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Reconstruction of 4D Dynamic SPECT Images
from Inconsistent Projections Using a Spline

Initialized FADS Algorithm (SIFADS)
Mahmoud Abdalah∗, Rostyslav Boutchko†, Member, IEEE, Debasis Mitra∗, Senior Member, IEEE,

and Grant T. Gullberg†, Fellow, IEEE

Abstract—In this work we propose and validate an algorithm
of extracting voxel-by-voxel time activity curves directly from
inconsistent projections applied in dynamic cardiac SPECT. The
algorithm was derived based on factor analysis of dynamic
structures (FADS) approach and imposes prior information by
applying several regularization functions with adaptively chang-
ing relative weighting. The anatomical information of the imaged
subject was used to apply the proposed regularization functions
adaptively in the spatial domain. The algorithm performance
is validated by reconstructing dynamic datasets simulated using
the NCAT phantom with a range of different input tissue time-
activity curves. The results are compared to the spline-based
and FADS methods. The validated algorithm is then applied to
reconstruct pre-clinical cardiac SPECT data from canine and
murine subjects. Images, generated from both simulated and
experimentally acquired data confirm the ability of the new
algorithm to solve the inverse problem of dynamic SPECT with
slow gantry rotation.

Index Terms—Dynamic SPECT, Image Reconstruction, Regu-
larization, Optimization.

I. INTRODUCTION

DYNAMIC single photon emission computed tomography
(SPECT) aims to estimate the concentration distribution

of a gamma-ray emitting tracer inside a patient body as its
concentration changes with time. The temporal variation of the
concentration provides important information about radiotracer
pharmacokinetics and about the physiology of tissues and or-
gans [1]. The main challenge of dynamic SPECT is insufficient
temporal resolution [1], [2]. For example, in dynamic cardiac
SPECT imaging, the characteristic time of a significant change
in the imaged distribution during the input of the tracer is
on the order of seconds, while a typical modern dual-head
scanner requires more than half a minute to acquire a minimal
geometrically consistent dataset [3]. This temporal resolution
mismatch prevents one from applying the intuitive approach,
where the dynamic problem is solved as a series of static
reconstructed images independently generated from repeated
scans.

The technical goal of dynamic imaging is to determine the
time-varying intensity in each image voxel, also known as
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the time activity curve (TAC). Hardware limitations of the
camera and high noise contamination of the signal caused
by dose considerations make TAC determination in SPECT
a highly under-determined problem that can only be solved
as an optimization problem with constraints to reduce the
dimensionality of the problem.

Our underlying hypothesis is that the spatiotemporal tracer
distribution can be obtained as a single four-dimensional
(4D) solution to an optimization problem of fitting dynamic
SPECT projections with a number of imposed constraints. The
dynamic SPECT problem is solved in 4D by constraining
the temporal dimensions of the unknown voxel values to a
small number of functional forms with additional spatial and
temporal regularization terms based on prior knowledge.

Direct 4D reconstruction by constraining the temporal
component of the unknown distribution to a few functional
forms common for the entire reconstruction domain was
first implemented using a spline-based approach [5]. In this
approach, individual voxel TACs are expanded in terms of
several preset functions, and the expansion coefficients for
each voxel are determined by the reconstruction process. The
TACs are represented as a linear combination of a limited
number of preset time basis functions. The use of exponential-
based time functions was proposed in [4], and B-spline basis
functions were proposed in [5], [6]. An application of the B-
spline approach to dynamic pinhole SPECT is given in [7]
and most recently in [8]. Using preset temporal functions
has been shown to produce meaningful results; however,
the TACs obtained with this method are sometimes over-
smoothed, imprecise for some types of input functions, and
not always reliable for quantitation purposes.

An alternative approach to direct 4D reconstruction is based
on factor analysis of dynamic structures (FADS) [9], which is
a technique used in the analysis of dynamic sequences. FADS
can be used for automatic extraction of TACs for different
tissue types from reconstructed dynamic images, as well as
extraction of TACs directly from dynamic projections with no
prior reconstruction. In FADS, the shape of time-dependent
basis functions or factors is determined by the reconstruction
algorithm along with the expansion coefficients for each voxel.
As a result, it is argued that FADS determines the optimal time
basis functions for a dynamic tracer distribution. The FADS
technique has been previously applied in dynamic SPECT in
[10]-[13]. In these applications, however, the reconstruction al-
gorithm was highly sensitive to the initial choice of the number
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and type of factors, becoming unstable with an inappropriate
choice of the shape. As a result, the signal to noise ratio (SNR)
and accuracy were significantly reduced. These reports suggest
that direct application of this method may be overly sensitive
to the initial selection of the number of factors or otherwise
unstable.

Other methods have been proposed for the dynamic SPECT
problem such as dSPECT, which tries to estimate the time
activity curves for each voxel without factoring the activity
into temporal components. However, this method may result
in reconstructions with poor contrast between tissue types due
to insufficient constraints [14]-[16].

In this work, we propose a 4D reconstruction algorithm
SIFADS or spline-initialized factor analysis of dynamic struc-
tures that estimates time activity curves from the inconsistent
data generated in dynamic SPECT. The algorithm estimates
TACs from data acquired during the first rotation after the
tracer injection when its concentration is changing quickly
with respect to the speed of the camera rotation. The algorithm
is an extension of FADS with several adaptively weighted
regularization terms that impose anatomical constraints and
temporal smoothness.

We compared three algorithms in this work: a spline-based
method, FADS, and SIFADS. The theory of our approach and
the algorithms used to implement it are described in Section II.
In Section III, we describe the numerical simulations used to
validate our method and the dynamic SPECT experiments to
which our algorithm was applied. In Section IV, we present
validation results from numerical simulations and from real
dynamic scans. Finally, our conclusions are presented in
Section VI.

II. METHODS: THEORY AND ALGORITHMS

A. Dynamic SPECT
The forward problem in static SPECT (when tracer concen-

tration is assumed to be invariant in time) is defined as

Pn =
∑

k

Sn,kVk, (1)

where Vk is the intensity of the kth voxel where k = 1, . . . ,K;
Sn,k is the matrix element of the system matrix that describes
the geometrical parameters and physical properties of the
imaging system; and Pn is the expected counts detected in
the nth projection, n = 1, . . . , N . The inverse problem or
image reconstruction, when the values Vk are computed from
projections Pn, is usually solved by applying iterative inver-
sion algorithms that take into account the statistical properties
of the noisy projection data.

In dynamic SPECT, the imaged volume changes with time
while the projections are being acquired. We assume the
acquisition time is discretized into I short time intervals
defined by their endpoints ti. Assuming t0 ≡ 0, the dynamic
projection is defined as

Pn(ti) =

∫ ti

ti−1

∑

k

Sn,kVk(t) dt. (2)

In all the examples in this manuscript, we use uniform
temporal intervals ∆ti = ti − ti−1 equal to one second, the

minimum allowable single projection acquisition time for our
SPECT scanner. Non-uniform ∆ti could also be used.

Unlike in PET or some multi-pinhole SPECT scanners, a
SPECT scanner with rotating gantry cannot acquire a complete
dataset sufficient for the reconstruction of the V (ti) during
a single time frame. In fact, for each ti only one or two
projection views can be acquired by a typical SPECT system.
Denoting the number of projection bins in a single detector
head by Nview, we can formalize the relation between the
temporal interval index i and the general projection bin index
n in (2) for a two-head scanner. Assuming that the projection
index n is always formed by first running through the projec-
tion bins of the two detector heads for a fixed projection angle
and then incrementing the index by 2Nview, we have

i = dn/(2Nview)e, (3)

where dxe denotes the ceiling of x: the smallest integer larger
than or equal to x. Then,

Pn ≡ Pn(ti)|i=dn/(2Nview)e =

∫ ti

ti−1

∑

k

Sn,kVk(t) dt. (4)

In order to reduce the dimensionality of the problem, we
expand the time-dependent voxel intensities Vk(t) as a linear
combination of a small number J of time-dependent basis
functions or factors fj(t); j = 1, . . . , J . These functions
typically describe the temporal behavior of the tracer con-
centrations in different tissue types. When using a discrete
representation for both the volume and the factor arrays, the
intensity of the kth voxel is

Vk,i =
1

∆ti

∫ ti

ti−1

Vk(t) dt =
∑

j

Ck,jfj,i, (5)

where

fj,i =

∫ ti

ti−1

fj(t) dt.

The desired, discrete 4D tracer distribution Vk,i is fully de-
scribed by the time basis vectors f and the coefficient array
C. Combining the above model of the tracer dynamics (5) with
the forward propagation expression (4), we obtain the desired
model of the dynamic sinogram projection data:

Pn =
∑

k

(
Sn,k

∑

j

Ck,jfj,i

)∣∣∣∣∣∣
i=dn/(2Nview)e

, (6)

or, in matrix notation:

P = SCf. (7)

When the system matrix S is known and the acquired
projections array P follows a Poisson distribution, we propose
to solve the dynamic tomographic problem (variable sets f and
C) by maximizing the following log likelihood function;

L(P |C, f) =
∑

i,n

(
−
∑

k,j

Sn,kCk,jfj,i+ (8)

Pn log
(∑

k,j

Sn,kCk,jfj,i
)
− log(Pn!)

)∣∣∣∣∣
i=dn/(2Nview)e

.
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In order to estimate the desired solution of (8), we propose
to choose J , the number of factors, close to the number of
tissue types to be separated. In order to handle the limitations
of insufficient angular sampling for each time frame i, we
impose a number of regularization functions and then develop
an algorithm based on the FADS approach.

Our primary objective is to find the voxel TACs defined in
(5). The values of f and C are not important as long as the
result of their multiplication matches the true TACs as close
as possible.

B. Regularization Constraints

In this work, a number of constraints are used to solve
the dynamic tomography optimization problem. In order to
determine the necessary constraints, we employ the following
considerations: (i) Tissue separation is expected throughout
most of the region of reconstruction. Therefore, we expect
voxels that do not contain organ boundaries to be occupied by
a single tissue type, such as myocardium, liver, blood, or a type
of tissue that does not exhibit significant tracer uptake. This
means that for any voxel k, only one of the J coefficients Ck,j
can be significantly larger than zero. At this stage, we do not
take into account potential inhomogeneities of the functional
form of the TAC within any specific organ. We do expect
the factor functions to closely represent the TACs within the
largest single-tissue segments, such as the blood cavity, the
heart muscle, or the liver. (ii) Piecewise spatial smoothness
means that the change of tracer concentration within a single
tissue type has to be smooth. Therefore, for a fixed j, coeffi-
cients Ck,j within the region of the same tissue type must not
have large variations. (iii) Temporal smoothness arises from
the nature of the tracer kinetics, although smoothness of fj,t
is constrained separately for each tissue type j. (iv) Non-
negativity of the tracer distribution is preserved by enforcing
non-negativity of all fj,t and Ck,j values.

Algorithmically, the proposed constraints are implemented
by adding terms to the likelihood function (8) to be maximized
[17], [18]:

L̂(P |C, f) = L(P |C, f)−λ1Ω(C)−λ2Θ(C)−λ3Φ(f). (9)

The detailed expressions for the tissue separation constraint
Ω, piecewise spatial smoothness constraint Θ, and temporal
smoothness constraint Φ are given at the end of this section.
The relative weights of these terms are regulated by the scalar
weighting parameters λ1, λ2, and λ3. These parameters are
adjusted adaptively during the reconstruction procedure as
explained in Section II-D.

The first two of the proposed constraints rely on having
a prior estimate of the location of the different tissues. This
prior estimate is introduced in terms of a (non-binary) integer
mask computed from two binary masks. This integer mask
is further refined during the reconstruction process. The two
binary masks are computed as follows:
• First, a J × K binary static mask Ms is computed.

Tracer concentration changes rapidly during only the first
gantry rotation. Changes over subsequent rotations are
slow enough to perform a static reconstruction for each

rotation. We aggregate data from all rotations except the
first one to create a reconstructed image with lower noise
for the purpose of generating masks for myocardium,
blood pool (the left-ventricular cavity), and liver. Specifi-
cally, the reconstructed static image is first segmented into
tissue regions, then the mask elements Ms

kj are equal to
one in the identified tissue region and zero otherwise:

Ms
k,j =

{
1, voxel k is within tissue type j
0, otherwise.

(10)

• Second, at each iteration of the dynamic reconstruction
algorithm described in the next subsection, a dynamic
mask Md is computed by simple thresholding of the
current value of the elements in the coefficient array C:

Md
k,j =

{
0, if Ck,j ≥ τj ,
1, if Ck,j < τj ,

(11)

where the user defined thresholds τj are selected to
generate segments with areas similar or slightly exceeding
those in the static mask Ms.

• Finally, the integer mask is determined in terms of the
intersection between Ms and Md as follows:

Mk,j =





0, if Ms
k,j = Md

k,j = 0,

j, if Ms
k,j = Md

k,j = 1,

−1, otherwise.
(12)

This masking relates voxels to the corresponding factor
(j), or uncertain region (-1), or region of non-interest (0).
The exact value of the unique integer identifier constant
(-1) is irrelevant as long as it cannot be confused with
other elements. The definition of this final mask is
updated after each reconstruction iteration. In Fig. 1, the
mask creation algorithm is illustrated graphically.

FIGURES 12

Fig. 1. Integer masks (1-3, -1) are created for each of the three tissue types
and one for the uncertain region type using the intersection of (i) a static
mask MS creating by preprocessing the consistent data from later rotations,
and (ii) a dynamic mask.

The three regularization terms are defined below:
• Tissue separation Ω(C,M) is a penalty function that

discourages a voxel to have mixed tissue types. This term
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is a scalar product of the coefficient vectors, defined sim-
ilarly as the regularization term in [11], but applied only
to the voxels in uncertain regions where the coefficient
mixing is undesired:

Ω(C,M) =

K,J∑

k,j

( J∑

i|i 6=j

|Ck,j · Ck,i| · δ(Mk,j ,−1)
)
,

(13)
where δ is the delta function as defined by:

δ(a, b) =

{
1, a = b,

0, otherwise.
(14)

For voxels within well-segmented tissue types, we pre-
sume the coefficient values to be close to one.

• Spatial smoothness Θ(C,M) is an anisotropic total vari-
ation (ATV) function [25] applied to the voxels that
belong to the same tissue type. This technique allows the
algorithm to smooth the regions within the same tissue
type while the boundaries and edges are preserved:

Θ(C,M) =
∑

k,j

( ∑

n∈{Nk}

|Ck,j − Cn,j | · δ(Mk,j ,Mn,j)
)
,

(15)
where {Nk} is the set of the kth voxel’s immediate
neighbors.

• Temporal Smoothing function Φ(f) minimizes the differ-
ences between the time factor arrays:

Φ(f) =

J∑

j=1

T∑

t=2

|fj,t − fj,t−1|. (16)

C. Optimization Procedure

Our algorithm is a combination of the spline-based and the
FADS algorithms, thus we refer to it as the spline initialized
factor analysis of dynamic structures (SIFADS). The SIFADS
procedure consists of three stages:

1) Data preparation: forming the dynamic projection
dataset (timeframes from the first rotation) and the static
datasets (sum of the data from all subsequent rotations);
computing the system matrix values Sn,k; performing
the original static image reconstruction, and computing
elements of the the static segmentation mask Ms

k,j (10);
and initializing elements of the dynamic mask Md

k,j (11)
and the integer segmentation mask Mk,j (12).

2) Initialization: performing spline-based dynamic recon-
struction in order to initialize the factor functions and
coefficients.

3) Refinement: performing iterative refinement of the fac-
tors and factor coefficients.

The principal steps undertaken during these three stages are
provided in Algorithm 1, while more detailed descriptions of
stages 2 and 3 are provided in Algorithms 2 and 3, as defined
below. SIFADS (Algorithm 1) takes as input the system
matrix S, the dynamic sinogram P , and tissue segmentation
information expressed as the static mask Ms created from the
static reconstruction in the pre-processing stage using (10).
The initial mask is generated in line 4 from Ms by (12),

Algorithm 1. General steps of the SIFADS algorithm.

1: // STAGE 1: DATA PREPARATION:
2: Ms ← {Segmented Static Volume}; // Eq.(10)
3: Md ←Ms;
4: M← CreateMask(Ms,Md); // Eq.(12)
5: // STAGE 2: INITIALIZATION:
6: // Bsplines fitting
7: f0 ← {Bspline functions};
8: C0 ← 1;
9: C0 ← SP(C [0], f [0], P, S,M,Ms); // Algo.(2)

10: // Estimating initial curves and coefficients:
11: V (t)← C0f0; // Eq.(5)
12: f1 ← Average(V (t),M);
13: C1 ← 1;
14: C1 ← SP(C [1], f [1], P, S,M,Ms);
15: // STAGE 3: FADS REFINEMENT
16: (C∗, f∗,M)← FADS(C [1], f [1], P, S,M,Ms); //Alg(3)
17: // Estimate and output final TACs:
18: V (t)← C∗f∗;
19: f ← Average(V (t),M);

and the basis functions f0 and their respective coefficient
matrices are then initialized. The spline-based algorithm SP
(see Algorithm 2) is run subsequently in line 9. Its output
coefficients are then used to create initial factors in lines 11-
12 by averaging tissue-wise voxels, and another run of SP is
performed to determine the initial set of coefficients C1 (lines
13-14) for the FADS algorithm (line 16). The output 4D image
is computed in line 18, and the TACs are produced (line 19) by
averaging the time varying voxel values within each segment
once again using Ms.

Algorithm 2. MAP algorithm SP for estimating the coefficients C of given
B-splines or time basis functions.

1: SP(C, f, P, S,M,Ms){
2: // Initialization
3: P̂ ← 1; // A vector equal to sinogram size
4: C [1] ← 1;
5: γ0 ← 5.0; λ

[1]
1 = λ

[1]
2 ← 0.0001;

6: for i = 1 to NoIter do
7: // Create mask
8: Md ← Threshold(C [i]); // Eq.(11)
9: M← CreateMask(Ms,Md); // Eq.(12)

10: U ← λ
[i]
1 Ω(C [i],M) + λ

[i]
2 Θ(C [i],M);

11: U ′ ← ∂U
∂C[i] ;

12: C [i+1] ← C[i]∑
(ST P̂ fT )+U ′

∑(
ST P∑

SC[i]f
fT

)
;

13: // Update regularization parameters
14: E ← ||SC [i+1]f [i+1] − P ||22; // Data fit error
15: γ ← γ0( E

0.05||P ||22
)1/4;

16: λ
[i+1]
1 ← 1

γ
E

Ω(C[i+1],M)
;

17: λ
[i+1]
2 ← 1

γ
E

Θ(C[i+1],M)
;

18: end for
19: return C,M}
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Algorithm 2 shows the details of the spline-based algorithm
that uses MAP optimization. Within the iterations the masks
for tissue types are generated by thresholding the current (i-th
iteration) set of coefficients C [i] and then by intersecting those
with the segmentation Ms of the static reconstruction provided
as an input (lines 8-9). Lines 10-13 create the constraints and
use that to update the coefficients as per the MAP optimization
technique. Within the loop the tuning parameters are also
updated in lines 15-17 as described in the next subsection.

Algorithm 3. MAP algorithm for the FADS method.

1: FADS(C, f, P, S,M,Ms){
2: // Initialization
3: P̂ ← 1; // A vector equal to sinogram size
4: C [1] ← 1;
5: γ0 ← 5.0; λ

[1]
1 = λ

[1]
2 = λ

[1]
3 ← 0.0001;

6: for i = 1 to NoIter do
7: // Coefficient optimization:
8: Md ← Threshold(C [i]); // Eq.(11)
9: M← CreateMask(Ms,Md); // Eq.(12)

10: U1 ← λ1Ω(C [i],M) + λ2Θ(C [i],M);
11: U ′1 ← ∂U1

∂C[i] ;

12: C [i+1] ← C[i]∑
(ST P̂ fT [i])+U ′1

∑
(ST P∑

SC[i]f [i] f
T [i])

13: // Factor optimization:
14: U2 ← λ3Φ(f [i]);
15: U ′2 ← ∂U2

∂f [i] ;

16: f [i+1] ← f [i]∑
(SC[i+1])T P̂+U ′2

∑
(SC [i+1])T P∑

SC[i+1]f [i]

17: // Update regularization parameters
18: E ← ||SC [i+1]f [i+1] − P ||22; // Data fit error
19: γ ← γ0( E

0.05||P ||22
)1/4;

20: λ
[i+1]
1 ← 1

γ
E

Ω(C[i+1],M)
;

21: λ
[i+1]
2 ← 1

γ
E

Θ(C[i+1],M)
;

22: λ
[i+1]
3 ← 1

γ
E

Φ(f [i+1])
;

23: end for
24: return C, f,M}

Algorithm 3 describes the FADS algorithm. Here, lines 8-
12 are similar to the steps used in the spline-based algo-
rithm for determining the array C with a fixed factor array
f . Subsequently the factors are determined in line 16, and
the smoothness constraints are created in lines 14-15. The
constraints’ tuning parameters are updated in lines 18-22 as
in the spline-based algorithm (2).

The functions Threshold() and CreateMask() in steps 8-
9 in both Algorithm 2 and Algorithm 3 are computed using
(11) and (12), respectively. The updating MAP-EM formulas
in step 12 in Algorithm 2 and in step 16 in Algorithm 3 were
derived to maximize the likelihood function (9) with respect
to the C and f arrays [17][20].

D. Regularization Weighting Parameters

Choosing appropriate weights for multiple constraints is a
difficult task. Instead of manually and exhaustively experi-
menting to find the best set of values, we used a method
originally developed by Ito et al [19], [21] to dynamically

update these values in each iteration. The basic principle of
this method requires maintaining a balance between the data
fitting and regularization terms. This is achieved by comparing
the error levels using the least squares norm of the fit of the
data and the values of the three regularization terms. Then,
according to the comparison, the regularization weights are
updated within iterations to keep the desired balance. The
resulting expressions for updating the weight parameters are
illustrated in Algorithm 2, steps 14-17 and Algorithm 3, steps
18-22. The initial value of γ0 in step 5 in both Algorithms
2 and 3 was chosen according to the value used in [19].
The regularization parameters are monitored until the change
from iteration to iteration is relatively small. The coefficients
are also analyzed where convergence is determined when
the error in the fit does not change by more than some
convergence criteria. This technique provides an automatic
method to choose the correct weighting parameters. In our
experiments we found that the SIFADS algorithm provided
nearly the same relative weights and the same solution as when
we manually determined the optimum weighting parameters.
We also found that the estimated coefficients obtained either
from simulated or from real data were smooth and the tissues
were well separated as desired.

III. METHODS: SIMULATIONS AND EXPERIMENTATION

In this section we provide the numerical evidence of suc-
cessful application of the SIFADS algorithm. The ability of our
method to handle inconsistent projections was demonstrated
using simulated dynamic SPECT studies. Then, the algorithm
was applied to the dynamic SPECT studies of a canine subject
and a murine subject.

A. Simulations

The initial validation of SIFADS was performed by applying
the algorithm to simulated projection data and comparing the
reconstruction results to the known input data. All simulations
used the torso portion of the NCAT phantom [22], [23].
Three types of time-activity curves were generated for each
simulation: the input function (tracer concentration in the
blood pool) fB(t), the myocardium TAC fM (t), and the liver
TAC fL(t). The input function fB(t) was drawn by hand, and
the tissue curves were computed from it by using a single-
compartment model with physiologically plausible uptake and
washout parameters for each region. Simulated SPECT data
were modeled to correspond to the geometry attainable by our
GE Millennium VG3 SPECT camera. The projections were
generated by forward-projecting the known simulated distribu-
tions. The forward projections were computed using the same
system matrices used later in the real SPECT experiments
described in Sections IV-B for a canine subject and IV-C for a
rat subject. For the pinhole-collimator, a 80×80×80 section of
the NCAT phantom was used; I = 90 one-second views were
generated over a 360◦ rotation, with 128× 88 projection bins
per view. For the parallel-projection case, a 64×64×41 section
of the phantom was used; seventy two one-second views of
64 × 64 bins were generated. Real objects are continuous
so a limitation in the simulation was that projections were
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FIGURES 13
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Fig. 1. Set-up of a simulated dynamic SPECT study using the NCAT phantom. (a) Coefficient distributions generated for the blood, myocardium, and liver. (b)
Selected TACs: blood input function, myocardium, and liver. (c) Samples of projections generated without noise added. (d) Samples of projections generated
with Poisson noise added.

Fig. 2. Set-up of a simulated dynamic SPECT study using the NCAT phantom. (a) Coefficient distributions generated for the blood, myocardium, and liver. (b)
Selected TACs: blood input function, myocardium, and liver. (c) Samples of projections generated without noise added. (d) Samples of projections generated
with Poisson noise added.

simulated using a discrete system matrix applied to a discrete
source distribution. In order to simulate the dynamic data,
the phantom volumes were segmented into three ROIs: blood
pool inside myocardium cavity, myocardium, and liver. The ith

projection view were simulated by forward projecting the ith

realization of the phantom along the angle that corresponded to
the t = ti. The activity inside the phantom during the ith time
interval (ti−1, ti) was assumed to be constant. The generated
values were used as the variance in generating Poisson pseudo-
random numbers for the projection values. Another limitation
was that the simulation did not replicate continuous rotation
as was the case in the actual experiments. Twenty datasets
with different input functions were used for each pinhole or
parallel-hole collimator geometry model. The set-up of the
simulation studies is illustrated in Fig. 2.

B. Canine Imaging Study

A GE Millennium VG3 Hawkeye SPECT/CT camera with
low-energy high-resolution parallel-hole collimators was used
to acquire data from a canine subject. The rest-study was
performed with the detector heads in H-mode rotating con-
tinuously. Injection of 3.7 mCi (1.37× 108 Bq) of 201Tl was
administered at the onset of the acquisition that continued for
20 minutes. Then a stress-study was performed by injecting
250 µg/kg/min of adenosine at an infusion rate of 1.5 ml/min.
The dynamic scan started immediately upon injection of 15
mCi (5.55 × 108 Bq) of 99mTc-sestamibi approximately 3.5
min after the start of the adenosine stress. The scan continued
acquiring 20 tomographic rotations. For each rotation, two sets
of 72 one-second projections over 360◦ were acquired. Each
view contained 64×64 projection bins. The bin dimensions
were 4.42 mm. According to the vendor specifications, the
detector resolution is 100 mm when using a low-energy high-
resolution (LEHR) collimator and 3/8 inch crystal is 7.7 mm.
The system matrix was generated to reconstruct the acquired
static and dynamic projections. The gamma-ray attenuation
was modeled using the attenuation map acquired using the X-
ray CT of the SPECT/CT camera. The collimator blur was
modeled using an empirically measured blurring kernel as
described in the Appendix in [30].

C. Rat Pinhole SPECT Study
Projection data of a rat subject were acquired using the

same dual-detector GE Millennium VG3 Hawkeye SPECT/CT
system as described above equipped with pinhole collimators.
Each collimator had a 2× 1.5 mm (transaxial × axial dimen-
sions) pinhole 25 cm above the center of the detector. The
active area of each projection view contained 128×88 (lateral
by axial) bins with an intrinsic spatial resolution of 4.6 mm
and an energy resolution of 9.8%. The rat was anesthetized
first and then injected with 1 mCi (3.70 × 107 Bq) of 201Tl
and scanned for 12 rotations. Then, the rat was injected with
5 mCi (1.85× 108 Bq) of 123I-MIBG and imaged for another
60 tomographic rotations. Each complete rotation consisted of
90 angular frames per detector head acquired every second
(2 opposing heads were used). The system parameters and
the acquisition protocol for this series of rat experiments
are described in more detail in [7] and [8]. Analysis of the
penetration and scatter through the pinhole for this system
is given in [33]. The system matrix was constructed taking
into account the collimator blur. The attenuation and scatter
were not included. In the past, we tried attenuation modeling
for rats, but no major improvements were noticed, primarily
because the slice resolution of our Hawkeye CT did not
provide sufficient resolution for small animals such as rats.

D. Evaluation of Results
The final output of SIFADS are three results: (1) final

factors, (2) corresponding 3D coefficient for each factor, and
(3) 4D reconstructed image (the dynamic series of 3D images)
computed by multiplying these two. Furthermore, the tissue-
specific TACs are also computed by averaging the TACs for the
corresponding voxels in the tissue-segments, using the mask.
In the simulation experiments, when the ground truth used for
generating the dynamic datasets was known, we evaluated the
spatial and temporal accuracies of the algorithm from the final
reconstructions.

Spatial accuracy was measured from the estimated co-
efficients of each tissue type. The algorithm automatically
segmented the imaged volume into a number of tissue types
and estimated the coefficients for each segment. The segmen-
tation was evaluated using the dice similarity coefficient (DSC)
technique, as described in [26], [27]:
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Fig. 3. Spline method in simulation: Illustration of the spline-based method applied to reconstruct a simulated dynamic dataset. Each column represents an
experiment attempting to recover the original TACs using a different set of B-splines. Top row: Sets of basis functions used in the reconstruction: three, four,
and five temporal B-splines. Middle row: Reconstructed TACs for the three numerical experiments. The RMS of each curve is included in parentheses in
the corresponding legend. Bottom row: Estimated tissue distributions for the three experiments (These are coefficient values and the colors have no intrinsic
meaning). The best estimation was achieved using four B-splines (second column).

DSC(Ĉj) =
2⇥ |Ĉest.

j \ Ĉtrue
j |

|Ĉest.
j | + |Ĉtrue

j |
, (17)

where Ĉest
j denoted the estimated coefficients of factor j or

tissue type j 2{Blood, Myocardium, Liver}, Ĉtrue
j denoted

the binary mask of the region of interest of tissue type j, and
|C| indicated the number of voxels in C. Both the estimated
and ground truth were converted to a binary format using (11).
DSC=1 means the segmentation is 100% accurate, and for
DSC=0 the segmentation is completely inaccurate [28].

Temporal accuracy was measured by computing the Root
Mean Square (RMS) between the reconstructed TACs and the
known ground truth:

RMS(TACj) =

vuut
P

i

⇥
(TACest.

j )i � (TACtrue
j )i

⇤2
P

i(TACtrue
j )2i

,

(18)
where (TACest.

j )i denotes the value of the estimated time
activity curve of tissue type j at time ti and (TACtrue

j )i is
the corresponding ground truth TAC value used as an input in
the simulation. When the RMS goes to zero, this corresponds
to a perfect recovery of the TAC.

IV. RESULTS

In this section we present the results of the proposed
algorithm and compare it to the results of the spline-based
and FADS methods. The three algorithms were implemented
and tested on an Apple Xserve (Early 2009) running Mac
OS X server. The machine had two dual quad-core 2.93 GHz
Xeon processors and 12 GB of RAM. After implementation
in C, the three algorithms were tested against the simulated
data described in the previous section with the same number
of iterations. Specifically, the total number of iterations for
the spline-based and FADS algorithms was set to 30. The
number 30 was chosen for all three algorithms where it was
determined that the objective function for each algorithm had
converged based upon a convergence criterion. One algorithm
might have converged in fewer iterations but the number was
chosen such that all three had converged. For SIFADS, the
number of iterations was set to 10 in each stage, which adds
up to a total of 30. For a volume of size 64⇥64⇥41 voxels
and a dynamic sinogram of 64⇥41 pixels by 72 projections,
the total CPU running time to perform a complete dynamic
reconstruction was 9.4 minutes for the spline-based algorithm,
15.1 minutes for the FADS algorithm, and 16.9 minutes for
the SIFADS algorithm.

Fig. 3. Spline method in simulation: Illustration of the spline-based method applied to reconstruct a simulated dynamic dataset. Each column represents an
experiment attempting to recover the original TACs using a different set of B-splines. Top row: Sets of basis functions used in the reconstruction: three, four,
and five temporal B-splines. Middle row: Reconstructed TACs for the three numerical experiments. The RMS of each curve is included in parentheses in
the corresponding legend. Bottom row: Estimated tissue distributions for the three experiments (These are coefficient values and the colors have no intrinsic
meaning). The best estimation was achieved using four B-splines (second column).

DSC(Ĉj) =
2× |Ĉest.j ∩ Ĉtruej |
|Ĉest.j |+ |Ĉtruej |

, (17)

where Ĉestj denoted the estimated coefficients of factor j or
tissue type j ∈{Blood, Myocardium, Liver}, Ĉtruej denoted
the binary mask of the region of interest of tissue type j, and
|C| indicated the number of voxels in C. Both the estimated
and ground truth were converted to a binary format using (11).
DSC=1 means the segmentation is 100% accurate, and for
DSC=0 the segmentation is completely inaccurate [28].

Temporal accuracy was measured by computing the Root
Mean Square (RMS) between the reconstructed TACs and the
known ground truth:

RMS(TACj) =

√√√√
∑
i

[
(TACest.j )i − (TACtruej )i

]2
∑
i(TAC

true
j )2

i

,

(18)
where (TACest.j )i denotes the value of the estimated time

activity curve of tissue type j at time ti and (TACtruej )i is
the corresponding ground truth TAC value used as an input in
the simulation. When the RMS goes to zero, this corresponds
to a perfect recovery of the TAC.

IV. RESULTS

In this section we present the results of the proposed
algorithm and compare it to the results of the spline-based
and FADS methods. The three algorithms were implemented
and tested on an Apple Xserve (Early 2009) running Mac
OS X server. The machine had two dual quad-core 2.93 GHz
Xeon processors and 12 GB of RAM. After implementation
in C, the three algorithms were tested against the simulated
data described in the previous section with the same number
of iterations. Specifically, the total number of iterations for
the spline-based and FADS algorithms was set to 30. The
number 30 was chosen for all three algorithms where it was
determined that the objective function for each algorithm had
converged based upon a convergence criterion. One algorithm
might have converged in fewer iterations but the number was
chosen such that all three had converged. For SIFADS, the
number of iterations was set to 10 in each stage, which adds
up to a total of 30. For a volume of size 64×64×41 voxels
and a dynamic sinogram of 64×41 pixels by 72 projections,
the total CPU running time to perform a complete dynamic
reconstruction was 9.4 minutes for the spline-based algorithm,
15.1 minutes for the FADS algorithm, and 16.9 minutes for
the SIFADS algorithm.
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Fig. 4. FADS in simulation: Illustration of the FADS method applied to reconstruct a single dynamic dataset. Each column represents an experiment attempting
to recover the original TACs using a different initial set of initial temporal basis functions. Top row: Three initial guesses of the three factors. Middle row: TACs
reconstructed for the corresponding initial guesses. The RMS of each curve is included in parentheses in the corresponding legend. Bottom row: Reconstructed
tissue coefficient distributions (These are coefficient values and the colors have no intrinsic meaning). Slight differences in the initial choice of the basis
functions result in significantly different estimation of TACs and tissue concentration.

A. Simulated SPECT Studies

Over twenty simulated projection datasets with different
input functions and uptake and washout parameters were
generated. Each dataset was reconstructed with three different
approaches: Splines-based, FADS, and SIFADS. For all nu-
merical experiments, the accuracy of the TAC estimation was
evaluated using the RMS (18) and the quality of the tissue
separation was evaluated by the DSC (17).

The performance of the spline-based method is illustrated
in Fig. 3 for one of the input datasets. The top row shows
three different choices of the temporal basis set with three,
four, and five B-splines. The coefficients for each of these
sets of B-splines were estimated using Algorithm 2 presented
in the Section II-C. The myocardium, blood and liver TACs
were extracted by averaging across each ROI (middle-row).
Fig. 3 clearly illustrates that the performance of the spline-
based method critically depends on the selection of the basis,
producing results with poorly recovered TACs (large RMS
values shown in the middle row) and segmentations (DSC
values smaller than one as shown in the bottom row). Having
some prior estimate of the TACs could facilitate a better choice
of the B-spline basis. In PET, this could be achieved using the
head curves as suggested in [29]; however, this approach is not
available in SPECT due to the limited number of projections

at each time frame.
The performance of the FADS method is illustrated in Fig. 4

using a single dynamic dataset and three choices of initial
guesses for the tissue TACs (top-row). The number of factors
was selected to be equal to the number of segments obtained
from the static image, which was reconstructed from later
aggregated projections. For example, the number of factors
selected in the rat study presented in the Fig. 8 was three,
the same as the number of segments observed in the static
image. Our experiments show that using a higher or smaller
number of factors provide less accurate results. The example
results in Fig. 4 demonstrate extreme sensitivity of the method
to the initial choice of the factor functions. The RMS of the
estimated TACs and the DSC of the segmentation accuracy
are shown in the middle and bottom rows of the figure.

Fig. 5 shows three examples of the SIFADS method applied
to three simulated dynamic projection datasets. The quality
of both the reconstructed TACs and the estimated tissue
distribution is superior to that achieved using only the spline-
based or FADS methods. Note that the input curves in the first
column in Fig. 5 are the same as those used in Figs. 3 and 4,
while the curves in the middle and the right columns in Fig. 5
are more complex.

In Fig. 6, we compare the two numerical measures of the
reconstruction quality for the three algorithms based on the

Fig. 4. FADS in simulation: Illustration of the FADS method applied to reconstruct a single dynamic dataset. Each column represents an experiment attempting
to recover the original TACs using a different initial set of initial temporal basis functions. Top row: Three initial guesses of the three factors. Middle row: TACs
reconstructed for the corresponding initial guesses. The RMS of each curve is included in parentheses in the corresponding legend. Bottom row: Reconstructed
tissue coefficient distributions (These are coefficient values and the colors have no intrinsic meaning). Slight differences in the initial choice of the basis
functions result in significantly different estimation of TACs and tissue concentration.

A. Simulated SPECT Studies

Over twenty simulated projection datasets with different
input functions and uptake and washout parameters were
generated. Each dataset was reconstructed with three different
approaches: Splines-based, FADS, and SIFADS. For all nu-
merical experiments, the accuracy of the TAC estimation was
evaluated using the RMS (18) and the quality of the tissue
separation was evaluated by the DSC (17).

The performance of the spline-based method is illustrated
in Fig. 3 for one of the input datasets. The top row shows
three different choices of the temporal basis set with three,
four, and five B-splines. The coefficients for each of these
sets of B-splines were estimated using Algorithm 2 presented
in the Section II-C. The myocardium, blood and liver TACs
were extracted by averaging across each ROI (middle-row).
Fig. 3 clearly illustrates that the performance of the spline-
based method critically depends on the selection of the basis,
producing results with poorly recovered TACs (large RMS
values shown in the middle row) and segmentations (DSC
values smaller than one as shown in the bottom row). Having
some prior estimate of the TACs could facilitate a better choice
of the B-spline basis. In PET, this could be achieved using the
head curves as suggested in [29]; however, this approach is not
available in SPECT due to the limited number of projections

at each time frame.

The performance of the FADS method is illustrated in Fig. 4
using a single dynamic dataset and three choices of initial
guesses for the tissue TACs (top-row). The number of factors
was selected to be equal to the number of segments obtained
from the static image, which was reconstructed from later
aggregated projections. For example, the number of factors
selected in the rat study presented in the Fig. 8 was three,
the same as the number of segments observed in the static
image. Our experiments show that using a higher or smaller
number of factors provide less accurate results. The example
results in Fig. 4 demonstrate extreme sensitivity of the method
to the initial choice of the factor functions. The RMS of the
estimated TACs and the DSC of the segmentation accuracy
are shown in the middle and bottom rows of the figure.

Fig. 5 shows three examples of the SIFADS method applied
to three simulated dynamic projection datasets. The quality
of both the reconstructed TACs and the estimated tissue
distribution is superior to that achieved using only the spline-
based or FADS methods. Note that the input curves in the first
column in Fig. 5 are the same as those used in Figs. 3 and 4,
while the curves in the middle and the right columns in Fig. 5
are more complex.

In Fig. 6, we compare the two numerical measures of the
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Fig. 5. SIFADS in simulation: Results of SIFADS algorithm for three simulated projection datasets. Top row: Simulated TACs. Middle row: Reconstructed
TACs plotted against the ground truth curves (dotted gray lines). The RMS of each curve is included in parentheses in the corresponding legend. Bottom row:
Reconstructed tissue distributions (These are coefficient values and the colors have no intrinsic meaning).
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Fig. 6. Different algorithm performance results from ten numerical experiments with different input TACs. (a) Mean dice similarity coefficient measure for
the myocardium, blood, and liver regions computed using (17). (b) Mean Root Mean Square error of the estimated TACs computed using (18).

Fig. 5. SIFADS in simulation: Results of SIFADS algorithm for three simulated projection datasets. Top row: Simulated TACs. Middle row: Reconstructed
TACs plotted against the ground truth curves (dotted gray lines). The RMS of each curve is included in parentheses in the corresponding legend. Bottom row:
Reconstructed tissue distributions (These are coefficient values and the colors have no intrinsic meaning).
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Fig. 6. Different algorithm performance results from ten numerical experiments with different input TACs. (a) Mean dice similarity coefficient measure for
the myocardium, blood, and liver regions computed using (17). (b) Mean Root Mean Square error of the estimated TACs computed using (18).
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Fig. 7. Caine SPECT: Results of the SIFADS method applied to the canine dataset as described in Section ??. Four different sets of the initial factor functions
(left column) produce very similar TACs (middle column) and tissue distributions (right column). The similarity of the resulting TACs is also confirmed by
small values of pair-wise RMS differences provided in Table ??.

the reconstruction quality for the three algorithms based on
the application of these algorithms to ten simulated datasets
with different hand-drawn input TACs. The performance of
the SIFADS algorithm is comparable or superior to the per-
formance of the spline-based or FADS methods.

B. Canine SPECT Study

Four different choices of the B-spline set were used to
form the initial guess for the FADS portion of the algorithm.
The results of all four SIFADS reconstructions of the canine
dynamic SPECT data are shown in Fig. ??. The figure shows
that reconstructing four independent TACs allowed us to
recover the tracer concentration in the right ventricle.

In order to measure the level of similarity of the TACs
computed using different initial estimates of the factors, we
computed the pairwise differences between RMSs of the four
reconstruction results. The differences were computed using

Experiments RV LV Myocardium Lung 

1-2 0.1752 0.0198 0.0143 0.0197 
1-3 0.1874 0.0197 0.0121 0.0223 
1-4 0.1543 0.0228 0.0247 0.0310 
2-3 0.0261 0.0075 0.0076 0.0129 
2-4 0.0475 0.0122 0.0161 0.0179 
3-4 0.0549 0.0107 0.0190 0.0264 

TABLE I
PAIRWISE RMS DIFFERENCES, CANINE DATA RECONSTRUCTIONS,

FIG. ??.

the same approach as in (??), with TACest
j and TACtrue

j

substituted by two versions of the reconstruction. The RMS
differences between each pair of the four experiments provided
in Table ?? show that the algorithm converged to the same

Fig. 7. Caine SPECT: Results of the SIFADS method applied to the canine dataset as described in Section IV-B. Four different sets of the initial factor
functions (left column) produce very similar TACs (middle column) and tissue distributions (right column). The similarity of the resulting TACs is also
confirmed by small values of pair-wise RMS differences provided in Table I.

reconstruction quality for the three algorithms based on the
application of these algorithms to ten simulated datasets with
different hand-drawn input TACs. The performance of the
SIFADS algorithm is comparable or superior to the perfor-
mance of the spline-based or FADS methods.

B. Canine SPECT Study

Four different choices of the B-spline set were used to
form the initial guess for the FADS portion of the algorithm.
The results of all four SIFADS reconstructions of the canine
dynamic SPECT data are shown in Fig. 7. The figure shows
that reconstructing four independent TACs allowed us to
recover the tracer concentration in the right ventricle.

In order to measure the level of similarity of the TACs
computed using different initial estimates of the factors, we
computed the pairwise differences between RMSs of the four
reconstruction results. The differences were computed using

TABLES 21

Experiments RV LV Myocardium Lung 

1-2 0.1752 0.0198 0.0143 0.0197 
1-3 0.1874 0.0197 0.0121 0.0223 
1-4 0.1543 0.0228 0.0247 0.0310 
2-3 0.0261 0.0075 0.0076 0.0129 
2-4 0.0475 0.0122 0.0161 0.0179 
3-4 0.0549 0.0107 0.0190 0.0264 

TABLE I
PAIRWISE RMS DIFFERENCES, CANINE DATA RECONSTRUCTIONS, FIG. 7.TABLE I

PAIRWISE RMS DIFFERENCES, CANINE DATA RECONSTRUCTIONS,
FIG. 7.

the same approach as in (18), with TACestj and TACtruej

substituted by two versions of the reconstruction. The RMS
differences between each pair of the four experiments provided
in Table I show that the algorithm converged to the same
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Fig. 8. Murine SPECT: Results of four reconstructions with different initializations for estimating time activity curves from the dynamic pinhole SPECT
projections in the rat imaging experiment. Column one shows the B-splines used as initial estimates of the factors in each case. Column two shows the
estimated TACs. Column three shows the estimated coefficients. Table ?? below shows the RMS differences between each pair of the four reconstructions.
The difference values are small, confirming that the estimated TACs’ low dependence on the initial guess of the factor functions.

activity curves for all four initial choices of f , illustrating
stability of the SIFADS algorithm.

C. Rat SPECT Study

The dynamic reconstruction using SIFADS was performed
to estimate TACs of three ROIs including blood pool in the left
ventricle, myocardium, and liver. Fig. ?? shows the estimated
TACs for the dynamic cardiac SPECT of a rat with several
different choices of B-splines for forming the initial array
of the temporal basis f . The pair-wise RMS differences (for
the four reconstructed experiments) computed using (??) are
shown in Table ??. In all instances, the TACs converged to
the same curves, confirming the stability of our algorithm.

V. DISCUSSION

The new algorithm of reconstructing time-dependent images
from dynamic projection data presented in this manuscript
has three major contributions. First, our method combines the
spline-based and FADS methods to provide accurate recovery
of time activity curves. Second, our SIFADS method utilizes
the iterative optimization procedure with adaptive adjustment

Experiments Blood Myocardium Liver 

1-2 0.00020 0.00016 0.00027 
1-3 0.00175 0.00046 0.00059 
1-4 0.00115 0.00061 0.00046 
2-3 0.00170 0.00057 0.00044 
2-4 0.00111 0.00075 0.00037 
3-4 0.00070 0.00036 0.00053 

TABLE II
PAIRWISE RMS DIFFERENCES, RAT DATA RECONSTRUCTIONS, FIG. ??.

of weighting factors of spatiotemporal constraints, which ef-
ficiently segments different tissue types. Finally, we validated
our method using both simulated projection data and two real
SPECT datasets from animal studies.

The main challenge of dynamic SPECT reconstruction is
the underdetermined nature of the tomographic problem and
the large number of unknowns. The large size of the array of
unknown coefficients or intensities to be reconstructed makes
the computation slow. The fact that the number of unknowns
is far greater than the number of equations in the discrete

Fig. 8. Murine SPECT: Results of four reconstructions with different initializations for estimating time activity curves from the dynamic pinhole SPECT
projections in the rat imaging experiment. Column one shows the B-splines used as initial estimates of the factors in each case. Column two shows the
estimated TACs. Column three shows the estimated coefficients. Table II below shows the RMS differences between each pair of the four reconstructions.
The difference values are small, confirming that the estimated TACs’ low dependence on the initial guess of the factor functions.

activity curves for all four initial choices of f , illustrating
stability of the SIFADS algorithm.

C. Rat SPECT Study

The dynamic reconstruction using SIFADS was performed
to estimate TACs of three ROIs including blood pool in the left
ventricle, myocardium, and liver. Fig. 8 shows the estimated
TACs for the dynamic cardiac SPECT of a rat with several
different choices of B-splines for forming the initial array
of the temporal basis f . The pair-wise RMS differences (for
the four reconstructed experiments) computed using (18) are
shown in Table II. In all instances, the TACs converged to the
same curves, confirming the stability of our algorithm.

V. DISCUSSION

The new algorithm of reconstructing time-dependent images
from dynamic projection data presented in this manuscript
has three major contributions. First, our method combines the
spline-based and FADS methods to provide accurate recovery
of time activity curves. Second, our SIFADS method utilizes
the iterative optimization procedure with adaptive adjustment

TABLES 22
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1-2 0.00020 0.00016 0.00027 
1-3 0.00175 0.00046 0.00059 
1-4 0.00115 0.00061 0.00046 
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3-4 0.00070 0.00036 0.00053 
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of weighting factors of spatiotemporal constraints, which ef-
ficiently segments different tissue types. Finally, we validated
our method using both simulated projection data and two real
SPECT datasets from animal studies.

The main challenge of dynamic SPECT reconstruction is
the underdetermined nature of the tomographic problem and
the large number of unknowns. The large size of the array of
unknown coefficients or intensities to be reconstructed makes
the computation slow. The fact that the number of unknowns
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is far greater than the number of equations in the discrete
formulation of the tomographic problem imposes the necessity
for various constraints. Sometimes, some of the constraints
may alter the solution, making it less accurate. The simplest
example is the use of smoothing regularization terms, which
may blur tissue boundaries. Alternatively, the tissue separation
regularization term that we use may enforce artifacts by
preventing partial volume correction in the boundary voxels.
This results in spillover cross-contamination of the factor
functions for different tissues [24]. We fully realize the caveats
of the constraints; however, in the dynamic SPECT case
the inaccuracies introduced by the regularization constraints
represent the necessary price that we have to pay for the very
ability to obtain a stable estimate of the post-injection dynamic
tracer concentration.

One other area where the stability of the algorithm and
the ability to find a unique solution to the inverse problem
takes priority over other considerations is the application
of various corrections in our reconstruction. In particular,
we believe that correcting for organ motion is not plausible
for the considered dynamic SPECT problem. Current motion
correction approaches involve subdividing the projection data
into subsets that correspond to different spatial configurations.
This subdivision would make the problem even more ill-posed,
making a stable solution impossible, because there would not
be sufficient projection data points to enable adequate motion-
corrected reconstruction. However, one would expect to obtain
stable solutions by incorporating a projection sinogram-level
correction [31], [32]. This is an approximate method that can
produce only partial corrections, but it is appealing because it
does not reduce the amount of projection data used to solve
the dynamic problem.

Finally, there is some similarity between our approach and
the robust principal component analysis with low rank and
spares matrix optimization [34] that has applications in MRI
[35] and in PET [36]. These cited authors decompose data into
two additive components for the purpose of sparsification: a
static low rank matrix and a sparse motion noise matrix. In
contrast, we decompose data into two multiplicative compo-
nents: a few factor functions and the corresponding coefficient
matrices.

The primary purpose of developing SIFADS was to address
the sensitivity of FADS to the initial choice of factors. Even
still, SIFADS remains dependent on a prior knowledge of the
number of significant factors (tissue types having distinct time
activities) and an accurate selection of ROIs corresponding
to the factors that best represent the kinetics of the tracer.
For a particular dynamic imaging protocol, we found that it
took some effort to satisfy these two conditions. The SIFADS
method will fail if the wrong number of factors were selected
or if the ROIs were poorly selected which can happen with
noisy data. For each data set we determined (by trial and error)
the correct number of factors and the mask for anatomical
regions of interest that corresponded to particular factors such
as right and left ventricular blood pools, and myocardial tissue.
If the data are such that the acquisition does not capture the
true kinetics of the tracer, then the SIFADS method cannot
estimate true activity cures. Also it would be expected that if

the data have several factors then the estimation becomes more
challenging with increased errors in the estimated parameters
and the increased potential of non-unique solutions. The accu-
racy of the SIFADS method improves as the timing resolution
of the acquisition is improved, count statistics are improved,
and the number of factors is small. A limitation of our present
work is not having quantified the sensitivity of SIFADS to the
accuracy of ROI selection.

VI. CONCLUSIONS

SIFADS, a hybrid algorithm combining spline-based and
factor analysis methods, has been developed to estimate blood
input function and myocardial tissue time activity curves. Our
algorithm uses a combination of regularization functions that
improve the estimation of the blood input function and tissue
time-activity curves from the inconsistent projections acquired
during the early rotations in dynamic SPECT imaging. The
regularization functions exploit the anatomical structures ob-
tained from the static reconstruction of the later reconstructed
consistent frames. The relative weighting of the regularization
terms changes adaptively during the iterative reconstruction
process, allowing the optimal utilization of the tomographic
projection data and the prior knowledge. Our method was vali-
dated using simulated SPECT projection data, and then applied
it to two different types of real cardiac SPECT data acquired
using slow gantry rotation. In simulation the method provided
better segmentation as measured by the DSC: spline (0.369
- 0.909), FADS (0.117 - 0.885), and SIFADS (0.698-0.999);
and better TACs as measured by RMS: spline (0.712 - 0.039),
FADS (0.443 - 0.016), and SIFADS (0.2 - 0.005). The SIFADS
algorithm provides a method for extracting kinetic information
from a very difficult dynamic reconstruction problem involving
the acquisition of data in rodent studies with slowly rotating
gamma cameras mounted with pinhole collimators.
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