 

with the whole-subject results (duplicated here from Chapter 1 for comparison) will be 

discussed individually in each section with reference to the appropriate figure.   

Moderating Effect of Roving the Order of Trial Difficulty 

Baseline performance for both PF and NPF groups demonstrate the same pattern 

as the whole subject pool, with baseline proportion correct being significantly lower in 

Experiment 1 (Figures 2.1-2.4; A, B, E and F). NPF groups showed a reduced, but still 

significant, effect for this pattern, indicating that the observed effect reduced performance 

due to roving the order of trial difficulty levels in Experiment 1 did not depend on the 

PF/NPF distinction. See Table 2.2 for a full list of these results. 

  

 
Main Effect of 

Experiment partial-η2 Experiment 1 Experiment 2 Experiment 3 

All Subjects F1,1022 =  24.04*** 0.0183 0.57(0.14) 0.62(0.17) 0.63(0.18) 

PF-Learning F1,609 =   16.08*** 0.0177 0.59(0.14) 0.63(0.17) 0.66(0.18) 

PF-Transfer F1,553 =   17.47*** 0.0201 0.59(0.14) 0.64(0.18) 0.66(0.18) 

NPF-Learning F1,357 =   3.92* 0.0093 0.55(0.13) 0.58(0.15) 0.58(0.16) 

NPF-Transfer F1,413 =   3.75† 0.0077 0.55(0.14) 0.57(0.14) 0.60(0.16) 

 
Table 2.2. Main effect of experiment on baseline performance on Day 1-A session with mean 
proportion correct (with SD) for each experiment for whole sample, PF, and NPF groups. 
 
*** p < 0.001; ** p < 0.01; * p < 0.05; † p < 0.10 
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Moderating Effects of Visual Attention 

The main effect of visual attention on baseline Day 1-A performance is 

statistically significant in all PF and NPF groups, although there is a clear reduction in the 

effect for our NPF groups. This indicates that the effect of visual attention on overall 

performance on the TDT did not depend on the PF/NPF distinction. The significant effect 

of VA on learning in the A-AB subjects was borne out in the PF-Learning and NPF-

Learning groups, although the trend we saw in the AB-AB subjects was not present in the 

PF group (Figures 2.1 and 2.3). We include the statistics for the PF-Transfer and NPF-

Transfer groups in the table, however it is difficult to interpret the unique effects of a 

transfer-selected group of subjects on learning. Therefore, while all these figures are 

included in the statistical tables we will omit them from discussion. We were surprised to 

see that the effect on transfer discussed in the whole-experiment analyses is not reflected 

in the transfer-PF group in either the A-AB or AB-AB comparisons and instead seems to 

be driven by subjects included in the Learning-NPF and Transfer-NPF groups. In Chapter 

1 we concluded that the primary effect of interest from visual attention was on overall 

performance and learning, so these results, while puzzling, do not change our overall 

interpretation of the experiment as a whole. See Table 2.3 for a full list of these results. 
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Main Effect of Visual Attention on: 

 
Baseline Day 1-A 

Performance partial-η2 
 

All Subjects F1,1022 =  39.31*** 0.0300  

PF-Learning F1,609 =   33.56*** 0.0369  

PF-Transfer F1,553 =   38.82*** 0.0447  

NPF-Learning F1,357 =   4.69* 0.0111  

NPF-Transfer F1,413 =   6.86** 0.0141  

 
Learning : A-AB 

Subjects partial-η2 
Learning : AB-AB 

Subjects partial-η2 

All Subjects F1,490 =  15.11*** 0.0254 F1,504 =  3.52† 0.0064 

PF-Learning F1,266 =   4.36* 0.0132 F1,315 =   0.11 0.0003 

PF-Transfer F1,238 =   2.78† 0.0090 F1,287 =   0.09 0.0003 

NPF-Learning F1,182 =   13.71*** 0.0515 F1,147 =   5.70* 0.0287 

NPF-Transfer F1,210 =   14.74*** 0.0528 F1,175 =   7.99** 0.0354 

 
Transfer : A-AB 

Subjects partial-η2 
Transfer : AB-AB 

Subjects partial-η2 

All Subjects F1,490 =  10.58** 0.0176 F1,504 =  3.16† 0.0064 

PF-Learning F1,266 =   1.46 0.0043 F1,315 =   1.24 0.0035 

PF-Transfer F1,238 =   1.26 0.0037 F1,287 =   0.10 0.0003 

NPF-Learning F1,182 =   16.98*** 0.0609 F1,147 =   16.80*** 0.0747 

NPF-Transfer F1,210 =   8.75** 0.0339 1   F1,175 =   9.05** 0.0399 

 
Table 2.3. Main effect of visual attention on baseline performance during Day 1-A session, learning, 
and transfer (split by experimental condition) for whole sample, PF, and NPF groups. 
 
*** p < 0.001; ** p < 0.01; * p < 0.05; † p < 0.10 
1 This analysis indicated a nearly-significant SOA x VA interaction, p = 0.059. 
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Moderating Effects of Action Video Game Experience 

The lack of a main effect of video game experience on baseline Day 1-A 

performance replicated in both PF groups. The significant effect of gaming on learning in 

the A-AB subjects was not present in the learning-selected PF group, although it was 

apparent in the NPF group. This is puzzling to interpret, as those subjects primarily 

driving the overall effect on learning seem to be those who are behaving most randomly. 

This suggests that the effect may be a statistical aberration, particularly in light of the 

absence of an effect in the AB-AB group of any kind. The lack of effect in the transfer 

comparisons was borne out in the PF groups in both conditions, in spite of some unusual 

results in the NPF groups for the A-AB group. In general, although there are some 

isolated statistically-significant results, they form no substantial pattern and so we 

conclude that these results support overall our previous conclusion that video game play 

has a negligible effect on performance in the TDT (Figures 2.2 and 2.3). See Table 2.4 

for a full list of these results. 
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Main Effect of Video Game Play on: 

 
Baseline Day 1-A 

Performance partial-η2 
 

All Subjects F2,994 =  0.21 0.0003  

PF-Learning F2,581 =   2.27 0.0053  

PF-Transfer F2,525 =   2.52† 0.0060  

NPF-Learning F2,329 =   5.50** 0.0249  

NPF-Transfer F2,385 =   2.54† 0.0099  

 
Learning : A-AB 

Subjects partial-η2 
Learning : AB-AB 

Subjects partial-η2 

All Subjects F1,308 =  5.16* 0.0135 F1,343 =  0.02 > 0.0000 

PF-Learning F1,168 =   0.72 0.0032 F1,224 =   2.66 0.0095 

PF-Transfer 1      F1,133 =   2.90† 0.0145 F1,203 =   0.69 0.0028 

NPF-Learning 1        F1,98 =   15.70*** 0.0842 F1,77 =   2.59 0.0198 

NPF-Transfer 1,2   F1,133 =   4.28* 0.0209 3   F1,98 =   0.71 0.0042 

 
Transfer : A-AB 

Subjects partial-η2 
Transfer : AB-AB 

Subjects partial-η2 

All Subjects F1,308 =  0.33 0.0009 F1,343 =  0.05 0.0001 

PF-Learning F1,168 =   3.72 0.0165 F1,224 =   1.39 0.0052 

PF-Transfer F1,133 =   0.72 0.0034 F1,203 =   2.28 0.0091 

NPF-Learning 1   F1,98 =   10.89** 0.0720 F1,77 =   1.79 0.0160 

NPF-Transfer F1,133 =   0.08 0.0004 3   F1,98 =   2.30 0.0155 

 
Table 2.4. Main effect of video game experience on baseline performance during Day 1-A session, 
learning, and transfer (split by experimental condition) for whole sample, PF, and NPF groups. 
 
*** p < 0.001; ** p < 0.01; * p < 0.05; † p < 0.10 
1 These analyses indicated a significant Experiment x Gaming interaction. 
2 This analysis indicated a significant Experiment x SOA x Gaming interaction. 
3 These analyses indicated a significant SOA x Gaming interaction.  
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Figure 2.1. Baseline proportion correct (A,B) for PF-Learning subjects. Change in percent correct over 
these sessions (C,D). Baseline proportion correct (E,F) for PF-Transfer. Change in percent correct over 
these sessions (G,H).  Subjects are divided by their visual attention skill (VA), with HiVA (green) and 
LoVA (red) indicated separately. Errorbars reflect standard error of the mean.  
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Figure 2.2. Baseline proportion correct (A,B) for PF-Learning subjects. Change in percent correct over 
these sessions (C,D). Baseline proportion correct (E,F) for PF-Transfer subjects. Change in percent correct 
over these sessions (G,H).  Subjects are divided by video game experience, with NVGP (blue) and AVGP 
(yellow) indicated separately. Errorbars reflect standard error of the mean.  
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Figure 2.3. Baseline proportion correct (A,B) for NPF-Learning subjects. Change in percent correct over 
these sessions (C,D). Baseline proportion correct (E,F) for NPF-Transfer. Change in percent correct over 
these sessions (G,H). Subjects are divided by their visual attention skill (VA), with HiVA (green) and LoVA 
(red) indicated separately. Errorbars reflect standard error of the mean.  
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Figure 2.4. Baseline proportion correct (A,B) for NPF-Learning subjects. Change in percent correct over 
these sessions (C,D). Baseline proportion correct (E,F) for NPF-Transfer. Change in percent correct over 
these sessions (G,H). Subjects are divided by video game experience, with NVGP (blue) and AVGP 
(yellow) indicated separately. Errorbars reflect standard error of the mean.  
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Threshold Analysis 

Any threshold-based analysis requires fitting in order to calculate the SOA value 

for a given performance threshold. As mentioned previously, many participants 

demonstrated particularly poor performance and may not have reached the necessary 

performance threshold of 70%. Alternatively, poor best-fits can result in nonsensical 

values for the calculated threshold without constraints on the fit. Therefore, we include 

the PF-Learning and PF-Transfer groups only for these analyses to ensure all subjects had 

a valid threshold for analysis. Results in the proportion-correct analysis refer to the 

results in Figures 2.5 and 2.6. 

Moderating Effect of Roving the Order of Trial Difficulty 

Baseline threshold results tell a somewhat mixed story relative to the proportion-

correct based analysis. Although thresholds in Experiment 1 are lower (indicating better 

performance rather than worse, such as we as saw in the proportion-correct analysis), the 

PF selection process eliminated a large number of participants with diverse outcomes and 

preferentially retained subjects who may have performed unusually well on the more 

difficult Experiment 1 (Figures 2.5 and 2.6; A, B, E and F). Therefore, these results in 

particular should be viewed with skepticism. See Table 2.5 for a full list of these results. 



 62 

 

 

Moderating Effects of Visual Attention  

The main effect of visual attention on baseline Day 1-A performance we observed 

in the whole-subject analysis for proportion correct is statistically significant in both PF 

groups when we look at the thresholds. We did not find significant effects of VA on 

threshold learning or transfer, with the one unexpected exception of a significant effect 

on transfer in one of the PF-Learning group analyses (Figure 2.5). These findings 

highlight our reasoning for reporting the proportion-correct based statistics in Chapter 1, 

the effects of visual attention on learning which are clear in the proportion-correct 

analysis are absent when we restrict ourselves to only a small subset of the overall 

dataset. See Table 2.6 for a full list of these results. 

 
Main Effect of 

Experiment partial-η2 Experiment 1 Experiment 2 Experiment 3 

PF-Learning F1,39 =   1.66 0.0326 98.5(25.2) 116.1(25.6) 116.1(25.2) 

PF-Transfer F1,32 =   0.00 > 0.0000 98.7(31.7) 112.8(21.9) 116.1(25.2) 

 
Table 2.5. Main effect of experiment on baseline performance on Day 1-A session with mean 
threshold (with SD) for each experiment for PF groups. 
 
*** p < 0.001; ** p < 0.01; * p < 0.05; † p < 0.10 
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Main Effect of Visual Attention on: 

 
Baseline Day 1-A 

Performance partial-η2 
 

PF-Learning F1,39 =   5.20* 0.1022  

PF-Transfer 1   F1,32 =   9.54** 0.1864  

 
Learning : A-AB 

Subjects partial-η2 
Learning : AB-AB 

Subjects partial-η2 

PF-Learning F1,15 =   0.19 0.0108 F1,20 =   0.00 0.0001 

PF-Transfer F1,10 =   0.82 0.0529 F1,18 =   0.08 0.0037 

 
Transfer : A-AB 

Subjects partial-η2 
Transfer : AB-AB 

Subjects partial-η2 

PF-Learning F1,15 =   4.79* 0.1871 F1,20 =   0.01 0.0005 

PF-Transfer F1,10 =   0.93 0.0345 F1,18 =   0.79 0.0353 

 
Table 2.6. Main effect of visual attention on baseline performance during Day 1-A session, learning, 
and transfer (split by experimental condition) for whole sample, PF, and NPF groups.  
 
*** p < 0.001; ** p < 0.01; * p < 0.05; † p < 0.10 
1 This analysis indicated significant Condition x VA (p = 0.036) and Experiment x VA (p = 0.015) 
interactions. 
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Moderating Effects of Action Video Game Experience 

The lack of a main effect of video game experience on baseline Day 1-A 

performance replicated in both PF groups in the threshold-based analysis (Figure 2.6). 

Unfortunately, our limited number of subjects with valid thresholds in the PF groups, 

when further divided by video game experience, makes some comparisons impossible 

due to invalid degrees of freedom, but the overall finding of no effects on learning or 

transfer from the proportion-correct analysis remains consistent. In general, these results 

support our conclusion that video game play has a negligible effect on performance in 

this task. See Table 2.7 for a full list of these results 

 

  

Main Effect of Video Game Play on: 

 
Baseline Day 1-A 

Performance partial-η2 
 

PF-Learning F2,35 =   0.71 0.0312  

PF-Transfer F1,29 =   0.02 0.0005  

 
Learning : A-AB 

Subjects partial-η2 
Learning : AB-AB 

Subjects partial-η2 

PF-Learning F1,8 =   0.45 0.0024 F1,15 =   0.89 0.0398 

PF-Transfer F0,3 =   n/a n/a F1,12 =   0.50 0.0362 

 
Transfer : A-AB 

Subjects partial-η2 
Transfer : AB-AB 

Subjects partial-η2 

PF-Learning F1,8 =   1.83 0.1634 F1,15 =   3.12† 0.1292 

PF-Transfer F0,3 =   n/a n/a F1,12 =   0.77 0.0502 

 
Table 2.7. Main effect of video game experience on baseline performance during Day 1-A session, 
learning, and transfer (split by experimental condition) for whole sample, PF, and NPF groups.  
 
*** p < 0.001; ** p < 0.01; * p < 0.05; † p < 0.10 
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Figure 2.5. Estimated baseline threshold (A,B) for PF-Learning subjects. Change in estimated threshold 
between appropriate sessions for learning (C,D). Estimated baseline threshold (E,F) for PF-Transfer 
subjects. Change in estimated threshold between appropriate sessions for transfer (G,H). Subjects are 
divided by their visual attention skill (VA), with HiVA (green) and LoVA (red) indicated separately. 
Errorbars reflect standard error of the mean.  
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Figure 2.6. Estimated baseline threshold (A,B) for PF-Learning subjects. Change in estimated threshold 
between appropriate sessions for learning (C,D). Estimated baseline threshold (E,F) for PF-Transfer 
subjects. Change in estimated threshold between appropriate sessions for transfer (G,H). Subjects are 
divided by video game experience, with NVGP (blue) and AVGP (yellow) indicated separately. Errorbars 
reflect standard error of the mean.  
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Discussion 

The purpose of the additional analyses conducted in this chapter was to explore 

the impact of inattentive and unfocused participants on the results of the large perceptual 

learning experiment described in Chapter 1. The impact of these additional analyses on 

our primary conclusions for the perceptual learning experiment discussed in Chapter 1 

was minimal. With few exceptions the results from the PF/NPF analyses were consistent 

with those already reported based on the entire sample population. However, during the 

course of our follow-up analysis we faced the problem that the standard method of 

filtering out poorly-performing subjects was not a valid option due to the experimental 

manipulations of our study. As a result, we were obliged to develop novel analytical 

approaches to resolve this unique problem. 

The first concern we addressed involved the definition of “bad” subjects who 

were inattentive and unfocused. There is some research studying the phenomenology of 

attentional lapses (Smallwood et al., 2004; Smallwood, 2011, Chernyshev et al., 2015) in 

general, but this research is not focused on the practical impact of these lapses on datasets 

in cognitive tasks. As we discussed before, there is some research investigating the 

numerical effects of these lapses (Harvey, 1986; Swanson & Birch, 1992), but authors 

such as Wichmann & Hill (2001) effectively take for granted that these lapses will occur. 

Omitting these “bad” subjects is the standard response to subjects with high lapse rates, 

but this approach can be inadequate. When an experimental manipulation induces 

reduced overall performance, such as roving the order of trial difficulty, the lapse rate 

becomes confounded with the experimental effects of interest. 



 68 

Our solution to this concern was to re-define what it meant to be a “bad” subject. 

Mean and standard deviation are ubiquitous in psychology research as summary 

descriptive statistics, and conceptually they describe a one-dimensional average 

“expected” value and the variance of the date relative to that expectation. By using a 

constrained psychometric fit, we describe a two-dimensional expected pattern of 

behavior similar to a contrast test in an analysis of variance, and the MSE reflects the 

variance of the data relative to this pattern. Defining poor performance and “bad” 

subjects in terms of high-variance participants is a mathematically-sound alternative to 

the simple method of sorting out subjects with a low mean. 

The second concern we addressed refers to the joint criterion necessary when we 

consider two sessions relative to one another in a dataset. The perceptual learning 

literature is full of examples of experiments where two sessions are compared to one 

another, but the need to selectively include participants on this basis is typically 

unnecessary. Simply replacing a subject with one poor session is easier than trying to 

salvage data that is potentially tainted by a high lapse rate. We were unable to follow this 

standard for the same reason we could not simply reject subjects based on low 

performance, and so developed an alternative approach. We are aware of the fact that the 

cutoff thresholds chosen do not perfectly match the proportions necessary to create a 

perfect median split. We are also aware the data does not satisfy assumptions of 

independence that would be necessary for this method to be formally valid. However, 

given the ultimate goal of merely dividing our subjects into two groups of approximately 
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equal size we argue this approach passes the “sniff test” of face validity – our sample 

sizes following the application of this approach were indeed quite close to an equal split. 

In the course of cognitive experimentation, it is important to conduct analyses that 

are both consistent with the existing standards in the field and conceptually valid for the 

types of data being examined. Most frequently, the standard method in the field is the 

most conceptually valid, and for good reason. However, when faced with a circumstance 

in which the standard in the field would not in fact be valid for a dataset, it is important to 

be flexible and to develop principled alternative data analytic approaches if necessary. 
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Abstract 

We present a novel application of eye-tracking and image processing techniques to 

inform perceptual learning. This method exploits natural eye movements to examine 

changes in perceptual bias during visual search training. It uses fixations on a visual noise 

field to define regions of interest for frequency and orientation analysis, comparing 

relative power in non-target-fixation locations to the target frequency and orientation. In 

this paper we describe the method in detail, including an experiment conducted using this 

method. We evaluate the learning experiment with a variety of measures to illustrate the 

types of data our new method can collect to inform learning and suggest possible 

unsolved questions in the perceptual learning literature that may benefit from further 

investigation using this method. Finally, we discuss how our approach may be combined 

with traditional learning measures and other eye-tracking data to provide a unique 

perspective on the learning process that may be informative for a variety of perceptual 

learning questions.  
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Introduction 

The field of perceptual learning utilizes a wide variety of experimental paradigms. 

This is a reflection of the broad scope of perceptual learning, which Gibson (1963) 

defines as “any relatively permanent and consistent change in the perception of a 

stimulus array, following practice or experience with this array (p. 29).”  Gibson’s 

characterization is perhaps the broadest possible way to interpret learning, since 

perception is a continuous process and humans are constantly adapting to our 

environment. The scientific study of perceptual learning encompasses every possible 

sensory modality, and every possible perceptual adaptation that one might observe in 

response to a changing environment. A complete review of the field of perceptual 

learning would be far beyond the scope of this work. However, we will discuss some of 

the most influential findings in the field in order to demonstrate what types of work have 

been done, the types of questions that the existing methods can address, and – 

importantly – illustrate the need for a new method to help answer questions which cannot 

be addressed with existing techniques. 

Perceptual learning is predicated on the supposition that the brain can change in 

response to stimuli, and so some of the earliest roots of perceptual learning can be traced 

to Wiesel & Hubel’s (1965) experiments on neural plasticity in kittens. Most of these 

experiments would not fit the modern definition of the perceptual learning training study, 

since they frequently interfered with the animals’ original perceptions of the world from 

before the animals’ eyes would naturally open. However, the basic observation that the 

brain is indeed plastic and changeable is one of the foundational assumptions of 
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perceptual learning. Therefore, perceptual learning researchers began to explore different 

aspects of this plasticity. Is there a temporal window for the brain after which plasticity 

halts or is reduced (Flege, 1987)? To what extent is the learning we observe specific to 

different aspects of the stimulus or can it generalize to new stimuli, and what are the rules 

that govern specificity and generalization (Ahissar & Hochstein, 1997; Censor, Sagi & 

Cohen, 2012)? The observation that we can induce perceptual learning even in 

undergraduate students shows that perceptual learning can occur into adulthood. And 

although early findings suggested that perceptual learning may be highly specific to the 

particular aspect of the stimulus trained (Fiorentini & Berardi, 1980; Fahle, Edelman, & 

Poggio, 1995; Ball & Sekuler, 1987), later work has shown that this is not necessarily the 

case (Jeter et al., 2009; Xiao et al., 2008, Zhang et al, 2010). One over-arching conclusion 

that can be drawn from the thousands of papers published on perceptual learning is this: 

perceptual learning is tricky. The rules governing when we see specificity and when we 

see transfer are often highly specific to the particular task and stimulus being employed. 

Attention appears to play an important role in whether learning or transfer takes place 

(Sasaki, Nanez, & Watanabe, 2010; Wang et. al 2012) and so recent research is further 

investigating this relationship (see Donovan, Szpiro, & Carrasco, 2015; Galliussi et al, 

2018; and Seitz & Watanabe, 2005 for a review). 

However, in spite of the high degree of variability in the outcomes of perceptual 

learning studies, there are significant commonalities in the methods employed. Modern 

perceptual learning tasks predominantly rely on perceptual training paradigms in which 

subjects view a particular stimulus many times in a session and return for training on 
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multiple consecutive days (Fiorentini & Berardi, 1980; Karni & Sagi, 1991; Weiss, 

Edelman, & Fahle, 1993). Researchers either plot performance from each session 

individually or make use of multiple training sessions to strengthen the learning effects 

they are looking for with a pre-test/post-test design. This convention is largely respected 

when the purpose of the study is to investigate the time course of learning (see Karni & 

Sagi, 1993; Tremblay, Kraus, McGee, 1998; and Atienza, Cantero & Dominguez-Martin, 

2002 for a few examples). Even when we see truly out-of-the-box paradigms like Shibata 

et al.’s (2011) stimulus-free neurofeedback approach, incorporating neuroimaging 

techniques does not by itself mean that researchers have broken free of discrete testing 

sessions (Lewis et al., 2009). Although some recently published research incorporating 

some very exciting methods does deserve mention here. Kattner et al. (2017) utilize some 

novel approaches to estimate trial-by-trial performance by averaging across all their 

subjects; and using simulated observers rather than necessarily running human subjects 

can also provide insights into perceptual learning (Zhang et al., 2019).  

One of the many topics of interest to researchers is the time course of perceptual 

learning. Within this category there are two types of learning over time considered. Some 

research focuses on the durability of learning and how long changes due to perceptual 

learning can endure (Yotsumoto, Watanabe & Sasaki, 2008; Qu, Song & Ding, 2010). 

Other research is more interested in the trajectory of learning over time as it is happening 

(Watson, 1980; Fahle, Edelman, & Poggio, 1995; Sireteanu & Rettenbach, 1995; 

Tremblay, Kraus, McGee, 1998; Atienza, Cantero & Dominguez-Martin, 2002). It is this 

second type of learning-over-time we are interested in addressing here. 
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Consider the following thought experiment: In order to measure whether or not 

learning has occurred we typically use at least two sessions: a pre-test conducted before 

perceptual training and a post-test. Perceptual training takes place over multiple training 

sessions spread across several days, and we measure performance for the trained stimulus 

or for a transfer stimulus before and after training. To measure the time course of 

learning, the obvious next step is to include an additional testing session in the middle of 

training. An additional data point mid-way helps plot the trajectory of learning but only 

roughly; more measurements would be required to infer additional details about what is 

going on during the learning process itself. But what would happen if as more and more 

testing sessions were added? For an experiment with training over four days, one 

additional test after day two seems reasonable, but a theoretical problem arises as we 

consider adding more and more tests. Perceptual learning training assumes that the 

changes we see in perception are a result of the training. Critically, however, task-related 

learning is also occurring as the subject is exposed to the testing task; this testing-related 

learning can account for a great deal of observed learning (Zhang et al., 2010). As we add 

more testing sessions, subjects will likely cross an invisible line where their improvement 

on the testing measure will be due more to experience with the measure itself than due to 

the training regime. 

This presents a methodological problem. In order to understand the time course of 

learning we want to observe learning at many points as it is happening. However, if we 

stop the participant to measure their learning we run the risk of interfering with the 

process. The most common way to resolve this problem is with blocked measurements. 
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In his study of auditory perceptual learning, Watson (1980) computed the signal detection 

theoretic metric d’ (Green & Swets, 1966; Macmillan & Creelman, 2004) for each 

training day to calculate a psychometric function for learning. Karni & Sagi (1993) also 

used days as blocks in measures with the Texture Discrimination Task, and Tremblay, 

Kraus, McGee (1998) used a similar data-analytic approach, calculating average ERPs on 

a daily basis. In their study of vernier acuity, Fahle, Edelman, & Poggio, (1995) broke up 

their data into blocks of 80 trials and calculated a percentage correct for each block 

number. Effectively this approach treats individual blocks like miniature “days” of an 

experiment to look at performance over time. Atienza, Cantero & Dominguez-Martin 

(2002) did the same, looking at portions of a testing session while using EEG methods. It 

is not feasible, however, to simply define smaller and smaller block sizes, eventually 

“stimulus-independent lapses” (a polite way to talk about moments where the subject is 

not paying attention, Wichmann & Hill, 2001) will add too much variability to the 

measure and result in data too noisy to use. Fitting a function is an attractive choice, 

however this approach requires datapoints collected at high temporal resolution in order 

to make inferences about learning over short timescales. Aggregating information across 

subjects to make inferences about individual trials is a viable option (Kattner et al., 2017) 

but depends on strong assumptions that subjects will perform the task in similar ways. 

Continuous evaluation of an individual subject’s performance (as discussed by Seitz, 

2017) is a more desirable option. 

In this paper we will discuss a methodological resolution to this problem. In order 

to better characterize the short-term time course of learning within a session we need the 
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highest possible temporal resolution while minimizing the impact of noise. We set out to 

design a novel paradigm that would fulfill the following requirements. First, it should 

allow for the highest possible temporal resolution for the data. Second, the approach 

should allow us to measure learning in situ without interrupting it for discrete testing 

sessions. Third, it should be a behavioral measure that depends on observable behaviors, 

rather than on inferences about brain activity. Fourth, it should not substantially impose 

on subject’s natural learning processes and decision-making. And finally in addition to 

these aims, it should provide robust objective measures and rely on established data-

analytic techniques to provide interpretable information. 

To achieve these goals, we were particularly inspired by the work of Pärnamets et 

al. (2015), who exploited subjects’ natural eye gaze behaviors to make inferences about 

moral decision making. Eye tracking as a tool of psychophysics already incorporates 

many of the requirements we set out to achieve. It is passive and non-interfering and also 

provides data at a very high temporal resolution. Eye tracking during the search process 

provides a wealth of data including eye position, velocity, fixation length and location, 

trajectory of eye gaze, and pupil data. Therefore, we developed a perceptual learning 

technique that capitalizes on the rich information contained in eye tracking data while 

still incorporating the task elements necessary to induce perceptual learning seen in 

standard behavioral training. 

Our new method relies on a combination of eye tracking and image processing 

techniques in the context of a free visual search task. Subjects are presented with a visual 

noise field and instructed to locate and fixate upon a target embedded in the noise. See 



 79 

Figure 3.1 for an 

illustration of the 

stimulus and how 

subjects will 

search for the 

target. For a 

concrete measure 

of learning we 

focus on the 

content of the 

background noise 

at fixation points that are visited prior to locating the target. These non-target fixations 

define regions of interest, at which we apply Fourier image processing techniques to 

compare each region of interest to the target object and calculate a similarity score (See 

Figure 3.2). The visual search task is kept at a high level of difficulty with a staircase 

procedure, which ensures that there are always multiple non-target-fixations to evaluate. 

This provides within-trial data about the degree to which subjects are naturally choosing 

to fixate on portions of the background noise that resemble the target.  

The ability to calculate within-trial measures is the key to improving temporal 

resolution in measuring perceptual learning. As we discussed before, attentional lapses 

can cause high single-trial variability in perceptual learning data. However, with our new 

method, failure to attend results in subjects simply failing to locate the target (and so it is 

 
 
Figure 3.1. Example of a subject’s gaze trajectory during the visual search 
task. Subjects begin in the center of the screen and freely make eye 
movements until the target is located. 
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easy to filter out lapse trials) and multiple fixations (and therefore similarity scores) per 

trial reduces variability in the averaged single-trial estimate of behavior. We can now 

theoretically reduce the block size down to a single trial lasting mere seconds and retain 

some 

confidence in 

the estimate of 

similarity score. 

Further, by 

adjusting the 

content of the 

target and the 

qualities of the 

background noise field it is possible to employ this approach to investigate a variety of 

aspects of perception. 

To our knowledge we are the first to take advantage of non-target fixations in this 

way to generate classification images for use in a perceptual learning context and the first 

to develop a protocol robust enough to provide consistent results and generalizable 

enough for application to a variety of research questions. We first introduced this 

technique in a presentation at the 2018 annual meeting of the Vision Sciences Society 

(Jacques & Seitz, 2018). Here we expand on the method in detail sufficient for others to 

apply to their own research. In addition, this paper discusses other methodological 

problems we resolved in pursuit of developing this approach. Finally, we include results 

 
 
Figure 3.2. Illustration of patch analysis technique, the background image as a 
whole is 1/f by design but selected regions show local variation and are 
compared with the target object to compute similarity scores. 
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from our own experimental program using this method in a perceptual learning context 

and provide data illustrating some of the ways to utilize this approach.  

Methods 

Visual Search Task Overview  

Subjects are instructed to locate a target (gabor patch) embedded at a random 

location in a visual noise field. At the beginning of each trial, subjects view a circular 

focus in the center of a uniform gray screen and fixate upon it. We use the eye tracker to 

ensure central fixation before the trial begins. Once the noise field appears, subjects are 

free to look anywhere on the screen and are given no instructions except to fixate on the 

target once they locate it. After the subject has located the target and fixated upon it for a 

sufficient period (approximately 33ms), the eye tracker ends the trial immediately and the 

subject receives positive auditory feedback. No keyboard or verbal response is necessary 

for the task. If the subject is unable to locate the target within twenty seconds the trial 

ends automatically and the subject receives negative auditory feedback. The target is 

embedded in the noise field using alpha blending, and the transparency of the target is a 

value between zero and one. To ensure that subjects are always actively searching for the 

target (and producing multiple non-target fixations) we use a staircase method to control 

the difficulty of detecting the target by adjusting the transparency dynamically. To 

facilitate perceptual learning subjects always search for a target gabor of the same 

orientation and spatial frequency, and they train in this way for approximately one hour 

per day for 5 days (approximately 270 trials per day). 
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Stimulus Description 

Target 

At least one target is required in order to complete the visual search task. For our 

initial validation of the method we chose to use a Gabor patch (sinusoidal grating) as the 

target. Gabor patches are frequently used in perceptual learning research, and contain 

spatial frequency and orientation information similar to the 1/f noise field. Gabor patches 

are useful in this application because in k-space a Gabor patch contains significant energy 

at a particular spatial frequency and orientation, much more so than a simple line. This 

strong signature facilitates calculating the similarity score between the target and non-

target locations selected by subjects during training. Alternative research questions may 

require different target stimuli, but a Gabor is an ideal target for basic perceptual learning 

applications. The target appears in a random location on the screen with the exception of 

two exclusion zones for the stimulus display which prevent the target from appearing 

either in the exact center of the screen (where subjects would not need to make an eye 

movement to be fixating upon it) or so close to the edge of the screen that it would be 

partially off-screen. Subjects may be informed of these restrictions; to our knowledge this 

information does not impact their behavior during the task. 

Noise 

We create noise fields using a random number generator set to produce an array 

of random grayscale luminance values of a uniform distribution. We treat the noise image 

as being generated in k-space, and apply a filter to create the desired noise type. The type 

of filter applied would vary based on the theoretical needs of the research question, but 
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for most applications we recommend a 1/f filter. This filter is appropriate for use with the 

Gabor patches we selected for the target object in our experiment, alternative target 

objects with different visual properties would likely require noise backgrounds with 

different statistical properties and alternative filters. The final step is to apply an inverse 

Fourier transform to convert the k-space noise into an image for display. 

The content of the background image is critical for data analysis. Therefore, the 

noise images themselves or the random seed used to generate the noise should be saved 

for later data analysis. In our experiment we found that due to hardware limitations it was 

helpful to create a library of noise images in advance of stimulus presentation and record 

the identity of the background image used for each trial. This was necessary because the 

inverse Fourier transform to create the final image can be computationally demanding 

and the size of the image scales with the square of the chosen display’s screen resolution. 

Thus the inter-trial-interval necessary to accommodate these calculations was longer than 

desired while loading pre-generated noise fields is faster. We stored our noise images in 

batches of twenty trials, and during the task the inter-trial-interval was extended after 

every twenty trials while the next batch of noise images were loaded from memory. 

Subjects were instructed to briefly rest their minds without moving from the eye-tracking 

apparatus, and these pauses typically lasted only 5-10 seconds. The requirement to fixate 

on a circular focus before each trial begins ensured that subjects are attending to the task 

before the experiment proceeds.  

  



 84 

Image Composition 

We construct the visual search stimulus using alpha blending. Alpha blending is a 

common image processing technique for combining two images to produce a 

“transparency” effect, although it is used infrequently in perception research. For 

example in the field of visual contrast there are several methods of combining images at 

different contrasts, however most of these methods focus on blending one image into a 

uniform gray background and not a non-uniform background such as the noise field (see 

Wu & Tsai, 2003 for one such approach). This is unsuitable for combining a target with a 

non-uniform background like 1/f noise. In alpha blending, the final pixel luminance is the 

weighted mean of the luminance of the contributing images and the weight is referred to 

as the alpha level. For example, for a totally-black pixel blended with a totally-white 

pixel for an alpha of 0.4, the final pixel luminance would be 0.4x0 + 0.6x1, or 0.6. 

Therefore, while alpha blending is not frequently seen in visual perception research it is 

appropriate for this application where we are combining two complex images. 

We create the final stimulus image by successive application of alpha blending to 

build the stimulus layer by layer. The base layer is a uniform gray background, and we 

layer first the noise field and then the target into the image. We define the alpha level for 

each blended layer independently, which provides the added benefit that these levels can 

be adaptively manipulated as needed. There is no limit to the number of objects that may 

be added to the image, even if they are overlap. For our validation measure we adaptively 

changed the alpha level of the target gabor while keeping the alpha for the background 
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noise constant, but researchers could vary the alpha of the noise or other image elements 

as needed to address particular experimental questions. 

Eye Tracking 

 General 

 As part of the development of this overall technique, we also needed to complete 

a number of smaller projects. The most significant of these is the fixation detection 

algorithm. In eye tracking research, the most expedient way to identify if a subject is 

looking at a target is to define a region around the target and record the moment-to-

moment eye position. If the eye position remains within the region for a critical period of 

time, the subject is assumed to be fixating at the desired location (see Lykins, Meana, & 

Kambe, 2006 for one such example using “Scene Regions”). This is convenient when 

researchers are interested in identifying when subjects are looking at a known location 

but is inadequate for identifying general fixations. There are a variety of algorithms for 

detecting general fixations (see Nyström & Holmqvist, 2010 and Hessels et al., 2017 for 

specific examples and Salvucci & Goldberg, 2000 for a review of the topic) and many 

eye-tracking manufacturers include proprietary software for classifying eye movement 

behaviors including fixations. However, a common theme among these approaches is that 

they are applied in data post-processing after the subject has completed the task. Salvucci 

& Goldberg (2000) explain that the most common methods for determining fixations are 

temporal methods based on calculated pupil velocity. In order to reduce noise and smooth 

the velocity estimate most methods use a running average approach with a window that 

includes both past and future datapoints to calculate the instantaneous speed at each time 
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point. While desirable for reliable fixation detection, the use of prospective data in the 

velocity estimate limits researchers to post-hoc analyses only. In our task we need to 

know information about fixations both at the target location and at unforeseen locations. 

And while we could use the “scene region” technique for locating the target and another 

method for general fixation detection at other locations, we were reluctant to use a mix-

and-match approach. Therefore we developed an algorithm for general fixation detection 

that utilizes only retrospective information that we can use throughout the task. This 

approach allows us to identify when a fixation is occurring in real-time, and verifying the 

location of the fixation for determining if the target has been located is straightforward. 

 Fixation Detection Algorithm 

 Our algorithm is a type of I-VT method as described by Salvucci & Goldberg 

(2000), with the addition of some elements of dispersion-based (I-DT) methods to 

account for slow drifts in eye movement. We note that combining I-VT and I-DT 

methods is not frequently reported in the literature on eye tracking and gaze 

determination (Andersson et al., 2017), and the use of both approaches together is itself a 

novel contribution to this field (if a small one). 
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We begin by 

calculating the point-

to-point velocities for 

each datapoint we 

collect, and compare it 

to two velocity 

thresholds. Due to the 

fact we only use 

retrospective methods 

this velocity estimate 

is necessarily noisy; 

however, since our 

objective is only to 

define behaviorally-

significant regions of 

interest then some 

variance in this 

estimate is not prohibitive. See Figure 3.3 for a diagram of the logic used to determine the 

identity of each data point vis-à-vis its status a fixation, saccadic eye movement, or other 

gaze behavior. The first velocity threshold is comparatively low, and datapoints below 

this threshold are assumed to be part of a fixation, with one small caveat we will discuss 

later. The second velocity threshold is quite high, high enough that we can safely assume 

A 
 

 
 
B 
 

 
 
Figure 3.3.  
A. Diagram of a sample velocity trajectory during an eye-tracking task 
with velocity thresholds included. Letters indicate distinct portions of the 
trajectory over time. 
B. Logical flow-chart to decide the fixation-status of each datapoint over 
time, note that only velocity of the present datapoint is required for the 
purposes of establishing the beginning or end of each fixation event and 
any ambiguity in gaze behaviors occurs only during saccadic and micro-
saccadic events. 
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that only data points corresponding to gross eye movements like deliberate saccades will 

surpass this threshold. Datapoints falling between these two thresholds are identified 

based on the most recent threshold crossed, or we allow a brief period of ambiguity 

before retroactively tagging the datapoints. We resolve the identity of each of these 

ambiguous (between-threshold) points by checking which threshold was crossed most 

recently and/or by waiting for the next crossing. If the most recent threshold crossed was 

the higher threshold, we infer the velocity is dropping at the end of a saccadic eye 

movement and append the current datapoints to that saccade. In contrast, if the most 

recent threshold crossed was the lower threshold, we wait for the next threshold to be 

crossed. If the next threshold is the higher threshold then we infer that the increase in 

velocity marked the beginning of a saccade, while if the lower threshold is re-crossed 

then we infer a petite eye movement (i.e., microsaccade) occurred. We then retroactively 

tag the ambiguous datapoints with these labels. This algorithm is not ideal for strict 

identification of all types of gaze behavior, however since our objective is to identify 

fixations reliably some temporary ambiguity is not a problem. 

The caveat to the assumption that data points with low velocities are part of a 

fixation is the fact that we incorporate a location-sensitive measure in the fixation 

algorithm in addition to the velocity-based one. After the lower threshold has been 

crossed, we include a brief confirmation period of 33ms to ensure the fixation has truly 

begun. At a scanning rate of 100hz, this corresponds to about 3 consecutive datapoints 

below the lower velocity threshold. Based on those few datapoints we calculate a set of 

mean x and y reference coordinates for the fixation to provide a rough estimate of its 
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location. After the fixation has been identified, each subsequent datapoint in the fixation 

is compared to the fixation location estimate, and if the eye has drifted more than 1 

degree of visual angle from that point (even if a saccade event has not been recorded) we 

terminate the fixation and define the beginning of another fixation from that point. This 

accounts for slow eye drifts, but in practice we find these events to be quite rare in this 

task since slow drifting eye movements are not desirable for subjects to make in an active 

visual search task. 

Eye Tracking Post-Processing 

The fixation detection algorithm described above is useful for identifying 

fixations in real-time and suits the need to identify regions of interest for later data 

analysis. However, before we conduct further analysis we apply additional data 

processing steps to reduce the noise of the gaze data and provide further insight. 

Although we use a rough estimate of fixation location for the purposes of fixation 

detection, first we must calculate a more reliable centroid for the fixation during post-

processing using all data points in the fixation. Second, the fixation detection algorithm 

does not account for previous fixation locations and due to the noisy velocity estimate 

sometimes long fixation events are broken into two or more parts due to microsaccadic 

movements (or perhaps mechanical noise in the data) even though the location of the 

“separate” fixations overlap. These “separate”-but-actually-continuous fixations are 

consolidated together and treated as one. Third, based on the unique locations of each 

fixation we calculate a trajectory for the eye movements and identify when two fixations 

that are not temporally adjacent actually refer to the same spatial location (See Figure 
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3.4). This accounts for 

situations where 

subjects return to the 

same point of interest 

for a second look. 

Fourth, we calculate 

the total dwell-time 

for each fixation event 

and also for each 

region of interest. This 

second measure 

accounts for the 

combination of dwell-

time in the same 

region for separate 

visits. This additional 

post-processing 

provides us with 

information on the total number of unique non-target fixations, the order in which they 

were visited, and the length of time spent at each location. By itself, this data is valuable 

for understanding learning behavior, but it can also be incorporated in the image content 

analysis.   

A 

 
 
 
B 
1. Identify location of every fixation recorded during the trial by 

taking the mean x and y coordinate of all datapoints associated 
with that trial. 

2. If a fixation is in the same location as the previous fixation, 
combine the two and treat as one fixation. 

3. Identify the trajectory of fixations by ordering them, and 
account for return visits to the same location when calculating 
dwell time. 

 
Figure 3.4.  
A. Example of a subject’s gaze trajectory during the visual search task 
where the subject returns to a previously-visited location during the trial 
prior to locating the target. 
B. Step-by-step process of organizing fixations within a trial for later data 
analysis. 
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Calculating Similarity Scores 

After identifying non-target fixations and plotting the trajectory of eye 

movements, the next step in data analysis is to calculate a similarity score between each 

non-target fixation and the target. First we extract a square patch of the image 

surrounding the centroid of the fixation. Next, we use a Fourier transform to convert the 

image into k-space. This is necessary because we are interested in the degree to which the 

noise image contains spatial frequency and orientation information similar to the target, 

rather than whether or not the noise region superficially resembles the target. Finally, we 

compare the k-space noise image to the k-space version of the idealized target without 

noise, at this step we do need to account for phase differences between the target object 

and the non-target fixation. A gabor patch has a strong signature in k-space 

corresponding to its orientation and the fundamental and harmonic frequencies of the 

gabor’s frequency. We calculate this similarity score using the inner-product or dot-

product. The dot-product is calculated by multiplying two matrices together point-by-

point and summing the total into a single value; this technique effectively identifies 

whether or not the two images share significant energy at the same points in k-space (see 

Hefferon, 2017 for a complete review of the topic). We calculate the similarity score for 

each non-target fixation in a trial. 

We can combine similarity scores between non-target fixations within a trial to 

reduce the noise in our trial-by-trial estimate of behavior. If desired, we can also combine 

trials together into blocks. However this method differs from other block-based 

perceptual learning approaches due to the fact that the similarity score is not a measure of 
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subject performance like accuracy or reaction time. The similarity score provides an 

estimate of both the subject’s perceptual bias towards the stimulus being presented and 

any conscious strategies they may be employing to complete the task, and we can track 

changes in that aspects of behavior over time, but the similarity score does not 

correspond to any particular task-related behavior. Therefore, similarity scores are similar 

to ERP data, pupil data, or BOLD data in the way we interpret our results, in that they 

allow researchers to draw inferences about changes to mental processes. Even though the 

similarity score is not an estimate of observed behavior, it is derived entirely from 

observations of subject behavior and thus makes no assumptions about the inner mental 

processes of the subject or transformations between indirect measurements of neural 

activity (e.g., via EEG or fMRI) and the presumed underlying neural activity itself. 

Experimental Task Methods 

Subjects and Procedure 

 To validate the efficacy of the method to induce perpetual learning we used a 

traditional pre-test/post-test design to obtain measures of learning and transfer. The study 

took place over the course of seven consecutive days, where days 1 and 7 were testing 

days and days 2-6 were training days. Subjects were recruited using fliers posted on 

campus at the University of California, Riverside, and all subjects were UCR 

undergraduates. Some subjects (approximately 4) were excluded due to technical 

difficulties with the eye tracker that arose following recruitment. The most common type 

of technical difficulty was the eyetracker being unable to get a reliable fix on the pupil 

location. This could occur if the contrast between pupil and iris was inadequate to 
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maintain a lock on the pupil or in one case a subject had exceptionally long eyelashes that 

caused the eye tracking software to mistake a clump of lashes for the pupil and the issue 

could not be resolved. Therefore, we report data for a small sample of 6 subjects. All 

subjects reported normal or corrected-to-normal vision and indicated they were able to 

see all test stimuli with no difficulty. Subjects provided informed consent prior to the 

beginning of the experiment and were compensated $10 per hour for their participation. 

Apparatus 

An Apple Mac Mini running Matlab (Mathworks, Natick, MA) and Psychtoolbox 

Version 3 (Brainard, 1997; Pelli, 1997) was used for stimulus generation and experiment 

control. Stimuli were displayed on a 16-inch Viewsonic PF817 monitor at a resolution of 

1280x1024 pixels at 100 Hz by an NVIDIA GeForce 9400 graphics card (NVIDIA 

Corporation, Santa Clara, CA) and attenuated using a Bits++ system (Cambridge 

Research Systems, Cambridge MA). Eye tracking data was collected using a ViewPoint 

EyeTracker (Arrington Research, Scotsdale, AZ). Subjects were seated with their chins in 

a chinrest, and viewed the stimulus at a distance of 75cm in a darkened room. The eye 

tracker was set to allow inaccuracy up to 1.5 degrees of visual angle. 

Stimulus 

 The target objects were Gabor patches at 0.5, 2, and 8 cycles/degree, rotated 

either 45° or 135°. Noise images consisted of 1/f random noise, and gabor patches were 

embedded in the background noise using alpha blending. 
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Pre-test and Post-test 

Pre-test and post-test sessions were identical both in procedure and stimulus. The 

eye tracker was not used during these test sessions. Each trial began by presenting a 

circular focus in the center of the screen, and subjects were instructed to practice looking 

at the focus between trials because the eye tracker would enforce fixation on the training 

days. The focus was visible for 1 second before the trial began. Then subjects were 

presented with a random noise image drawn from the library of available noise image and 

the target Gabor was embedded in the noise at the center of the screen (see Figure 3.5 for 

an example stimulus and a diagram of the task.).  
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A 
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Figure 3.5. 
A. Sample pre-test/post-test stimulus. The gabor is presented centrally in the noise 
field and subjects respond indicating the orientation of the gabor. 
B. Outline of the order of the task. 
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Subjects were instructed that the target would always be presented centrally. 

Subjects responded indicating the orientation of the gabor using the keyboard. Subjects 

were allowed 3 seconds to make a response or the trial was automatically considered 

incorrect. Every 20 trials there was an extended break between trials while the next image 

library was loaded from memory, subjects were instructed to rest their minds briefly but 

remain vigilant to the task. 

 The alpha level of the target gabor varied according to 12 independent randomly 

interleaved 3-down, 2-up staircases (with streaking allowed), two for each spatial 

frequency/orientation combination. Each staircase started at an initial alpha level of 0.35, 

and varied by 0.2 per step for the first 4 reversals per staircase and then by 0.05 per step. 

The session ended after all 12 staircases had reached 8 reversals, or if each staircase had 

accumulated 60 trials. To determine the order of the interleaved we used mini-blocks of 

12 trials presented in a random order, and repeated mini-blocks until the end of the 

session. This session usually took less than one hour. After the end of the session, the two 

staircases for each spatial frequency/orientation combination were used to calculate a 

single threshold value for that stimulus. Most often this was the mean of the two 

estimates, but in the event of unusual variance in one staircase the more estimate with 

lower variance was used. We recorded both the threshold itself and the standard deviation 

of the last 5 reversals; this information was used for the training sessions. Thresholds for 

the trained spatial frequency/orientation combination provide estimates of near-transfer 

learning (a centrally-located target is technically a transfer task relative to a randomly-



 97 

located target in the visual search task) while untrained combinations provide estimates 

of far-transfer.  

Training 

Each training session followed the same procedure. The session began by 

calibrating the eye tracker and ensuring the subject was comfortable for an extended 

period. At the beginning of each session an example of the target gabor was shown to the 

subject at high contrast, to remind them of the target they needed to locate during the 

visual search task. Following this, each trial followed the same procedure. The fixation 

circle appeared in the center of the screen and subjects were instructed to fixate upon it. If 

subjects failed to 

fixate within 15 

seconds, the 

experiment 

stopped and the 

eye tracker was re-

calibrated.  

Otherwise, the 

trial began 

immediately 

following the 

detection of the 

fixation. The 

 
 
Figure 3.6. Sample stimulus from the visual search task, the subject must 
locate the gabor embedded a low alpha level at a random location in the noise 
field. 
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stimulus was presented with the target gabor embedded at a random location (See Figure 

3.6 for an example stimulus). The initial alpha level of the target was set at 1 standard-

deviation above the calculated threshold for that subject based on their threshold 

determined at pre-test, and was varied according to a 3-down, 2-up staircase with 

streaking allowed. The alpha level varied by 0.2 per step for the first 4 reversals and then 

by 0.05 per step for the remainder of the training session. 

 

 
 
Figure 3.7.  
A. Order of events in a single trial. 
B. Order of trial outcomes, subjects receive positive auditory feedback any 
trial where they locate and fixate upon the target. For some trials this is 
false feedback, the adaptive staircase responds to the time required to 
locate the target. 
C. Trials are presented in blocks of 20 with a brief break in to allow 
loading in of new background noise images for display. The process is 
repeated until the end of the session (approximately 270 trials/day). 
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Subjects were given 20 seconds to locate the target and fixate upon it. Subjects 

made no responses using the keyboard during training; the task is completed exclusively 

based on eye movements. We used false feedback to encourage subjects: if the target was 

not located within 20 seconds the subject received negative auditory feedback, whereas if 

the target was located within that time the subject received positive auditory feedback. 

For the staircasing procedure, only responses within 10 seconds were treated as correct to 

ensure the task never became too difficult. We calculated a threshold each day as a 

measure of task learning, and recorded overall accuracy, time to locate the target, and 

fixation-related data for each trial (see Figure 3.7).   
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Results 

Learning on the Training Task 

We calculated thresholds for the alpha level of the target gabor for each day of the 

training task. We modeled learning using a power function (Newell & Rosenbloom, 

1981) to provide an estimate of the learning rate for each subject. A 1-sample t-test of the 

rate parameters for each subject 

indicated a significant learning rate (t5 

= 5.62, p = 0.003, see Figure 3.8). We 

can conclude that subjects in this task 

learn to locate the target object at 

lower alpha levels over time and that 

perceptual learning is occurring in this 

task.  

Pretest/Posttest Transfer Measures 

As expected, at pre-test we found no effect of orientation on sensitivity to the 

target gabor (Figure 3.9A), but there was a significant effect of spatial frequency (F2,30 = 

18.00, p < 0.001), and no interaction between the two. However, following visual search 

training there were significant main effects of both orientation (F1,30 = 7.01, p = 0.013) 

and spatial frequency (F2,30 = 3.38, p = 0.047), with a trend towards an interaction 

between the two (F2,30 = 2.64, p = 0.088, Figure 3.9B). Looking at both sessions together 

reveals the primary driver of the transfer effects; in addition to substantial main effects of 

spatial frequency (F2,60 = 20.36, p < 0.001) and testing day (F1,60 = 14.37, p < 0.001) we 

 
Figure 3.8. Mean transparency reached per session on 
each training day. 
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find a strong interaction between spatial frequency and day (F2,60 = 5.05, p = 0.006) and a 

trend towards an interaction between orientation and frequency (F1,60 = 3.29, p = 0.075, 

Figure 3.9C). These findings demonstrate that the visual search training generalizes to 

increased overall sensitivity to the visual components of the target gabor. However, the 

pattern of results suggests that the transfer effect of training was predominantly driven by 

improvements in overall familiarity with the stimulus and by sensitivity to lower spatial 

frequencies. Improvements specific to the trained stimulus appear to be focused on 

improved sensitivity to the target orientation, but these effects are weaker. 
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Figure 3.9. Mean pretest (A) and posttest (B) thresholds for 
the transfer task. Colored bars indicate the trained 
orientation, the groupings of bars indicate the spatial 
frequency of the gabor in cycles/degree. Difference scores 
for this measure are shown in part C.  
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We calculated two 

measures based on similarity 

score to illustrate the types of 

results this novel method can 

provide. First, we calculated the 

mean similarity scores for each 

non-target fixation, per trial. 

This reflects the ability of our 

approach to provide single-trial 

temporal resolution, but with 

reduced overall noise due to the 

combination of multiple non-target fixations per trial. See Figure 3.10 for a sample of one 

subject’s average similarity scores over time in a single session. After calculating the 

mean similarity score per session, we fit a linear function to the scores and conducted a 1-

way analysis of variance on the fitted slope parameters to determine if the average 

 
Figure 3.10. Mean similarity score for all non-target 
fixations, per trial, for one sample session for one subject. 
This figure illustrates the type of data the similarity score 
method can generate. Similarity scores are unitless, but 
higher values correspond to greater similarity. The red line 
indicates the linear best fit for the trend of scores in this 
session.  
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similarity scores were increasing over time across all our subjects. We found this to not 

be the case for our whole sample (F4,25 = 0.85, p = 0.505), although there is considerable 

between-subject variance in these results. Second, we calculated the ratio of dwell time 

by the similarity score for each non-target fixation, per trial. This reflects the degree to 

which subjects prefer to continue to look at portions of the image that contain energy 

which is similar to the target gabor. See Figure 3.11 for a sample of one subject’s average 

similarity score ratio over time in a single session. As we did with the similarity scores, 

we fit a linear function to the ratios and conducted a 1-way analysis of variance on the 

fitted slopes to determine if the average ratios were increasing over time across all our 

subjects. We found this to not be the case for our whole sample (F4,25 = 1.80, p = 0.161), 

although as before there is considerable between-subject variance in these results. It is 

clear that the trial-by-trial data is 

still quite noisy, and we are 

unable to draw strong inferences 

about subject behavior from this 

sample. It is clear there is more 

work to be done to better 

understand these results. 

However, our primary purpose 

here is to demonstrate the 

potential utility of the data 

 
Figure 3.11. Mean ratio of dwell-time for each non-target 
fixation to the similarity score for that fixation, per trial, for 
one sample session for one subject. This figure is a unitless 
value over time, but higher values correspond to greater 
similarity. The red line indicates the linear best fit for the 
trend of score rations in this session.  
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analytic methods available to perceptual learning research thanks to the inclusion of eye 

tracking methods. 

Finally, to illustrate the similarity between our new method and existing 

perceptual learning approaches, and to further demonstrate that perceptual learning is 

indeed occurring over the course of the visual search task, we looked at the total trial time 

for each subject per session. See Figure 3.12 for a sample of one subject’s performance. 

These results include both correct 

and incorrect trials, but the 

observation of a negative slope for 

the average time corresponds to 

reduced time per trial over the 

course of a session when we 

consider the fact that the staircase 

procedure is maintaining a 

consistent level of correct and 

incorrect trials overall. As before, 

we fit a linear function to the trial lengths and conducted a 1-way analysis of variance on 

the slopes to determine if the average time was decreasing over time across all our 

subjects. We found a trend across our whole sample (F4,25 = 2.46, p = 0.071), suggesting 

that subjects are also completing the task more quickly overall in addition to detecting the 

target at a lower alpha level.  

 
Figure 3.12. Length of each trial for one sample session for 
one subject. This figure corresponds to typical reaction time 
data, and is presented to illustrate the correspondence 
between the novel method we are proposing and existing 
perceptual learning methods. The red line indicates the 
linear best fit for the trend of times in this session.  
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Discussion  

Experimental Discussion 

The purpose of the empirical results in this article was to demonstrate the utility 

of our novel method for inducing and measuring perceptual learning. We have 

demonstrated that training with the visual search task does result in perceptual learning as 

well as transfer to other salient dimensions of the stimulus. We also presented both trial-

by-trial and session-level results demonstrating measurements of behaviors relevant to 

perceptual learning. These results are only a small snapshot of the wide variety of 

potential measures that may be derived from such a rich dataset. Unfortunately, in our 

dataset some of the most interesting effects are overwhelmed by noise and so future work 

will be required to resolve these issues. Nevertheless, we hope that the results presented 

here and the unique measures we are able to utilize will be inspirational to other 

researchers who will further explore the frontiers of the dataspace that eye tracking-based 

methods can provide. 

Method Discussion 

The time course of learning is a critical area of inquiry for perceptual learning 

researchers. How quickly do subjects acquire the trained skill? During skill acquisition, 

which aspects of the stimulus are learned at what times? Is learning entirely implicit or do 

the strategies and conscious goals of the subject impact learning? Is it the case that 

important elements of perceptual learning occur within the first few trials with a new 

stimulus? All of these questions require a degree of temporal precision that is 

inaccessible using methods that depend upon either discrete testing sessions or large 
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blocks of trials. Here we present a novel method that aims to provide the necessary 

temporal specificity to investigate these questions. Despite the fact that the present 

iteration of the method is too noisy for effective interpretation, we believe that this is a 

productive step in a positive new direction for improving temporal resolution in 

perceptual learning research. 3 decades have past since Fiorentini & Berardi (1980) 

plotted subject improvement over blocks of trials, and this basic approach has been used 

again (Tremblay, Kraus, McGee, 1998) and again (Atienza, Cantero & Dominguez-

Martin, 2002); each time offering vital insights into the temporal dynamics of perceptual 

learning. It is time to take the next methodological step. Fiorentini & Berardi’s (1980) 

study provided elegant proof of the specificity of perceptual learning to the trained 

orientation, and the rapid acquisition of new learning with exposure to novel orientations 

and novel spatial frequency. Tremblay, Kraus, & McGee (1998), made wonderful use of 

EEG techniques to measure rapid learning, however the indirect nature of neuroimaging 

techniques required them to merely speculate on what the underlying cognitive 

mechanisms may have been and they were obliged to fall back on theoretical ideas about 

fast perceptual learning (Polat & Sagi, 1995). And more recently Atienza, Cantero & 

Dominguez-Martin’s (2002) extensive discussion of learning-related ERPs included an 

insightful discussion of the influence of attention on perceptual learning based on 

inferences from ERP components thought to correspond to attentional signals. However 

although they were able to discuss the differential onset of rapid and slow attentional 

processes and their impact on learning, they were unable to draw specific conclusions 

about the content of learning. 
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What are people actually learning when learning occurs? This question, while 

seemingly basic, is elusive in the field of perceptual learning. We believe that a method 

that would attempt to address this question must necessarily depend upon observed 

behaviors, rather than inferences from neuroimaging. In addition to the high cost of many 

neuroimaging techniques, all of these methods depend on strong inferential assumptions 

about the underlying relationship between the physical response measured and cognitive 

function, whereas this method requires only direct observation of subject behavior. We 

developed this approach as a step towards measuring the content of learning at a high 

temporal resolution and to provide researchers with an additional tool to examine 

important cognitive processes. 

As part of validating this approach we needed to address several other research 

questions related to the utility of the task at large. First, can visual search training of this 

type induce perceptual learning? Clearly the answer is yes: subjects demonstrate 

reductions in detection threshold over time during the visual search task as well as 

measurable changes in sensitivity in the transfer task (See Figure 3.8). Second, can we 

use the data derived from our analytical techniques? Is the information interpretable? 

Certainly within-trial data based on single fixations contain substantial noise, and 

consequently we are unable to draw strong conclusions from them at this time. 

Nevertheless, we are optimistic that these issues can be resolved with time.  

We present these preliminary results with this method to the perceptual learning 

community to inspire others to explore new research questions in new ways, and so we 

conclude by offering a few suggestions for possible research questions for which this 
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approach may be informative. One possible change to the method is the inclusion of 

additional non-target lure objects with different visual properties from the target object. 

These lures can be used to draw inferences about specificity in the training task itself, as 

opposed to relying on measures of learning and transfer in the pre-test and post-test 

sessions (which are themselves a transfer measure compared to the visual search task). 

Other non-target objects may be employed as well, at one time we considered a task-

irrelevant perceptual learning paradigm (Seitz & Watanabe, 2009) where subjects were 

instructed to search for a ring target, and the stimulus gabor was embedded below-

threshold in the center of the ring. In private conversation with other researchers, we have 

even discussed applications using other noise filters to deliberately bias the types of 

information available to the subject. Novel research methods are often tumultuous in their 

beginnings, but although we were unable to show strong statistical results, future research 

using on this method and other methods which it may inspire will doubtless help expand 

our understanding of perceptual learning.  
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General Discussion 

The primarily methodological nature of this work represents an opportunity for 

perceptual learning researchers. As we discussed in the introduction to the dissertation, 

there are substantial practical applications for perceptual learning research ranging from 

therapeutic (Polat et al., 2009) to athletic (Deveau et al., 2014). However, we view the 

significance of the work to lie primarily in it’s utility to researchers in the pursuit of their 

own applications and research questions. 

In the process of conducting research it is often useful to take advantage of 

established methods and situate an experiment firmly within the existing literature. This 

practice helps improve the replicability of findings, helps resolve disputes between 

conflicting results, and provides inspiration for further research along the same lines. On 

the other hand, developing new techniques is the only way to establish new standards, 

and at times innovation is necessary to adequately characterize empirical results or to 

make new types of measurement. 

In Chapter 1 we describe a traditional perceptual learning experiment based 

heavily on existing methods. The basic research design is not groundbreaking; we use a 

well-established perceptual learning task (Karni & Sagi, 1991) and closely duplicate even 

the smallest details of previous studies with this task (Yotsumoto et al., 2009). Its novelty 

lies chiefly in the large sample size and the ability to use that large sample to draw 

between-subjects inferences about the effects of pre-existing subject abilities, the effects 

of differential properties of the task procedure, and the interactions between the two on 
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learning and transfer. The basic questions regarding the influence of visual attention skill 

and action video games on learning and transfer in the TDT represent a positive step 

towards better understanding how individual differences in ability influence perceptual 

learning, a topic which is greatly in need of continuing research. The inclusion of task-

related effects is also an important contribution to a field that, in spite of the enormous 

impact of experimental procedures on learning outcomes, has yet to fully characterize 

these effects. And finally, this project also included a replication of its own: Green & 

Bavelier’s (2003) reports of a strong relationship between action video game play and 

visual attention did not replicate in our population. 

However, even a project as solidly grounded in established methods and past 

research as this was not immune to unexpected problems. Our finding that roving the 

order of trial difficulties led to reduced overall performance broke one of the major 

assumptions perceptual learning researchers make about low-performing subjects during 

data analysis. These results obliged us to to deviate from traditional data analytic 

techniques because low performing subjects could no longer be excluded from the sample 

offhand. In Chapter 2 we explore the profound impact even this small break from 

established methods had on our ability to evaluate our results, and in response we broke 

new ground in understanding what it means to be a valid subject in perceptual learning 

tasks. We innovated, developing a unique approach to the basic and age-old practice of 

dividing participants using a median split. And armed with our new approach we 

demonstrated that our original findings in the TDT were indeed valid, and we can add 
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these new techniques to the toolbox of methods available to perceptual learning 

researchers. 

Finally, in Chapter 3 we broke fully from established methods to create a 

completely new paradigm for understanding perceptual learning. The oldest methods in 

cognition are behaviorally based, and observing human behavior directly is still one of 

the most common ways to draw inferences about mental processes. Eye tracking is a 

powerful tool for observing behavior, not only giving us strong insight into overt shifts of 

attention during a task but also by providing high temporal resolution and by allowing 

secondary measurements of behavior such as pupilometry. By marrying this technology 

with a free-form visual search task and carefully selected stimuli we are able to open up 

new avenues of inquiry for perceptual learning researchers. Although this technique still 

requires additional validation and refinement, this method opens the doors for a wide 

variety of experimental questions which were previously inaccessible or difficult to 

measure.  

Conclusion 

Although the concept is likely much older, the phrase “if all you have is a 

hammer, everything looks like a nail“ is credited to Maslow’s (1966) Psychology of 

Science. The tools and methods available to researchers define and can limit our 

understanding of the world and impose a type of intellectual myopia in studying it. 

Certainly, established methods are the “gold standard” for a good reason, but it is 

important to develop new methods when necessary and appropriate. With this work, we 
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contribute to our understanding of perceptual learning in general, and also to the methods 

cognitive psychologists employ to better understand learning. 

The methodological innovations we have described can be used to further our 

understanding of many aspects of human learning behavior. Certainly niche cases where 

a single criterion based on a joint condition is necessary can benefit from the approach 

described in Chapter Two, but we are particularly enthusiastic about the opportunities 

presented by the eye tracking method in Chapter Three. Direct data regarding eye 

movements have already been used in a variety of scene perception applications 

including visual search (see Rayner, 2009, for a discussion of the topic), as well as more 

direct learning applications such as face learning (Henderson et al., 2005) and multimedia 

learning (Mayer, 2010). However, these approaches rely primarily on superficial aspects 

of gaze data such as image content, rather than on the underlying statistics of the image, a 

distinction that may be more productive from a perceptual perspective. A deeper 

understanding of what aspects of visual information are relevant to learners at different 

phases of the learning process could potentially revolutionize our understanding of 

training in professions where visual expertise is critical such as radiology, military drone 

pilots, and security screeners. The direct applications of this approach on visual task 

learning are clear, however the method in Chapter Three has been deliberately described 

in a generalized fashion in order to maximize the potential for applications to questions 

we cannot foresee at this time. A principled approach to interpreting what are essentially 

false alarms in visual search, and exploiting that information for scientific benefit has 

research potential far beyond perceptual learning alone. We eagerly anticipate the 
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discoveries that will certainly come from creative application of the ideas that support 

this technique.  
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