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ABSTRACT OF THE DISSERTATION

The essential p-dimension of finite simple groups of Lie type

by

Hannah Knight

Doctor of Philosophy in Mathematics

University of California, Irvine, 2023

Associate Professor Jesse Wolfson, Chair

In this dissertation, we compute the essential p-dimension of the split finite quasi-simple

groups of classical Lie type at the defining prime, specifically the quasi-simple groups arising

from the general linear and special linear groups, the symplectic groups, and the orthogonal

groups. Also, for odd primes l not equal to the defining prime, we compute the essential l-

dimension of the finite groups of classical Lie type, specifically the general linear and special

linear groups, the symplectic groups, the orthogonal groups, and the unitary groups, and the

non-abelian simple factors in their Jordan-Hölder series.
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1 Introduction

In my thesis, I study the essential p-dimension of the finite simple groups of Lie type. In

particular, I calculate the essential p-dimension at the defining prime for the finite quasi-simple

groups groups of classical Lie type and the essential l-dimension of the groups at a prime l,

where l 6= 2 and l 6= p (where p is the defining prime). I also calculate the essential 2-dimension

for the linear groups in the case q ≡ 1 (mod 4) and for the unitary groups in the case q ≡ 3

(mod 4).

Fix a field k. The essential dimension of a finite group G, denoted edk(G), is the small-

est number of algebraically independent parameters needed to define a Galois G-algebra over

any field extension F/k (or equivalently G-torsors over SpecF ). In other words, the essential

dimension of a finite group G is the supremum taken over all field extensions F/k of the small-

est number of algebraically independent parameters needed to define a Galois G-algebra over

F . The essential p-dimension of a finite group, denoted edk(G, p), is similar: the essential p-

dimension of a finite group is the supremum taken over all fields F/k of the smallest number of

algebraically independent parameters needed to define a Galois G-algebra over a field extension

L/F of degree prime to p. See Section 2 for more formal definitions. See also [4] and [10] for more

detailed discussions. For a discussion of some interesting applications of essential dimension and

essential p-dimension, see [20].

What is the essential dimension of the finite simple groups? This question is quite difficult

to answer. A few results for small groups (not necessarily simple) have been proven. For

example, it is known that edk(S5) = 2, edk(S6) = 3 for k of characteristic not 2 [2], and

edk(A7) = edk(S7) = 4 in characteristic 0 [5]. It is also known that for k a field of characteristic

0 containing all roots of unity, edk(G) = 1 if and only if G is isomorphic to a cyclic group Z/nZ

or a dihedral group Dm where m is odd ([4], Theorem 6.2). Various bounds have also been

proven. See [4], [13], [20],[16], among others. For a nice summary of the results known in 2010,

see [20].

We can find a lower bound to this question by considering the corresponding question for

essential p-dimension. The results in my thesis can be summarized in two main theorems:

1



Theorem 1.1. Let p be a prime, k a field with char k 6= p. Then

(1) (Theorem 4.1, Bardestani-Mallahi-Karai-Salmasian p 6= 2 [1], K. p = 2)

edk(PSLn(Fpr), p) = edk(GLn(Fpr), p) = rpr(n−2).

(2) (Theorem 5.1)

edk(PSp(2n, p
r), p) = edk(Sp(2n, p

r), p) =


rpr(n−1), p 6= 2 or n = 2

r2r(n−1)−1(2r(n−2) + 1), p = 2, n > 2

(3) (Theorem 6.1)

edk(PΩε(n, pr), p) = edk(Ωε(n, pr), p) =



r, n = 3, p 6= 2

2r, n = 4, any p

rp2r(m−2), n = 2m, n > 4, any p

rpr(m−1)(m−2) + rpr(m−1), n = 2m+ 1, n ≥ 5, p 6= 2

Furthermore, edk(O
ε(2m, 2r), 2) = 1+edk(Ω

ε(2m, 2r), 2), and for p 6= 2, edk(Ω
ε(n, pr), p) =

edk(O
ε(n, pr), p).

Definition 1.2. For l a prime, n ∈ Z, let νl(n) denote the highest power of l dividing n. And

let µl(n) denote the the largest integer d such that ld ≤ n.

Theorem 1.3. Let p be a prime, q = pr, and l a prime with l 6= p. Let k be a field with

char k 6= l. Let d be the smallest positive integer such that l
∣∣ qd − 1. Let s = νl(q

d − 1),

and let n0 = bnd c. Assume that k contains a primitive ls-th root of unity. Then

(1) (Theorem 7.1) If l = 2, assume that q ≡ 1 (mod 4). Then for all l,

edk(GLn(Fq), l) =

µl(n0)∑
k=0

(
bn0

lk
c − lb n0

lk+1
c
)
lk

2



(2) (Theorem 8.1) Let µl(n)′ denote the smallest k such that b n
lk
c− lb n

lk+1 c > 0. If l = 2, assume

that q ≡ 1 (mod 4). Then for all l,

edk(SLn(Fq), l) =


edk(GLn(Fq), l), l - q − 1

edk(GLn(Fq), l)− lµl(n)′ , l
∣∣ q − 1

(3) (Theorem 9.1) If l = 2, assume that q ≡ 1 (mod 4). Then for all l,

edk(PSLn(Fq), l) = edk(SLn(Fq), l))

(4) (Theorem 10.1) Let n′|n. If l = 2, assume that q ≡ 1 (mod 4). Then for all l,

edk(SLn(Fq)/{aI : a ∈ F×q , an
′

= 1}, l) = edk(PSLn(Fq)).

(5) (Theorem 11.1) Assume that l 6= 2. Then for all l,

edk(PSp(2n, q), l) = edk(Sp(2n, q), l) =


edk(GL2n(Fq), l), d even

edk(GLn(Fq), l), d odd

3



(6) (Theorem 12.1) Assume that l 6= 2. Then

edk(PΩε(n, q), l) = edk(Oε(n, q), l) =



edk(GLm(Fq), l), n = 2m+ 1, d odd

or n = 2m, d odd, ε = +

edk(GLm−1(Fq), l), n = 2m, d odd, ε = −

edk(GL2m(Fq), l), n = 2m+ 1, d even

or n = 2m, d even, ε = +, n0 even

or n = 2m, d even, ε = −, n0 odd

edk(GL2m−2(Fq), l), n = 2m, d even, ε = +, n0 odd

or n = 2m, d even, ε = −, n0 even

(7) (Theorem 13.1) Assume that l 6= 2. Then

edk(U(n, q2), l) =


edk(GLn(Fq2), l), d = 2 (mod 4)

edk(GLbn
2
c(Fq2), l), d 6= 2 (mod 4)

(8) (Theorem 14.1) Assume that l 6= 2. Then

edk(SU(n, q2), l) =


edk(U(n, q2), l), l - q + 1

edk(SLn(Fq2), l), l
∣∣ q + 1

(9) (Theorem 15.1) Assume that l 6= 2. Then

edk(PSU(n, q2), l) =


edk(SU(n, q2), l), l - n or l - q + 1

edk(PSLn(Fq2), l), l
∣∣ n, l ∣∣ q + 1

(10) (Theorem 16.1) Assume that q ≡ 3 (mod 4), and let s′ = ν2(q+ 1). Assume that k contains

a primitive 2s
′
-th root of unity. Then

4



edk(U(n, q2), 2) =

µ2(n)∑
k=0

(b n
2k
c − 2b n

2k+1
b)2k

(11) (Theorem 16.2) Assume that q ≡ 3 (mod 4), and let s′ = ν2(q+ 1). Assume that k contains

a primitive 2s
′
-th root of unity. Let µ2(n)′ denote the smallest k such that b n

2k
c−b n

2k+1 c > 0.

Then

edk(SUn(Fq), 2) = edk(U(n, q2), 2)− 2µ2(n)′

(12) (Theorem 16.3) Let p 6= 2 be a prime, q = pr, k a field with char k 6= 2. Assume that q ≡ 3

(mod 4), and let s′ = ν2(q + 1). Assume that k contains a primitive 2s
′
-th root of unity.

edk(PSU(n, q2), 2) = edk(SU(n, q2), 2).

Remark 1. In Theorem 5.1, for p = 2, n = 2, r = 1, we have PSp(4, 2)′ ∼= A6, and so

edk(PSp(4, 2)′, 2) = edk(A6, 2) = 2. Except for p = 2, n = 2, r = 1, PSp(2n, pr) = PSp(2n, pr)′

is simple. The methods of this thesis can recover the proof that edk(PSp(4, 2), 2) = edk(S6, 2) =

3 and that edk(PSp(4, 2)′, 2) = edk(A6, 2) = 2, but for brevity, because these are known theo-

rems, we will omit the proofs here.

Remark 2. If char k = p, then edk(G, p) = 1 unless p - |G|, in which case edk(G, p) = 0 [22].

Remark 3. Dave Benson independently proved edC(Sp(2n, p), p) = pn−1 for p odd ([3], Ap-

pendix A).

Remark 4. The following results were known prior to my work:

1. edC(PSLn(Fpr , p)) = edC(GLn(Fpr)) = rpr(n−2) for p 6= 2 ([1], Theorems 1.1 and 1.2).

2. Duncan and Reichstein calculated the essential p-dimension of the pseudo-reflection groups.

These groups overlap with the groups above in a few small cases. See the appendix for

the overlapping cases.

3. Reichstein and Shukla calculated the essential 2-dimension of double covers of the sym-

metric and alternating groups in characteristic 6= 2: Write n = 2a1 + · · · + 2as , where

5



a1 > a2 > . . . > as ≥ 0. For S̃n a double cover of Sn, edk(S̃n, 2) = 2b(n−s)/2c, and for Ãn

a double cover of An, edk(Ãn, 2) = 2b(n−s−1)/2c ([21], Theorem 1.2). These groups overlap

with the groups above in a few small cases: Ã4
∼= SL2(3), Ã5

∼= SL2(5), Ã6
∼= SL2(9),

S̃+
4
∼= GL2(3).

Note. When calculating essential l-dimension we can assume without loss of generality that k

contains a primitive l-th root of unity since adjoining an l-th root of unity gives an extension of

degree prime to l. However, this is not the case for ls. For example, the cyclotomic polynomial

for adjoining a 9-th root of unity is x6 + x3 + 1, which has degree divisible by 3.

General Outline for Proofs

The key tools in the proofs of Theorem 1.1 are the Karpenko-Merkurjev Theorem (Theorem

1.4), a lemma of Meyer and Reichstein (Lemma 1.5), and Wigner Mackey Theory.

Theorem 1.4. [Karpenko-Merkurjev [10], Theorem 4.1] Let G be a p-group, k a field with

char k 6= p containing a primitive p-th root of unity. Then edk(G, p) = edk(G) and edk(G, p)

coincides with the least dimension of a faithful representation of G over k.

The Karpenko-Merkurjev Theorem allows us to translate the question for p-groups formulated

in terms of extensions and transcendence degree into a question of representation theory.

Lemma 1.5. [[15], Lemma 2.3] Let k be a field with char k 6= p containing p-th roots of unity.

Let H be a finite p-group and let ρ be a faithful representation of H of minimal dimension. Then

ρ decomposes as a direct sum of exactly r = rank(Z(H)) irreducible representations

ρ = ρ1 ⊕ . . .⊕ ρr.

and if χi are the central characters of ρi, then {χi|Ω1(Z(H))} is a basis for Ω̂1(Z(H)) over k.

(Ω1(Z(H)) is defined to be the largest elementary abelian p-group contained in Z(H); see Defi-

nition 3.1.)

This lemma allows us to translate a question of analyzing faithful representations into a question

of analyzing irreducible representations. Our main tool for the case at hand is Wigner-Mackey

6



Theory. This method from representation theory allows us to classify the irreducible represen-

tations for groups of the form ∆ o L with ∆ abelian. (See section 3.)

By Lemma 2.9, it suffices to consider the Sylow p-subgroups. By Corollary 2.12, we may

assume that our field k contains p-th roots of unity. Then by the Karpenko-Merkurjev Theorem,

we need to find the minimal dimension of a faithful representation of the Sylow p-subgroups.

Throughout this thesis, we will use the notation Sylp(G) to denote the set of Sylow p-subgroups

of G. Let S ∈ Sylp(G). By Lemma 1.5, if the center of S has rank s, a faithful representation ρ

of S of minimal dimension decomposes as a direct sum

ρ = ρ1 ⊕ . . .⊕ ρs

of exactly s irreducibles, and if χi are the central characters of ρi, then {χi|Ω1(Z(S))} is a basis

for Ω̂1(Z(S)) (see Definition 3.1).

Our proofs will follow the following steps:

� Step 1: Find the Sylow p-subgroups and their centers.

� Step 2: Classify the irreducible representations of the Sylow p-subgroups using Wigner-

Mackey theory.

� Step 3: Construct upper and lower bounds using the classification in step 2.

Remark 5. For some of the more detailed calculations, see the appendix.

2 Essential p-Dimension Background

Fix a field k. Let G be a finite group, p a prime.

Definition 2.1. Let T : Fields/k → Sets be a functor. Let F/k be a field extension, and

t ∈ T (F ). The essential dimension of t is

edk(t) = min
F ′⊂F s.t. t∈Im(T (F ′)→T (F ))

trdegk(F
′).

7



Definition 2.2. Let T : Fields/k → Sets be a functor. The essential dimension of T is

edk(T ) = sup
t∈T (F ), F/k∈Fields/k

edk(t).

Definition 2.3. For G be a finite group, let H1(−;G) : Fields/k → Sets be defined by

H1(−;G)(F/k) = {the isomorphism classes of G-torsors over SpecF}.

Definition 2.4. The essential dimension of G is

edk(G) = edk(H
1(−;G)).

Definition 2.5. Let T : Fields/k → Sets be a functor. Let F/k be a field extension, and

t ∈ T (F ). The essential p-dimension of t is

edk(t, p) = min trdegk(F
′′)

where the minimum is taken over all

F ′′ ⊂ F ′ a finite extension, with F ⊂ F ′

[F ′ : F ] finite s.t. p - [F ′ : F ] and

the image of t in T (F ′) is in Im(T (F ′′)→ T (F ′))

Note. edk(t, p) = min
F⊂F ′, p - [F ′:F ]

edk(t|F ′).

Definition 2.6. Let T : Fields/k → Sets be a functor. The essential p-dimension of T is

edk(T, p) = sup
t∈T (F ), F/k∈Fields/k

edk(t, p).

Definition 2.7. The essential p-dimension of G is

edk(G, p) = edk(H
1(−;G), p).
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The next lemma follows directly from the definitions:

Lemma 2.8. If H ⊂ G, then edk(H, p) ≤ edk(G, p).

The key to proving the above lemma is that given a Galois H-algebra E over F , we can

extend to a Galois G-algebra over F. See the appendix for the proof.

Lemma 2.9. Let S ∈ Sylp(G). Then edk(G, p) = edk(S, p).

The key to proving the above lemma is that given a Galois G-algebra E over F there exists

an extension of F , F0 = EH , such that E is a Galois H-algebra over EH . See the appendix for

the proof.

The following lemma allows us to extend the underlying field k when calculating essential

p-dimension, so long as the extension is of degree prime to p. In particular, this allows us to

assume our field k contains p-th roots of unity (Corollary 2.12).

Lemma 2.10 ([10], Remark 4.8). If k a field of characteristic 6= p, k1/k a finite field extension

of degree prime to p, then edk(G, p) = edk1(G, p).

(The idea for the lemma above was brought to my attention by Federico Scavia and Zinovy

Reichstein.) The key to proving Lemma 2.10 is the fact that given a field extension F/k and a

finite field extension k1/k, trdegk(Fk1) = trdegk(F ). See the appendix for the proof. Putting

Lemma 2.10 together with Lemma 2.9, we get

Corollary 2.11. If k1/k a finite field extension of degree prime to p, S ∈ Sylp(G), then

edk(G, p) = edk(S, p) = edk1(S, p).

Corollary 2.12. If k a field of characteristic 6= p, S ∈ Sylp(G), ζ a primitive p-th root of unity,

then

edk(G, p) = edk(ζ)(S, p).

Proof. Since ζ is a primitive p-th root of unity, ζ is a root of the polynomial xp − 1 = (x −

1)(1 + . . .+xp−1). Then the minimal polynomial over a field of characteristic prime to p divides

1 + . . .+ xp−1 and so has degree prime to p. So we have that p - [k(ζ) : k].
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Note. By the corollary above, when calculating the essential p-dimension over a field k of

characteristic 6= p, we may assume that k contains a primitive p-th root of unity.

The following theorem and corollary from [10] will also be useful for our approach:

Theorem 2.13 (Karpenko-Merkurjev [10], Theorem 5.1). Let G1 and G2 be two p-groups, k a

field with char k 6= p containing a primitive p-th root of unity, then edk(G1 ×G2) = edk(G1) +

edk(G2).

Corollary 2.14. Let G be a finite abelian p-group, k a field with char k 6= p containing a

primitive p-th root of unity. Then edk(G) = rank(G).

3 Representation Theory Background

Definition 3.1. Let H be a p-group. Define Ω1(Z(H)) (also called the socle of H) to be the

largest elementary abelian p-group contained in Z(H), i.e. Ω1(Z(H)) = {z ∈ Z(H) : zp = 1}.

Definition 3.2. For G an abelian group, k a field, let Ĝ denote the group of characters of G

(homomorphisms from G to k×). We will use the notation Ω̂1(Z(H)) for the character group of

Ω1(Z(H)).

The next lemma is due to Meyer-Reichstein [15] and reproduced in [1].

Lemma 3.3 ([15], Lemma 2.3). Let k be a field with char k 6= p containing p-th roots of

unity. Let H be a finite p-group and let (ρi : H → GL(Vi))1≤i≤n be a family of irreducible

representations of H with central characters χi. Suppose that {χi|Ω1(Z(H)) : 1 ≤ i ≤ n} spans

Ω̂1(Z(H)). Then
⊕

i ρi is a faithful representation of H.

Note. For each of the groups S ∈ Sylp(G) in sections 4-6, Ω1(Z(S)) = Z(S), so we can ignore

the Ω1 in those sections.

Let F+
pr
∼= (Z/pZ)r denote the additive group of Fpr .

Definition 3.4. For k containing a p-th root of unity, fix a nontrivial character ψ of F+
pr → k.

For b ∈ Fpr , define ψb(x) = ψ(bx).
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Remark 6. The map given by b 7→ ψb is an isomorphism between F+
pr and F̂+

pr .

We will use boldface b to denote elements in (Fpr)m and b1, b2, . . . , bm ∈ Fpr to denote the

components.

Definition 3.5. Fix a nontrivial character ψ of F+
pr → k. Fix m. For b = (bj) ∈ (F+

pr)
m, define

ψb(d) =
∏
j

(ψbj (dj)) ∈ (̂F+
pr)

m,

where bj , dj are the components of b,d.

Lemma 3.6. For k containing a p-th root of unity, fix a nontrivial character ψ of F+
pr → k.

Then b 7→ ψb gives an isomorphism (F+
pr)

m ∼= (̂F+
pr)

m, and ψb(d) = ψ(bdT ).

The Wigner-Mackey Little Group Method

The following exposition of Wigner-Mackey Theory follows [23] Section 8.2 and is also reproduced

in [1] page 7: Let G be a finite group such that we can write G = ∆ o L with ∆ abelian. Let k

be a field with char k - |G| such that all irreducible representations of ∆ over k have degree 1.

Then the irreducible characters of ∆ form a group ∆̂ = Hom(∆, k×). The group G acts on ∆̂

by

(χg)(a) = χ(gag−1), for g ∈ G,χ ∈ ∆̂, a ∈ ∆.

Let (ψs)ψs∈∆̂/L
be a system of representatives for the orbits of L in ∆̂. For each ψs, let Ls be

the subgroup of L consisting of those elements such that lψs = ψs, that is Ls = StabL(ψs). Let

Gs = ∆ · Ls be the corresponding subgroup of G. Extend ψs to Gs by setting

ψs(al) = ψs(a), for a ∈ ∆, l ∈ Ls.

Then since lψs = ψs for all l ∈ Ls, we see that ψs is a one-dimensional representation of Gs.

Now let λ be an irreducible representation of Ls; by composing λ with the canonical projection

Gs → Ls we obtain an irreducible representation λ of Gs, i.e

λ(al) = λ(l), for a ∈ ∆, l ∈ Ls.
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Finally, by taking the tensor product of χs and λ, we obtain an irreducible representation ψs⊗λ

of Gs. Let θs,λ be the corresponding induced representation of G, i.e. θs,λ := IndGGs(ψs ⊗ λ).

The following is an extension of Proposition 25 in Chapter 8 of [23], it is called “Wigner-Mackey

theory” in [1] (Theorem 4.2):

Theorem 3.7 (Venkataraman [26], Theorem 4.1; Serre (for k = C) [23], Proposition 25). Under

the above assumptions,

(i) θs,λ is irreducible.

(ii) Every irreducible representation of G is isomorphic to one of the θs,λ.

Venkataraman also proves a uniqueness statement: If θs,λ and θs′,λ′ are isomorphic, then

ψs = ψ′s and λ is isomorphic to λ′. But we do not care about the uniqueness of the irreducible

representations. In what follows, we will consider characters ψs with ψs ∈ ∆̂ rather than

ψs ∈ ∆̂/L. The two points above still hold.

Note that in the cases considered in sections 4-6, the conditions hold so long as char k 6= p.

Since we are considering the Sylow p-subgroups, this takes care of the first condition that

char k - |G|. All of our Sylow p-subgroups have the form ∆ o L with ∆ ∼= (Z/pZ)N for some

N > 0. By the note following Lemma 2.10, we may assume that k contains a primitive p-th root

of unity. Thus we can conclude that all irreducible representations of ∆ over k have degree 1.

The dimension is given by dim(θs,λ) = |L|
|Ls| dim(λ). If we pick λ = 1, then this will minimize

the dimension of the representation and we will have dim(θs,1) = |L|
|Ls| . So for our purposes, we

will only consider when λ = 1. The dimension of the representation will be minimized when

|Ls| is maximized.

4 The Linear Groups at the Defining Prime

In this section, we will prove that

Theorem 4.1 ([1] p 6= 2, K. p = 2). For any prime p, k a field such that char k 6= p,

edk(PSLn(Fpr), p) = edk(GLn(Fpr), p) = rpr(n−2).
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In this case, we will actually identify a subgroup (the Heisenberg subgroup) of a Sylow p-

subgroup, to which Wigner-Mackey theory can be applied. This will give a lower bound for the

essential p-dimension. We will find an upper bound by constructing a specific faithful represen-

tation (we will extend the minimal dimensional representation of the Heisenberg subgroup to a

representation of the same dimension).

Definition 4.2. Define Upn(Fpr) to be the unitriangular n× n matrices over Fpr under multi-

plciation. (Unitriangular matrices are upper triangular matrices with 1’s on the diagonal).

The kernel of the natural homomorphism GLn(Fpr) → PSLn(Fpr) has order prime to p, so it

maps the Sylow p-subgroups of GLn(Fpr) isomorphically onto Sylow p-subgroups of PSLn(Fpr),

so it suffices to consider the Sylow p-subgroups of GLn(Fpr). It is straightforward to show the

following two lemmas.

Lemma 4.3. For all n ≥ 2 and all primes p, we have Upn(Fpr) ∈ Sylp(GLn(Fpr)).

Lemma 4.4. For all n ≥ 2 and all primes p, we have

Z(Upn(Fpr)) = {



1 0 . . . 0 a1,n

0 1 0 . . . 0

. . .
...

0 0 . . . 1 0

0 0 0 . . . 1


} ∼= F+

pr
∼= (Z/pZ)r

Definition 4.5. Define the Heisenberg subgroup to be

Hn(Fpr) = {


1 a x

0 Idn−2 bT

0 0 1

 : x ∈ Fpr ,a,b ∈ (Fpr)n−2}.

It is a straightforward calculation to find the center.

Lemma 4.6. Z(Hn(Fpr)) = {


1 0 x

0 Idn−2 0

0 0 1

} = Z(Upn(Fpr)).
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Using Wigner-Mackey theory, in [1] the essential dimension of the Heisenberg subgroup is

calculated for all p :

Theorem 4.7 ([1], Theorem 1.1). Let k be a field with char k 6= p. Then

edk(Hn(Fpr)) = rpr(n−2)

[1] assumes that k = C, but by using Venkataram’s extension of Wigner-Mackey theory, their

proofs carry over to the case where char k 6= p. Now we will show that Upn(Fpr) has the same

essential p-dimension of Hn(Fpr).

Theorem 4.8. Let k be a field with char k 6= p. Then

edk(Upn(Fpr)) = edk(Hn(Fpr))

For p 6= 2, k = C, this is a theorem of [1] (Theorem 1.2). Since Hn(Fpr) ⊂ Upn(Fpr), by Lemma

2.8

edk(Hn(Fpr)) ≤ edk(Upn(Fpr)).

So it suffices to prove

edk(Upn(Fpr)) ≤ edk(Hn(Fpr)).

We will do this by constructing a faithful representation of Upn(Fpr) of dimension rpr(n−2). A

straightforward calculation shows the following.

Proposition 4.9. Upn(Fpr) is isomorphic to Hn(Fpr) o Upn−2(Fpr), where the action of

Upn−2(Fpr) on Hn(Fpr) is given by

A


1 a x

0 Idn−2 bT

0 0 1

 =


1 aA−1 x

0 Idn−2 (bAT )T

0 0 1


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for

A ∈ Upn−2(Fpr),


1 a x

0 Idn−2 bT

0 0 1

 ∈ Hn(Fpr).

Proof of Theorem 4.8. By Corollary 2.12, we may assume that our field k contains p-th roots of

unity. We will construct a faithful representation of Upn(Fpr) of dimension rpr(n−2): By Problem

6.18 in [9], every faithful irreducible representation of Hn(Fpr) can be extended to Upn(Fpr).

Fix ψ a non-trivial character of F+
pr . Then the characters of Z(Hn(Fpr)) ∼= F+

pr are given by

ψb for b ∈ Fpr , where ψb is defined by ψb(d) = ψ(bd). Let {ei} be a basis for F+
pr over Fp. For

each i, let ρi be an irreducible representation of Hn(Fpr) with central character ψei . Then extend

ρi to Upn(Fpr). Let ρ =
⊕

i ρei . Then ρ is a representation of Upn(Fpr) of dimension rpr(n−2).

Since the set of all {ρei |Z(Upn(Fpr )) = ψei} form a basis for F̂+
pr , ρ is a faithful representation of

Upn(Fpr) by Lemma 3.3.

5 The Symplectic Groups at the Defining Prime

In this section, we will show that

Theorem 5.1. For k a field such that char k 6= p,

edk(PSp(2n, p
r), p) = edk(Sp(2n, p

r), p) =


rpr(n−1), p 6= 2 or n = 2

r2r(n−1)−1(2r(n−2) + 1), p = 2, n > 2

We do not prove the case p = 2, n = 2, r = 1, since it is already known that edk(PSp(4, 2)′, 2)

= edk(A6, 2) = 2. In any other case, PSp(2n, pr)′ = PSp(2n, pr), so we obtain a complete

calculation of edk(PSp(2n, p
r)′, p).
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Definitions

Definition 5.2. Let S =

 0 Idn

−Idn 0

. The symplectic groups are defined by

Sp(2n, pr) := {M ∈ GL2n(Fpr) : MTSM = S},

and the projective symplectic groups are defined by

PSp(2n, pr) := Sp(2n, pr)/Z(Sp(2n, pr)).

Note: A matrix M =

A B

C D

 ∈ GL2n(Fpr) is symplectic if and only if ATC, BTD are

symmetric and ATD − CTB = Idn.

The Sylow p-subgroups and their centers

The kernel of the natural homomorphism Sp(2n, pr)→ PSp(2n, pr) has order prime to p, so it

maps the Sylow p-subgroups of Sp(2n, pr) isomorphically onto Sylow p-subgroups of PSp(2n, pr),

so it suffices to consider the Sylow p-subgroups of Sp(2n, pr).

Definition 5.3. For any prime p, define Sym(n, pr) as the group of n× n symmetric matrices

under addition (with entries from Fpr).

It is straightforward to show the following results. See the appendix for the calculations.

Lemma 5.4. [See [18], Lemma 1] For any prime p, let

S(p, n) = {

A 0n

0n (A−1)T


Idn B

0n Idn

 : A ∈ Upn(Fpr), B ∈ Sym(n, pr)}.

Then S(p, n) ∈ Sylp(Sp(2n, p
r)).

Corollary 5.5. [See [19]] For any prime p, S(p, n) the Sylow p-subgroup of Sp(2n, pr) defined

in Lemma 5.4,

S(p, n) ∼= Sym(n, pr) o Upn(Fpr),
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where the action is given by A(B) = ABAT , where B ∈ Sym(n, pr), A ∈ Upn(Fpr).

Lemma 5.6. For p 6= 2, S(p, n) the Sylow p-subgroup of Sp(2n, pr) defined in Lemma 5.4,

Z(S(p, n)) = {

Idn D

0n Idn

 : D =

d 0

0 0n−1

} ∼= F+
pr
∼= (Z/pZ)r

Lemma 5.7. For S(2, n) the Sylow p-subgroup of Sp(2n, 2r) defined in Lemma 5.4,

Z(S(2, n))

= {

Idn D

0n Idn

 : Di,j = 0, for all (i, j) /∈ {(1, 1), (1, 2), (2, 1), D1,2 = D2,1} ∼= (F+
2r )

2 ∼= (Z/2Z)2r

See the appendix for the calculations of the centers.

Classifying the irreducible representations

By Corollary 2.12, we may assume that our field k contains p-th roots of unity. We will use

Wigner-Mackey Theory with S(p, n) ∼= Sym(n, pr)oUpn(Fpr) to compute the minimum dimen-

sion of an irreducible representation with non-trivial central character. So

∆ = Sym(n, pr), L = Upn(Fpr).

For

B =



b1 b2 . . . bn

b2 bn+1 . . . b2n−1

...
. . .

...

bn−1 . . . bn(n+1)/2−2 bn(n+1)/2−1

bn . . . bn(n+1)/2−1 bn(n+1)/2


∈ Sym(n, pr),

let b = (b1, . . . , bn(n+1)/2). Then the map map B 7→ b gives an isomorphism Sym(n, pr) ∼=

(F+
pr)

n(n+1)/2.

Fix ψ a non-trivial character of F+
pr . By Lemma 3.6, there is an isomorphism between

(F+
pr)

n(n+1)/2 and ̂(F+
pr)

n(n+1)/2 given by sending b ∈ (F+
pr)

n(n+1)/2 to the character ψb defined by
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ψb(d) = ψ(bdT ). A straightforward computation shows that for p 6= 2, the characters extending

a non-trivial central character are ψb with b1 6= 0. Similarly, a straighforward computation

shows that for p = 2, the characters extending a non-trivial central character are ψb with

(b1, b2) 6= (0, 0), that is b1 6= 0 or b2 6= 0. Note that H ∈ Lb if and only if ψ(b·(hdhT−d)) = 1 for

all d ∈ (Fpr)n(n+1)/2, where hdhT is the vector corresponding to HDHT under the isomorphism

Sym(n, pr) ∼= (F+
pr)

n(n+1)/2. See the appendix for the full details of the computation.

The case p 6= 2

Proposition 5.8. For p 6= 2,

min
b∈(F+

pr )n(n+1)/2, b1 6=0
dim(θb,1) = pr(n−1).

This minimum is achieved when b = (b, 0, . . . , 0) with b 6= 0.

Proof. Recall that b,d are vectors corresponding to matrices B,D ∈ Sym(n, pr) via the iso-

morphism defined above for Sym(n, pr) ∼= (F+
pr)

n(n+1)/2 and hdhT is the vector in (F+
pr)

n(n+1)/2

corresponding to HDHT ∈ Sym(n, pr) under the isomorphism Sym(n, pr) ∼= (F+
pr)

n(n+1)/2.

We prove this proposition by showing that for b = (b1, · · · , bn(n+1)/2) with b1 6= 0, |Lb| ≤

|Upn−1(Fpr)| = pr(n−1)(n−2)/2. Pick j0 6= 1 and choose D with di,j = 0 except for d1,j0 and let

d be the corresponding vector. Then

b · (hdhT − d) = d1,j0

(
2h1,j0B1,1 +

j0−1∑
i=2

hi,j0B1,i

)
.

So since we need ψ(b · (hdhT − d)) = 1 for all choices of d, we can conclude that

h1,j0 =
−1

2B1,1

j0−1∑
i=2

hi,j0B1,i.

So

|Lb| ≤ |{H : H1,j fixed ∀j 6= 1}| = |Upn−1(Fpr)| = pr(n−1)(n−2)/2
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It is straightforward to show that for b = (b, 0, . . . , 0),

Lb = {(0n, H−1) : H1,j = 0,∀j 6= 1} ∼= Upn−1(Fpr).

Thus the minimum is achieved when b = (b, 0, . . . , 0).

The case p = 2

Case 1: n = 2

Proposition 5.9. For p = 2, n = 2,

min
b∈(F+

pr )3, b1 6=0,b2 6=0
dim(θb,1) = 2r−1.

This minimum is achieved when b = (b1, b2, 0) with b1 6= 0, b2 6= 0.

If b = (b1, b2, 0) with b1 6= 0, b2 6= 0, then

dim(θb,1) = 2r.

Proof. The proof is similar to that for p 6= 2. We refer the reader to the appendix for full

details.

Case 2: n > 2

Proposition 5.10. For p = 2, n > 2,

min
b∈(F+

pr )n(n+1)/2, b2 6=0
dim(θb,1) = 2r(2n−3)−1.

This minimum is achieved when b = (bi) = (b1, b2, 0, . . . , 0) with b1, b2 6= 0.

min
b∈(F+

pr )n(n+1)/2, b1 6=0
dim(θb,1) = 2r(n−1)−1.

This minimum is achieved when b = (bi) = (b1, 0, b3, . . . , 0) with b1, b3 6= 0.
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Proof. The proof is again similar. We refer the reader to the appendix for this proof.

Note: For any n > 2 and any r, 2r(2n−3)−1 > 2r(n−1)−1.

Proof of Theorem 5.1

Proof. By Corollary 2.12, we may assume that our field k contains p-th roots of unity. So by

Lemma 1.5, faithful representations of S(p, n) of minimal dimension will decompose as a direct

sum of exactly r = rank(Z(S(p, n))) irreducible representations.

Case 1: p 6= 2

Since the center of S(p, n) has rank r and the minimum dimension of an irreducible representation

with non-trivial central character is pr(n−1),

edk(PSp(2n, p
r), p) ≥ rpr(n−1).

Let {ei} be a basis for F+
pr over Fp, and let si = (ei, 0, . . . , 0). Let ρ =

⊕
i θsi,1 . Then by

Proposition 5.8,

dim(ρ) = rpr(n−1).

By Lemma 3.3, ρ is a faithful representation of S(p, n). Thus

edk(PSp(2n, p
r), p) = rpr(n−1).

Case 2: p = 2

Step 1: Find the lower bound

Subcase 1: n = 2: Since the center has rank 2r and by Proposition 5.9 the minimum

dimension of an irreducible representation with non-trivial central character is 2r−1,

edk(PSp(4, 2
r)) ≥ 2r2r−1 = r2r.

Subcase 2: n > 2: Let ρ = ρi be a minimal dimensional faithful representation. Since

the set of all central characters {χi} must form a basis for (̂F+
pr)

2, we can conclude that b2 6= 0
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for at least r of the ρi. So for these ρi minimum dimension is 2r(2n−3)−1, by Proposition 5.10.

The other r may have b2 = 0, so their minimum dimension is 2r(n−1)−1, by Proposition 5.10.

Thus we have

edk (PSp(2n, 2r), 2) ≥ r2r(2n−3)−1 + r2r(n−1)−1 = r2r(n−1)−1(2r(n−2) + 1).

Step 2: Construct the upper bound

Let {ei}2ri=1 be a basis for F+
2r over F2. Let x be a nonzero element in F2r . We will choose subsets

S of ∆ = Sym(n, pr) such that the set of all central characters of {θb,1}b∈S form a basis for the

characters of the center. For n = 2, let S = {(ei, ei, 0), (x, ei, 0)}2ri=1. For n > 2, let

S = {(ei, ei, 0, . . . , 0), (ei, 0, x, 0, . . . , 0)}2ri=1.

Let ρ =
⊕

b∈S θb,1. Then by Propositions 5.9 and 5.10,

dim(ρ) =
∑
b∈S

dim(θb,1) =


r2r, n = 2, r > 1

r2r(n−1)−1(2r(n−2) + 1), n > 2

.

By Lemma 3.3, ρ is a faithful representation of S(2, n). Steps 1 and 2 together give us that

edk (PSp(2n, 2r), 2) =


r2r, n = 2, r > 1

r2r(n−1)−1(2r(n−2) + 1), n > 2

.

6 The Orthogonal Groups at the Defining Prime

In this section, we will show the following theorem:
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Theorem 6.1. For ε ∈ {±} in the notation of Subsection 6, k a field such that char k 6= p,

edk(PΩε(n, pr), p) = edk(Ωε(n, pr), p) =



r, n = 3, p 6= 2

2r, n = 4, any p

rp2r(m−2), n = 2m, n > 4, any p

rpr(m−1)(m−2) + rpr(m−1), n = 2m+ 1, n ≥ 5, p 6= 2

Furthermore, edk(O
ε(2m, 2r), 2) = 1 + edk(Ω

ε(2m, 2r), 2), and for p 6= 2, edk(O
ε(n, pr), p) =

edk(Ω
ε(n, pr), p).

We do not need to consider the case n = 2m + 1, p = 2 since Oε(2m + 1, 2r) ∼= Sp(2m, 2r)

([8], Theorem 14.2), so this case is taken care of in the work on the symplectic groups.

Definitions

The case n = 2m, p 6= 2

Let

A+ =

 0m Idm

Idm 0m

 .

Let η ∈ F×pr be a non-square and let Idηm be the m × m identity matrix with the first entry

replaced by η. Let

A− =

 0m Idm

Idηm 0m

 .

Definition 6.2. The orthogonal groups associated with A+ are defined by

O+(2m, pr) := {M ∈ GL(2m,Fpr) : MTA+M = A+}.

The orthogonal groups associated with A− are defined by

O−(2m, pr) := {M ∈ GL(2m,Fpr) : MTA−M = A−}.
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The special orthogonal groups are defined by

SOε(2m, pr) := {M ∈ Oε(2m, pr) : det(M) = 1}.

We define

Ωε(2m, pr) := SOε(2m, pr)′ (the commutator subgroup).

Lastly, we define

PΩε(2m, pr) := Ωε(2m, pr)/(Ωε(2m, pr) ∩ {±Id}).

The case n = 2m, p = 2

For x = (xi) ∈ Fnpr , let Q+(x) =
∑m

i=1 xixi+m, and let

A+
m =

0m Idm

0m 0m

 .

Then Q+(x) = xA+
mxT . By Artin-Schreier theory, there exists η ∈ F2r such that z2 + z + η is

irreducible in F2r [z].

Let

Q−m(x) =

m∑
i=1

xixi+m + x2
m + xmx2m + ηx2

2m

and define A−m to be

A−m =

01
m Idm

0m 0ηm

 , where 01
m =

0m−1 0

0 1

 and 0ηm =

0m−1 0

0 η

 .

Then Q−m(x) = xA−mxT . So if we write x = (a, b, c, e) where a, c ∈ Fm−1
2r , b, e ∈ F2r , then

Q−m(x) = Q+
m−1(a, c) + b2 + be+ ηe2 = acT + b2 + be+ ηe2.
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Or if we write x = (y, z) where y, z ∈ Fm2r , then

Q−m(x) = yzT + y2
m + ηz2

m.

Definition 6.3. Define Oε(2m, 2r) as

Oε(2m, 2r) := {M ∈ GL(2m,F2r) : Qε(Mx) = Qε(x) for all x ∈ F2m
2r }.

Definition 6.4. Define Bε(x, y) = Qε(x+ y) +Qε(x) +Qε(y), the bilinear form corresponding

to Qε.

Note that B+(x, y) =
∑m

i=1 xiyi+m +
∑m

i=1 yixi+m. So the corresponding matrix is

S =

 0 Idm

Idm 0

 .

That is, B+(x, y) = xSyT , and B−(x, y) =
∑m−1

i=1 xiyi+m + yixi+m + xmy2m + ymx2m. So the

corresponding matrix is also S. That is, we have B−(x, y) = xSyT = B+(x, y), the same bilinear

form as for A+. Note that this is a nondegenerate alternating form and we have

Oε(2m, 2r) ⊂ Sp(2m, 2r),

where Sp(2m, 2r) is the symplectic group corresponding to S.

Definition 6.5. Define Ωε(2m, 2r) := Oε(2m, 2r)′ (the commutator subgroup).

For consistency, we make the following definition:

Definition 6.6. Define PΩε(2m, 2r) := Ωε(2m, 2r)/(Ωε(2m, 2r) ∩ {±Id}) = Ωε(2m, 2r).

Definition 6.7. The Dickson invariant, δε2m,2r , is a homomorphism from Oε(2m, 2r) to Z/2Z

given by δε2m,2r(M) = rank(Id2m −M) mod 2. Define

SOε(2m, 2r) := ker δε2m,2r .
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Definition 6.8. Given ε ∈ {±}, the Witt index wε is defined to be the dimension of a maximal

totally isotropic subspace of F2r with respect to the quadratic form Qε.

Grove shows ([8], Proposition 14.41) that for Witt index wε > 0, and n ≥ 2,

Ωε(2m, 2r) = Oε(2m, 2r)′ = SOε(2m, 2r)′.

He also shows ([8], Theorem 14.43) that if m ≥ 2 and (m,wε) 6= (2, 2), then Ωε(2m, 2r) is simple.

The case n = 2m+ 1

Let

L =


−1 0 0

0 0m Idm

0 Idm 0m

 .

Definition 6.9. The odd orthogonal groups are defined by

O(2m+ 1, pr) := {M ∈ GL(2m+ 1,Fpr) : MTLM = L}.

The special orthogonal groups are defined by

SO(2m+ 1, pr) := {M ∈ O(2m+ 1, pr) : det(M) = 1}

Define

Ω(2m+ 1, pr) := SO(2m+ 1, pr)′ (the commutator subgroup).

The Sylow p-subgroups

Definition 6.10. For any prime p, define Antisym(m, pr) as the group of m×m anti-symmetric

matrices under addition (with entries from Fpr).

Definition 6.11. For p = 2, define Antisym0(m, 2r) ⊂ Antisym(m, 2r) = Sym(m, 2r) as the
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subgroup of symmetric/antisymmetric matrices with 0’s on the diagonal. That is,

Antisym0(m, 2r) = {B ∈ Sym(m, 2r) = Antisym(m, 2r) : Bi,i = 0, ∀i}.

The case n = 2m

For p 6= 2, the Sylow p-subgroups of PΩε(2m, pr), Ωε(2m, pr), and Oε(2m, pr) are isomorphic, so

it suffices to consider the Sylow p-subgroups of Ωε(2m, pr). (We do this for notational purposes so

we can combine the arguments with the case p = 2.) A direct computation shows the following.

Lemma 6.12. [See [18], [12]] For p 6= 2, ε = +, let

S+(p, 2m) = {

 A 0m

0m (A−1)T


Idm B

0m Idm

 : A ∈ Upm(Fpr), B ∈ Antisym(m, pr)}.

and for p 6= 2, ε = −, let

S−(p, 2m) = {

 A 0m

0m (A−1)T


Idm 0m

C Idm

 : A ∈ Upm(Fpr), C ∈ Antisym(m, pr)}.

Then S+(p, 2m) is isomorphic to the elements in Sylp(Ω
+(2m, pr)) and S−(p, 2m) is isomorphic

to the elements in Sylp(Ω
−(2m, pr)).

Corollary 6.13. For p 6= 2, Sε(p, 2m) as defined in Lemma 6.12, ε ∈ {±},

Sε(p, 2m) ∼= Antisym(m, pr) o Upm(Fpr),

where the action is given by A(B) = ABAT .

Since S+(p, 2m) ∼= S−(p, 2m), it suffices to consider S+(p, 2m). For the sake of simplicity of

notation, let S(p, 2m) = S+(p, 2m).
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Lemma 6.14. Let

S(2, 2m) = {

 A 0m

0m (A−1)T


Idm B

0m Idm

 : A ∈ Upm(F2r), B ∈ Antisym0(m, 2r)}.

Then S(2, 2m) ∈ Syl2(Ωε(2m, 2r)) for ε ∈ {±}.

Corollary 6.15. For S(2, 2m) as defined in Lemma 6.14,

S(2, 2m) ∼= Antisym0(m, 2r) o Upm(F2r),

where the action is given by A(B) = ABAT .

The above lemma is slightly more involved, see the appendix for the details.

The case n = 2m+ 1, p 6= 2

The kernel of the natural homomorphism O(2m+ 1, pr)→ Ω(2m+ 1, pr) has order prime to p,

so it maps the Sylow p-subgroups of O(2m + 1, pr) isomorphically onto Sylow p-subgroups of

Ω(2m+ 1, pr), so it suffices to consider the Sylow p-subgroups of O(2m+ 1, pr).

It is straightforward to show the following:

Lemma 6.16. For p 6= 2, let

S(p, 2m+ 1)

= {


1 0 x

xT Idm 0m

0 0m Idn



1 0 0

0 A 0m

0 0m (A−1)T



1 0 0

0 Idm B

0 0 Idm

 : x ∈ Fmpr , A ∈ Upm(Fpr ), B ∈ Antisym(m, pr)}.

Then S(p, 2m+ 1) ∈ Sylp(O(2m+ 1, pr)).

Corollary 6.17. For p 6= 2,

S(p, 2m+ 1) ∼=
(
(F+
pr)

m ×Antisym(m, pr)
)
o Upm(Fpr)),

where the action of Upm(Fpr) on Antisym(m, pr) is given by A(B) = ABAT . and the action of

Upm(Fpr) on (F+
pr)

m is given by A(x) = xAT .
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The centers

For n = 3, Antisym(1, pr) and Up1(Fpr) are trivial, so we have S(p, 3) ∼= F+
pr , which is abelian.

For n = 4, the action of Up2(Fpr) ∼= Fpr on Antisym(2, pr) ∼= Fpr is trivial and so S(p, n) ∼=

Fpr × Fpr . Thus the Sylow p-subgroup is abelian.

Lemma 6.18. For any prime p, m > 2, let S(p, 2m) = S+(p, 2m) be defined as in Lemmas

6.12 and 6.14. Then

Z(S(p, 2m)) = {

Idm D

0m Idm

 : D =


0 x 0

−x 0 0

0 0 0m−2

} ∼= F+
pr
∼= (Z/pZ)r

Lemma 6.19. For p 6= 2, m ≥ 2, S(p, 2m+ 1) defined as in Lemma 6.16,

Z(S(p, 2m+ 1)) = {


1 0 x

xT Idm D

0 0m Idm

 : x = (x1, 0, . . . , 0), D =


0 x 0

−x 0 0

0 0 0m−2

} ∼= (F+
pr)

2

For the calculations of the centers, see the appendix.

Classifying the irreducible representations

By Corollary 2.12, we may assume that our field k contains p-th roots of unity.

The case n = 2m

We will use Wigner-Mackey Theory with

S(p, 2m) ∼=


Antisym(m, pr) o Upm(Fpr) p 6= 2

Antisym0(m, 2r) o Upm(F2r) p = 2
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to see what is the minimum dimension of an irreducible representation with non-trivial central

character. So

∆ =


Antisym(m, pr) p 6= 2

Antisym0(m, 2r) p = 2

∼= (F+
pr)

m(m−1)/2, L = Upm(Fpr).

For

B =



0 b1 · · · bm−1

−b1 0 bm · · · b2m−3

...
. . .

...

−bm−2 · · · 0 bm(m−1)/2

−bm−1 · · · −bm(m−1)/2 0


∈


Antisym(m, pr), p 6= 2

Antisym0(m, pr), p = 2

let b = (b1, · · · , bm(m−1)/2). (When p = 2, the negatives go away.) Then the map B 7→ b gives

an isomorphism


Antisym(m, pr), p 6= 2

Antisym0(m, pr), p = 2

∼= (F+
pr)

m(m−1)/2.

Fix ψ a non-trivial character of F+
pr . By Lemma 3.6, there is an isomorphism between

(F+
pr)

m(m−1)/2 and ̂(F+
pr)

m(m−1)/2 given by sending b ∈ (F+
pr)

m(m−1)/2 to the character ψb defined

by ψb(d) = ψ(bdT ). As for the symplectic groups, a straightforward computation shows that

for any prime p, the characters extending a non-trivial central character are ψb with b1 6= 0.

Note that H ∈ Lb if and only if ψ(b · (hdhT − d)) = 1 for all d ∈ (F+
pr)

m(m−1)/2, where hdhT

is the vector in (F+
pr)

m(m−1)/2 corresponding to HDHT ∈ Sym(m, pr) under the isomorphsim

Sym(m, pr) ∼= (F+
pr)

m(m−1)/2. See the appendix for the full details of the computation.

Proposition 6.20. For any prime p,

min
b∈(F+

pr )m(m−1)/2, b1 6=0
dim(θb,1) = p2r(m−2).

This minimum is achieved when b = (b, 0, . . . , 0) with b 6= 0.

Proof. Recall that b,d are vectors corresponding to matrices B,D ∈ ∆ via the isomorphism
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∆ ∼= (F+
pr)

m(m−1)/2 and hdhT is the vector in (F+
pr)

m(m−1)/2 corresponding to HDHT ∈

Antisym(m, pr) under the isomorphism Antisym(m, pr) ∼= (F+
pr)

m(m−1)/2.

Calculation 1. For j0 > 2, choosing di,j = 0 except for d1,j0 = −dj0,1 and performing similar

calculations to those for Propostion 5.8, we get that

j0−1∑
i=2

hi,j0B1,i = 0.

For 2 ≤ k ≤ n, if B1,k 6= 0, we can solve for hk,j0 in terms of hi,j0 for i 6= 1, k. If particular, since

B1,2 = b1 6= 0, we can solve for h2,j0 in terms of hi,j0 with i > 2.

Calculation 2. For j0 > 2, choose di,j = 0 except for d2,j0 = −dj0,2, and again performing

similar calculations to those for Propostion 5.8, we get

−B1,2h1,j0 +

j0∑
i=2

B1,ihi,j0h1,2 +

j0−1∑
i=3

B2,ihi,j0 = 0.

Since B1,2 = b1 6= 0, we can solve for h1,j0 in terms of h1,2 and hi,j0 with i > 2.

Putting these two calculations together, we can conclude that for all b = (bi) with b1 6= 0,

|Lb| ≤ |{H : H2,j fixed ,∀j > 2, H1,j fixed , ∀j > 2}| = |Fpr | · |Um−2(Fpr)| = pr[(m−2)(m−3)/2+1].

We leave to the reader the verification that the minimum is achieved for b = (b, 0, . . . , 0).

For more details of the above proof, see the appendix.

The case n = 2m+ 1, p 6= 2

We will use Wigner-Mackey Theory with S(p, 2m+1) ∼=
(
(F+
pr)

m ×Antisym(m, pr)
)
oUpm(Fpr)

to compute the minimum dimension of an irreducible representation with non-trivial central

character. So we have

∆ =
(
(F+
pr)

m ×Antisym(m, pr)
)
o {Idm},
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L = ({0× {0m}}) o Upm(Fpr).

We obtain an isomorphism (F+
pr)

m × Antisym(m, pr) ∼= (F+
pr)

m+m(m−1)/2 by sending (a, B) to

(a,b), where b is the image of B under the isomorphism Antisym(m, pr) ∼= (F+
pr)

m(m−1)/2

defined at the beginning of 6.

Fix ψ a non-trivial character of F+
pr . By Lemma 3.6, there is an isomorphsim between

(F+
pr)

m+m(m−1)/2 and ̂(F+
pr)

m+m(m−1)/2 given by sending (a,b) ∈ (F+
pr)

m+m(m−1)/2 to the char-

acter ψa,b defined by ψa,b(c,d) = ψ((a,b)(c,d)T ). As above, a straightforward computation

shows that the characters of (Fpr)m+m(m−1)/2 extending a non-trivial central character of the

Sylow p-subgroup are ψa,b with (a1, b1) 6= (0, 0). Note that H ∈ L(a,b) if and only if

ψ(a · (xHT − x) + b · (hdhT − d)) = 1

for all (x,d) ∈ (Fpr)m+m(m−1)/2, where hdhT is the vector in (F+
pr)

m+m(m−1)/2 corresponding

to HDHT ∈ (F+
pr)

m × Antisym(m, pr) under the isomorphism (F+
pr)

m × Antisym(m, pr) ∼=

(F+
pr)

m+m(m−1)/2.

Proposition 6.21. For p 6= 2,

min
(a,b)∈(F+

pr )m+m(m−1)/2, b1 6=0
dim(θ(a,b),1) = pr(m−1)(m−2).

This minimum is achieved when a = 0,b = (b1, 0, . . . , 0) with b1 6= 0. Similarly,

min
(a,b)∈(F+

pr )m+m(m−1)/2, a1 6=0
dim(θ(a,b),1) = pr(m−1).

This minimum is achieved when a = (a1, 0, . . . , 0),b = 0 with a1 6= 0.

Proof.

Case 1: b1 6= 0

If we take x = 0, then ψ(a · (xHT − x)) + b · (hdhT − d)) = 1 reduces to the condition for

Ω+(2m, pr). So L(a,b) must be a subset of the Lb calculated in Proposition 6.20. Thus
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|L(a,b)| ≤ |{H : H2,j fixed , ∀j > 2, H1,j fixed , ∀j > 2}| = pr[(m−2)(m−3)/2+1].

It is straightforward to show that for a = 0, b = (b1, 0, . . . , 0),

L(a,b) = {H ∈ Upm(Fpr) : H1,j = 0, ∀j 6= 2, H2,j = 0,∀j > 2}.

Hence the minimum is achieved for a = 0, b = (b1, 0, . . . , 0).

Case 2: a1 6= 0

If we take d = 0 then ψ(a · (xHT −x)+b · (hdhT−d)) = 1 reduces to ψ(a · (xHT −x)) = 1.

Note that

a · (xHT − x) =

m−1∑
k=1

ak · (
m∑

j=k+1

xjhk,j)

For j0 > 1, choose xi = 0 except for xj0 . Then we get that

j0−1∑
k=1

akhk,j0 = 0.

So if a1 6= 0, we can solve for h1,j0 in terms of hi,j0 , i 6= 1, k. Hence

|L(a,b)| ≤ |{H : H1,j fixed ∀j 6= 1} = |Upn−1(Fpr)| = pr(n−1)(n−2)/2.

It is straightforward to show that for a = (a1, 0, . . . , 0), b = 0,

L(a,b) = {H : H1,j = 0,∀j 6= 1}.

Hence the minimum is the minimum is achieved for a = (a1, 0, . . . , 0), b = 0.

Again, for more details see the appendix. For Oε(2m, 2r), note that 〈−Id〉 × S(2, 2m) is a
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Sylow 2-subgroup of Oε(2m, 2r). Thus

edk(O
ε(2m, 2r), 2) = 1 + edk(Ω

ε(2, 2r), 2).

Proof of Theorem 6.1

Proof. By Lemma 1.5, faithful representations of S(p, n) of minimal dimension will decompose

as a direct sum of exactly r = rank(Z(S(p, n))) irreducible representations. We will complete

the proof for four separate cases.

Case 1: n = 3,p 6= 2

For n = 3, p 6= 2, S(p, 3) ∼= F+
pr , and thus edk(S(p, 3)) = edk(F+

pr) = r.

Case 2: n = 4

For p 6= 2, the action of Up2(Fpr) ∼= Fpr on Antisym(2, pr) ∼= F+
pr is trivial, and so S+(p, 4) ∼=

F+
pr × F+

pr . So edk(S
+(p, 4)) = edk(F+

pr × F+
pr) = 2r.

Similarly for n = 4, p = 2, S+(2, 4) ∼= F2r × F+
2r . So edk(S

+(2, 4)) = edk(F+
2r × F+

2r) = 2r.

Note: The work in the previous section is valid, though unnecessary, for n = 4. It gives us

that the minimum dimension of an irreducible representation is 1. Then since the center has

rank 2r, we will get an essential dimension of 2r.

Case 3: n = 2m,m > 2

Since the center has rank r and the minimum dimension of an irreducible representation with

non-trivial central character is p2r(m−2),

edk(Ω
+(2m, pr), p) ≥ rp2r(m−2),

Let {ei} be a basis for F+
pr over Fp, and let si = (ei, 0, . . . , 0). Let ρ =

⊕
i θsi,1 . Then by

Proposition 6.20,

dim(ρ) =
r∑
i=1

dim(θsi,1) = rp2r(m−2).

By Lemma 3.3, ρ is a faithful representation of S+(p, 2m). Therefore

edk(Ω
ε(2m, pr), p) = rp2r(m−2).
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Case 4: n = 2m + 1,p 6= 2

Let ρ = ρi be a minimal dimensional faithful representation. Since the set of all central characters

{χi} must form a basis for ̂Z(S(p, 2m+ 1)), we can conclude that b1 6= 0 for at least r of the

χi = ψb, and so the dimension is at least pr(m−1)(m−2). The other r may have b1 = 0 but then

we must have a1 6= 0, so their minimum dimension is pr(m−1). Thus

edk (S(p, 2m+ 1)) ≥ rpr(m−1)(m−2) + rpr(m−1).

Let {ei} be a basis for F+
pr over Fp, and let S = {(ei, 0, . . . , 0), (0, . . . , 0, ei, 0, . . . , 0)}. Let ρ =⊕

s∈S θs,1. Then by Proposition 6.21,

dim(ρ) =
∑
s∈S

dim(θs,1) = rpr(m−1)(m−2) + rpr(m−1).

By Lemma 3.3, ρ is a faithful representation of S(p, 2m+ 1). Therefore

edk(Ω
ε(2m, pr), p) = rpr(m−1)(m−2) + rpr(m−1).

7 The General Linear Groups at Non-defining Primes

In this section, we will prove the following theorem:

Theorem 7.1. Let p be a prime, q = pr, and l a prime with l 6= p. Let k be a field with

char k 6= l. Let d be the smallest positive integer such that l
∣∣ qd−1. Let s = νl(q

d−1). Assume

that k contains a primitive ls-th root of unity. Let n0 = bnd c. If l = 2, assume that q ≡ 1

(mod 4). Then for all l,

edk(GLn(Fq), l) =

µl(n0)∑
k=0

(
bn0

lk
c − lb n0

lk+1
c
)
lk,
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The p-Sylow and its center

Definition 7.2. Let |G|l = νl(|G|); i.e. |G|l is the order of a Sylow l-subgroup of G.

By ([25], Lemma 3.1), for l 6= 2,

|GLn(Fq)|l = lsn0+bn0
l
c+bn0

l2
c+....

And by ([25], Theorem 3.7),

|GLn(Fq)|2 = (2s)n · 2ν2(n!).

Note that in both these cases, we have for any l,

|GLn(Fq)|l = lsn0 · |Sn0 |l.

We first find a Sylow l-subgroup of Sn.

Lemma 7.3. Let σji be the permutation which permutes the ith set of l blocks of size lj−1. Then

〈{σji }1≤j≤µl(n),1≤i≤b n
lj
c〉 ∈ Syll(Sn).

Let Pl(Sn) denote this particular Sylow l-subgroup of Sn.

Proof. For the proof, see the Appendix.

Lemma 7.4. For P ∈ Syll(GLn(Fq)),

P ∼= (Z/lsZ)n0 o Pl(Sn0).

Proof. 1

Let ε be a primitive ls-th root of unity in Fqd , and let E be the image of ε in GLd(Fq). There

1This construction follows [25].
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are n0 copies of 〈E〉 in GLn(Fq), given by 〈E1〉, . . . , 〈En0〉 where

E1 =



E

1

. . .

1


, . . . , En0 =



1

. . .

1

E

Idn−n0d


The symmetric group on n0 letters acts on 〈E1, . . . , En0〉 by permuting the Ei, and it can be

embedded into GLn(Fq). Let

P = 〈E1, . . . , En0〉o Pl(Sn0)

∼= (Z/lsZ)n0 o Pl(Sn0)

Then

|P | = |(Z/lsZ)n0 | · |Pl(Sn)|

= |GLn(Fq)|l

Therefore, P ∈ Syll(GLn(Fq)).

Lemma 7.5. For P ∈ Syll(GLn(Fq)),

Z(P ) ∼= (Z/lsZ)
∑µl(n0)

k=0 bn0
lk
c−lb n0

lk+1 c.

Proof.

Let P = (Z/lsZ)n0 o Pl(Sn0). By Lemma 7.4, P is isomorphic to a Sylow l-subgroup of

GLn(Fq).

For µl(n0) = 0: P ∼= (Z/lsZ)n0 , which is abelian.
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For µl(n0) > 0: Fix

(b′, τ ′) ∈ (Z/lsZ)n0 o Pl(Sn0),

and let

(b, τ) ∈ (Z/lsZ)n0 o Pl(Sn0).

Then

(b′, τ ′)(b, τ) = (b′ + τ ′(b), τ ′τ) and (b, τ)(b′, τ ′) = (b + τ(b′), ττ ′).

Thus (b′, τ ′) is in the center if and only if τ ′ ∈ Z(Pl(Sn0)) and

b′ + τ ′(b) = b + τ(b′)

for all b, τ . Choosing τ = Id, we see we must have b′ + τ ′(b) = b + b′. Thus we must have

τ ′(b) = b for all b. Therefore, τ ′ = Id. We also need τ(b′) = b′ for all τ ∈ Pl(Sn0). Write

b′ =
∏
iE

bi
i .

Note that 〈σ1
1 , . . . , σ

1
bn0
l c
〉 acts transitively on {E1, . . . , El}, {El+1, . . . E2l}, . . . {E(l−1)bn0

l
c, . . . , Elbn0

l
c}

and acts trivially on the remaining Ei, if there are more. Thus we can conclude that

b1 = · · · = bl, bl+1 = · · · = b2l, . . . , blbn0
l
c−l = · · · = blbn0

l
c,

and the remaining n0 − lbn0
l c choices of bi can be anything.

〈σ2
1, . . . , σ

2
bn0
l2
c〉 acts transitively on each group of l of the sets above through the lbn0

l2
c-th set

and trivially on the rest. Thus we can conclude that

b1 = · · · = bl2 , bl2+1 = · · · = b2l2 , . . . , bl2(bn0
l2
c−1) = · · · = bl2bn0

l2
c,

and of the remaining bi, from the previous paragraph, we must have
lbn0

l
c−l2bn0

l2
c

l = bn0
l c− lb

n0
l2
c

sets of l bi which are equal, while we still have the last n0 − lbn0
l c allowed to be anything.

Continuing this logic until we get to 〈σµl(n0)
1 , σ

µl(n0)

b n0

lµl(n0)
c〉, where µl(n0) is the highest power of
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l such that b n0

lµl(n0)
c > 0, and we can conclude that

b1 = · · · = blµl(n0) , · · · , blµl(n0)(b n0

lµl(n0)
c−1) = · · · = blµl(n0)b n0

lµl(n0)
c,

and we have
lµl(n0)−1b n0

lµl(n0)−1 c − lµl(n0)b n0

lµl(n0)
c

lµl(n0)−1
= b n0

lµl(n0)−1
c − lb n0

lµl(n0)
c

sets of lµl(n0)−1 bi which are equal, and in general for 1 ≤ k ≤ µl(n0), we have

bn0

lk
c − lb n0

lk+1
c

sets of lk bi which are equal. So we are allowed to choose

µl(n0)∑
k=0

bn0

lk
c − lb n0

lk+1
c

different entries. Thus

Z(P ) = (Z/lsZ)
∑µl(n0)

k=0 bn0
lk
c−lb n0

lk+1 c.

Definition 7.6. Let sl,n0 =
∑µl(n0)

k=0 b
n0

lk
c−lb n0

lk+1 c. In Lemma 7.5, we showed that in (Z/lsZ)n0o

Pl(Sn0), we can choose sl,n0 components of b while making (b, τ) to be in the center. Call the

indices of these components iι. For 1 ≤ ι ≤ sl,n0 − 1, we have that in the center the entries bi

for iι ≤ i < iι+1 are equal. And we have that the entries bi are equal for isl,n0 ≤ i ≤ n0. Let Iι

denote

Iι =


{i : iι ≤ i < iι+1}, ι < sl,0n

{i : isl,n0 ≤ i ≤ n}, ι = sl,n

.

For each ι, note that |Iι| = lk for some k. Let kι be such that |Iι| = lkι .
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Classifying the irreducible representations

We will use Wigner-Mackey Theory with (Z/lsZ)n0oPl(Sn0) to compute the minimum dimension

of an irreducible faithful representation with non-trivial central character. So

∆ = (Z/lsZ)n0 , L = Pl(Sn0).

Recall that we are assuming that k contains a primitive ls-th root of unity. Define ψ : Z/lsZ→ S1

by ψ(k) = e
2πik
ls . Then the characters of (Z/lsZ)n0 are given by ψb for b ∈ (Z/lsZ)n0 , where

ψb(d) = ψ(b · d).

Note. Since ∆ ∼= (Z/lsZ)n0 , we now need to assume that k contains a primitive ls-th root of

unity in order to apply Venkataram’s extension of Wigner-Mackey Theory.

Recall

Lb = stabLψb = {τ : ψ(b · (τ(a)− a)) = 1, ∀a ∈ (Z/lsZ)n0}.

Recall that the dimension of the irreducible representation θb,1 will be minimized when |Lb| is

maximized, and the dimension is given by |L|
|Lb| .

Proposition 7.7. Fix ι. Then

min
bi 6=0 for some i∈Iι

dim(θb,1) = lkι .

This minimum is achieved when b = (bi) with biι = 1 and all other entries 0.

Proof.

Let τ ∈ Lb. Note that b · (τ(a)− a) =
∑

i ai(bτ(i) − bi). For i0 ≤ n, let a = xei0 . Then

b · (τ(a)− a) = x(bτ(i0) − bi0).

If bτ(i0) − bi0 6= 0, then xbτ(i0) − xbi0 will be non-zero for some value of x ∈ Z/lsZ. But then

ψ(xbτ(i0) − xbi0) would not equal 1. This contradicts the assumption that τ ∈ Lb. Therefore,

for all i, we must have bτ(i) = bi. If this condition is satisfied, then b · (τ(a) − a) = 0 for all
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a ∈ (Z/lsZ)n0 . Thus

Lb = {τ : bτ(i) = bi, ∀i}.

If |Iι| = 1, then all τ ∈ L act trivially on Iι. Thus for b = (bi) with biι = 1 and all other

entries 0, we will have Lb = L, and thus dim(θb,1) = 1.

If l
∣∣ |Iι|, then if we choose b with bi = b for i ∈ Iι and all other entries 0, then for d = (di)

with di = xls−1 for i ∈ Iι and all other entries 0, we get that

ψb(d) = e
2πilbxls−1

ls = e2πibx = 1.

Thus in terms of forming a basis for ̂Ω1(Z((Z/lsZ)n0 o Pl(Sn0))), this is no different than having

bi = bj = 0 for i ∈ Iι. So we must have bi0 6= bj0 for some i0, j0 ∈ Iι or we can assume that

bi = bj = 0 for all i, j ∈ Iι. Hence for

τ =
∏

1≤µ≤µl(n0),1≤ν≤bn0
lµ
c

(σµν )aµ,ν ∈ Lb,

we must have bi = bj = 0 for all i, j ∈ Iι or bi0 6= bj0 for some i0, j0 ∈ Iι and aµ,ν = 0 for all σµν

which act non-trivially on Iι. Recall |Iι| = lkι . For i ∈ Iι, for each κ ≤ kι, there will be one σκν

which acts on bi, each of order l. Thus |Lb| ≤ |L|lkι . So

dim(θb,λ) ≥ lkι .

For b = (bi) with biι = 1 and all other entries 0, this minimum will be achieved.

Proof

Proof. Let P = (Z/lsZ)n0 o Pl(Sn0). By Lemma 1.5, faithful representations of P of minimal

dimension will decompose as a direct sum of exactly r = rank(Z(P )) irreducible representations.

Since the center has rank sl,n0 =
∑µl(n0)

k=0 b
n0

lk
c − lb n0

lk+1 c, a faithful representation ρ of minimal

40



dimension decomposes as a direct sum

ρ = ρ1 ⊕ . . .⊕ ρsl,n0

of exactly sl,n0 irreducibles, and if χi are the central characters of ρi, then {χi|Ω1(Z(P ))} form a

basis for ̂Ω1(Z(P )) ∼= ̂(Z/lZ)sl,n0 .

Since we must have χi|Ω1(Z(P )) generating ̂Ω1(Z(P )), for each 1 ≤ ι ≤ sl,n0 , we will need

at least one of the χi to have bi 6= 0 for some i ∈ Iι, and so by Proposition 7.7, the minimum

dimension of that ρi in the decomposition into irreducibles will be

min
bi 6=0 for some i∈Iι

dim(θb,λ) = lkι ,

where |Iι| = lkι .

Moreover, by choosing bι = (bi), with biι = 1 and all other entries 0, λ trivial, we get that

ρ = ⊕sl,n0ι=1 θbι,1 is a faithful representation of dimension
∑sl,n0

ι=1 lkι .

In the sum sl,n0 =
∑µl(n0)

k=0 b
n0

lk
c − lb n0

lk+1 c calculated in the proof of Lemma 7.5, for each k,

we get bn0

lk
c − lb n0

lk+1 c different values of iι with |Iι| = lk, i.e. kι = k. Thus

edk(GLn(Fq), l) =

sl,n0∑
ι=1

lkι =

µl(n0)∑
k=0

(
bn0

lk
c − lb n0

lk+1
c
)
lk

8 The Special Linear Groups at Non-defining Primes

Theorem 8.1. Let p be a prime, q = pr, and l a prime with l 6= p. Let k be a field with

char k 6= l. Let d be the smallest positive integer such that l
∣∣ qd − 1. Let s = νl(q

d − 1).

Assume that k contains a primitive ls-th root of unity. Let µl(n)′ denote the smallest k such

that b n
lk
c − lb n

lk+1 c > 0. If l = 2, assume that q ≡ 1 (mod 4). Then for all l,
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edk(SLn(Fq), l) =


edk(GLn(Fq), l), l - q − 1

edk(GLn(Fq), l)− lµl(n)′ , l
∣∣ q − 1

Note: In the notation of the previous section, when l
∣∣ q − 1, we have d = 1 and n0 = n.

If l - q − 1, then the Sylow l-subgroups of SLn(Fq) are isomorphic to the Sylow l-subgroups

of GLn(Fq). So we need only prove the case when l
∣∣ q− 1. Thus in this section, we will assume

l
∣∣ q − 1.

The p-Sylow and its center

By ([8], Proposition 1.1),

|SLn(Fq)| =
|GLn(Fq)|
q − 1

.

So

|SLn(Fq)|l =
|GLn(Fq)|l
lνl(q−1)

= ls(n−1) · |Sn|l

Lemma 8.2. For P ∈ Syll(SLn(Fq)),

P ∼= (Z/lsZ)n−1 o Pl(Sn).

Proof.

Let ε be a primitive ls-th root of unity in Fq, and let

E1 =



ε

1
ε

1

. . .

1


, . . . , En−1 =



1

. . .

1

ε

1/ε


, En =



1
ε

1

. . .

1

ε


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Note that in SLn(Fq), these all generate distinct cyclic subgroups except En, and

En =
∏n−1
i=1 E

ls−1
i . The symmetric group on n letters acts on 〈E1, . . . , En〉 by permuting the Ei.

So it acts on

〈E1, . . . , En−1〉 = 〈E1, . . . En〉/(En =
n−1∏
i=1

El
s−1
i ).

And Pl(Sn) can be embedded into SLn(Fq). Let

P = 〈E1, . . . , En−1〉o Pl(Sn)

∼= (Z/lsZ)n−1 o Pl(Sn)

Then P ∈ Syll(SLn(Fq)).

Lemma 8.3. For P ∈ Syll(SLn(Fq)),

Z(P ) ∼= (Z/lsZ)
(
∑µl(n)

k=0 b
n

lk
c−lb n

lk+1 c)−1
.

Proof.

Let P = (Z/lsZ)n−1 o Pl(Sn0). By Lemma 7.4, P is isomorphic to a Sylow l-subgroup of

SLn(Fq).

For µl(n) = 0: P ∼= (Z/lsZ)n−1, which is abelian.

For µl(n) > 0: Just as for GLn(Fq), (b′, τ ′) is in the center if and only if τ ′ = Id and τ(b′) = b′

for all τ ∈ Pl(Sn). Write b′ =
∏n−1
i=1 E

bi
i . Recall that En =

∏n−1
i=1 E

ls−1
i ,. If Ei can be sent to

En via some τ ∈ Pl(Sn), then we will have τ(b′) =
∏n−1
i=1 E

ls
i 6= b′. Thus for i such that Ei can

be sent to En via some τ ∈ Pl(Sn) (that is for i ∈ Isl,n , we must have bi = 0.

So not only do we have to have the bi equal for Ei that can be mapped to En, we must have

those bi = 0 (if l - n, then this is just bn = 0). Thus we have one less different entry that we can

choose than we could choose in the case of GLn(Fq)). Thus in either case,

Z(P ) ∼= (Z/lsZ)
(
∑µl(n)

k=0 b
n

lk
c−lb n

lk+1 c)−1
.
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Classifying the irreducible representations

We will use Wigner-Mackey Theory with (Z/lsZ)noPl(Sn) to compute the minimum dimension

of an irreducible faithful representation with non-trivial central character. So

∆ = (Z/lsZ)n−1, L = Pl(Sn).

Recall that we are assuming that k contains a primitive ls-th root of unity. Define ψ : Z/lsZ→ S1

by ψ(k) = e
2πik
ls . Then the characters of (Z/lsZ)n−1 are given by ψb for b ∈ (Z/lsZ)n−1, where

ψb(d) = ψ(b · d). Recall

Lb = stabLψb = {τ : ψ(b · (τ(a)− a)) = 1, ∀a ∈ (Z/lsZ)n−1}.

Recall that the dimension of the irreducible representation θb,1 will be minimized when |Lb| is

maximized, and the dimension is given by |L|
|Lb| .

Proposition 8.4. Fix ι 6= sl,n. For b = (bi)

min
bi 6=0 for some i∈Iι

dim(θb,λ) = lkι

This minimum is achieved when b = (bi) with biι = 1 and all other entries 0, λ trivial.

Proof.

Note that since i ∈ Iι and ι 6= sl,n, ei cannot be mapped to en, thus we will have τ(ei) = ej

for some j < n, and we can write τ(ei) = eτ(i).

By the exact same reasoning as for GLn(Fq),

dim(θb,λ) ≥ lkι ,

and this minimum will be achieved for b = (bi) with biι = 1 and all other entries 0.
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Proof

Let P = (Z/lsZ)n−1oPl(Sn). By Lemma 1.5, faithful representations of P of minimal dimension

will decompose as a direct sum of exactly r = rank(Z(P )) irreducible representations. Since

the center has rank sl,n0 − 1, a faithful representation ρ of minimal dimension decomposes as a

direct sum

ρ = ρ1 ⊕ · · · ⊕ ρsl,n0−1

of exactly sl,n0−1 irreducibles, and if χi are the central characters of ρi, then {χi|Ω1(Z(P ))} form

a basis for ̂Ω1(Z(P )) ∼= ̂(Z/lZ)sl,n0−1.

Since we must have χi|Ω1(Z(P )) generating ̂Ω1(Z(P )), for each 1 ≤ ι < sl,n0 − 1, we will need

at least one of the χi to have bi 6= 0 for some i ∈ Iι, and so by Proposition 8.4, the minimum

dimension of that ρi in the decomposition into irreducibles will be

min
bi 6=0 for some i∈Iι

dim(θb,λ) = lkι ,

where |Iι| = lkι .

Moreover, by choosing bι = (bi), with biι = 1 and all other entries 0, we get that ρ =

⊕sl,n−1
ι=1 θbι,1 is a faithful representation of dimension

∑sl,n−1
ι=1 lkι .

Let µl(n)′ be the smallest value of k such that b n
lk
c− lb n

lk+1 c > 0. In the sum
∑µl(n0)

k=0 b
n0

lk
c−

lb n0

lk+1 c − 1 calculated in the proof of Lemma 8.3, for each k > µl(n)′, we get bn0

lk
c − lb n0

lk+1 c

different values of iι with |Iι| = lk, i.e. kι = k. For k = µl(n)′, we get b n

lµl(n)
′ c − lb n

lµl(n)
′+1 c − 1

different values of iι with kι = µl(n)′. Thus

edk(SLn(Fq), l) =

sl,n−1∑
ι=1

lkι

=

 µl(n)∑
k=µl(n)′+1

(
b n
lk
c − lb n

lk+1
c
)
lkι

+
(
b n

lµl(n)′
c − lb n

lµl(n)′+1
c − 1

)
lµl(n)′

=

 µl(n)∑
k=µl(n)′

(
b n
lk
c − lb n

lk+1
c
)
lk

− lµl(n)′
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=

µl(n)∑
k=0

(
b n
lk
c − lb n

lk+1
c
)
lk

− lµl(n)′

= edk(GLn(Fq), l)− lµl(n)′

9 The Projective Special Linear Groups at Non-defining Primes

Theorem 9.1. Let p be a prime, q = pr, and l a prime with l 6= p. Let k be a field with

char k 6= l. Let d be the smallest positive integer such that l
∣∣ qd−1. Let s = νl(q

d−1). Assume

that k contains a primitive ls-th root of unity. If l = 2, assume that q ≡ 1 (mod 4). Then for

all l,

edk(PSLn(Fq), l) = edk(SLn(Fq), l))

If l - n, then the Sylow l-subgroups of PSLn(Fq) are isomorphic to the Sylow l-subgroups of

SLn(Fq). So we need only prove the theorem when l
∣∣ n. Thus in this section, we will assume

l
∣∣ n. Let t = νl(n).

The p-Sylow and its center

By ([8], Proposition 1.1),

|PSLn(Fq)| =
|SLn(Fq)|
(n, q − 1)

.

So

|PSLn(Fq)|l =
|SLn(Fq)|l)

νl(gcd(n, q − 1))
= ls(n−1)−min(s,t) · |Sn|l,

where s = νl(q − 1) and t = νl(n).

Lemma 9.2. For P ∈ Syll(PSLn(Fq)),

P ∼=


(Z/lsZ)n−2 o Pl(Sn), s ≤ t

((Z/lsZ)n−2 × Z/ls−tZ) o Pl(Sn), s > t

Proof.
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Let ε be a primitive ls-th root of unity in Fq. Let

E1 =



ε

1
ε

1

. . .

1


, . . . , En−1 =



1

. . .

1

ε

1/ε


, En =



1
ε

1

. . .

1

ε


Note that in PSLn(Fq), these all generate distinct cyclic subgroups except En and En−1. Just

as in SLn(Fq), En =
∏n−1
i=1 E

ls−1
i .

Case 1: s ≤ t

If s ≤ t, then min(s, t) = s, so

|PSLn(Fq)|l = ls(n−2) · |Sn|l.

Note that Z(SLn(Fq)) = {aId : a ∈ F×q , an = 1}. Since ls
∣∣ n, εn = 1. Thus εId ∈ Z(SLn(Fq)).

Note En−1 = 1
ε (E1)E2

2 · · ·E
n−2
n−2 . Thus

〈E1, . . . , En−1〉 = 〈E1, . . . , En−2〉 ∼= (Z/lZ)n−2.

As before, Sn acts on 〈E1, . . . , En〉 by permuting the Ei. So it acts on

〈E1, . . . , En−2〉 = 〈E1, . . . En〉/(En =
n−1∏
i=1

El
s−1
i , En−1 =

n−2∏
i=1

Eii).

Pl(Sn) can be embedded into PSLn(Fq). Let

P = 〈E1, . . . , En−2〉o Pl(Sn)

∼= (Z/lsZ)n−2 o Pl(Sn).

Then P ∈ Syll(PSLn(Fq)).

Case 2: s > t
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If s > t, then min(s, t) = t, so

|PSLn(Fq)|l = ls(n−1)−t · |Sn|l.

Note that Z(SLn(Fq)) = {aId : a ∈ F×q , an = 1}. So since (εl
s−t

)n = 1, εl
s−t

Id ∈ Z(SLn(Fq)).

Note (En−1)l
s−t

= 1

εls−t
∏n−2
i=1 E

ils−t
i . So in PSLn(Fq), El

s−t
n−1 =

∏n−2
i=1 E

ils−t
i . As before, Sn acts

on

〈E1, . . . , En−2〉 = 〈E1, . . . En〉/(En =
n−1∏
i=1

El
s−1
i , El

s−t
n−1 =

n−2∏
i=1

Eil
s−t

i ).

Pl(Sn) can be embedded into PSLn(Fq). Let

P = 〈E1, . . . , En−1〉o Pl(Sn)

∼= ((Z/lsZ)n−2 × Z/ls−tZ) o Pl(Sn).

Then P ∈ Syll(PSLn(Fq)).

Lemma 9.3. For P ∈ Syll(PSLn(Fq)),

Z(P ) ∼= (Z/lsZ)
(
∑µl(n)

k=0 b
n

lk
c−lb n

lk+1 c)−1
.

Proof.

Note that since l
∣∣ n, µl(n) > 0. Just as for GLn(Fq) and SLn(Fq), (b′, τ ′) is in the center if

and only if τ ′ = Id and τ(b′) = b′ for all τ ∈ Pl(Sn). Write b′ =
∏n−1
i=1 E

bi
i . Just as for SLn(Fq),

we must have bi = 0 for i such that Ei can be sent to En via some τ ∈ Pl(Sn). Similarly, we will

need bi = 0 for i such that Ei can be sent to En−1. But since l
∣∣ n, the Ei which get mapped to

En−1 are the same as those which get mapped to En. So we get no added conditions to those

which we had for SLn(Fq).
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Classifying the irreducible representations

We will use Wigner-Mackey Thoery with


(Z/lsZ)n−2 o Pl(Sn), s ≤ t

((Z/lsZ)n−2 × Z/ls−tZ) o Pl(Sn), s > t

to compute the minimum dimension of a fiathiful representation with non-trivial central char-

acter.

Recall that we are assuming that k contains a primitive ls-th root of unity. Define ψ :

Z/lsZ→ S1 by ψ(k) = e
2πik
ls .

Recall that for 1 ≤ ι ≤ sl,n0 − 1, iι correspond to the components of b that are allowed to be

chosen arbitrarily while making (b, τ) to be in the center, where sl,n0 =
∑µl(n0)

k=0 b
n0

lk
c − lb n0

lk+1 c.

Iι is

Iι =


{i : iι ≤ i < iι+1}, ι < sl,n0

{i : isl,n0 ≤ i ≤ n}, ι = s0

.

kι is such that |Iι| = lkι .

For s ≤ t, the characters of (Z/lsZ)n−2 are given by ψb for b ∈ (Z/lsZ)n−2, where ψb(d) =

ψ(b · d). Recall

Lb = stabLψb = {τ : ψ(b · (τ(a)− a)) = 1, ∀a ∈ (Z/lsZ)n−2}.

For s > t, the characters of (Z/lsZ)n−2 × Z/ls−tZ are given by ψb,x for b ∈ (Z/lsZ)n−2, x ∈

Z/ls−tZ, where

ψb,x(d, y) = ψ(b · d + lt(xy)).

Recall

Lb,x = stabLψb,x

= {τ : ψ(b · (τ(a, y)|(Z/lsZ)n−2 − a) + ltx(τ(a, y)|Z/ls−tZ − y)), ∀(a, y) ∈ (Z/lsZ)n−2 × (Z/ls−tZ)},
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Note that for (b, x) in the center, we will have x = 0, thus since we only care about non-

trivial central characters, we can assume that x = 0, and so we have the exact same situation

as that for s ≤ t.

Proposition 9.4. Fix ι 6= sl,n. For b = (bi)

min
bi 6=0 for some i∈Iι

dim(θb,λ) = lkι

This minimum is achieved when b = (bi) with biι = 1 and all other entries 0, λ trivial.

Proof.

Note that since i ∈ Iι and ι 6= sl,n, ei cannot be mapped to en. And since l
∣∣ n, we also have

n− 1 ∈ Isl,n ; thus ei cannot be mapped to en−1 either. Hence we will have τ(ei) = ej for some

j < n− 1, and we can write τ(ei) = eτ(i).

By the exact same reasoning as for GLn(Fq),

dim(θb,λ) ≥ lkι ,

and this minimum will be achieved for b = (bi) with biι = 1 and all other entries 0.

Proof

Let

P =


(Z/lsZ)n−2 o Pl(Sn), s ≤ t

((Z/lsZ)n−2 × Z/ls−tZ) o Pl(Sn), s > t

.

By Lemma 1.5, faithful representations of P of minimal dimension will decompose as a direct

sum of exactly r = rank(Z(P )) irreducible representations. Since the center has rank sl,n0 − 1,

a faithful representation ρ of minimal dimension decomposes as a direct sum

ρ = ρ1 ⊕ · · · ⊕ ρsl,n0−1
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of exactly sl,n0−1 irreducibles, and if χi are the central characters of ρi, then {χi|Ω1(Z(P ))} form

a basis for ̂Ω1(Z(P )) ∼= ̂(Z/lZ)sl,n0−1.

Since we must have χi|Ω1(Z(P )) generating ̂Ω1(Z(P )), for each 1 ≤ ι < sl,n − 1, we will need

at least one of the χi to have bi 6= 0 for some i ∈ Iι, and so by Proposition 9.4, the minimum

dimension of that ρi in the decomposition into irreducibles will be

min
bi 6=0 for some i∈Iι

dim(θb,1) = lkι ,

where |Iι| = lkι .

Moreover, by choosing bι = (bi), with biι = 1 and all other entries 0, we get that ρ =

⊕s0ι=1θbι,triv is a faithful representation of dimension

sl,n−1∑
ι=1

lkι .

Thus

edk(PSLn(Fq), l) =

sl,n−1∑
ι=1

lkι = edk(SLn(Fq), l)

10 Quotients of SLn(Fq) by cyclic subgroups of the center at

Non-defining Primes

Note the for n′|n, we obtain a subgroup of SLn(Fq) containing PSLn(Fq) of order
|SLn(Fq)|
(n′,q−1) by

taking the quotient of SLn(Fq) by the cyclic subgroup of order n′ given by {aI : a ∈ F×q , an
′

= 1}.

The order of the p-Sylow subgroup will be given by

ls(n−1)−min(s,t′)+bn
l
c+b n

l2
+...+b n

lt
c,

for s = νl(q − 1), t = νl(n).

Theorem 10.1. Let n′|n, and let s = νl(q − 1). Assume that k contains an ls-th root of unity.
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If l = 2, assume that q ≡ 1 (mod 4). Then for all l,

edk(SLn(Fq)/{aI : a ∈ F×q , an
′

= 1}, l) = edk(PSLn(Fq), l).

Proof. Let s = νl(q − 1), t = νl(n), t′ = νl(n
′). For l - n or s ≤ t′, we will get that the l-Sylow is

the same as that for PSLn(Fq).

So let us consider the case l
∣∣ n, s > t′. All the arguments that we used for PSLn(Fq)

apply directly here as well. By identical arguments to those for PSLn(Fq), we can show that

for E1, . . . En defined as before, the p-Sylow is given by

〈E1, . . . , En−1〉o Pl(Sn) ∼= ((Z/lsZ)n−2 × Z/ls−t
′
Z) o Pl(Sn).

The fact that we have Z/ls−t′Z instead of Z/ls−tZ does not affect the argements used before.

By the exact same arguments, we obtain the same essential l-dimension.

11 The Symplectic Groups at Non-defining Primes

Theorem 11.1. Let p be a prime, q = pr, and l a prime with l 6= 2, p. Let k be a field with

char k 6= l. Let d be the smallest positive integer such that l
∣∣ qd − 1. Then

edk(PSp(2n, q), l) = edk(Sp(2n, q), l) =


edk(GL2n(Fq), l), d even

edk(GLn(Fq), l), d odd

Proof. By Grove ([8], Theorem 3.12),

|PSp(2n, q)| = |Sp(2n, q)|
(2, q − 1)

.

So since l 6= 2, |l, PSp(2n, q)|l = |Sp(2n, q)|l. Hence since PSp(2n, q) is a quotient of Sp(2n, q),

we can conclude that their Sylow l-subgroups are isomorphic. Let d be the smallest positive
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integer such that l
∣∣ qd − 1 and let s = νl(q

d − 1).

If d is even: Then by Stather ([25]), |Sp(2n, q)|l = |GL2n(Fq)|l. Hence since Sp(2n, q) is a

subgroup of GL2n(Fq), we can conclude that their Sylow l-subgroups are isomorphic.

If d is odd: Then by Stather ([25]), letting n0 = bnd c, we have

|Sp(2n, q)|l = |GLn(Fq)|l = lsn0 · |Sn0 |l

Let ε be primitive ls-th root in Fqd , and let E be the image of ε in GLd(Fq). Let

E1 =



E

1

. . .

1

(E−1)T

1

. . .

1



,

...

En0 =



1

. . .

1

E

Idn−n0d

1

. . .

1

(E−1)T

Idn−n0d


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Then for all i, Ei ∈ Sp(2n, pr). Note we can embed Pl(Sn0) into Sp(2n, q). Let

P = 〈E1, . . . , En0〉o L = (Z/lsZ)n0 o Pl(Sn0)

Then P ∈ Syll(Sp(2n, q)), and P is isomorphic to a Sylow l-subgroup of GLn(Fq).

12 The Orthogonal Groups at Non-defining Primes, l 6= 2

Theorem 12.1. Let p be a prime, q = pr, and l a prime with l 6= 2, p. Let k be a field with

char k 6= l. Let d be the smallest positive integer such that l
∣∣ qd − 1, and let n0 = bnd c.

edk(PΩε(n, q), l) = edk(Oε(n, q), l) =



edk(GLm(Fq), l), n = 2m+ 1, d odd

or n = 2m, d odd, ε = +

edk(GLm−1(Fq), l), n = 2m, d odd, ε = −

edk(GL2m(Fq), l), n = 2m+ 1, d even

or n = 2m, d even, n0 even, ε = +

or n = 2m, d even, n0 odd, ε = −

edk(GL2m−2(Fq), l), n = 2m, d even, n0 odd, ε = +

or n = 2m, d even, n0 even, ε = −

Remark 7. We do not need to prove the case n = 2m+1, p = 2 sinceOε(2m+1, 2r) ∼= Sp(2m, pr)

([8], Theorem 14.2), so this case is taken care of in the work on the symplectic groups.

Proof. By Grove, for p 6= 2 ([8], Theorem 9.11 and Corollary 9.12),

|PΩ(2m+ 1, q)| = |O(2m+ 1, q)|
4

and |PΩε(2m, q)| = |Oε(2m, q)|
2(4, qm − ε1)

.

For p = 2 ([8], Theorem 14.48 and Corollary 14.49),

|PΩε(2m, q)| = |O
ε(2m, q)|

2
.

So in all cases, since l 6= 2, we have that |PΩε(n, q)|l = |Oε(n, q)|l. Hence since PΩε(n, q) is a
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quotient of Oε(n, q), we can conclude that their Sylow l-subgroups are congruent. Let d be the

smallest positive integer such that l
∣∣ qd − 1 and let s = νl(q

d − 1).

The case n = 2m+ 1

If d is even: Then |O(2m+ 1, q)|l = |GL2m+1(Fq)|l = |GL2m(Fq)|l. Hence since O(2m+ 1, q)

embeds in GL2m+1(Fq) and GL2m(Fq) embeds in GL2m+1(Fq), we can conclude that the Sylow

l-subgroups of O(2m+ 1, q), GL2m+1(Fq), GL2m(Fq) are isomorphic.

If d is odd: Then by Stather ([25]), letting m0 = bmd c, we have

|O(2m+ 1, q)|l = |GLm(Fq)|l = lsm0 · Pl(Sm0)

Let ε be primitive ls-th root in Fqd , and let E be the image of ε in GLd(Fq). Let

E1 =



1

E

1

. . .

1

(E−1)T

1

. . .

1


...
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Em0 =



1

. . .

1

E

Idm−m0d

1

. . .

1

(E−1)T

Idm−m0d


Then for all i, Ei ∈ O(2m+ 1, pr). Note we can embed Pl(Sm0) into O(2m+ 1, q). Let

P = 〈E1, . . . , En0〉o L = (Z/lsZ)n0 o Pl(Sm0)

Then P ∈ Syll(O(2m+ 1, q)), and P is isomorphic to a Sylow l-subgroup of GLm(Fq).

The case n = 2m

Note that Oε(n, q) embeds into Oε(n+ 1, q) via

X 7→

1 0

0 X

 .

By Grove ([8], Theorem 9.11 and Corollary 9.12),

|O+(2m, q)| = 2qm(m−1)(qm − 1)

m−1∏
i=1

(q2i − 1).

|O−(2m, q)| = 2qm(m−1)(qm + 1)

m−1∏
i=1

(q2i − 1).
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and

|O(2m+ 1, 1)| = 2qm
2
m∏
i=1

(q2i − 1).

Thus

[O(2m+ 1, q) : O+(2m, q)] = qm(qm + 1)

[O+(2m, q) : O(2m− 1, q)] = qm−1(qm − 1)

[O(2m+ 1, q) : O−(2m, q)] = qm(qm − 1)

[O−(2m, q) : O(2m− 1, q)] = qm−1(qm + 1)

Note that since l 6= 2, either qm + 1 or qm − 1 is prime to l.

If qm + 1 is prime to l, then

|O+(2m, q)|l = |O(2m+ 1, q)|l

|O−(2m, q)|l = |O(2m− 1, q)|l

Thus when qm + 1 is prime to l, the Sylow l-subgroups of O+(2m, q) are isomorphic to those of

O(2m+ 1, q), and the Sylow l-subgroups of O−(2m, q) are isomorphic to those of O(2m− 1, q).

If qm − 1 is prime to l, then

|O+(2m, q)|l = |O(2m− 1, q)|l

|O−(2m, q)|l = |O(2m+ 1, q)|l

Thus when qm− 1 is prime to l, the Sylow l-subgroups of O+(2m, q) are isomorphic to those

of O(2m−1, q), and the Sylow l-subgroups of O−(2m, q) are isomorphic to those of O(2m+1, q).

We showed in the section on odd orthogonal groups that when d is even, the Sylow l-

subgroups of O(2m+ 1, q) are isomorphic to those of GL2m(Fq), and when d is odd, the Sylow

l-subgroups of O(2m+ 1, q) are isomorphic to those of GLm(Fq).
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Recall that we defined n0 = b2m
d c. By Stather [25],

|O+(2m, q)|l =


|GLm(Fq)|l, d odd

|GL2m−2(Fq)|l, d even, n0 odd

|GL2m(Fq)|l, d even, n0 even

and

|O−(2m, q)|l =


|GLm−1(Fq)|l, d odd

|GL2m(Fq)|l, d even, n0 odd

|GL2m−2(Fq)|l, d even, n0 even

.

In order for this to match up with the isomorphisms to the odd orthogonal groups, we must

have that when d is odd or d is even with n0 even, then qm + 1 is prime to l. When d is even

with n0 odd, then qm − 1 is prime to l.

Case 1: d odd

For d odd, the Sylow l-subgroups of O+(2m, q) are isomorphic to those of O(2m+1, q), which

are isomorphic to those of GLm(Fq) and the Sylow l-subgroups of O−(2m, q) are isomorphic to

those of O(2m− 1, q), which are isomorphic to those of GLm−1(Fq).

Case 2: d even, n0 odd

For d even, n0 odd, the Sylow l-subgroups of O+(2m, q) are isomorphic to those of O(2m−

1, q), which are isomorphic to those of GL2m−2(Fq) and the Sylow l-subgroups of O+(2m, q) are

isomorphic to those of O(2m+ 1, q), which are isomorphic to those of GL2m(Fq).

Case 3: d even, n0 even

For d even, n0 even, the Sylow l-subgroups of O+(2m, q) are isomorphic to those of O(2m+

1, q), which are isomorphic to those of GL2m(Fq) and the Sylow l-subgroups of O−(2m, q) are

isomorphic to those of O(2m− 1, q), which are isomorphic to those of GL2m−2(Fq).

Putting the above results together, we get Theorem 12.1.
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13 The Unitary Groups at Non-defining Primes, l 6= 2

Theorem 13.1. Let p be a prime, q = pr, and l a prime with l 6= 2, p. Let k be a field with

char k 6= l. Let d be the smallest positive integer such that l
∣∣ qd − 1. Then

edk(U(n, q2), l) =


edk(GLn(Fq2), l), d = 2 (mod 4)

edk(GLbn
2
c(Fq2), l), d 6= 2 (mod 4)

Proof. By Stather [25]

|U(n, q2)|l =


|GLn(Fq2)|l, d = 2 (mod 4)

|GLbn
2
c(Fq2)|l, d 6= 2 (mod 4)

Case 1: d = 2 (mod 4).

Since U(n, q2) ⊂ GLn(Fq2) and |U(n, q2)|l = |GLn(Fq2)|l in this case, we can immediately

conclude that for d = 2 (mod 4), the Sylow l-subgroups of U(n, q2) andGLn(Fq2) are isomorphic.

Case 2: d 6= 2 (mod 4)

Let s = νl(q
d − 1). let ε be a primitive ls-root of unity in Fq2d . Let E be the image of ε in

GLd(Fq).

For n = 2m, let

E1 =



E

1

. . .

1

(E−1)T

1

. . .

1


...
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Ebm
d
c =



1

. . .

1

E

Idm−bm
d
cd

1

. . .

1

(E−1)T

Idm−bm
d
cd


For n = 2m+ 1, let

E′1 =

1 0

0 E1

 , . . . , Ebm
d
c =

1 0

0 Ebm
d
c


Pl(Sbm

d
c) acts on 〈E1, . . . , Ebm

d
c〉 ∼= 〈E′1, . . . , E′bm

d
c〉. We can embed Pl(Sbm

d
c) into U(n, q2).

Let

P = 〈E1, . . . , Ebm
d
c〉o PlSbm

d
c)

Then P ∈ Syll(U(n, q2)), and P is isomorphic to a Sylow l-subgroup of GLm(Fq2), which is

isomorphic to a Sylow l-subgroup of GLbn
2
c(Fq2).

14 The Special Unitary Groups at Non-defining Primes, l 6= 2

Theorem 14.1. Let p be a prime, q = pr, and l a prime with l 6= 2, p. Let k be a field with

char k 6= l. Then

edk(SU(n, q2), l) =


edk(U(n, q2), l), l - q + 1

edk(SLn(Fq2), l), l
∣∣ q + 1
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Proof. By Grove ([8], Theorem 11.28 and Corollary 11.29),

|SU(n, q2)| = |U(n, q2)|
q + 1

If l - q+ 1, then the Sylow l-subgroups of SU(n, q2) are isomorphic to the Sylow l-subgroups

of U(n, q2). So we need only prove the case when l
∣∣ q + 1. Thus in this section, we will assume

l
∣∣ q + 1. Then since l 6= 2, this implies that l - q − 1. Also, since q2 − 1 = (q + 1)(q − 1), we

must have l
∣∣ q2 − 1. Let d′ be the smallest positive integer such that l

∣∣ qd − 1. Then d′ = 2.

Let s = νl(q
2 − 1). Then since l - q − 1, we have that s = νl(q + 1).

Note that when finding the Sylow l-subgroup of GLn(Fq2), we would have d the smallest

power of q2 such that l
∣∣ (q2)d − 1. So in this case, we would have d = 1. Then we would set

s = νl((q
2)d− 1) = νl(q

2− 1), so the s is still the same even though the d is different. We would

have n0 = bnd c = bn1 c = n. Thus in the present case,

|GLn(Fq2)|l = lsn · |Sn|l.

So

|SU(n, q2)|l =
|GLn(Fq2)|l
lνl(q+1)

= ls(n−1) · |Sn|l = |SLn(Fq2)|l|

Recall that SU(n, q2) = {M ∈ U(n, q2) : det(M) = 1} and SLn(Fq2) = {M ∈ GLn(Fq2) :

det(M) = 1}. Therefore, since the Sylow l-subgroups of U(n, q2) and GLn(Fq2) are isomorphic,

we can conclude that the Sylow l-subgroups of SU(n, q2) and SLn(Fq2) are isomorphic.
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15 The Projective Special Unitary Groups at Non-defining

Primes, l 6= 2

Theorem 15.1. Let p be a prime, q = pr, and l a prime with l 6= 2, p. Let k be a field with

char k 6= l. Then

edk(PSU(n, q2), l) =


edk(SU(n, q2), l), l - n or l - q + 1

edk(PSLn(Fq2), l), l
∣∣ n, l ∣∣ q + 1

Proof. By Grove (Corollary 11.29),

|PSU(n, q2)| = |SU(n, q2)|
(n, q + 1)

.

If l - n or l - q + 1, then the Sylow l-subgroups of PSU(n, q2) are isomorphic to the Sylow

l-subgroups of SU(n, q2). So we need only prove the case when l
∣∣ n, l ∣∣ q + 1. Thus in this

section, we will assume l
∣∣ n, l ∣∣ q + 1. As before, this implies that l - q − 1 and l

∣∣ q2 − 1. Let

s = νl(q
2 − 1). Then since l - q − 1, we have that s = νl(q + 1).

By the same reasoning as in the section on the special unitary groups, we can conclude that

the s here is the same as the s found for the special linear groups. Thus we have

|SLn(Fq2)| = ls(n−1) · |Sn|l.

Let t = νl(n). Then

|PSU(n, q2)|l =
|SLn(Fq2)|l

lmin(νl(n),νl(q+1))
= ls(n−1)−min(s,t) · |Sn|l = |PSLn(Fq2)|l

Since PSU(n, q2) and PSLn(Fq2)) are obtained from SU(n, q2) and SLn(Fq2) respectively

by modding out by a cyclic group of order lmin(s,t) and the Sylow l-subgroups of SU(n, q2)

and GLn(Fq2) are isomorphic, we can conclude that the Sylow l-subgroups of PSU(n, q2) and

PSLn(Fq2) are isomorphic.
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16 The Unitary Groups, l = 2 and q ≡ 3 (mod 4)

The Unitary Groups

Theorem 16.1. Let p 6= 2 be a prime, q = pr, k a field with char k 6= 2. Assume that q ≡ 3

(mod 4), and let s′ = ν2(q + 1). Assume that k contains a primitive 2s
′
-th root of unity.

edk(U(n, q2), 2) =

µ2(n)∑
k=0

(b n
2k
c − 2b n

2k+1
b)2k

Proof. By Stather [25]

|U(n, q2)|2 = 2ν2(n!)2s
′n

Note that

|{a ∈ Fq2 : aa = 1}| = q + 1.

Let ε be an element of order 2s
′

in {a ∈ Fq2 : aa = 1}. Then let

E1 =



ε

1

. . .

1


, . . . , En =



1

. . .

1

ε


Let

P = 〈E1, . . . , En〉o P2(Sn)

∼= (Z/2s
′
Z)n o P2(Sn)

Then P ∈ Syl2(U(n, q2)). By the same reasoning as for GLn(Fq),

edk(U(n, q2), 2) =

µ2(n)∑
k=0

(b n
2k
c − 2b n

2k+1
b)2k.
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The Special Unitary Groups and Projective Special Unitary Groups

Theorem 16.2. Let p 6= 2 be a prime, q = pr, k a field with char k 6= 2. Assume that q ≡ 3

(mod 4), and let s′ = ν2(q + 1). Assume that k contains a primitive 2s
′
-th root of unity. Let

µ2(n)′ denote the smallest k such that b n
2k
c − b n

2k+1 c > 0. Then

edk(SUn(Fq), 2) =

 µl(n)∑
k=µl(n)′

(
b n
2k
c − 2b n

2k+1
c
)
lk

− 2µ2(n)′

Proof. Note that

|{a ∈ Fq2 : aa = 1}| = q + 1.

Let ε be an element of order 2s
′

in {a ∈ Fq2 : aa = 1}. Then let

E1 =



ε

1
ε

1

. . .

1


, . . . , En−1 =



1

. . .

1

ε

1/ε


, En =



1
ε

1

. . .

1

ε



Then in SU(n, q2) these all generate distinct cyclic subgroups except En and En =
∏n−1
i=1 E

2s
′−1

i .

Let

P = 〈E1, . . . , En〉o P2(Sn)

∼= (Z/2s
′
Z)n−1 o P2(Sn)

Then P ∈ Syl2(SU(n, q2)). By the same reasoning as for SLn(Fq),

edk(SU(n, q2), 2) =

 µl(n)∑
k=µl(n)′

(
b n
2k
c − 2b n

2k+1
c
)
lk

− 2µ2(n)′ .
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Theorem 16.3. Let p 6= 2 be a prime, q = pr, k a field with char k 6= 2. Assume that q ≡ 3

(mod 4), and let s′ = ν2(q + 1). Assume that k contains a primitive 2s
′
-th root of unity.

edk(PSU(n, q2), 2) = edk(SU(n, q2), 2).

Proof. By Grove ([8], Theorem 11.28 and Corollary 11.29),

|PSU(n, q2)| = |SU(n, q2)|
(n, q + 1)

.

Thus if n is odd, the 2-Sylow subgroups are isomorphic. So we need only consider the case

n = 2m. The proof is almost identical to that for PSLn(Fq).
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Appendix

In this appendix, we provide some details for the computations in this thesis.

Remark 4

Remark 4: Duncan and Reichstein calculated the essential p-dimension of the pseudo-reflection

groups: For G a pseudo-reflection group with k[V ]G = k[f1, · · · , fn], di = deg(fi), edk(G, p) =

a(p) = |{i : di is divisible by p}| ([6], Theorem 1.1). These groups overlap with the groups above

in a few small cases (The values of di are in [24], Table VII):

(i) Group 12 in the Shephard-Todd classification, Z2.O ∼= GL2(F3): d1, d2 are 6, 8; so

edk(Z2.O, 3) = 1 = edk(GL2(F3), 3).

(ii) Group 23 in the Shephard-Todd classification, W (H3) ∼= Z/2Z× PSL2(F5): d1, · · · d3 are

2, 6, 10; so

edk(W (H3), 5) = 1 = edk(PSL2(F5), 5),

and

edk(W (H3), 3) = 1 = edk(PSL2(F5), 3).

(iii) Group 24 in the Shephard-Todd classification, W (J3(4)) ∼= Z/2Z × PSL2(5): d1, . . . , d3

are 4, 6, 14; so

edk(W (J3(4)), 3) = 1 = edk(PSL2(5), 3)

and

edk(W (J3(4)), 7) = 1 = edk(PSL2(5), 7).

(iv) Group 32 in the Shephard-Todd classification, W (L4) ∼= Z/3Z × Sp(4, 3): d1, · · · d4 are

12, 18, 24, 30; so

edk(W (L4), 3) = 4 = 1 + edk(Sp(4, 3), 3),
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and

edk(W (L4), 5) = 1 = edk(Sp(4, 3), 5).

(v) Group 33 in the Shephard-Todd classification, W (K5) ∼= Z/2Z × PSp(4, 3) ∼= Z/2Z ×

PSU(4, 2): d1, · · · d5 are 4, 6, 10, 12, 18; so

edk(W (K5), 3) = 3 = edk(PSp(4, 3), 3),

edk(W (K5), 2) = 5 = 1 + edk(PSU(4, 2)),

edk(W (K5), 5) = 1 = edk(PSp(4, 3), 5) = edk(PSU(4, 22), 5)

and

edk(W (K5), 3) = 3 = edk(PSU(4, 22), 3).

(vi) Group 35 in the Shephard-Todd classification, W (E6) ∼= O−(6, 2): d1, · · · , d6 are 2, 5, 6, 8, 9,

12; so

edk(W (E6), 2) = 4 = edk(O
−(6, 2), 2),

edk(W (E6), 5) = 1 = edk(O
−(6, 2), 5),

and

edk(W (E6), 3) = 3 = edk(O
−(6, 2), 3).

(vii) Group 36 in the Shephard-Todd classification, W (E7) ∼= Z/2Z × Sp(6, 2): d1, · · · , d7 are

2, 6, 8, 10, 12, 14, 18; so

edk(W (E7), 2) = 7 = 1 + edk(Sp(6, 2), 2),

edk(W (E7), 5) = 1 = edk(Sp(6, 2), 5),

edk(W (E7), 3) = 3 = edk(Sp(6, 2), 3),
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and

edk(W (E7), 7) = 1 = edk(Sp(6, 2), 7).

(viii) Group 37 in the Shephard-Todd classification, W (E8) contains O+(8, 2) as in index 2

subgroup: d1, . . . , d8 are 2, 8, 12, 14, 18, 20, 24, 30; so

edk(W (E8), 3) = 4 = edk(O
+(8, 2), 3),

edk(W (E8), 5) = 2 = edk(O
+(8, 2), 5),

and

edk(W (E8), 7) = 1 = edk(O
+(8, 2), 3).

Lemma 2.8

Lemma (2.8). If H ⊂ G, then edk(H, p) ≤ edk(G, p).

Proof.

edk(G, p) = edk(H
1(−;G))

= sup
E Galois G-algebra over F, F/k∈Fields/k

edk(E)

And

edk(G, p) = edk(H
1(−;G), p)

= sup
E Galois G-algebra over F, F/k∈Fields/k

edk(E, p)

= sup
E Galois G-algebra over F

(
min trdegk(F

′′))
)

where the minimum is taken over all

F ′′ ⊂ F ′ a finite extension, with F ⊂ F ′

[F ′ : F ] finite s.t. p - [F ′ : F ] and
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EF ′ = E′F ′′ for some E′ Galois G-algebra over F ′′

Thus

edk(G, p)

= sup
E Galois G-algebra over F

min
F⊂F ′ a finite extension and p-[F ′:F ]

min
F ′′ s.t. EF ′=E′F ′′ for some E′ Galois G-algebra over F ′′

trdegk(F
′′))

And similarly,

edk(H, p)

= sup
E Galois H-algebra over F

min
F⊂F ′ a finite extension and p-[F ′:F ]

min
F ′′ s.t. EF ′=E′F ′′ for some E′ Galois H-algebra over F ′′

trdegk(F
′′))

Since H is a subgroup of G, we have that given a Galois H-algebra E over F , we can extend

to a Galois G-algebra over F. Thus it suffices to show that for E ⊂ E1 with E a Galois H-algebra

over F and E1 a Galois G-algebra over F , if F ⊂ F ′ is a finite extension with p - [F ′ : F ], then

min
F ′′ s.t. EF ′=E′F ′′ for some E′ Galois H-algebra over F ′′

trdegk(F
′′))

≤ min
F ′′ s.t. E1F ′=E′1F

′′ for some E′1 Galois G-algebra over F ′′
trdegk(F

′′))

Let F ⊂ F ′ be a finite extension with p - [F ′ : F ]. If F ′′ is such that there exists E′1 with

E1F
′ = E′1F

′′, then there exists a Galois G algebra E′ over F ′′ contained in E′1F
′ such that

E0F
′′ = E′F ′. Let E′ = E0∩E. Then E′ is a Galois H-algebra over F ′′. Hence F ′′ is considered
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in the min for edC(H, p). Thus the desired inequality holds. Therefore,

edk(H, p) ≤ edk(G, p).

Lemma 2.9

Lemma (2.9). Let S ∈ Sylp(G). Then edk(G, p) = edk(S, p).

Proof. By Lemma 2.8, we already have edk(S, p) ≤ edk(G, p). So we only need to show that

edk(G, p) ≤ edk(S, p). Since S is a subgroup of G, we have that given a Galois G-algebra E over

F there exists an extension of F , F0 = ES , such that E is a Galois S-algebra over ES . Thus

it suffices to show that for E a Galois G-algebra over F , which is also a Galois S-algebra over

F0 = ES ,

edk(G, p)

min
F⊂F ′ a finite extension and p-[F ′:F ]

min
F ′′ s.t. EF ′=E′F ′′ for some E′ Galois G-algebra over F ′′

trdegk(F
′′))

≤ min
F0⊂F ′ a finite extension and p-[F ′:F0]

min
F ′′ s.t. EF ′=E′F ′′ for some E′ Galois S-algebra over F ′′

trdegk(F
′′))

Note that since S is a subgroup of G of index prime to p and [F0 : F ] = [ES : F ] = [G : S],

we get that p - [F0 : F ]. Given F0 ⊂ F ′ a finite extension and p - [F ′ : F0], then

p - [F ′ : F ] = [F ′ : F0][F0 : F ].

Thus F ′ is also considered in the minimum for edk(G, p), and so the desired inequality holds.

Therefore,

edk(G, p) ≤ edk(H, p).
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Lemma 2.10

Lemma (2.10; [10], Remark 4.8). If k a field of characteristic 6= p, k1/k a finite field extension

of degree prime to p, then edk(G, p) = edk1(G, p).

Proof. T : Fields/k → Sets be defined by T (F/k) = the isomorphism class of G-torsors over

SpecF . Recall that

edk(G, p)

= sup
t∈T (F ),F/k∈Fields/k

edk(t, p)

= sup
t∈T (F ),F/k∈Fields/k

(
min

F ′′⊂F ′ s.t. p-[F ′:F ′′] and the image of t in T (F ′) is in Im(T (F ′′)→T (F ′))
trdegk(F ′′)

)

First we will show that edk1(G,p) ≤ edk(G,p):

Let F1/k1, t1 ∈ T (F ). We want to show that there exist F/k, t ∈ T (F ) such that

edk1(t1, p) ≤ edk(t, p).

In other words, if we are given F ′′ ⊂ F ′ such that p - [F ′ : F ′′], the image of t in T (F ′) is in

Im(T (F ′′)→ T (F ′)), we need to be able to show that there exists F ′′1 ⊂ F ′1 such that p - [F ′1 : F ′′1 ]

and the image of t1 in T (F ′1) is in Im(T (F ′′1 )→ T (F ′1)) and

trdegk1(F ′′1 ) ≤ trdegk(F
′′).

So, let F = F1 and t = t1. Suppose we are given F ′′ ⊂ F ′ such that p - [F ′ : F ′′] and

the image of t in T (F ′) is in Im(T (F ′′) → T (F ′)). In other words, there exists t2 ∈ T (F ′′),

t3 ∈ T (F ′). such that t2 and t1 both map to t3. Then let F ′′1 = F ′′k1, F
′
1 = F ′k1. Then since

p - [k1 : k] and G is a p-group, t2k1 ∈ T (F ′′1 ), t3k1 ∈ T (F ′1), and t1 and t2k1 both map to t3k1 in

T (F ′1). Since [F ′1 : F ′′1 ]
∣∣ [F ′ : F ′′] and p - [F ′ : F ′′], we have that p - [F ′1 : F ′′1 ]. Also the image of
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t in T (F ′1) is in Im(T (F ′′1 )→ T (F ′1)). Moreover, trdegk1 F
′′
1 = trdegk F

′′.

Therefore, we can conclude that edk1(T,p) ≤ edk(T,p).

Now we will show that edk(G,p) ≤ edk1(G,p) :

Let F/k, t ∈ T (F ). We want to show that there exist F1/k1, t1 ∈ T (F ′) such that

edk(t, p) ≤ edk1(t1, p).

In other words, if we are given F ′′1 ⊂ F ′1 such that p - [F ′1 : F ′′1 ] and the image of t1 in T (F ′1)

is in Im(T (F ′′1 ) → T (F ′1)), we need to be able to show that there exists F ′′ ⊂ F ′ such that

p - [F ′ : F ′′], the image of t in T (F ′) is in Im(T (F ′′)→ T (F ′)) and

trdegk(F
′′) ≤ trdegk1(F ′′1 ).

So, let F1 = Fk1 and let t1 be the image of t in T (F1). Suppose we are given F ′′1 ⊂ F ′1 such

that p - [F ′1 : F ′′1 ] and the image of t1 in T (F ′1) is in Im(T (F ′′1 )→ T (F ′1)). Then let F ′′ = F ′′1 , F
′ =

F ′1. Then p - [F ′ : F ′′] = [F ′1 : F ′′1 ], and the image of t in T (F ′) is the image of t1 in T (F ′1) (from

T (F1)), which is in Im(T (F ′′) → T (F ′)). Moreover trdegk F
′′ = trdegk F

′′
1 = trdegk1 F

′′
1 , since

k1/k is a finite extension.

Therefore, we can conclude that edk(T,p) ≤ edk1(T,p).

Lemmas 5.6 and 5.7

For any prime p, we define

S(p, n) = {

A 0n

0n (A−1)T


Idn B

0n Idn

 : A ∈ Upn(Fpr), B ∈ Sym(n, pr)}.

And it is easy to show that S(p, n) ∈ Sylp(Sp(2n, p
r)) and that

S(p, n) ∼= Sym(n, pr) o Upn(Fpr),
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where the action is given by A(B) = ABAT , where B ∈ Sym(n, pr), A ∈ Upn(Fpr).

Lemma (5.6). For p 6= 2, S(p, n) the Sylow p-subgroup of Sp(2n, pr) defined above,

Z(S(p, n)) = {

Idn D

0n Idn

 : D =

d 0

0 0n−1

} ∼= F+
pr
∼= (Z/pZ)r

For the proof of of this Lemma, we need the following lemma:

Lemma 16.4. For p 6= 2, D ∈ Sym(n, pr), AD = D(A−1)T for all A ∈ Upn(Fpr) if and only if

D =

d 0

0 0n−1

.

Granting this lemma, we can calculate the center:

Proof.

S(p, n) = {

A 0n

0n (A−1)T


Idn B

0n Idn

 : A ∈ Upn(Fpr), B ∈ Sym(n, pr)}

= {

A AB

0n (A−1)T

 : A ∈ Upn(Fpr), B ∈ Sym(n, pr)}.

Note that

A AB

0n (A−1)T

−1 C CD

0n (C−1)T

A AB

0n (A−1)T

 =

A−1CA A−1CAB +A−1CD(A−1)T −B((A−1CA)−1)T

0n ((A−1CA)−1)T



So

C CD

0n (C−1)T

 ∈ Z(S(p, n)) if and only if C ∈ Z(Upn(Fpr)) and

CD = CB + CA−1D(A−1)T −B(C−1)T , for all A ∈ Upn(Fpr), B ∈ Sym(n, pr).

Choosing A,B = Idn, we need CD = C +CD− (C−1)T . So C = (C−1)T and thus C = Idn. So
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the other requirement above becomes

D = A−1D(A−1)T ⇔ AD = D(A−1)T , for all A ∈ Upn(Fpr).

By Lemma 16.4, we get that

Z(S(p, n)) = {

Idn D

0n Idn

 : D =

d 0

0 0n−1

}

Proof of Lemma 16.4.

⇐: This is a straightforward calculation.

⇒: We will prove this by induction.

Base Case: When n = 2, we can write A =

1 a

0 1

 and D =

x y

y z

.

AD =

x+ ay y + az

y z

 ,

and

D(A−1)T =

x− ay y − az

y z

 .

So the condition that AD = D(A−1)T for all A implies that y = 0 and z = 0.

Induction Step: Write

D =



d1,1 d1,2 d1,3 · · · d1,n

d1,2 d2,2 d2,3 · · · d2,n

...
. . .

...

d1,n−1 d2,n−1 · · · dn−1,n−1 dn−1,n

d1,n d2,n · · · dn−1,n dn,n


, A =



1 0 0 · · · 0

0 1 0 · · · 0

. . .
...

0 0 · · · 1 an−1,n

0 0 0 · · · 1


.
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Then

AD =



d1,1 · · · d1,n−1 d1,n

d2,2 · · · d2,n−1 d2,n

...
. . .

...

d1,n−1 + an−1,nd1,n · · · dn−1,n−1 + an−1,ndn−1,n dn−1,n + an−1,ndn,n

d1,n · · · dn−1,n dn,n


and

D(A−1)T =



d1,1 · · · d1,n−2 d1,n−1 − an−1,nd1,n d1,n

d1,2 · · · d2,n−2 d2,n−1 − an−1,nd2,n d2,n

...
. . .

...

d1,n−1 · · · dn−1,n−2 dn−1,n−1 − an−1,ndn−1,n dn−1,n

d1,n · · · dn,n−2 dn−1,n − an−1,ndn,n dn,n


In order for these to be equal for all an−1,n, we must have dk,n = 0 for all k. So the matrix

D′ =



d1,1 d1,2 d1,3 · · · d1,n−1

d1,2 d2,2 d2,3 · · · d2,n−1

...
. . .

...

d1,n−2 d2,n−2 · · · dn−2,n−2 dn−2,n

d1,n−1 d2,n−1 · · · dn−2,n−1 dn−1,n−1


satisfies the condition A′D′ = D′(A′−1)T for all A′ ∈ Upn−1(Fpr). By induction, we conclude

that

D′ =

d 0

0 0n−2

 ,

and hence

D =

d 0

0 0n−1

 .
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Lemma (5.7). For S(2, n) the Sylow p-subgroup of Sp(2n, 2r) defined above,

Z(S(2, n)) = {

Idn D

0n Idn

 : Di,j = 0, for all (i, j) /∈ {(1, 1), (1, 2), (2, 1), D1,2 = D2,1}

∼= (F+
2r)

2 ∼= (Z/2Z)2r

For the proof, we need the following lemma:

Lemma 16.5. For p = 2, D ∈ Sym(n, 2r), AD = D(A−1)T for all A ∈ Upn(F2r) if and only if

Di,j = 0, for all (i, j) /∈ {(1, 1), (1, 2), (2, 1)}.

Granting this lemma, we can calculate the center:

Proof.

Syl2(S(2, n)) = {

A AB

0n (A−1)T

 : A ∈ Upn(F2r), B ∈ Sym(n, 2r)}.

Just as for p 6= 2,

C CD

0n (C−1)T

 ∈ Z(Sylp(PSp(n, 2
r))) if and only if C = Idn and

D = A−1D(A−1)T ⇔ AD = D(A−1)T , for all A ∈ Upn(Fpr).

By Lemma 16.5, then we have that

Z(S(2, n)) = {

Idn D

0n Idn

 : Di,j = 0, for all (i, j) /∈ {(1, 1), (1, 2), (2, 1)}}

Proof of Lemma 16.5.

⇐: This is a straightforward calculation.

⇒: We will prove this by induction.

Base Case: When n = 2, we can write A =

1 a

0 1

 and D =

x y

y z

.
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AD =

x+ ay y + az

y z

 ,

and

D(A−1)T =

x+ ay y

y + az z

 .

So the condition that AD = D(A−1)T for all A implies that z = 0.

Remark 8. This calculation is the key difference between odd and even characteristic.

Induction Step: Assume that n > 2. Write

D =



d1,1 d1,2 d1,3 · · · d1,n

d1,2 d2,2 d2,3 · · · d2,n

...
. . .

...

d1,n−1 d2,n−1 · · · dn−1,n−1 dn−1,n

d1,n d2,n · · · dn−1,n dn,n


, A =



1 0 0 · · · 0

0 1 0 · · · 0

. . .
...

0 0 · · · 1 an−1,n

0 0 0 · · · 1


.

Then

AD =



d1,1 · · · d1,n−1 d1,n

d1,2 · · · d2,n−1 d2,n

...
. . .

...

d1,n−1 + an−1,nd1,n · · · dn−1,n−1 + an−1,ndn−1,n dn−1,n + an−1,ndn,n

d1,n · · · dn−1,n dn,n



79



and

D(A−1)T =



d1,1 · · · d1,n−2 d1,n−1 + an−1,nd1,n d1,n

d1,2 · · · d2,n−2 d2,n−1 + an−1,nd2,n d2,n

...
. . .

...

d1,n−1 · · · dn−1,n−2 dn−1,n−1 + an−1,ndn−1,n dn−1,n

d1,n · · · dn,n−2 dn−1,n + an−1,ndn,n dn,n


In order for these to be equal for all an−1,n, we must have dk,n = 0 for all k except k = n − 1.

Since n > 2, we can pick

A =



1 0 0 · · · 0

0 1 0 · · · 0

. . .
...

0 · · · 1 an−2,n−1 0

0 0 · · · 1 0

0 0 0 · · · 1


.

By comparing the entries of AD and D(A−1)T , we see that in order to have AD = D(A−1)T

for all an−2,n−1, we must have dk,n−1 = 0 for all k except k = n− 2. In particular, we get that

dn,n−1 = dn−1,n = 0. Thus dk,n = 0 for all k. So the matrix

D′ =



d1,1 d1,2 d1,3 · · · d1,n−1

d1,2 d2,2 d2,3 · · · d2,n−1

...
. . .

...

d1,n−2 d2,n−2 · · · dn−2,n−2 dn−2,n

d1,n−1 d2,n−1 · · · dn−2,n−1 dn−1,n−1


satisfies the condition A′D′ = D′(A′−1)T for all A′ ∈ Upn−1(Fpr). By induction, we conclude

that

Di,j = 0, for all (i, j) /∈ {(1, 1), (1, 2), (2, 1)}.
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Section 5.3 Calculation

The calculation that H ∈ Lb if and only if ψ(b ·(hdhT−d)) = 1 for all d ∈ (Fpr)n(n+1)/2, where

hdhT is the vector corresponding to HDHT under the isomorphism Sym(n, pr) ∼= (F+
pr)

n(n+1)/2:

Remark 9. In all of the following, we view ψ(bj) as a map on ∆ ∼= Sym(n, pr) ∼= Fn(n+1)/2
pr .

So ψ(bj)(D, Id) = ψ(bj)(D) = ψ(b · d), where b = (bj) and d is the vector corresponding to the

matrix D.

Note that (0n, H
−1) ∈ Ls if and only if for all d ∈ (Fpr)n(n+1)/2 = D ∈ Sym(n, pr),

ψ(bj)((0n, H)(D, Idn)(0n, H
−1)) = ψ(bj)(D, Idn).

Let hdhT denote the vector corresponding to HDHT . Then since

ψ(bj)((0n, H)(D, Idn)(0n, H
−1)) = ψ(b · hdhT),

and

ψ(bj)(D, Idn) = ψ(b · d),

we get that (0n, H
−1) ∈ Ls if and only if for all d ∈ (Fpr)n(n+1)/2 = D ∈ Sym(n, pr),

ψ(b · (hdhT − d)) = 1.

Proposition 5.8

Proposition (5.8). For p 6= 2,

min
b∈(F+

pr )n(n+1)/2, b1 6=0
dim(θb,1) = pr(n−1).

This minimum is achieved when b = (b, 0, . . . , 0) with b 6= 0.
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Write

H =



1 h1,2 h1,3 · · · h1,n

0 1 h2,3 · · · h2,n

. . .
...

0 0 · · · 1 hn−1,n

0 0 0 · · · 1


, D =



d1,1 d1,2 d1,3 · · · d1,n

d1,2 d2,2 d2,3 · · · d2,n

...
. . .

...

d1,n−1 d2,n−1 · · · dn−1,n−1 dn−1,n

d1,n d2,n · · · dn−1,n dn,n


.

Then

HDHT −D

=



[
∑n
l=1(h1,l

∑n
k=1 dl,kh1,k)]− d1,1 [

∑n
l=2(h2,l

∑n
k=1 dl,kh1,k)]− d1,2 · · · (

∑n
k=1 dk,nh1,k)− d1,n

[
∑n
l=1(h1,l

∑n
k=2 dl,kh2,k)]− d1,2 [

∑n
l=2(h2,l

∑n
k=2 dl,kh2,k)]− d2,2 · · · (

∑n
k=2 dk,nh2,k)− d2,n

...
. . .

...

(
∑n
l=1 h1,ldl,n)− d1,n (

∑n
l=2 h2,ldl,n)− d2,n · · · 0



We will prove the proposition in two steps:

Claim 16.6. For p 6= 2, for s = (bi), b1 6= 0, |Ls| ≤ |Upn−1(Fpr)| = pr(n−1)(n−2)/2.

Claim 16.7. For p 6= 2, s = (b, 0, · · · , 0) with b 6= 0,

Ls = StabL(ψs) = {H : H1,j = 0,∀j 6= 1} ∼= Upn−1(Fpr)

Proof of Claim 16.6. Pick j0 6= 1 and choose D with di,j = 0 except for d1,j0 = dj0,1. Then we

get that
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HDHT −D =



2d1,j0h1,j0 h2,j0d1,j0 · · · hj0−1,j0d1,j0 0 · · · 0

h2,j0d1,j0 0 · · · 0

...
. . .

...

hj0−1,j0d1,j0 0 · · · 0

0 · · · 0

...
. . .

...

0 0 · · · 0


Thus we have

b · (hdhT − d) = 2d1,j0h1,j0B1,1 +

j0−1∑
i=2

hi,j0d1,j0B1,i = d1,j0

(
2h1,j0B1,1 +

j0−1∑
i=2

hi,j0B1,i

)

If
(

2h1,j0B1,1 +
∑j0−1

i=2 hi,j0B1,i

)
6= 0, then as we run through all the values for d1,j0 , we will get

that b · (hdhT − d) runs through all the values of Fpr . And since ψ is non-trivial, this means

that ψ(b · (hdhT − d)) cannot always equal 1. This is a contradiction. So we must have

2h1,j0B1,1 +

j0−1∑
i=2

hi,j0B1,i = 0

for all choices of j0 6= 1. Recall that B1,1 = b1 6= 0. So, for all j0, given hi,j0 for i > 1, the above

dictates h1,j0 :

h1,j0 =
−1

2B1,1

j0−1∑
i=2

hi,j0B1,i.

Thus we can conclude that for all s = (bi) with b1 6= 0,

|Ls| ≤ |{H : H1,j fixed ∀j 6= 1}| = |Upn−1(Fpr)| = pr(n−1)(n−2)/2

Proof of Claim 16.7. Let B be the matrix corresponding to s = (b, 0, · · · , 0). Since the only
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nonzero entry of B is B1,1 = b, we have that

b · (hdhT − d) = b(hdhT − d)1 = b

(
[
n∑
l=1

(h1,l

n∑
k=1

dl,kh1,k)]− d1,1

)
.

By the proof of Claim 16.6, if H ∈ Ls, then ∀j0 6= 1, we must have

h1,j0 =
−1

2B1,1

j0−1∑
i=2

hi,j0B1,i = 0.

And if h1,j0 = 0 ∀j 6= 1, then we have

b · (hdhT − d) = b(h1,1d1,1h1,1 − d1,1) = 0, since h1,1 = 1

Thus we have shown that (0n, H
−1) ∈ Ls if and only if h1,j = 0, ∀j 6= 1. Therefore,

Ls = {(0n, H−1) : H1,j = 0,∀j 6= 1} ∼= Upn−1(Fpr).

Proposition 5.9

Proposition (5.9). For p = 2, n = 2,

min
b∈(F+

pr )3, b1 6=0,b2 6=0
dim(θb,1) = 2r−1.

This minimum is achieved when b = (b1, b2, 0) with b1 6= 0, b2 6= 0.

If b = (b1, b2, 0) with b1 6= 0, b2 6= 0, then

dim(θb,1) = 2r.

Proof. We will prove the proposition in two steps:

Step 1: Proving that for p = 2,n = 2, s = (bi), (b1,b2) 6= (0,0) : if b1,b2 6= 0, then

|Ls| ≤ 2, and otherwise |Ls| = 1.
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HDHT −D =

[
∑2

l=1(h1,l
∑2

k=1 dl,kh1,k)]− d1,1 (
∑2

k=1 dk,2h1,k)− d1,2

(
∑2

l=1 h1,ldl,2)− d1,2 0


Let p = 2, s = (bi) with (b1, b2) 6= (0, 0).

Calculation 1. Choose di,j = 0 except for d2,2.

Then we get that

HDHT −D =

h2
1,2d2,2 h1,2d2,2

h1,2d2,2 0


Thus we have

b · (hdhT − d) = B1,1h
2
1,2d2,2 +B1,2h1,2d2,2

= d2,2h1,2(B1,1h1,2 +B1,2)

Then since ψ is non-trivial, we must have h1,2(B1,1h1,2 + B1,2) = 0. Thus either h1,2 = 0 or

B1,1h1,2 + B1,2 = 0. If B1,1 6= 0, B1,2 6= 0, then either h1,2 = 0 or h1,2 =
B1,2

B1,1
. If B1,1 6= 0,

B1,2 = 0 or B1,1 = 0, B1,2 6= 0, then h1,2 = 0. Our findings can be summarized in a chart as

follows (we only care when (B1,1, B1,2) 6= (0, 0)):

Case: result options

B1,1 6= 0, B1,2 6= 0 h1,2 = 0 or h1,2 =
B1,2

B1,1
2

B1,1 6= 0, B1,2 = 0 h1,2 = 0 1

B1,1 = 0, B1,2 6= 0 h1,2 = 0 1

Thus we can conclude that for all s = (bi) with (b1, b2) 6= (0, 0), then for b1, b2 6= 0, |Ls| ≤ 2 and

otherwise |Ls| = 1.

Step 2: Showing that when s = (b1,b2,0) with b1 6= 0,b2 6= 0, |Ls| = 2.

For s = (b1, b2, b3),
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b · (hdhT − d) = b1

(
[

2∑
l=1

(h1,l

2∑
k=1

dl,kh1,k)]− d1,1

)
+ b2

(
[

2∑
k=1

dk,2h1,k]− d1,2

)

= b1h
2
1,2d2,2 + b2d2,2h1,2 since we are working in char 2

= d2,2h1,2(b1h1 + b2)

If b1 6= 0, b2 6= 0, then either h1,2 = 0 or h1 = b2
b1

. In either case, the above is identically zero.

Thus |Ls| = 2.

Proposition 5.10

Proposition (5.10). For p = 2, n > 2,

min
b∈(F+

pr )n(n+1)/2, b2 6=0
dim(θb,1) = 2r(2n−3)−1.

This minimum is achieved when b = (bi) = (b1, b2, 0, . . . , 0) with b1, b2 6= 0.

min
b∈(F+

pr )n(n+1)/2, b1 6=0
dim(θb,1) = 2r(n−1)−1.

This minimum is achieved when b = (bi) = (b1, 0, b3, . . . , 0) with b1, b3 6= 0.

Proof. Again, we will prove this in two steps:

Step 1: Proving that for p = 2,n > 2, s = (bi), (b1,b2) 6= (0,0): If b2 6= 0, then

|Ls| ≤ 2r(n−2)(n−3)/2+1, and if b2 = 0(⇒ b1 6= 0), then |Ls| ≤ 2r(n−1)(n−2)/2+1.

Calculation 1. For j0 > 2, choose di,j = 0 except for d1,j0 = dj0,1.

Then

b · (hdhT − d) =

j0−1∑
i=2

hi,j0d1,j0B1,i = d1,j0

j0−1∑
i=2

hi,j0B1,i

So for all j0 > 2, we must have
j0−1∑
i=2

hi,j0B1,i = 0.
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For j0 = 3, this gives h2,j0B1,2 = 0, and thus if B1,2 6= 0, we must have h2,j0 = 0. For 2 ≤ k ≤ n,

if B1,k 6= 0, then for all j0 > 3, given hi,j0 for i 6= 1, k, the above dictates hk,j0 :

hk,j0 =
−1

B1,k

j0−1∑
i=2,i 6=k

hi,j0B1,i.

Calculation 2. Now for j0 > 1, choose di,j = 0 except for dj0,j0 .

Then

b · (hdhT − d) = dj0,j0

(
j0−1∑
l=1

j0∑
k=l

Bl,khl,j0hk,j0

)

So for all j0 6= 1, we must have

j0−1∑
l=1

j0∑
k=l

Bl,khl,j0hk,j0 = 0.

Thus we have that for all j0 6= 1,

h1,j0(

j0∑
k=1

B1,khk,j0) +

j0−1∑
l=2

j0∑
k=l

Bl,khl,j0hk,j0 = 0

For j0 = 2, this tells us 0 = h1,2(B1,1h1,2 +B1,2). If B1,2 = 0(⇒ B1,1 6= 0) or B1,1 = 0(⇒ B1,2 6=

0), then this implies that h1,2 = 0. If B1,2 6= 0 and B1,1 6= 0, then we have two options for h1,2:

h1,2 = 0 and h1,2 =
B1,2

B1,1
. For j0 > 2, this is a quadratic expression for h1,j0 in terms of Bi,j and

hk,j0 for k > 1, namely

B1,1h
2
1,j0 + (

j0∑
k=2

B1,khk,j0)h1,j0 +

j0−1∑
l=2

j0∑
k=l

Bl,khl,j0hk,j0 = 0

Thus for j0 > 2, given hi,j0 for i > 1, there are up to two options for h1,j0 .

Calculation 3. Now for j0 > 2, choose di,j = 0 except for d2,j0 = dj0,2.

Then

b · (hdhT − d) = d2,j0

(
B1,2h1,j0 +

j0∑
i=2

B1,ihi,j0h1,2 +

j0−1∑
i=3

B2,ihi,j0

)
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So for all j0 > 2, we must have

B1,2h1,j0 +

j0∑
i=2

B1,ihi,j0h1,2 +

j0−1∑
i=3

B2,ihi,j0 = 0.

If B1,2 6= 0, then for all j0 > 2, given hi,j0 for i > 2, the above dictates h1,j0 :

h1,j0 =
−1

B1,2

(
j0∑
i=2

B1,ihi,j0h1,2 +

j0−1∑
i=3

B2,khi,j0

)

Case 1. b2 6= 0

If B1,2 = b2 6= 0, then we have from the first calculation that for all j0 > 1, given hi,j0 for i > 2,

h2,j0 are dictated. By the second calculation we have that there are at most two options for h1,2.

And by the third calculation, h1,j0 is dictated for j0 > 2. Thus for b2 6= 0, we can conclude that

|Ls| ≤ |{H : two options for H1,2, and ∀j > 2, H1,j , H2,j fixed, }|

= 2|Upn−2(Fpr)|

= 2r(n−2)(n−3)/2+1.

Case 2. b2 = 0, b3 6= 0

If B1,2 = b2 = 0(⇒ B1,1 6= 0): We have by the second calculation that for j0 > 2,

0 = B1,1h
2
1,j0 + (

j0∑
k=3

B1,khk,j0)h1,j0 +

j0−1∑
l=2

j0∑
k=l

Bl,khl,j0hk,j0

For j0 = 2, we get B1,1h
2
1,2 = 0. Thus we must have h1,2 = 0. For j0 = 3, we get 0 =

B1,1h
2
1,3 + B1,3h1,3 = h1,3(B1,1h1,3 + B1,3). Thus either h1,3 = 0 or h1,3 =

B1,3

B1,1
. For j0 > 3,

we have from the first calculation that
∑j0−1

i=3 hi,j0B1,i = 0, so the equality from the second

calculation becomes

0 = B1,1h
2
1,j0 +B1,j0h1,j0 +

j0−1∑
l=2

j0∑
k=l

Bl,khl,j0hk,j0
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We will use the following proposition:

Proposition 16.8 ([17], Proposition 1). In a finite field of order 2r, for f(x) = ax2 + bx + c,

we have have the following:

(i) f has exactly one root ⇔ b = 0.

(ii) f has exactly two roots ⇔ b 6= 0 and Tr(ac
b2

) = 0.

(iii) f has no root ⇔ b 6= 0 and Tr(ac
b2

) = 1,

where Tr(x) = x+ x2 + · · ·+ x2r−1.

So, for j0 > 3, if B1,j0 = 0, then there is only one option for h1,j0 . Otherwise, it might have two

options or no options. Thus we have the following for j0 > 3: If B1,j0 = 0, then there is one

option for h1,j0 , but hk,j0 can be anything for k > 1. And if B1,j0 6= 0, then there is only one

option for hj0,k0 for all k0 > 2 (by the first calculation with k = j0, j0 = k0), but h1,j0 might

have two options. So we can obtain an upper bound for Ls by choosing B1,j = 0 for all j > 3

and assuming all the options are in Ls. In this case h2,j can be anything, but h1,j is fixed for

all j except j = 3, and there are two options for h1,3 So we get that

|Ls| ≤ |{H : H1,j fixed ∀j 6= 3, H1,3 = 0 or
B1,3

B1,1
}|

= 2|Upn−1(F2r)|

= 2r(n−1)(n−2)/2+1

Step 2: Showing that for p = 2,n > 2: When s = (b1,b2,0, · · · ,0) with b1,b2 6= 0,

|Ls| = 2r(n−2)(n−3)/2+1, and when s = (b1,0,b3, · · · ,0) with b1,b3 6= 0, |Ls| = 2r(n−1)(n−2)/2+1.

Let p = 2, s = (b1, b2, · · · , bn, 0, · · · , 0). And let B be the corresponding matrix. Then

b · (hdhT − d) = b1

n∑
k=2

h2
1,kdk,k +

n∑
j=2

bj

[
n∑
l=j

(hj,l

n∑
k=1

dl,kh1,k)]− d1,j


Case 1. b1, b2 6= 0, b3, · · · , bn = 0.
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Since B1,2 = b2 6= 0, then we have from the first calculation in Step 1 that for all j0 > 2,

h2,j0 =
−1

B1,2

j0−1∑
i=3

hi,j0B1,i = 0.

By the second calculation we have that there are two options for h1,2: h1,2 = 0 and h1,2 =
B1,2

B1,1

And by the third calculation, for j0 > 2,

h1,j0 =
−1

B1,2

(
j0∑
i=2

B1,ihi,j0h1,2 +

j0−1∑
i=3

B2,khi,j0

)
=
−1

B1,2
B1,2h2,j0h1,2 = 0

Thus we have

b · (hdhT − d) = d2,2h1,2(B1,1h1,2 +B1,2)

So whether h1,2 = 0 or h1,2 =
B1,2

B1,1
, this is identically 0. Therefore

|Ls| = |{H : H1,2 = 0 or H1,2 =
B1,2

B1,1
, H1,j = 0 = H2,j ∀j > 0}| = 2|Upn−2(F2r )| = 2r(n−2)(n−3)/2+1

Case 2. b1 6= 0, b2 = · · · = bn = 0.

If B1,k = bk = 0 for 2 ≤ k ≤ n: We have the following by the work in Step 1:

h1,2 = 0. By the second calculation we have that there are two options for h1,3: h1,2 = 0 and

h1,3 =
B1,3

B1,1
. And for j0 > 3,

0 = B1,1h
2
1,j0 +B1,j0h1,j0 +

j0−1∑
l=2

j0∑
k=l

Bl,khl,j0hk,j0 = B1,1h
2
1,j0

So we have h1,j0 = 0 for j0 6= 1. Thus

b · (hdhT − d) = b1

n∑
k=2

h2
1,kdk,k since bi = 0 for i > 1

= 0 since h1,j0 = 0 for j0 6= 1
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Therefore

|Ls| = |{H : H1,3 = 0 or H1,3 =
B1,3

B1,1
, H1,j0 = 0 for j0 6= 1, 3}| = 2|Upn−1(F2r )| = 2r(n−1)(n−2)/2+1

Lemma 6.14

Lemma (6.14). Let

S(2, 2m) = {

 A 0m

0m (A−1)T


Idm B

0m Idm

 : A ∈ Upm(F2r), B ∈ Antisym0(m, 2r)}.

Then S(2, 2m) ∈ Syl2(Ωε(2m, 2r)) for ε ∈ {±}.

Proof. Since Ωε(2m, 2r) ⊂ Oε(2m, 2r) ⊂ Sp(2m, 2r), we must have that for S1 ∈ Syl2(Ωε(2m, 2r)),

S2 ∈ Syl2(Oε(2m, 2r)), S3 ∈ Syl2(Sp(2m, 2r)), S1 ⊂ S2 ⊂ S3. It is straightforward to show that

for S3 ∈ Syl2(Sp(2m, 2r) for S3 = N oO where

N = {

Idm B

0m Idm

 : B ∈ Sym(m, pr)} ∼= Sym(m, pr)

and

O = {

 A 0m

0m (A−1)T

 : A ∈ Upm(F2r)} ∼= Upm(F2r).

Note O is a subgroup of both Ω+(2m, 2r) and Ω−(2m, 2r). O is isomorphic to Upm(F2r). So

|O| = (2r)m(m−1)/2. Let

N ′ = {

Idm B

0m Idm

 : B ∈ Antisym0(m, 2r)} ⊂ N
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Then N ′ ∼= Antisym0(m, 2r). And for M ∈ N ′,

MTA+
mM =

0m Idm

0m BT


and for x = (y, z),

Q(Mx) = yT z + zTBT z

And

zTBT z =
∑
i,j

Bi,jzizj

=
∑
i<j

2Bi,jzizj +
n∑
i=1

Bi,iz
2
i since B ∈ Antisym0(m, 2r) ⊂ Sym(m, 2r)

= 0 since we are in characteristic 2 and Bi,i = 0, ∀i

Therefore, Q+(Mx) = yT z = Q+(x) for all x = (y, z). So N ′+ ⊂ O+(2n, pr). Also, for

M =

Idm B

0n Idm

 ∈ N ′,

MTA−nM =

Idn 0n

BT Idm


01

m Idm

0m 0dm


Idm B

0m Idm


=

Idm 0m

BT Idm


01

m Idm

0m 0dm

 , since Bm,m = 0

=

01
m Idm

0m BT + 0dm


So for x = (y, z),

Q−(Mx) = yzT + y2
m + dz2

m + zBT zT

= yzT + y2
m + dz2

m since zBT zT = 0 by the work shown above
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= Q−(x)

Therefore N ′ ⊂ O−(2n, pr) as well. And

|N ′| = (pr)
∑m−1
k=1 k = (pr)m(m−1)/2.

Then consider N ′ o O ⊂ Ωε(2m, 2r) for both ε = + and ε = − (the operation is inherited from

N oO). Then we have

|N ′ oO| = |N ′| · |O|

= (2r)n(n−1)/2 · (2r)m(m−1)/2

= 2rn(n−1)

We learned the following argument from an early draft of [7]:

Note that for M =

 A 0m

0m (A−1)T

 ∈ O,

δ+
2m,2r(M) = rank(Id2m −M) mod 2

= rank

Idm +A 0m

0m Idm + (A−1)T

 mod 2

= 2 rank(A) mod 2

= 0

And for M =

Idm B

0m Idm

 ∈ N ′,

δ+
2m,2r(M) = rank(Id2m −M) mod 2
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= rank

0m B

0m 0m

 mod 2

= rank(B) mod 2

And since B is symmetric with Bi,i = 0, ∀i, B determines an alternating symmetric bilinear

form, and thus has even rank.

Thus, δ+
2m,2r(M) = 0 for M ∈ N ′ as well. Hence we have that both N ′ and O are in

Ω+(2m, 2r) = SO+(2m, 2r) = ker(δ+
2m,2r). Therefore, N ′ oO ⊂ Ω+(2n, 2r). And

|N ′ oO| = 22m(m−1) = |Ωε(2m, 2r)|2

Thus we can conclude that for ε = +,−,

N ′ oO ∈ Syl2(Ωε(2m, 2r)

Lemmas 6.18 and 6.19

For p 6= 2, we define

S(p, 2m) = {

 A 0m

0m (A−1)T


Idm B

0m Idm

 : A ∈ Upm(Fpr), B ∈ Antisym(m, pr)}.

It is easy to show that S(p, 2m) is isomorphic to the elements in Sylp(Ω
±(2m, pr)) and that

S(p, 2m) ∼= Antisym(m, pr) o Upm(Fpr),

where the action is given by A(B) = ABAT .
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We also define

S(p, 2m+ 1)

= {


1 0 x

xT Idm 0m

0 0m Idn



1 0 0

0 A 0m

0 0m (A−1)T



1 0 0

0 Idm B

0 0 Idm

 : x ∈ Fmpr , A ∈ Upm(Fpr ), B ∈ Antisym(m, pr)}.

It is easy to show that S(p, 2m+ 1) ∈ Sylp(O(2m+ 1, pr)) and that

S(p, 2m+ 1) ∼=
(
(F+
pr)

m ×Antisym(m, pr)
)
o Upm(Fpr)),

where the action of Upm(Fpr) on Antisym(m, pr) is given by A(B) = ABAT . and the action of

Upm(Fpr) on (F+
pr)

m is given by A(x) = xAT .

Lemma (6.18). For any prime p, m > 2, let S(p, 2m) = S+(p, 2m) be defined as above and in

Lemma 6.15. Then

Z(S(p, 2m)) = {

Idm D

0m Idm

 : D =


0 x 0

−x 0 0

0 0 0m−2

} ∼= F+
pr
∼= (Z/pZ)r

For the proof, we need the following lemma:

Lemma 16.9. Given D ∈


Antisym(m, pr) p 6= 2

Antisym0(m, 2r) p = 2

,

AD = D(A−1)T ∀A ∈ Upm(Fpr)⇔ D =


0 x 0

−x 0 0

0 0 0m−2

 .

Remark 10. This lemma is true for any m ≥ 2.

Granting this lemmma, we can calculate the center:
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Proof. For p 6= 2,

S(p, 2m) = {

 A 0m

0m (A−1)T


Idm B

0m Idm

 : A ∈ Upm(Fpr), B ∈ Antisym(m, pr)}

= {

 A AB

0m (A−1)T

 : A ∈ Upm(Fpr), B ∈ Antisym(m, pr)}.

and

S(2, 2m) = {

 A 0m

0m (A−1)T


Idm B

0m Idm

 : A ∈ Upm(Fpr), B ∈ Antisym0(m, 2r)}

= {

A AB

0n (A−1)T

 : A ∈ Upm(Fpr), B ∈ Antisym0(m, 2r)}.

Note that for any p, given

 A AB

0m (A−1)T

 ,

 C CD

0m (C−1)T

 ∈ Ω+(2m, 2r)

we have

 A AB

0m (A−1)T

−1  C CD

0m (C−1)T

 A AB

0m (A−1)T

 =

A−1CA A−1CAB +A−1CD(A−1)T −B((A−1CA)−1)T

0m ((A−1CA)−1)T

 .

So  C CD

0m (C−1)T

 ∈ Z(S(p, 2m))

if and only if

C ∈ Z(Upm(Fpr)) = {


1 0 x

0 Idm−2 0

0 0 1

}
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and

CD = CB+CA−1D(A−1)T−B(C−1)T , for all A ∈ Upm(Fpr), B ∈


Antisym(m, pr) p 6= 2

Antisym0(m, 2r) p = 2

.

Remark 11. For the remainder of this proof p can be any prime. (When p = 2, the negatives

will go away, but the argument is the same.)

Choosing A = Idm, we need

CD = CB + CD −B(C−1)T .

So we must have

CB = B(C−1)T

for all

B ∈


Antisym(m, pr) p 6= 2

Antisym0(m, 2r) p = 2

.

Write

C =


1 0 x

0 Idm−2 0

0 0 1

 ∈ Z(Upm(Fpr)).

(C−1)T =


1 0 −x

0 Idm 0

0 0 1


T

=


1 0 0

0 Idm 0

−x 0 1

 .

Then for

B = (bi,j) ∈


Antisym(m, pr) p 6= 2

Antisym0(m, 2r) p = 2

,

we get
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CB =



−xb1,m b1,2 − xb2,m · · · b1,m−1 − xbm−1,m b1,m

−b1,2 0 b2,3 · · · b2,m
...

. . .
...

−b1,m−1 · · · bm−1,m

−b1,m · · · −bm−1,m 0


and

B(C−1)T =



−xb1,m b1,2 · · · b1,m

−b1,2 − xb2,m 0 b2,3 · · · b2,m
...

. . .
...

−b1,m−1 − xbm−1,m −b2,m−1 · · · bm−1,m

−b1,m −b2,m · · · −bm−1,m 0


So if m > 2, we must have x = 0, and hence C = Idm.

Remark 12. This is where I need m > 2.

So the other requirement above becomes

D = A−1D(A−1)T ⇔ AD = D(A−1)T

for all A ∈ Upm(Fpr). Then by Lemma 16.9, we get that

Z(S(p, 2m)) = {

Idm D

0m Idm

 : D =


0 x 0

−x 0 0

0 0 0m−2

}

Proof of Lemma 16.9.

⇐: This is a straightforward calculation.

⇒: We will prove this by induction.

98



Base Case: When m = 2, we can write A =

1 a

0 1

 and D =

 0 x

−x 0

.

AD =

−ax x

−x 0

 = D(A−1)T .

So the condition that AD = D(A−1)T always holds. When m = 3, we can write A =


1 a b

0 1 c

0 0 1



and D =


0 x y

−x 0 z

−y −z 0

.

AD =


−ax− by x− bz y + az

−x− cy −cz z

−y −z 0

 ,

and

D(A−1)T =


−ax+ acy − by x− cy y

−x+ acy − bz −cz z

−y + az − acz + bz −z 0

 .

So in order for these to be equal for all A, we must have y = 0 and z = 0.

Induction Step: Write

D =



0 d1,2 d1,3 · · · d1,m

−d1,2 0 d2,3 · · · d2,m

...
. . .

...

−d1,m−1 −d2,m−1 · · · 0 dm−1,m

−d1,m −d2,m · · · −dm−1,m 0


, A =



1 0 0 · · · 0

0 1 0 · · · 0

. . .
...

0 0 · · · 1 am−1,m

0 0 0 · · · 1


,
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then

AD =



0 d1,2 d1,3 · · · d1,m−1 d1,m

−d1,2 0 d2,3 · · · d2,m−1 d2,m

...
. . .

...

−d1,m−1 − am−1,md1,m · · · −dm−2,m−1 − am−1,mdm−1,m −am−1,mdm−1,m dm−1,m

−d1,m · · · −dm−1,m 0


And

D(A−1)T =



0 d1,2 d1,3 · · · d1,m−2 d1,m−1 − am−1,md1,m d1,m

−d1,2 0 d2,3 · · · d2,m−2 d2,m−1 − am−1,m − d2,m d2,m

...
. . .

...

−d1,m−1 · · · dm−1,m−2 −am−1,mdm−1,m dm−1,m

−d1,m · · · −dm,m−2 −dm−1,m 0


In order for these to be equal for all am−1,m, we must have dk,m = 0 for all k 6= m − 1. Since

m > 2, we can pick

A =



1 0 0 · · · 0

0 1 0 · · · 0

. . .
...

0 · · · 1 am−2,m−1 0

0 0 · · · 1 0

0 0 0 · · · 1


,

so we get

AD

=



0 d1,2 d1,3 · · · d1,m−1 d1,m

−d1,2 0 d2,3 · · · d2,m−1 d2,m

...
. . .

...

−d1,m−2 − am−2,m−1d1,m−1 · · · −am−2,m−1dm−2,m−1 dm−2,m−1 dm−2,m + am−2,m−1dm−1,m

−d1,m−1 · · · −dm−2,m−1 0 dm−1,m

−d1,m · · · −dm−1,m 0


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And

D(A−1)T =



0 · · · d1,m−3 d1,m−2 − am−2,m−1d1,m−1 d1,m−1 d1,m

−d1,2 · · · d2,m−3 d2,m−2 − am−2,m−1d2,m−1 d2,m−1 d2,m

...
. . .

...

−d1,m−2 · · · −dm−2,m−3 −am−2,m−1dm−2,m−1 dm−2,m−1 dm−2,m

−d1,m−1 · · · −dm−1,m−3 −dm−2,m−1 0 dm−1,m

−d1,m · · · −dm,m−3 −dm−2,m + am−2,m−1dm−1,m −dm−1,m 0


In order for these to be equal for all am−2,m, we must have dk,m−1 = 0 for all k 6= m − 2. In

particular, we get that dnm,m−1 = dm−1,m = 0. Thus dk,m = 0 for all k. So the matrix

D′ =



d1,1 d1,2 d1,3 · · · d1,m−1

−d1,2 d2,2 d2,3 · · · d2,m−1

...
. . .

...

−d1,m−2 −d2,m−2 · · · dm−2,m−2 dm−2,m

−d1,m−1 −d2,m−1 · · · −dm−2,m−1 dm−1,m−1


satisfies the condition A′D′ = D′(A′−1)T for all A′ ∈ Um−1(Fpr). By induction, we conclude

that

D′ =


0 x 0

−x 0 0

0 0 0m−3

 ,

and hence

D =


0 x 0

−x 0 0

0 0 0m−2

 .
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Lemma (6.19). For p 6= 2, S(p, 2m+ 1) defined as above,

Z(S(p, 2m+ 1)) = {


1 0 x

xT Idm D

0 0m Idm

 : x = (x1, 0, . . . , 0), D =


0 x 0

−x 0 0

0 0 0m−2

} ∼= (F+
pr)

2

Proof.

Case 1: n = 5

The proof for n > 5 uses the result for Z(S(p, 2m)), which we only calculated for m > 2. So we

must prove the case m = 2 separately:

For m = 2, the action of Up2(Fpr) ∼= Fpr on Antisym(2, pr) ∼= Fpr is trivial. And the action on

F2
pr is given by a(x, y) = (x + ay, y). So we have S(p, 5) ∼= F2

pr o F2
pr , where the action of F2

pr

(2nd copy) on F2
pr (1st copy) is given by (b, a) ((x, y)) = (x + ay, y). An element ((x, y), (a, b))

is in the center if and only if for all ((w, z), (d, c)) we have

((w, z), (d, c))((x, y), (b, a)) = ((x, y), (b, a))((w, z)(d, c))

Note that

((w, z), (d, c))((x, y), (b, a)) = ((x+ w + cy, y + z), (b+ d, a+ c))

and

((x, y), (b, a))((w, z)(d, c)) = ((x+ w + az, y + z), (b+ d, a+ c))

These will be equal for all ((w, z), (d, c)) if and only if a = 0 = y. Therefore the center is given

by

{((x, 0), (b, 0)) : x, b ∈ Fpr}.

Translating this back into the original form in a matrix, we get that the center is
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Z(S(p, 5)) = {



1 0 0 w 0

0 1 0 0 0

0 0 1 0 0

w 0 0 1 0

0 0 0 0 1





1 0 0 0 0

0 1 0 0 b

0 0 1 −b 0

0 0 0 1 0

0 0 0 0 1


=



1 0 0 w 0

0 1 0 0 b

0 0 1 −b 0

w 0 0 1 0

0 0 0 0 1


} ∼= (Fpr)2

Case 2: n > 5

Since

S(p, 2m+ 1) ∼= (F+
pr)

m o (Antisym(m, pr) o Upm(Fpr)) ∼= (F+
pr)

m o S(p, 2m),

we can conclude that

Z(S(p, 2m+ 1)) ∩ ({0} × S(p, 2m))

must be a subset of Z(S(p, 2m)), which we proved above to be

Z(S(p, 2m)) = {

Idm D

0m Idm

 : D =


0 x 0

−x 0 0

0 0 0m−2

} ∼= F+
pr
∼= (Z/pZ)r(for m > 2).

Thus the center of (F+
pr)

m o (Antisym(m, pr) o Upm(Fpr) is a subset of

(F+
pr )

mo


Idm D

0m Idm

 : D =


0 x 0

−x 0 0

0 0 0m−2


 =




1 0 x

xT Idm D

0 0m Idm

 : x ∈ Fmpr , D =


0 x 0

−x 0 0

0 0 0m−2




Given 
1 0 y

yT A AB

0 0m (A−1)T

 ∈ Sylp(O(2m+ 1, pr)),

we have that
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
1 0 x

xT Idm D

0 0m Idm




1 0 y

yT A AB

0 0m (A−1)T

 =


1 0 y + x(A−1)T

xT + yT A xT y +AB +D(A−1)T

0 0m (A−1)T


and 

1 0 y

yT A AB

0 0n (A−1)T




1 0 x

xT Idm D

0 0m Idm

 =


1 0 x + y

yT +AxT A xyT +AD +AB

0 0m (A−1)T


So in order for 

1 0 x

xT Idm D

0 0m Idm


to be in the center, we need xT = AxT , x = x(A−1)T , and AD = D(A−1)T for all choices of A.

By the work on even orthogonal groups, AD = D(A−1)T is satisfied if and only if

D =


0 x 0

−x 0 0

0 0 0m−2

 .

Note that the kth entry of x = AxT is given by xk +
∑m

i=k+1 xiak,i. In order for this to be equal

to xk for all ak,i, must have xi = 0 for all i > 1. So x = (x1, 0, · · · , 0). In this case x = x(A−1)T

will be satisfied as well. Therefore the center is

Z(S(p, 2m+ 1)) = {


1 0 x

xT Idm D

0 0m Idm

 : x = (x1, 0, · · · , 0), D =


0 x 0

−x 0 0

0 0 0m−2

} ∼= (F+
pr)

2
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Section 6.4 Calculation

The calculation that H ∈ Lb if and only if ψ(b · (hdhT − d)) = 1 for all d ∈ (F+
pr)

m(m−1)/2,

where hdhT is the vector in (F+
pr)

m(m−1)/2 corresponding to HDHT ∈ Sym(m, pr) under the

isomorphsim Sym(m, pr) ∼= (F+
pr)

m(m−1)/2:

Remark 13. In all of the following, we view ψ(bj) as a map on


∆ ∼= Antisym(m, pr) ∼= Fm(m−1)/2

pr p 6= 2

∆ ∼= Antisym0(m, 2r) ∼= Fm(m−1)/2
2r p = 2

.

So ψ(bj)(D, Id) = ψ(bj)(D) = ψ(b · d), where b = (bj) and d is the vector corresponding to the

matrix D.

The action of h ∈ Sylp(Ω
+(2m, pr)) on ∆̂ is given by

hψ(D, Idm) = ψ(h−1(D, Idm)h).

So for h = (0m, H
−1), the action on ψ(bj) is given by

hψ(bj)(D, Idm) = ψ(bj)((0m, H)(D, Idm)(0m, H
−1)).

So (0m, H
−1) ∈ Ls if and only if

ψ(bj)((0m, H)(D, Idm)(0m, H
−1)) = ψ(bj)(D, Idm)

for all

d ∈ (F+
pr)

m(m−1)/2 corresponding to D ∈


Antisym(m, pr) p 6= 2

Antisym0(m, 2r) p = 2

.

Let hdhT be the vector corresponding to HDHT . Then since

ψ(bj)((0m, H)(D, Idm)(0m, H
−1)) = ψ(b · hdhT),
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and

ψ(bj)(D, Idm) = ψ(b · d).

we get that (0m, H
−1) ∈ Ls if and only if

ψ(b · (hdhT − d)) = 1

for all

d ∈ (Fpr)m(m−1)/2 corresponding to D ∈


Antisym(m, pr) p 6= 2

Antisym0(m, 2r) p = 2

.

Proposition 6.20

Proposition (6.20). For any prime p,

min
b∈(F+

pr )m(m−1)/2, b1 6=0
dim(θb,1) = p2r(m−2).

This minimum is achieved when b = (b, 0, . . . , 0) with b 6= 0.

Proof. Write

H =



1 h1,2 h1,3 · · · h1,n

0 1 h2,3 · · · h2,m
. . .

...

0 0 · · · 1 hm−1,m

0 0 0 · · · 1


, D =



0 d1,2 d1,3 · · · d1,m

−d1,2 0 d2,3 · · · d2,m
...

. . .
...

−d1,m−1 −d2,m−1 · · · 0 dm−1,m

−d1,m −d2,m · · · −dm−1,m 0


.

We will prove the proposition in two steps:

Step 1: Proving that for any s = (bi),b1 6= 0, |Ls| ≤ |Fpr | · |Um−2(Fpr)| = p2r(m−2).

In all the following, in characteristic 2, the negatives will go away, but the argument is the same.

Calculation 3. For j0 > 2, choose di,j = 0 except for d1,j0 = −dj0,1.
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Then

b · (hdhT − d) =

j0−1∑
i=2

hi,j0d1,j0B1,i = d1,j0

(
j0−1∑
i=2

hi,j0B1,i

)

If
∑j0−1

i=2 hi,j0B1,i 6= 0, then as we run through all the values for d1,j0 , we will get that b ·

(hdhT − d) runs through all the values of Fpr . And since ψ is non-trivial, this means that

ψ(b · (hdhT − d)) cannot always equal 1. This is a contradiction. So we must have

j0−1∑
i=2

hi,j0B1,i = 0

for all choices of j0 > 2. Recall that B1,2 = b1 6= 0. So, for all j0 > 2, given hi,j0 for i > 2, the

above dictates h2,j0 : If we know hi,j0 for i > 1, then we have

j0−1∑
i=2

hi,j0B1,i = 0⇒ h2,j0 =
−1

B1,2

j0−1∑
i=3

hi,j0B1,i.

(In particular, note h2,3 = 0.) For 3 ≤ k ≤ n, if B1,k 6= 0, then for all j0 > 2, given hi,j0 for

i 6= 1, k, the above dictates hk,j0 : If we know hi,j0 for i 6= 1, k, then we have

j0−1∑
i=2

hi,j0B1,i = 0⇒ hk,j0 =
−1

B1,k

j0−1∑
i=2,i 6=k

hi,j0B1,i.

Calculation 4. Now for j0 > 2, choose di,j = 0 except for d2,j0 = −dj0,2.

Then

b · (hdhT − d) = d2,j0

(
−B1,2h1,j0 +

j0∑
i=2

B1,ihi,j0h1,2 +

j0−1∑
i=3

B2,ihi,j0

)

By the same reasoning as before, we must have

−B1,2h1,j0 +

j0∑
i=2

B1,ihi,j0h1,2 +

j0−1∑
i=3

B2,ihi,j0 = 0

for all choices of j0 > 2. Recall that B1,2 = b1 6= 0. So for all j0 > 2, given hi,j0 for i > 2, the
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above dictates h1,j0 : If we know h1,2 and hi,j0 for i > 1, then we have

−B1,2h1,j0+

j0∑
i=2

B1,ihi,j0h1,2+

j0−1∑
k=3

B2,ihi,j0 = 0⇒ h1,j0 =
1

B1,2

(
j0∑
i=2

B1,ihi,j0h1,2 +

j0−1∑
i=3

B2,khi,j0

)

Thus we can conclude that for all s = (bi) with b1 6= 0,

|Ls| ≤ |{H : H2,j fixed ,∀j > 2, H1,j fixed , ∀j > 2}| = |Fpr | · |Um−2(Fpr)| = pr[(m−2)(m−3)/2+1].

Step 2: Exhibiting that the max is achieved when s = (b,0, · · · ,0) with b 6= 0.

Let B be the matrix corresponding to s = (b, 0, · · · , 0). So since the only nonzero entry of B is

B1,2 = b, we have that

b · (hdhT − d) = b(HDHT −D)1,2 = b

(
[
n∑
l=2

[h2,l(
l∑

k=1

dk,lh1,k −
m−1∑
k=l+1

dl,kh1,k)]]− d1,2

)
.

By the first calculation above, we have that for j0 > 2,

h2,j0 =
−1

B1,2

j0−1∑
i=3

hi,j0B1,i = 0.

So we have

b · (hdhT − d) = b

(
[

2∑
k=1

dk,2h1,k −
m−1∑
k=3

d2,kh1,k]− d1,2

)

By the second calculation above, we have that for j0 > 2,

h1,j0 =
1

B1,2

(
j0∑
i=2

B1,ihi,j0h1,2 +

j0−1∑
i=3

B2,khi,j0

)

= h2,j0h1,2

= 0
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So we have

b · (hdhT − d) = b

(
[

2∑
k=1

dk,2h1,k−]− d1,2

)

= b(d1,2h1,1 + d2,2h1,2 − d1,2)

= 0 since h1,1 = 0, d2,2 = 0

Thus we have shown that (0m, H
−1) ∈ Ls if and only if h2,j = 0,∀j > 2 and h1,j = 0,∀j > 2.

Therefore,

Ls = {(0m, H−1) : H1,j = 0, ∀j > 2, H2,j = 0, ∀j > 2}.

So |Ls| = |Fpr | · |Um−2(Fpr)| = pr[(m−2)(m−3)/2+1].

Proposition 6.21

Proposition (6.21). For p 6= 2,

min
(a,b)∈(F+

pr )m+m(m−1)/2, b1 6=0
dim(θ(a,b),1) = pr(m−1)(m−2).

This minimum is achieved when a = 0,b = (b1, 0, . . . , 0) with b1 6= 0. Similarly,

min
(a,b)∈(F+

pr )m+m(m−1)/2, a1 6=0
dim(θ(a,b),1) = pr(m−1).

This minimum is achieved when a = (a1, 0, . . . , 0),b = 0 with a1 6= 0.

Proof. Case 1: b1 6= 0

If we take x = 0, then ψ(a · (xHT − x)) + b · (hdhT − d)) = 1 reduces to the condition for

Ω+(2m, pr). So L(a,b) must be a subset of the Lb calculated in Proposition 6.20. Thus

|Ls| ≤ |{H : H2,j fixed ,∀j > 2, H1,j fixed ,∀j > 2}| = pr[(m−2)(m−3)/2+1].
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If bi = 0 for i 6= 1, then we get

Ls ⊂ {H ∈ Upm(Fpr) : H1,j = 0,∀j 6= 2, H2,j = 0,∀j > 2}.

Given H of this form, we have b · (hdhT − d) = 0. Then for a = 0,

a · (xHT − x) + b · (hdhT − d) = 0.

So for (0, · · · , 0, b1, 0, · · · , 0),

Ls = {H ∈ Upm(Fpr) : H1,j = 0,∀j 6= 2, H2,j = 0,∀j > 2}.

Case 1: a1 6= 0 If we take d = 0 then ψ(a · (xHT − x) + b · (hdhT − d)) = 1 reduces to

ψ(a · (xHT − x)) = 1. Write

H =



1 h1,2 h1,3 · · · h1,m

0 1 h2,3 · · · h2,m

. . .
...

0 0 · · · 1 hm−1,m

0 0 0 · · · 1


.

Then

xHT = (x1, · · · , xm)



1 0 · · · 0

h1,2 1 0 · · · 0

h1,3 h2,3 1 0

...
. . .

. . .
...

h1,m h2,m · · · hm−1,m 1


= (

m∑
k=1

xkh1,k, · · · , xm−1 + xmhm−1,m, xm)
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So

xHT − x = (
m∑
k=2

xkh1,k, · · · , xmhm−1,m, 0).

Thus

a · (xHT − x) =

m−1∑
k=1

ak · (
m∑

j=k+1

xjhk,j)

Calculation. For j0 > 1, x = (xi) with xi = 0 except for xj0 .

Then we get

a · (xHT − x) =

j0−1∑
k=1

ak · xj0hk,j0 = xj0

(
j0−1∑
k=1

akhk,j0

)

So for all j0 > 1, we must have
j0−1∑
k=1

akhk,j0 = 0.

So if a1 6= 0, given hi,j0 for i 6= 1, k, the above dictates h1,j0 :

h1,j0 =
−1

a1

j0−1∑
k=2

akhk,j0 .

Therefore,

|Ls| ≤ |{H : H1,j fixed ∀j 6= 1} = |Upn−1(Fpr)| = pr(n−1)(n−2)/2.

If ai = 0 for i 6= 0, then we get from the calculation above that

h1,j0 =
−1

a1

j0−1∑
k=2

akhk,j0 = 0.

So

a · (xHT − x) =

m−1∑
k=1

ak · (
m∑

j=k+1

xjhk,j)

= a1 · (
m∑
j=2

xjh1,j), since ai = 0, i > 1
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= 0 since h1,j = 0, j > 1

So we get that for s = (a1, 0, · · · , 0) with a1 6= 0,

Ls = {H : H1,j = 0,∀j 6= 1}.

Lemma 7.3

Lemma (7.3). Let σji be the permutation which permutes the ith set of l blocks of size lj−1.

Then

〈{σji }1≤j≤µl(n),1≤i≤b n
lj
c〉 ∈ Syll(Sn).

Let Pl(Sn) denote this particular Sylow l-subgroup of Sn.

Proof. 2 Let n′ = bnl c, and let

σ1
1 = (1, · · · , l), · · · , σ1

n′ = ((n′ − 1)l + 1, · · · , n′l).

Base Case: If n′ = 1, then n = l+ k for k < l. Thus the only factor of n! divisible by l is l, so

we have |Sn|l = l, and Pl(Sn) = (Z/lZ) ∈ Syll(Sn) (generated by σ1
1 = (1, · · · , l)).

Induction Step:

Let D ∼= (Z/lZ)n
′
. Then Sn′ acts on D by permuting the σ1

i . And D o Sn′ embeds into Sn.

Write n = ln′ + ∗ for ∗ < l; then

νl(n!) = νl((ln
′ + ∗)!)

= νl((ln
′)!)

=
ln′∑
i=1

νl(i)

=

n′∑
i=1

νl(li)

2See [14], Corollary 4.2
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=
n′∑
i=1

1 +
n′∑
i=1

νl(i)

= n′ + νl(n
′!)

= νl(|D|) + νl(Sn′)

Thus DoSn′ embeds into Sn with index prime to l. Therefore, Pl(Sn) ∼= DoPl(Sn′) ∈ Syll(Sn).

Let µl(n) be the highest power of l such that b n
lµl(n)

c > 0. Let

σ2
1 = (1, l + 1, · · · , l(l − 1) + 1)

· · ·

σ2
b n
l2
c = (l2(b n

l2
c − 1) + 1, l2(b n

l2
− 1) + l + 1), · · · , l2b n

l2
c − l + 1)

...

σ
µl(n)
1 = (1, lµl(n)−1 + 1, · · · , lµl(n)−1(l − 1) + 1),

· · ·

σ
µl(n)

b n

lµl(n)
c = (lµl(n)(b n

lµl(n)
c − 1) + 1, (lµl(n)(b n

lµl(n)
c − 1) + lµl(n)−1 + 1, · · · , lµl(n)b n

lµl(n)
c − lµl(n)−1 + 1)

Then Pl(Sn) is generated by {σji }. And for j0 fixed {σj0i } generates a subgroup of order

(Z/lZ)
b n
lj0
c
. σji permutes the ith set of l blocks of size lj−1.
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