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Additive manufacturing is an emerging fabrication technology that has been 

incorporated into diverse industry segments, from aerospace to biomedical engineering. 

One of its key strengths is the ability to easily fabricate architected materials (e.g., lattices) 

with virtually any topology and over a wide range of dimensions. As the smallest dimension 

in the unit cell approaches the resolution of the equipment, though, significant defects get 

introduced, which have the potential to strongly affect the mechanical and functional 

properties of the architected material. Here, the effect of manufacturing defects on the 

compressive strength of solid lattices produced by Fused Deposition Modeling (FDM) in 

polycarbonate is studied. The choice of this printing technology was dictated by the 

commercial penetration of FDM printers in most industrial sectors and the ready 

availability of FDM machines; polycarbonate was chosen as it is one of the most commonly 

used structural polymers for FDM.  
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A state-of-the-art commercially available 3D printer was used to fabricate a large 

batch of lattice samples, varying topology, bar diameter and aspect ratio. All samples were 

CT scanned to quantify external and internal defects, and subsequently mechanically tested 

in compression. Finite elements models were built for the CT-derived lattices and the 

results compared with the lattice compression experiments. Once the numerical models 

were validated, the defect sensitivity of these lattices was quantified by comparing the FE 

strength predictions for nominally perfect and CT-derived lattices. This defect sensitivity 

was correlated to geometrical dimensions, failure mechanism and lattice topology. 
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1. INTRODUCTION AND MOTIVATION 

Humans have looked at nature for answers to problems along our existence [1]. This 

makes a lot of sense, since life has evolved well-adapted structures and materials over 

billions of years by natural selection.  

Cellular materials can be found in many applications in nature, where high strength 

and low density are needed. Birds, for example, need to be as light as possible in order to 

fly without getting tired. To achieve this, all flying birds have hollow bones, filled with 

pockets of air. The bones are held together by thin bar-like structures called struts. The 

struts prevent the bones from collapsing inward.  

 

Figure 1: Cellular material in the core of a bird bone [2].  

 The architecture of a bird bone core is complex, with intricately shaped ligaments 

and variations in density. Although scientists and engineers have developed materials that 

are superior to the biologic based materials, the cellular architectures developed by 

humans are much less sophisticated than nature’s [3]. This was limited by constraints in 

traditional manufacturing technologies until some years ago. 

 The advances in additive manufacturing technologies, which allow the manufacture 

of complex parts directly from three-dimensional CAD models, have been enabling 

fabrication of cellular materials with more complex architectures [4][5][6]. In addition to it, 
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computational methods have improved enough to empower the design of new structures 

and materials [7][8]. 

 Nevertheless, other manufacturing difficulties emerge with additive manufacturing 

techniques [9]. For the fabrication of cellular materials and microstructures, the challenges 

are related to the time spent during the fabrication and quality of the structure as the 

dimensions get close to the equipment resolution. As the smallest dimension in the cellular 

material approaches the resolution of the equipment, significant defects get introduced. 

These defects have the potential to strongly affect the mechanical and functional properties 

of the architected material.  

 In the present work, the effect of manufacturing imperfections on solid architected 

materials fabricated via additive manufacturing technique is investigated. These defects 

change the strength of the structures, and will define if the material is appropriate for 

applications that require structural integrity.  
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2. BACKGROUND 

 This chapter provides some relevant background in cellular materials and their 

deformation modes, as well as an overview of additive manufacturing techniques, 

specifically the one used for this work.  

2.1 Cellular materials 

 Cellular solids are made up of an interconnected network of solid struts or plates, 

forming the edges and faces of the cells [10]. They have been investigated for a variety of 

applications, from the ones that require structural strength to thermal insulation and 

impact protection, among others [11][12][13][14][15].  

Materials with cellular structure widely occur in nature; examples are wood, bones, 

cork, glass sponges and bird beaks [16]. Scientists and engineers have made many artificial 

cellular structures, such as stochastic foams [17][18] and honeycomb-like materials [19] 

used for lightweight aerospace components. 

 

Figure 2: Honeycomb structure and applications in an airplane: floor, walls and overhead bin. 

Adapted from [20]. 
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Man-made cellular materials have added architecture, increasing the mechanical 

efficiency of structures [21]. Architecture provides an additional degree of freedom in the 

design of a material and is possible due to the advances in computation and the progress in 

additive manufacturing technologies [7]. 

 

Figure 3: Nickel microlattice, example of architected material [22].  

Most applications of cellular materials cause them to be loaded in compression [23]. 

Their elastic modulus (E) and strength (σ) can be calculated analytically and thru uniaxial 

compression tests. 

An important structural characteristic of a cellular solid is its relative density (𝜌̅), 

defined as the density of the structure (𝜌*) divided by the density of the solid of which is 

made (𝜌s). E and σ follow the typical scaling relationships [10]: 

𝐸

𝐸𝑠
= 𝛽𝜌̅𝑏                                                                         (1) 

𝜎

𝜎𝑠
= 𝛾𝜌̅𝑐                                                                          (2) 

where Es and σs are the elastic modulus and the strength of the solid material, respectively. 

β, γ, b and c are non-dimensional parameters of order 1 that depend on the architecture.  
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2.2  Bending VS stretching dominated architectures 

 Under compression, cellular solids deform by bending and stretching of the cell 

walls. The topology of the structure will dictate which mechanism dominates the 

deformation. Figure 4 illustrates a representative unit cell configuration for the two cases.  

 

Figure 4: Schematic of unit cells for stretching (left) and bending (right) dominated lattice 

materials. Adapted from [24].  

 The joints are assumed welded and prevent free rotation of the struts. The structure 

on the left is stretching dominated. When loaded as shown, the diagonal struts deform 

primarily by axial compression, whereas the horizontal strut deforms axially in tension. 

When the strength of the material is exceeded, the struts will generally suddenly collapse 

by fracture or buckling (elastic or plastic). For the bending dominated structure on the 

right, the applied load would induce bending moments on the joints, causing the struts to 

deform primarily by bending, with generally negligible axial stress [24]. Failure will occur 

by progressive spreading of plasticity in the members, possibly followed by fracture. 

 Bending dominated structures have their elastic modulus (E) proportional to the 

relative density squared (𝜌̅2), and a yield strength (𝜎𝑦) that scales with (𝜌̅1.5) [25]. 

Stretching dominated structures have higher stiffness and strength, scaling linearly with 

the relative density [26]. This means that comparing a stretching and a bending dominated 
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structure with the same relative density, the first one has much higher elastic modulus and 

strength. Therefore, stretching dominated structures are the best choice for lightweight 

structural applications; however, because the deformation mechanisms involve “hard” 

modes (tension and compression) rather than “soft” ones (bending), initial yield is typically 

followed by plastic buckling or brittle collapse of the struts. Conversely, bending dominated 

structures deform more progressively after yielding by plastic bending of the members. 

This mode of deformation makes them preferable for applications that require energy 

absorption [27]. 

2.3  Additive manufacturing techniques 

 Additive manufacturing is the “process of joining materials to make objects from 3D 

model data, usually layer upon layer” [28]. It first emerged in the 1980s with 

stereolithography, a process that solidifies thin layers of ultraviolet light-sensitive liquid 

polymer using a laser [29]. 

 

Figure 5: One of the first stereolithography machines ever made [30].  
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 Thirty years later, additive manufacturing has become a mainstream manufacturing 

process. The advantages, compared to conventional manufacturing processes, are: material 

and resource efficiency, since it doesn’t require auxiliary tools such as jigs, fixtures and 

cutting tools; part and production flexibility, because complex features can be made in only 

one piece straight [31]. 

 The flexibility on the fabrication of complex parts is what makes additive 

manufacturing an excellent option to produce architected materials. Among the existing 

processes, the fused deposition modeling (FDM) technique [32][33] was chosen to produce 

the samples for this current work.  

  In the FDM process, liquid thermoplastic material is extruded from a movable head 

and then deposited in thin layers onto a substrate. The material is heated slightly above its 

melting point, so that it solidifies after extrusion and cold welds to the previous layers. 

Machines with two nozzles have also been developed, one for part material and the other 

for support material [34]. The support material can be removed from the part without 

damaging it.  

 

Figure 6: Example of part printed with a different support material [35]. 
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 However, additive manufacturing technologies still have some drawbacks such as 

size limitations, imperfections on the final product and cost. The size limitations are related 

to the available envelope of the machine, that limits the maximum size of the parts 

produced. The minimum dimension of features is also limited, but by the resolution of the 

equipment. Imperfections often appear on rough and ribbed surface finish [36], and may be 

more frequent as the dimensions of the parts decrease.    
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3. OBJECTIVES 

 The main goal of this research is to investigate the effect of manufacturing defects 

on the compressive strength of solid lattices produced via fused deposition modeling 

(FDM). To accomplish the goal, the following objectives were established: 

 1 – Design and fabrication of lattice materials; 

 2 – Analysis of geometric imperfections in FDM lattices; 

 3 – Analytical calculation of lattice strength; 

 4 – Modeling of ideal lattices and lattices with defects; 

 5 – Mechanical characterization of lattice designs; 

 6 – Comparison of results. 
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4. METHODS AND PROCEDURES 

 This chapter describes the tasks performed, the equipment and software used to 

develop the research work. 

4.1 Unit cell geometry 

Two different unit cell topologies were chosen to be modeled using the software 

Solidworks [37]: the cross-truss unit cell and the octet-truss unit cell, illustrated below: 

 

Figure 7: Cross-truss (left) and octet-truss (right) unit cells. 

While the cross-truss unit cell is a bending dominated structure, the octet-truss unit 

cell deforms by stretching of the cell struts. An extensive body of literature exists on the 

mechanical properties of these two lattice structures [38][39][40][41][42][43][44] [45].  

The diameter and the aspect ratio of the struts were used as variables in the design 

of the unit cells, as follows:  
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Table 1: Unit cells dimensions for the lattices investigated in this work. 

Unit cell Diameter (D) Length (L) Aspect ratio (L/D) 

Octet-truss 

1 mm 4 mm 
4 

2 mm 8 mm 

1 mm 10 mm 
10 

2 mm 20 mm 

Cross-truss 

1 mm 4 mm 
4 

2 mm 8 mm 

1 mm 10 mm 
10 

2 mm 20 mm 

 

4.2 Samples fabrication 

The samples were fabricated using the state-of-the-art Stratasys Fortus 450mc 

fused deposition modeling (FDM) machine [46]. The Fortus 450mc has a build envelope of 

406 x 355 x 406 mm, and achievable accuracy of ±0.127mm or ±0.0015 mm/mm, 

whichever is greater. This system uses a wide range of thermoplastics with advanced 

mechanical properties. Polycarbonate was chosen for the samples fabrication, as it is one of 

the most commonly used structural polymers for FDM. It is widely used in automotive, 

aerospace and medical applications.  

The software package Insight [47] was used to prepare the model to be 

manufactured on the Fortus system, by slicing it and generating support structures and 

material extrusion paths. Because of the complex geometry of the unit cells, a soluble 

material was chosen for the support structures. After being printed, the samples were 
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immersed in a solution of NaOH and water in a shaking bath at 65oC, for dissolution of 

support material. 

 

Figure 8: Stratasys Fortus 450mc fused deposition modeling 3D printer. 

4.3 Determination of material properties 

 As the fused deposition modeling fabrication method builds parts by depositing thin 

lines of material in different directions, the produced parts usually exhibit considerably 

anisotropy, and their mechanical properties could be significantly different from those of 

parts molded from the same base material [48]. In order to understand the mechanical 

properties of the fabricated polycarbonate lattices and in particular the influence of the 

angle between the strut length and the printing direction, simple prismatic specimens were 

fabricated in three different deposition angles: 0o, 45o and 90o, as illustrated in Figure 9.  
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Figure 9: Bars printed at 0o (left), 45o (center) and 90o (right) relative to the printing 

direction (i.e., the z-axis of the printer). The arrow schematically represents the printer 

nozzle. 

Uniaxial mechanical tests (tension and compression) were performed to capture the 

elastic modulus and strength of the bars. Figure 10 illustrates the procedure. 

 

Figure 10: Tensile (left) and compressive (right) tests of a bar. 

4.4 Determination of geometric imperfections via CT scanning 

 The printed samples were scanned using the three-dimensional X-ray Xradia 

VersaXRMTM 410 [49], showed in Figure 11. This non-destructive micro tomography test 

provides cross sections of the samples used to recreate a virtual model, capturing internal 

and external imperfections. Each sample took from one to three hours to be scanned, 

depending on sample dimensions and number of cross sections required per sample. The 

equipment provides a spatial resolution of up to 900 nm, determined by the size of the 
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samples. The software Simpleware [50] was used to process the data acquired and 

generate the 3D model and mesh of these samples. 

 

Figure 11: X-ray CT scanner Xradia VersaXRMTM 410. 

4.5 Analytical formulation of yielding and buckling strength 

Analytical models for yielding and buckling strength were used to predict the 

strength of the unit cells in this study. The geometric parameters required to fully define 

the analytical yield strength are the unit cell angle (θ), length (l) and diameter (D) of the 

struts, illustrated in Figure 12.  

The compressive strength along the z direction of the cross-truss and octet-truss 

lattices can be estimated by beam theory considerations. When uniaxially compressed by a 

load P, the load distribution occurs in the unit cells as schematically indicated in Figure 13. 
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Figure 12: Geometry of the octet-truss lattice (left) and the cross-truss lattice (right) and 

variables definition. 

 

Figure 13: Schematic of a unit cell under compression (cross-truss on the left and octet-truss 

on the right) and free-body diagram of a single bar  

 In the cross-truss unit cell, each bar is subjected to a uniform compression force and 

a linearly varying bending moment, maximum Mmax at the nodes. From the free body 

diagram in Figure 13 (left), the maximum stress in the bar is: 
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𝜎𝑚𝑎𝑥 =
𝑀𝑚𝑎𝑥

𝐼

𝐷

2
+

𝑃 sin 𝜃

4𝐴
=

4𝑃𝑙 cos 𝜃

𝜋𝐷3
+

𝑃 sin 𝜃

𝜋𝐷2
          ,                                 (3) 

where A and I are the area and the moment of inertia of a bar member, respectively. By 

equating the maximum stress in the bar to the yield strength of the constituent material σy0, 

and noticing that the load P acts on a unit cell of area 2l2 (cos θ)2 [38], the effective yield 

strength of the cross-truss lattice can be expressed as: 

𝜎𝑦

𝜎𝑦
0

=
𝜋 (

𝐷
𝑙

)
3

8 [(cos 𝜃)3 (1 +
tan 𝜃

4
𝐷
𝑙

)]
        .                                                    (4) 

 Collapse of cross-truss lattice can also occur by elastic buckling. The buckling load 

can be estimated by equating the normal force in each bar to the Euler buckling load [51] 

for a simply supported column: 

𝑃

4
sin 𝜃 =

𝜋2𝐸𝐼

𝐾2𝑙2
  →   𝑃 =

𝜋3𝐸𝐷4

16𝑙2 sin 𝜃
       ,                                                 (5) 

where K is equals to 1 for a bar with pinned ends. 

 The effective global buckling strength for the cross-truss lattice then can be 

expressed as: 

𝜎𝐸𝑏

𝜎𝑦
0

=

𝜋3 (
𝐸

𝜎𝑦
0) (

𝐷
𝑙

)
4

32(cos 𝜃)2 sin 𝜃
     .                                                               (6) 

 For the octet-truss unit cell the procedure is similar. From the free body diagram in 

Figure 13, the maximum stress in the bar is: 

𝜎𝑚𝑎𝑥 =

𝑃
4 sin 𝜃

𝜋𝐷2

4

=
𝑃

𝜋𝐷2 sin 𝜃
           ,                                       (7) 
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 By equating the maximum stress in the bar to the yield strength of the constituent 

material σy0, and noticing that the load P acts on a unit cell of area 2l2 (cos θ)2, the effective 

yield strength of the octet-truss lattice can be expressed as: 

𝜎𝑦

𝜎𝑦
0

=
𝜋 sin 𝜃 (

𝐷
𝑙

)
2

2(cos 𝜃)2
    .                                                          (8) 

 Collapse of octet-truss lattice can also occur by elastic buckling. The buckling load 

can be estimated by equating the normal force in each bar to the Euler buckling load for a 

simply supported column, leading to: 

𝑃

4 sin 𝜃
=

𝜋2𝐸𝐼

𝐾2𝑙2
  →   𝑃 =

𝜋3𝐸𝐷4 sin 𝜃

4𝑙2
    .                                          (9) 

where K is equals to 0.5 for a bar with fixed ends. 

Table 2 summarizes the analytical models for yielding strength and buckling 

strength of the octet-truss and cross-truss unit cells. 

Table 2: Analytical models for yielding and buckling strength of Octet-truss and Cross-truss 

unit cells. 

Unit cell Yield Strength Buckling Strength 

Octet-truss 𝜋 sin 𝜃 (
𝐷
𝑙

)
2

2(cos 𝜃)2
 

𝐸
𝜎𝑦

𝜋3 sin 𝜃 (
𝐷
𝑙

)
4

8(cos 𝜃)2
 

Cross-truss 
𝜋 (

𝐷
𝑙

)
3

8 [(cos 𝜃)3 (1 +
tan 𝜃

4
𝐷
𝑙

)]
 

𝐸
𝜎𝑦

𝜋3 (
𝐷
𝑙

)
4

32(cos 𝜃)2 sin 𝜃
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4.6 Numerical model of strength of ideal and CT-scanned cells 

4.6.1 Meshing 

 Two finite element models were generated for each unit cell. The first model was 

based on the geometry designed on Solidworks and called “perfect model”. The perfect 

models meshes were created using the software Abaqus [52]. The second model was 

generated based on the Nano-CT-Scanned images of the printed samples, using the 

software Simpleware. These models are called “CT-Scanned models”.  

4.6.2 Boundary conditions 

The boundary conditions are a critical aspect on the finite element model 

configuration. Throughout this work, periodic boundary conditions were used to ensure 

the results were applicable to a large system (i.e. multiple-cell samples). The configuration 

models a uniaxial compression test. Firstly, the six plane surfaces of the unit cells were 

constrained so that they remained plane at all times. Secondly, all nodes on the –x, -y and –z 

faces on the unit cell were prevented from translating and rotating. The nodes on +x and +y 

faces were allowed to move along x and y, respectively. Finally, the nodes on +z face were 

subject to a downward displacement or force. Figure 14 illustrates this configuration. 

For all simulations, isotropic linear elastic perfectly plastic properties were used for 

the solid material, extracted from the material compressive and tensile tests discussed in 

Section 4.3. Quasi-static simulations were performed on all unit cells. For the unit cells that 

were predicted to fail by elastic buckling according to the analytical models, buckling 

simulations (i.e., eigenvalue extractions) were also performed. The dominant buckling 

mode was added as an imperfection for the static simulations.  
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Figure 14: Example of unit cell with schematic depiction of the boundary conditions imposed 

in the FE simulations: nodes connected by yellow lines are coupled to their respective 

reference node (RP) in all rotational degrees of freedom. Additionally, nodes connected to 

RP±x, RP±y and RP±z are coupled in the x-displacement, y-displacement and z-displacement 

respectively. The reference points RP-x, RP-y and RP-z are maintained at x=0, y=0 and z=0 

respectively. RP+x and RP+y are free to move along x and y respectively, and vertical 

displacements are specified at RP+z. 

In addition to the quasi-static simulations, a density analysis was performed on the 

models, in order to compare the density of the ideal cells with the density of the CT-

scanned cells. 

4.7 Compression tests 

To experimentally characterize the mechanical properties of the samples, uniaxial 

compression experiments were performed. All tests were performed with a servo-electric 

INSTRON 8862 frame (illustrated in Figure 15), equipped with a FastTrack 8800 control 

system and a National Instrument SCXI data acquisition system. The load was measured 
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using the frame load cell and the displacement was computed using the linear variable 

displacement transducer (LDVT), embedded in the frame actuator. All tests were 

displacement-rate controlled. The effective stress in the lattice was calculated by dividing 

the applied load by the area of the lattice sample, and the effective strain by dividing the 

cross-head displacement by the original length of the sample. Results were presented in the 

form of effective stress-strain curves for each sample.  

 
Figure 15: INSTRON 8862 used to perform the tests (left) [53] and sample being tested (right). 
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5. RESULTS  

5.1 Mechanical properties of the base material 

 For each deposition angle, three identical prismatic samples (8 mm length x 2 mm 

diameter) were tested both in compression and in tension at a displacement rate of 0.05 

mm/s. Representative stress-strain curves obtained on the compressive and tensile tests of 

the bars are summarized in Figure 16. The tensile strength has a stronger dependence on 

the layer deposition direction compared to the compressive strength. The bars show a 

brittle behavior under tension, while are more ductile under compression.  

 

Figure 16: Experimental stress-strain curves of the compression and tension specimens used 

for materials characterization. 

 Table 3 and Table 4 summarize the average strength and elastic modulus, along 

with the standard deviation obtained on the tests. 
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Table 3: Material properties obtained on the compression test of specimens. 

Specimen deposition angle Average strength Average elastic modulus 

0o 1203±55 MPa 62±10 MPa 

45o 1174±55 MPa 56±4 MPa 

90o 1329±107 MPa 59±0 MPa 

 

Table 4: Material properties obtained on the tension test of specimens. 

Specimen deposition angle Average strength Average elastic modulus 

0o 678±32 MPa 41±0 MPa 

45o 743±135 MPa 40±5 MPa 

90o 965±77 MPa 92±10 MPa 

 

 Based on these results, an average elastic modulus of 1.3 GPa and a strength of 55 

MPa were extracted and used in all the analytical models and the numerical simulations on 

the lattices. The choice of using compression data (as opposed to tensile data) stems from 

the fact that all bars (with the exception of the horizontal bars in the octet lattices) are 

subjected to compressive stresses during lattice-level compression; we then expect the 

compressive properties to dominate the mechanical response. The accuracy of this 

assumption is discussed when experimental results are compared with 

analytical/numerical predictions.  
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5.2 Fabricated lattices 

 The fabricated lattices are illustrated in Figure 17. For the structures with unit cells 

that had aspect ratio equals to 4 ((a), (b), (e) and (f) in Figure 17), the samples were 

designed with 5 x 5 x 5 unit cells. Sample (c) had 3 x 3 x 3 unit cells, (g) had 4 x 4 x 4 unit 

cells and (d) and (h) had 2 x 2 x 2 unit cells. These size differences are due to the limitations 

in maximum dimensions for sample analysis using the nano-CT-Scan equipment.  

 

Figure 17: Lattice samples fabricated in polycarbonate via FDM – (a) octet-truss 4 mm length 

x 1 mm diameter struts; (b) octet-truss 8 mm length x 2 mm diameter struts; (c) octet-truss 10 

mm length x 1 mm diameter struts; (d) octet-truss 20 mm length x 2 mm diameter struts; (e) 

cross-truss 4 mm length x 1 mm diameter struts; (f) cross-truss 8 mm length x 2 mm diameter 
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struts; (c) cross-truss 10 mm length x 1 mm diameter struts; (d) cross-truss 20 mm length x 2 

mm diameter struts. 

 Table 5 shows the manufacturing time for each sample using the Fortus 450mc. 

Table 5: Fabrication time for all lattice samples. 

Unit cell Diameter Length Fabrication time 

Octet-truss 

1 mm 4 mm 11 h 

2 mm 8 mm 45 h 

1 mm 10 mm 56 h 

2 mm 20 mm 40 h 

Cross-truss 

1 mm 4 mm 4 h 

2 mm 8 mm 24 h 

1 mm 10 mm 23 h 

2 mm 20 mm 58 h 

 

5.3 Comparison of ideal and CT-scanned lattice geometries 

 The following images illustrate the designed unit cells and the 3D reconstruction of 

the printed samples made using the software Simpleware. The cross-truss unit cells are 

represented in Figure 18, Figure 19 and Figure 20; the octet-truss unit cells are 

represented in Figure 21, Figure 22 and Figure 23.   
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Figure 18: Cross-truss unit cell – Ideal model (left) and CT-Scan model (right). Struts 

dimension: 4 mm length x 1 mm diameter. 

 

Figure 19: Cross-truss unit cell – Ideal model (left) and CT-Scan model (right). Struts 

dimension: 8 mm length x 2 mm diameter. 
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Figure 20: Cross-truss unit cell – Ideal model (left) and CT-Scan model (right). Struts 

dimension: 20 mm length x 2 mm diameter. 

 

Figure 21: Octet-truss unit cell – Ideal model (left) and CT-Scan model (right). Struts 

dimension: 4 mm length x 1 mm diameter. 
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Figure 22: Octet-truss unit cell – Ideal model (left) and CT-Scan model (right). Struts 

dimension: 8 mm length x 2 mm diameter. 

 

Figure 23: Octet-truss unit cell – Ideal model (left) and CT-Scan model (right). Struts 

dimension: 20 mm length x 2 mm diameter. 
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 Figure 18 shows the cross-truss unit cell with 4 mm length x 1 mm diameter struts. 

The 3D reconstructed model shows the presence of voids in the interior of the struts, 

mainly in the area of the nodes. The surface is very irregular, and the separation of the 

printed layers can be seen clearly. Fewer imperfections on the surface are observed when 

the diameter of the struts increases to 2 mm, as illustrated in Figure 19 and Figure 20. 

  For the octet-truss lattices the effects of bar dimensions are similar. Figure 21 

illustrates the octet-truss unit cell with 4 mm length x 1 mm diameter struts. The 

imperfections are seen both on the surface and in the interior of the bars. Specimen with 

thicker bars (Figure 22 and Figure 23) show fewer imperfections on the surface, but more 

voids inside of the bars.  

 The samples with aspect ratio 10 and diameter of the struts equals to 1 were more 

affected by the manufacturing imperfections. A few bars of these samples were lost during 

the removal of the support material, even when a soluble support material was used. The 

cross-truss sample lost more bars than the octet-truss, as the octet-truss unit cell has more 

connections between the bars. 

 The relative density of the unit cells were calculated based on the Ideal and CT-

Scanned models. The results are summarized in the Table 6. 
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Table 6: Density of the unit cells. 

Unit 
cell 

Diameter 
(D) 

Length 
(L) 

Density of the 
Ideal model 

Density of the 
CT-Scanned 

model 

Ratio between CT-
Scanned and Ideal 

model densities 

Octet-
truss 

1 mm 4 mm 3.7 x 10-4 g/cm3 3 x 10-4 g/cm3 0.81 

2 mm 8 mm 3.7 x 10-4 g/cm3 3.9 x 10-4 g/cm3 1.05 

1 mm 10 mm 7.1 x 10-5 g/cm3 N/A N/A 

2 mm 20 mm 7.1 x 10-5 g/cm3 6.9 x 10-5 g/cm3 0.97 

Cross-
truss 

1 mm 4 mm 2.4 x 10-4 g/cm3 2.3 x 10-4 g/cm3 0.94 

2 mm 8 mm 2.4 x 10-4 g/cm3 2.9 x 10-4 g/cm3 1.2 

1 mm 10 mm 4.5 x 10-5 g/cm3 N/A N/A 

2 mm 20 mm 4.5 x 10-5 g/cm3 4.3 x 10-5 g/cm3 0.95 

 

5.4 Analytical predictions 

 The aspect ratio of the struts in the unit cells determines whether the lattice 

material will fail first by yielding or elastic buckling. Table 7 shows the analytical model 

results for relative strength of all unit cells (relative strength = lattice strength / yield 

strength of parent material). The values in bold represent the dominant failure mechanism 

for each cell. 

 The analytical models reveal that all cross-truss samples would fail by yielding, 

while the octet-truss samples with aspect ratio of 10 would fail by elastic buckling. This 

prediction is going to be confirmed by finite element modeling and experimental 

characterization. 
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Table 7: Analytical strength of the unit cells. 

Unit cell 
Diameter 

(D) 
Length (L) 

Analytical buckling 
strength 

Analytical yield 
strength 

Octet-truss 

1 mm 4 mm 
0.5061 0.1388 

2 mm 8 mm 

1 mm 10 mm 
0.0129 0.0222 

2 mm 20 mm 

Cross-truss 

1 mm 4 mm 
0.2531 0.0163 

2 mm 8 mm 

1 mm 10 mm 
0.0064 0.0011 

2 mm 20 mm 

   

5.5 Numerical (finite elements) predictions  

 This section shows the results of all finite element simulations performed on the 

lattice unit cells. Figure 24,  Figure 25, Figure 26 and Figure 27 illustrate the stress-strain 

curves under uniaxial compression of the cross-truss unit cell with different dimensions 

and aspect ratios, where (a) is the ideal cell and (b) is the reconstruction of the printed 

sample. Contour plots of equivalent stress at selected points in the test are depicted to 

allow comparison of stress evolution between ideal and CT-scanned geometries. In all 

cases, a stress concentration is clearly seen at the nodes where the struts connect. 
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Figure 24: Stress-strain curve of the uniaxial compression simulation – Cross-truss 4 mm 

length x 1 mm diameter – (a) Ideal model and (b) CT-Scanned model. 

 

Figure 25: Stress-strain curve of the uniaxial compression simulation – Cross-truss 8 mm 

length x 2 mm diameter – (a) Ideal model and (b) CT-Scanned model. 
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Figure 26: Stress-strain curve of the uniaxial compression simulation – Cross-truss 10 mm 

length x 1 mm diameter – Ideal model. 

 

Figure 27: Stress-strain curve of the uniaxial compression simulation – Cross-truss 20 mm 

length x 2 mm diameter – (a) Ideal model and (b) CT-Scanned model. 

Figure 28, Figure 29, Figure 30 and Figure 31 present the same results for the octet-cell 

lattices. For the octet-truss cells, the stress concentration is less pronounced (see  

Figure 28 and Figure 29). According to the analytical models reported in the previous 

section, the octet-truss cells with aspect ratio 10 should fail first by buckling. This was also 

verified by eigenvalue extraction in finite elements analyses, and the dominant buckling 
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mode was included as an imperfection in the quasi-static simulations presented in Figure 

30 and Figure 31.  

 
Figure 28: Stress-strain curve of the uniaxial compression simulation – Octet-truss 4 mm 

length x 1 mm diameter – (a) Ideal model and (b) CT-Scanned model. 

 
Figure 29: Stress-strain curve of the uniaxial compression simulation – Octet-truss 8 mm 

length x 2 mm diameter – (a) Ideal model and (b) CT-Scanned model. 
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Figure 30: Stress-strain curve of the uniaxial compression simulation – Octet-truss 10 mm 

length x 1 mm diameter – Ideal model. 

 

Figure 31: Stress-strain curve of the uniaxial compression simulation – Octet-truss 20 mm 

length x 2 mm diameter – (a) Ideal model and (b) CT-Scanned model. 

5.6 Results from experimental tests  

 This section shows the results of the compression tests in the form of effective 

stress-strain curves. Sample images at various stages of compression are also reported to 

better illustrate the deformation and failure mechanisms. The cross-cell sample results are 
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presented in Figure 32, Figure 33, Figure 34 and Figure 35, while the octet-cell sample 

results are in Figure 36, Figure 37, Figure 38, Figure 39 and Figure 40. 

 Figure 32 illustrates the stress-strain curve obtained on the cross-truss 4 mm length 

x 1 mm diameter lattice sample. By applying compression on the lattice, elastic 

deformation is started. By increasing the applied force, a shear band initiates and a 

sequence of struts along the main diagonal of the sample deforms plastically. After this 

stage, the thickness of the 'shear band' increases and the stress remains roughly constant.  

 Figure 33 illustrates the stress-strain curve obtained on the cross-truss 8 mm length 

x 2 mm diameter lattice sample. By applying compression on the lattice, elastic 

deformation is started, until suddenly rupture of the struts. This lattice exhibits a very 

brittle behavior. 

 Figure 34 illustrates the stress-strain curve obtained on the cross-truss 10 mm 

length x 1 mm diameter lattice sample. By applying compression on the lattice, elastic 

deformation is started. As this sample is much weaker, considerable noise is recorded 

during the experiment. The bottom part of the sample fails first, followed by one of the 

upper corners.  

Figure 35 illustrates the stress-strain curve obtained on the cross-truss 20 mm 

length x 2 mm diameter lattice sample. By applying compression on the lattice, elastic 

deformation is started. This is followed by abrupt rupture of truss members in the middle 

of the sample, which results in immediate catastrophic failure.  

 Figure 36 illustrates the stress-strain curve obtained on the octet-truss 4 mm length 

x 1 mm diameter lattice sample. This sample deforms similarly to the cross-truss sample 

with the same strut dimensions (Figure 32). After an initial stage of elastic deformation, the 



36 
 

sample deforms plastically and a stress plateau is maintained up to very large strains. In 

this case, though, no shear band is observed. 

 Figure 37 illustrates the stress-strain curve obtained on the octet-truss 8 mm length 

x 2 mm diameter lattice sample. By applying compression on the lattice, elastic 

deformation is started, followed by plastic deformation and suddenly rupture of the struts. 

The lattice has a very brittle behavior, very similar to that of the cross-truss sample with 

struts of the same dimension (Figure 33). 

 Figure 38 illustrates the stress-strain curve obtained on the octet-truss 10 mm 

length x 1 mm diameter lattice sample. By applying compression on the lattice, elastic 

deformation is started, until suddenly rupture of struts and failure of the structure.  

Figure 39 shows the sample after testing. In this case, crack propagations happened due to 

manufacturing imperfections on the structure. The cracks propagated between layers of 

the material.  

 Figure 40 illustrates the stress-strain curve obtained on the octet-truss 20 mm 

length x 2 mm diameter lattice sample. By applying compression on the lattice, elastic 

deformation is started until some vertical struts start to buckle, mainly on the boundaries 

of the sample. A shear band initiates and plastic deformation occurs on the struts that 

connect the boundaries of the shear band region. Meanwhile, other struts also buckle 

during the compression.  
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Figure 32: Experimental stress-strain curve of the cross-truss 4 mm length x 1 mm diameter 

lattice sample. 

 

Figure 33: Experimental stress-strain curve of the cross-truss 8 mm length x 2 mm diameter 

lattice sample. 
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Figure 34: Experimental stress-strain curve of the cross-truss 10 mm length x 1 mm diameter 

lattice sample. 

 

Figure 35: Experimental stress-strain curve of the cross-truss 20 mm length x 2 mm diameter 

lattice sample. 
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Figure 36: Experimental stress-strain curve of the octet-truss 4 mm length x 1 mm diameter 

lattice sample. 

 

Figure 37: Experimental stress-strain curve of the octet-truss 8 mm length x 2 mm diameter 

lattice sample. 
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Figure 38: Experimental stress-strain curve of the octet-truss 10 mm length x 1 mm diameter 

lattice sample. 

 

Figure 39: Octet-truss 10 mm length x 1 mm diameter sample after compression test. 
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Figure 40: Experimental stress-strain curve of the octet-truss 20 mm length x 2 mm diameter 

lattice sample. 
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6. DISCUSSION 

 This chapter discusses and interprets the results obtained in this study. 

 

Figure 41: Stress-strain curves of experiment and simulations of the cross-truss 4 mm length x 

1 mm diameter lattice (left) and 8 mm length x 2 diameter lattice (right). 

 Figure 41 shows the stress-strain curves of the uniaxial compression tests and 

simulations of the cross-truss samples made by struts with aspect ratio of 4 (stubby 

samples). A few key observations can be made: (i) the numerical models capture the 

stiffness of the samples quite well; (ii) although the analytical model and FEM simulation 

on the ideal unit cells are identical for the samples of different dimensions, the FE 

simulations on the CT-scanned geometries predicts a much higher strength for the 2mm 

diameter strut samples. This difference correlates well with a difference in relative density 

between the two samples: while for the cross-truss 4 mm x 1 mm unit cell the ratio 

between the density of the CT-Scanned cell and the ideal cell is 0.94, the same ratio is 1.2 

for the 8mm x 2 mm cross truss unit cell; (iii) for the 4 mm x 1 mm sample, the yield 

strength is captured fairly well by the numerical simulations (as well as the analytical 
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model), although the FE simulations overpredict the plateau strength; (iv) the 8 mm x 2 

mm sample failed in brittle fashion at a stress level lower than predicted by FE models, but 

consistent with analytical predictions for strut yielding. Given that the constituent material 

in the numerical models is characterized as elastic perfectly plastic with no damage model 

included, the simulations will not be able to capture fracture. 

 

Figure 42: Stress-strain curves of experiment and simulations of the cross-truss 10 mm length 

x 1 mm diameter lattice (left) and 20 mm length x 2 diameter lattice (right). 

 Figure 42 shows the stress-strain curves of the uniaxial compression tests and 

simulations of the cross-truss samples made by struts with aspect ratio of 10. Notice that 

for both strut sizes, the FE simulations agree well with analytical predictions. The CT 

scanned (only available for the 2 mm diameter strut sample) and ideal geometries are 

nearly indistinguishable, indicating that the fabrication defects captured by CT scanning 

have negligible effect on the mechanical properties of the lattices. Importantly, though, all 

models significantly overpredict the strength of the samples. For the sample with the 

thinnest bars, this is largely attributed to a significant numbers of missing struts, as a result 
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of the support material removal step in the fabrication process. For the 2 mm diameter 

strut sample the lower strength is attributed to the fact that the sample is constituted by 

less unit cells than the previous ones, weakening the boundary conditions.  

 

Figure 43: Stress-strain curves of experiment and simulations of the octet-truss 4 mm length x 

1 mm diameter lattice (left) and 8 mm length x 2 diameter lattice (right). 

 Figure 43 shows the stress-strain curves of the uniaxial compression tests and 

simulations of the octet-truss samples made by struts with aspect ratio of 4 (stubby 

samples). Again, fracture of the specimens during experimental tests is not captured on the 

numerical simulations because of the definition of the material on the model as elastic 

perfectly plastic. The difference in strength between the FEM Ideal and CT-Scanned models 

is again related to the difference in density between ideal and fabricated model. While for 

the octet-truss 4 mm x 1 mm unit cell the ratio between the density of the CT-Scanned cell 

and the ideal cell is 0.81, the same ratio is 1.05 for the 8 mm x 2 mm octet truss unit cell. 

The increase of amount of material especially around the nodes substantially increases the 

strength of the unit cell. Notice that for both size samples, the numerical models are in good 



45 
 

agreement with the experiments. Interestingly, the 1mm-strut diameter sample is stronger 

than predicted by the CT-scanned model and in near-perfect agreement with the FE model 

on the ideal lattice; conversely, the 2mm- strut diameter sample performs as predicted by 

FE modeling on the CT-scanned sample.  

 

Figure 44: Stress-strain curves of experiment and simulations of the octet-truss 10 mm length 

x 1 mm diameter lattice (left) and 20 mm length x 2 diameter lattice (right). 

 Figure 44 shows the stress-strain curves of the uniaxial compression tests and 

simulations of the octet-truss samples made by struts with aspect ratio of 10 (slender 

samples). As analytical models predicted that these samples would fail by elastic buckling 

(at much lower load than required to yield the lattice), imperfections were seeded in the 

mesh for FE calculations. For the larger strut diameter lattice, the CT-scanned geometry 

sample showed nearly the same strength as the ideal geometry sample, according to FE 

calculations, indicating that the imperfections revealed by CT analysis do not have a 

dramatic effect on strength. No comparison is available for the 1mm strut diameter lattice, 

as that sample could not be scanned. The most remarkable result, though, is that the 
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samples are much weaker than predicted by both analytical and numerical models. This is 

largely attributed to significant imperfections in these lattices that were not captured by CT 

scanning, namely missing bars.  

 For the sample with 1 mm diameter struts, failure occurred by crack propagation on 

planes between layers, causing collapse of the structure at much lower stresses than 

predicted. For the sample with 2 mm diameter struts, failure occurred by buckling as 

predicted, albeit at a much lower critical stress. Buckling happened first on the bars located 

on the boundaries of the sample. When these bars fractured, it was observed that this 

fracture occurred between layers, leading to conclude that manufacturing imperfections 

were responsible for the lower strength.   

 

Figure 45: Summary of the relative strength of the cross-truss unit cell with aspect ratio = 4 

obtained via analytical calculation, experiment and numerical modeling. 
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 Figure 45, Figure 46, Figure 47 and Figure 48 summarize the strength of all 

structures studied in this work. The histograms are grouped according to the topology of 

the unit cell and aspect ratio of the struts. The ultimate strength, and not the onset of 

yielding or buckling, was chosen to be represented on these comparisons. 

 Figure 45 illustrates the relative strength of the cross-truss unit cells with aspect 

ratio of 4 obtained via analytical calculation, experiment and numerical models. The FEM 

results showed a higher strength because the ultimate strength was considered, and FEM 

ideal models were free of imperfections. The analytical model agrees well with the 

experiment results. 

 Figure 46 illustrates the relative strength of the cross-truss unit cells with aspect 

ratio of 10 obtained via analytical calculation, experiment and numerical models. Here the 

experiments showed a much lower strength than predicted by analytical model and FEM 

simulations. As explained above, this is largely attributed to manufacturing imperfections 

that were not captured by CT scanning of single unit cells, in particular missing bars. 

 Figure 47 illustrates the relative strength of the octet-truss unit cells with aspect 

ratio of 4 obtained via analytical calculation, experiment and numerical models. The 

experiments show good agreement with the models. The analytical model is slightly non-

conservative for these samples. 

 Finally, Figure 48 illustrates the relative strength of the octet-truss unit cells with 

aspect ratio of 10 obtained via analytical calculation, experiment and numerical models. 

The experiments show a much lower strength than predicted by the analytical and 

numerical models. As explained in detail before, this is again due to the manufacturing 

imperfections that could not be captured by single unit cell CT scans, namely missing bars.  
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Figure 46: Summary of the relative strength of the cross-truss unit cell with aspect ratio = 10 

obtained via analytical calculation, experiment and numerical modeling. 

 

Figure 47: Summary of the relative strength of the octet-truss unit cell with aspect ratio = 4 

obtained via analytical calculation, experiment and numerical modeling. 
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Figure 48: Summary of the relative strength of the octet-truss unit cell with aspect ratio = 10 

obtained via analytical calculation, experiment and numerical modeling. 
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7. CONCLUSIONS 

 The present work aimed to study the effect of manufacturing defects on 

compressive strength of polymeric lattices fabricated via fused deposition modeling. To 

achieve this goal, unit cells were designed by varying topology (cross-truss and octet-

truss), aspect ratio (4 and 10) and strut diameter (1 mm and 2 mm). All samples were 

manufactured using polycarbonate, due to good mechanical properties and market 

penetration. The material was experimentally characterized to understand the influence of 

layer deposition on the fabrication of parts.  

 After the fabrication, the samples were scanned with the goal of detecting 

imperfections and later enable the construction of finite element models. Imperfections 

were found both on the surface of the bars and in their interior. The compression 

experiments show that the samples with lower diameter and aspect ratio (4 mm x 1 mm) 

exhibit a strength plateau after reaching the compressive strength. The other samples 

displayed a more brittle behavior, disintegrating soon after reaching the compressive 

strength. CT scanning reveals that the manufactured lower aspect ratio samples (both cross 

and octet unit cell) are significantly denser than designed, clearly affecting their strength. 

The octet-truss samples with aspect ratio of 10, predicted to fail by elastic buckling, fail 

catastrophically at much lower loads than predicted by models, due to manufacturing 

imperfections. 

 The disagreement between analytical, FE models and experiments is due to 

imperfections caused by the manufacturing process, such as voids, variations on the 

diameter of the bars and density. This disagreement increases as the diameter of the struts 

decreases and aspect ratio increases.   
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