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1  |  INTRODUC TION

The ocean is changing at an accelerating rate due to anthropogenic 
impacts, and many of these changes will detrimentally affect ecosys-
tems (Harley et al., 2006; Poloczanska et al., 2013). Laboratory stud-
ies demonstrate that components of ocean change can have adverse 
effects at the organismal level (Byrne, 2011; Hofmann & Todgham, 
2010; Kroeker et al., 2010; Parmesan, 2006; Ries et al., 2009), and 
these modifications can propagate through systems via species 

interactions (Connell et al., 2017; Gaylord et al., 2015; Hall-Spencer 
et al., 2008; McCoy et al., 2016; Nagelkerken & Munday, 2016). Yet, 
attempts to identify vulnerable higher-level ecological processes that 
depend on such interactions and have potential leverage on marine 
communities remain underrepresented in experimental work, espe-
cially in field efforts (Gaylord et al., 2015; Goldenberg et al., 2017).

Human-induced global changes to seawater chemistry – often 
termed “ocean acidification” (a term encapsulating multiple shifts 
to the marine carbonate system, including shifts in pH as well as 
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Abstract
Ocean acidification is expected to degrade marine ecosystems, yet most studies focus 
on organismal-level impacts rather than ecological perturbations. Field studies are 
especially sparse, particularly ones examining shifts in direct and indirect consumer 
interactions. Here we address such connections within tidepool communities of rocky 
shores, focusing on a three-level food web involving the keystone sea star predator, 
Pisaster ochraceus, a common herbivorous snail, Tegula funebralis, and a macroalgal 
basal resource, Macrocystis pyrifera. We demonstrate that during nighttime low tides, 
experimentally manipulated declines in seawater pH suppress the anti-predator be-
havior of snails, bolstering their grazing, and diminishing the top-down influence of 
predators on basal resources. This attenuation of top-down control is absent in pools 
maintained experimentally at higher pH. These findings suggest that as ocean acidifi-
cation proceeds, shifts of behaviorally mediated links in food webs could change how 
cascading effects of predators manifest within marine communities.
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alterations to aqueous CO2  levels and bicarbonate and carbonate 
concentrations; Caldeira & Wickett, 2003) – can affect the ecology 
of marine organisms. Such ecological effects arise both through 
detrimental impacts on physiology, morphology, and behavior of 
individual organisms, as well as through more complicated mecha-
nisms tied to altered relationships among species (Clements & Hunt, 
2015; Kroeker et al., 2010, 2014; Lord et al., 2017; Pörtner, 2008). 
For instance, ocean acidification influences the ability of marine 
organisms to regulate their internal chemistry, calcify, grow, and 
survive (Portner et al., 2004). Reduced-pH seawater also alters the 
behaviors of a variety of taxa, including marine invertebrate spe-
cies (Clements & Comeau, 2019; Clements & Hunt, 2015; Draper 
& Weissburg, 2019; Jellison & Gaylord, 2019; Jellison et al., 2016). 
Because behavior often underlies the functional role of organisms in 
communities and mediates important species interactions (Clements 
& Hunt, 2015; Wong & Candolin, 2015), this latter class of effect 
has crucial relevance to understanding higher-order ecological con-
sequences of ocean acidification.

Food webs, and the foraging activities and predator-prey interac-
tions that underlie them, provide a clear avenue by which behavioral 
changes can alter trophic relationships and community structure 
(Goldenberg et al., 2017; Ripple & Beschta, 2004; Wootton, 2002). 
Attention in ecology has targeted, in particular, the potential for 
predators to influence not only their immediate prey, but also to im-
pose “indirect effects” that cascade vertically across one or more 
additional trophic levels below, such that a predator affects both its 
own prey as well as the basal resource that serves as food for the 
prey. These indirect effects arise through two main routes (Werner 
& Peacor, 2003). The first, and simpler, route occurs when predators 
consume prey, which decreases the number of prey feeding on lower 
trophic levels. Such “density-mediated indirect interactions” (DMIIs) 
therefore represent a case where predators affect a basal resource 
by altering the abundance (or density) of an intermediate consumer. 
The second pathway arises when a predator alters the behavioral, 
physiological, or morphological traits of prey (often by inducing fear; 
Ng & Gaylord, 2020) and consequently reduces rates of foraging of 
the intermediate consumer on the basal resource (“trait-mediated 
indirect interactions” [TMIIs]).

Although both pathways of indirect effects (i.e., DMIIs and 
TMIIs) have important consequences for community dynamics 
(Peacor & Werner, 2001; Wootton, 1993), the extent to which ocean 
acidification might change such interactions remains poorly under-
stood (Allan et al., 2013; Gaylord et al., 2015; Jellison et al., 2016; 
but for ocean acidification and TMIIs see Lord et al., 2017; Jellison & 
Gaylord, 2019; and for ocean acidification and non-trophic indirect 
effects see Alsterberg et al., 2013; Poore et al., 2013; Garrard et al., 
2014). This limitation derives primarily from a shortage of studies 
that include more than one trophic level and the fact that relatively 
few experiments manipulate variables in the field where nuances 
of natural conditions are considered (Jellison & Gaylord, 2019; 
Riebesell & Gattuso, 2015; Sorte & Bracken, 2015).

Intertidal rocky-shore environments provide a fitting system 
to examine indirect effects and other complexities in the field, 

given that many factors that can be difficult to manipulate in the 
laboratory vary naturally, including temperature, dissolved oxygen, 
emergence time, and the abundance or diversity of interacting taxa 
(Huggett & Griffiths, 1986; Jellison et al., 2016; Morris & Taylor, 
1983; Silbiger & Sorte, 2018). Indeed, both the environmental vari-
ation and biomass within these areas can be substantially greater 
than in open-ocean locations. On the west coast of North America, 
for instance, nearshore environments are characterized by seasonal 
upwelling that causes intermittent exposure of intertidal organisms 
to elevated CO2 waters characterized by much lower pH (Chan et al., 
2017; Feely et al., 2008; Kroeker et al., 2016). For tidepool organ-
isms, these conditions can be further exacerbated during low tides 
that occur at night when respiratory carbon released by resident or-
ganisms accumulates in pools, as they are isolated from the adjacent 
ocean. Under such conditions, pH can drop to 7.2 or below even 
in large tidepools (Huggett & Griffiths, 1986; Jellison et al., 2016; 
Kwiatkowski et al., 2016; Silbiger & Sorte, 2018). In contrast, pH lev-
els in the open ocean are not expected to decrease to comparable 
levels even by the year 2100 or beyond (Caldeira & Wickett, 2003; 
Hauri et al., 2009, 2013).

Here we use a rocky-shore tidepool system to explore 
community-level impacts of low-pH seawater that occurs naturally 
in these habitats, and which may also be exacerbated under ocean 
acidification. We conducted a manipulative field study to investigate 
how altered seawater chemistry modifies species linkages within a 
three-level food web, asking the following three questions: (1) Does 
reduced pH in natural tidepools impair anti-predator behavior of 
prey? (2) Does such impaired behavior lead to increased consump-
tion of prey by predators? (3) Does low pH alter the indirect effects 
of predators? That is, does the presence of predators alter rates at 
which prey consume their food, and do such changes differ depend-
ing on tidepool pH? To investigate these questions, we used repli-
cate tidepools that include natural habitat and species assemblages, 
across which we randomly manipulated the presence of predators 
and carbonate chemistry parameters. Our findings demonstrate that 
low pH can influence the importance of top-down predator effects 
in the field.

2  |  METHODS

2.1  |  Study site and tidepool characteristics

Our study was conducted in rock pools located in Horseshoe Cove 
in Bodega Bay, California, within the Bodega Marine Reserve of the 
University of California, Davis. The tidepools are located in the mid 
to high intertidal zone (shore level range of 0.73–1.46 m above mean 
lower low water [MLLW]) and have volumes ranging from 1.5 to 14.5 L 
(substratum surface areas from 0.07 to 0.35 m2). Field surveys of the 
tidepools demonstrate that the dominant space occupiers in the major-
ity of pools are fleshy algae, mussels, and bare rock/rubble (Figure S1). 
The nearshore seawater that immerses these pools during high tide 
during the fall season is characterized by temperatures ranging from 
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9 to 13°C, oxygen values from 6 to 10 mg/L, salinity near 33.5 ppt, 
and pH values between 7.8 and 8.2 (Figures S4–S6; see also Silbiger & 
Sorte, 2018). Values of oxygen and pH within the rock pools then fluc-
tuate away from nearshore values during periods of isolation from the 
adjacent ocean, reaching as low as 0.6 mg/L and 7.0 pH units during 
nighttime low tides when respiration of resident organisms dominates 
pool biogeochemistry (Jellison & Gaylord, 2019; Jellison et al., 2016; 
Kwiatkowski et al., 2016; Silbiger & Sorte, 2018).

2.2  |  Food web

Within the rock pools, we focused on interactions occurring over hours 
between the keystone sea star predator, Pisaster ochraceus (the ochre 
sea star), the abundant herbivorous black turban snail, Tegula funebra-
lis, and the giant kelp, Macrocystis pyrifera. Pisaster ochraceus ranges 
from Alaska to Baja California, Mexico, and is the major predator of 
black turban snails in areas of overlap (Paine, 1969). Tegula funebralis 
grazes on micro- and macroalgae within tidepools and is a prominent 
resident on rocky shores from Vancouver Island, Canada, to Baja 
California, Mexico. Macrocystis pyrifera is a perennial kelp that occurs 
in large stands and is distributed in the northeast Pacific Ocean along 
the coasts of North and South America, in South Africa, Australia, New 
Zealand, and around the sub-Antarctic islands. Although this species 
rarely grows in tidepools, it is a preferred food item for T. funebralis and 
is consumed after it becomes detached from its growing location and 
enters intertidal habitat as drift algae (Steinberg, 2013). Therefore, in 
our system, this algal basal resource operates as a constituent of the 
detrital compartment of the food web.

In rock pools under ambient seawater conditions, T. funebralis 
demonstrates a strong flight response when confronted with water-
borne chemical cues from P. ochraceus (Bullock, 1953; Feder, 1963; 
Jellison et al., 2016). Upon detection of such cues, T. funebralis indi-
viduals crawl to and up the sides of tidepools until they exit the water 
where they experience refuge from predation by sea stars (Jellison 
et al., 2016). This anti-predator response in snails has been shown to in-
fluence densities of algae over short and long timescales, because such 
behavioral changes result in snails spending more time outside of pools 
where they do not tend to forage, and do not have access to the resi-
dent or drift algae within those pools (Gravem & Morgan, 2016, 2019; 
Morgan et al., 2016). Thus, the intensity of anti-predator behavior in 
snails can modify indirect effects of P. ochraceus on basal resources in 
the pools, including both primary producers and detrital constituents.

2.3  |  Experiment overview

To investigate how carbonate system alterations that align with 
ocean acidification (which for brevity we henceforth refer to as 
shifts in pH) influence trophic links among sea stars, snails, and algae 
in the field, we manipulated seawater pH and predator presence in 
30 mid to high intertidal rock pools. Following this initial alteration 
of pH, we measured environmental conditions, prey behavior, the 

outcome of predator-prey interactions, and indirect effects on algal 
consumption at 2-h intervals through the natural tidal cycle (over a 
6–8 h period). We conducted this experiment over nighttime trials 
on November 11, 2017, November 27, 2017, and December 9, 2017, 
when tidepools were naturally acidified by respiration of resident 
organisms. For each trial, treatments were randomized across the 30 
tidepools (N = 5 for each of three pH treatments crossed with two 
predator conditions). Our focus was on short-term responses, and 
we emphasize that understanding longer term consequences will re-
quire further study (Bracken et al., 2018).

2.4  |  Species collections

Ochre sea stars were collected for subsequent deployment in field 
trials from mid-intertidal pools in Horseshoe Cove in Bodega Bay, 
California, two weeks prior to the first field trial. They were then 
held in running seawater in the laboratory until used in the experi-
ments. For each of the three trials, sea stars were re-collected from 
their intertidal pools at the end of the low tide and brought back into 
the laboratory, placed in flow-through water, and fed black turban 
snails ad libitum until the next trial. Macrocystis pyrifera fronds were 
collected from Bodega Harbor, California, one day prior to each trial. 
Tegula used in the experiments were those living naturally in the rep-
licate pools.

2.5  |  Carbonate chemistry treatments

To investigate how seawater pH and associated carbonate chem-
istry influences food web dynamics, we employed three pH treat-
ments (raised, reduced, and natural) in field tidepools over three 
separate nighttime low tides. At the beginning of the low tide, 
each treatment level was imposed on multiple replicate rock pools 
(N = 10 for each treatment level), after which pool chemistry was 
allowed to follow its natural progression (Figure 1). We initiated 
pH manipulation of each pool at the onset of its isolation from 
adjacent coastal waters; however, starting values of pH before 
manipulation ranged from 7.6 to 8.0 across all pools. An elevation 
of ~0.7 pH units was used for the raised-pH treatment, resulting 
in starting pH values of 8.3 to 8.8. This treatment was accom-
plished by raising the starting alkalinity of the pools via chemi-
cal additions of NaOH (addition of ~500  μmol alkalinity; Figure 
S2; following similar methods used on coral reefs; Albright et al., 
2016). This treatment was chosen to simulate conditions that can 
occur in natural producer-dominated intertidal pools during day-
time low tides when photosynthetic activity of algae results in the 
uptake of dissolved inorganic carbon and therefore increases in 
pH. On this latter point, it is important to note that NaOH-induced 
increases in pH are not accompanied by declines in dissolved in-
organic carbon, such that this manipulation does not perfectly 
mirror photosynthesis-driven changes. Although work to date sug-
gests pH decreases per se are the driver of behavioral impairments 
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under ocean acidification, further study is warranted (Clements & 
Hunt, 2015). For reduced-pH pools, we modified the initial chem-
istry to be ~0.5 below natural levels to mimic conditions expected 
for coming decades during nighttime low tides. This pH treatment 
was established using equimolar additions of HCl and NaHCO3, 
which induces changes in seawater chemistry that duplicate those 
arising from bubbling CO2 directly into the pools (Riebesell et al., 
2010; Schulz et al., 2009). This treatment resulted in starting pH 
values for reduced-pH pools ranging from 7.1 to 7.6. In the re-
maining ten pools the initial chemistry of the seawater was not 
modified (natural-pH treatment; starting pH ranging from 7.6 to 
8.0). A YSI ProPlus sensor was used to measure in situ pH, tem-
perature, salinity, and dissolved oxygen during each sampling pe-
riod for all pools. These pH measurements were calibrated to the 
total scale (Riebesell et al., 2010) by means of discrete water bottle 
samples collected from each pool during the first and last sampling 
periods (see also Jellison et al., 2016; Jellison & Gaylord, 2019). 
The bottle samples were analyzed for pH on the total scale via a 
Shimadzu spectrophotometer and total alkalinity using Gran titra-
tion, standardized using certified reference material (A. Dickson 
Lab, Batch 170; Riebesell et al., 2010). Standard deviation of titra-
tions with reference material was 1.95 μmol/kg sw (N = 10) and 
average standard deviation of all duplicates was 3.60  μmol/kg 
sw (N = 235). In estimating associated carbonate system param-
eters, we used the seawater chemistry package, Seacarb (v3.3.0; 
Gattuso et al., 2021) in R 4.1.2 (R Core Team, 2021), with K1 and 
K2 as quantified by Lueker et al. (2000), Kf from Dickson and Riley 
(1979), and Ks from Dickson (1990).

2.6  |  Food web treatments

To assess the influence of pH on the strength of snail foraging 
activity, 10 cm diameter circular pieces of M. pyrifera blades were 

secured to polyvinylchloride discs using a hose clamp and placed 
in the deepest position of each tidepool, for subsequent quantifi-
cation of the amount of algae grazed. In addition, to determine the 
influence of tidepool pH on the cascading effects of predators, 
one sea star (average length center to longest arm = 85 ± 4 mm 
across 15 individuals) was added at the beginning of the low tide 
to each of five randomly selected pools from each of the three pH 
treatments. The other half of the 10 pools from each pH treatment 
served as no-predator controls (N = 5 for each pH and predator 
treatment combination). Snail density was not modified in any of 
the pools. However, to aid in subsequent quantification of snail 
behavior, immigration and emigration of snails was limited through 
a movement barrier placed 15 cm above the water line surround-
ing each pool. The barrier was created using a 5 cm wide epoxy 
band coated in a nontoxic sticky agent (Tanglefoot) that discour-
ages the transit of crawling gastropods (Aquilino & Stachowicz, 
2012; Geller, 1991).

2.7  |  Assessment of trophic links

2.7.1  |  Behavioral assessment

During the low tide, snail behavior was quantified by recording 
refuge use by snails of each pool every two hours. Black turban 
snails normally flee the water within several minutes upon detec-
tion of cue from Pisaster (Jellison & Gaylord, 2019; Jellison et al., 
2016), and we measured predation refuge as the occupancy by 
snails of the space above the waterline and within the bounds of 
the epoxy barrier (15  cm above the waterline). This refuge met-
ric was quantified for each pool as the maximum proportional in-
crease in snails out of water in comparison to the first time point, 
divided by the initial count of snails out of water. The number of 
snails in refuge for the first time point was recorded prior to the 

F I G U R E  1 Trajectories through time of pH (total scale) in replicate experimental tidepools for each of three trials in November and 
December 2017. Lines represent time series of pH for individual pools across the three pH treatments. Raised pH (blue), natural pH (black), 
and reduced pH (red). Points represent the average pH over the nighttime tidal period for each pool after chemical additions
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addition of predators or chemical manipulation of tidepool waters 
and serves as a baseline.

This metric yielded a relative scale with zero being no change in 
snail behavior within a given tidepool and 1.0 indicating a doubling 
of snails occupying refuge space. This metric was used for logistical 
feasibility, as acquiring an accurate count of snails in and out of a 
given pool during the night was not possible due to the finite du-
ration of the low tide. However, previous field surveys indicated a 
strong correlation between snails starting in the water and out of the 
water for a given pool (N = 8 pools, R2 = 0.97).

2.7.2  |  Evaluation of sea star predation on snails

The influence of pH on the outcome of predator-prey interactions 
was measured as the total number of snails captured by each sea 
star. At the end of each trial, sea stars were inverted, and their oral 
surfaces inspected to determine the number of Tegula snails that 
were gripped firmly by sea star tube feet near the mouth at the 
center of the disk. This metric was used as a proxy for actual con-
sumption, as handling times for sea stars can extend beyond the low-
tide period (Paine, 1969).

2.7.3  |  Assessment of indirect predator effects

The influence of pH on the strength of trophic indirect effects was 
assessed by comparing the amount of algae snails grazed across 
predator treatments and pH levels. Photographs of algal discs were 
taken before and after the low tide and analyzed for change in sur-
face area (cm2) via Image J software. Changes in algal discs were 
attributed to grazing by black turban snails as they were the only 
grazer observed on the algae during the experiment. However, other 
grazers were present in the pools and could have contributed to the 
loss in kelp surface area.

2.8  |  Statistical analysis

To assess the influence of tidepool pH on the outcome of trophic 
interactions, we took as an independent variable the average pH 
over the nighttime tidal period for each pool. We used the maxi-
mum proportional increase in snails out of water during the as-
sessment period for a given pool on a given date as our metric of 
snail anti-predator behavior. We assessed then how the presence 
of a predator, tidepool pH, and date influenced snail behavior using 
a linear mixed-effects model (log transformed response variable) 
with tidepool identity included as a random effect to account for 
repeated trials across dates as well as natural variation in community 

composition and geometry (e.g., shape, size, and area-volume ratios) 
among pools. The interaction between pH and predator presence 
was assessed to determine if sea star predators initiated a flight re-
sponse in snails under all pH conditions. The hypothesis that snail 
capture was influenced by pH was tested using a generalized lin-
ear mixed-effects model (Poisson GLMM, log-link) with tidepool pH 
and date included as independent variables and tidepool identity 
included as a random effect. The possibility that algal consumption 
was influenced by pH, predator presence, and date was tested using 
a linear mixed-effects model (log transformed response variable) 
with tidepool identity included as a random effect. The interaction 
term was then used to determine whether the strength of preda-
tor indirect effects on algae was different across tidepool pH levels. 
Models were fit using the lme4 package (v067; Bates et al., 2015) in 
the statistical software, R 4.1.2 (R Core Team, 2021). The best-fitting 
model for each response variable was selected using the Akaike in-
formation criterion (AIC). Visual inspections of Q–Q and residuals 
versus fitted plots were used to verify assumptions of the general 
linear mixed effects models and scaled residuals were inspected to 
verify assumptions for the generalized linear mixed effects model 
using the DHARMa package (v0.4.4; Hartig, 2021) in R. To diagnose 
each of our models for disproportionately influential data that could 
negatively alter inference, we calculated Cook's distance and tested 
for changing levels of significance using the influence.ME package 
(Nieuwenhuis et al., 2012) in R. Only in our snails caught model did 
our results for Cook's Distance and the changing level of significance 
both identify a particular pool (pool 26) as being overly influential on 
the regression outcome regarding the effect of pH. In this case we 
deleted this pool from the data and re-evaluated the model.

3  |  RESULTS

3.1  |  Behavioral assay

Reduced pH in rock pools during nighttime low tides attenuated the 
reaction of snails to predation risk. In high-pH conditions, snails re-
sponded to the presence of a sea-star predator by fleeing the water. 
Indeed, predator presence caused increases of up to 350% in refuge 
use by snails. However, proportional responses of snails to predator 
cue were attenuated in low-pH tidepools. For example, we observed 
a threefold reduction under low pH compared to high pH in propor-
tional refuge responses of snails exposed to predator cue (Figure 2; 
decline of refuge use metric by 164% as pH dropped one unit; model 
prediction for effect of pH in the presence of a predator). No analo-
gous reduction in refuge use occurred in the absence of predator cue 
as refuge use was uniformly low, resulting in a significant interaction 
between pH and predator treatment (Figure 2, Tables S7 and S10; 
p = .01). These findings match those of prior laboratory mesocosm 
experiments (Jellison & Gaylord, 2019). Manipulation of starting pH 
conditions in tidepools did not by itself alter snail behavior, apparent 
from the absence of any relationship between pH and the fleeing be-
havior of snails when a predator was absent. Had chemical additions 

count of snails out of water at time period i − initial number of snails out of water

initial number of snails out of water
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to the tidepools caused physiological impacts or altered behavior of 
snails, we would have anticipated an effect of pH, even in the ab-
sence of predators, on movement of snails into refuge space in pools, 
which we did not detect.

3.2  |  Evaluation of sea star predation on snails

The anti-predator behavior of black turban snails was reduced in 
low-pH pools which translated into an increase in predation risk 
(pH, p = .009). The number of snails captured by sea stars was in-
creased in low-pH pools (Figure 3, Tables S8 and S11; 89% increase 
in snails captured with one unit decrease in pH). Sea star movement 
behavior was not evaluated in this study. However, in a previous 
laboratory study, consumption of snails rose even as the locomo-
tory activity of sea stars decreased under low pH (see Jellison & 
Gaylord, 2019).

3.3  |  Indirect effects of predators

Low-pH seawater weakened the strength of the behaviorally medi-
ated trophic cascade as seen by a significant interaction between 
predator presence and pH level (p =  .003). This effect was driven 
predominantly by a reduction in the number of snails exiting the 
water in the low-pH treatment, which increased the proportion of 
snails that maintained feeding activities underwater even in the 
presence of a predator. Thus, while in high-pH pools snails consumed 
less algae in the presence of a predator versus without a predator, 
in low-pH pools snails consumed a similar amount of algae regard-
less of the predator treatment (Figure 4; 63% increase in algae eaten 
by snails in the presence of predators as pH dropped one unit). As 
a result, the strength of cascading top-down effects on algae was 
reduced in low-pH pools (Figure 4, Tables S9 and S12).

Algal consumption levels also differed among dates, potentially 
due to natural differences in snail hunger or other time dependence 

F I G U R E  2 Experimental reduction of tidepool pH impairs the refuge-seeking behavior of black turban snails (T. funebralis), causing them 
to act as if predators are absent. This trend appears as a decline under reduced pH in the maximum proportional increase of snails out of 
water in the presence of the sea star Pisaster ochraceus (convergence of the with-predator [blue] and without-predator [gray] trend lines). 
Panels indicate data from three nighttime trials and pH is calculated as the nightly average pH for each pool. Lines are based on a linear 
mixed-effects model of log-transformed data and shading represents 95% confidence intervals. Note that a y-axis value of 1 represents a 
doubling of snails using refuge

F I G U R E  3 Fewer snails exited 
the water under low pH which led to 
increased capture rates by sea stars. Lines 
represent the number of snails caught by 
sea stars in pools with predators, based 
on a generalized linear mixed-effects 
model with a log link function (Poisson 
distribution). Shading represents 95% 
confidence intervals
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in grazing intensity. Although this trend altered the effect size of pH 
on algal consumption, reduced pH consistently increased the amount 
of algae grazed in the presence of a predator regardless of date. In 
addition, both dissolved oxygen concentration and temperature de-
creased with time in all pools across the three dates. These factors 
thus co-varied with pH in natural, reduced, and raised-pH pools (all 
three factors decreased through time). However, because the pattern 
of covariation differed between treatments (Figures S4 and S5), the 
manipulation of pH and its consistent relationship to altered behav-
ior and modified indirect interactions allowed these effects to be at-
tributed to shifts in carbonate chemistry as opposed to decreases in 
temperature or oxygen (also see Jellison & Gaylord, 2019).

4  |  DISCUSSION

During nighttime low tides in natural tidepools, reduced seawater 
pH impaired anti-predator responses of black turban snails, thereby 
diminishing the top-down influence of predators on lower levels of 
the food web. Even in the presence of predators, snails in low-pH 
pools remained in risky habitat and foraged on algae as if there was 
not a threat of being eaten. The fact that this study was conducted 
under field conditions, with real-world variation in environmental 
parameters and a full complexity of constituent taxa, highlights the 
capacity for low-pH seawater to alter prey behavior and influence 
trophic links in rocky-shore marine communities. Although tide-
pools are not isolated from the adjacent ocean all the time, condi-
tions such as those examined in the study happen routinely during 
higher-amplitude tidal cycles, and thus may apply to as many as 40% 
of dates through a year at our field site. The possibility that low-pH 
conditions in tidepools have been influencing Pisaster-Tegula dynam-
ics for centuries therefore deserves consideration, in addition to 
implications of these results for future conditions of ocean acidifica-
tion where pH levels in tidepools may decline further.

Indeed, the fact that snail anti-predator behaviors were degraded 
in both reduced-pH tidepools and natural-pH tidepools during night-
time low tides is notable. This outcome suggests that although snails 

have an evolutionary history of living in tidepools and may be accli-
matized to large diel fluctuations in pH, there may also be difficult-
to-overcome physiological constraints on how low a pH they can 
tolerate before experiencing behavioral impairment (Briffa et al., 
2012; de la Haye et al., 2012). The possibility that a low-pH limit 
might exist, beyond which behavioral degradation is unavoidable 
even in species with longstanding exposure to such extremes, could 
operate in analogy to previous work focused on climatic warming. 
This previous work shows that certain other intertidal invertebrates 
already live near an upper thermal bound that cannot be readily sur-
mounted by acclimatization or adaptation (Somero, 2002; Stillman, 
2002). Additional field experiments and comparative studies are 
also needed to determine if the snail responses observed in our 
study, which occurred in the face of strongly intermittent low-pH 
extremes, also hold if snails experience such fluctuations for periods 
longer than in our study, or under pH exposures that are temporally 
less variable than those characteristic of tidepools. Regardless, the 
present findings suggest a strong potential for seawater chemistry 
to influence both modern and future species interactions in marine 
tidepool communities.

We can anticipate that the pH-induced changes we demonstrate 
will also be shaped by the consistency with which taxing conditions 
might be imposed and the presence of other stressors. With rou-
tine exposure to acidified conditions and if abundant resident algal 
resources are present within rock pools (i.e., algae not subject to 
availability pulses as with M. pyrifera), elevated CO2 might act as a 
resource for photosynthesizers. In such a situation, bottom-up ef-
fects might have the potential to overshadow the altered outcome 
of top-down predator effects we observed in our study (Connell 
et al., 2017; Goldenberg et al., 2017; Nagelkerken & Connell, 2015; 
Sorte & Bracken, 2015). Additional manipulative field experiments, 
including ones spanning weekly to monthly timescales, and that con-
sider other nutrients such as nitrate (Bracken et al., 2018; Sorte & 
Bracken, 2015) are needed to disentangle the role CO2 can play as 
both a resource and a stressor, and the capacity of ocean acidifica-
tion to shift the balance between bottom-up and top-down forcing 
in future decades.

F I G U R E  4 Cascading effects of 
predators on algal consumption are 
eliminated under low pH. This outcome 
is apparent from the convergence of the 
with-predator (blue) and without-predator 
(gray) trend lines at reduced average 
pool pH levels. Fitted lines are based on 
a linear mixed effects model of log-
transformed data, and shading represents 
95% confidence intervals
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Levels of pH can vary strongly in space and time, as is appar-
ent from variation in conditions we observed across our tidepools 
(Figure 1, natural pools), as well as in other studies (Huggett & 
Griffiths, 1986; Silbiger & Sorte, 2018). Our results suggest that this 
natural variability has the potential to drive differences in commu-
nity composition by influencing the heterogeneity of predator ef-
fects within the system. As such, it could contribute to mosaic-like 
spatiotemporal variation in function, structure, and diversity across 
tidepool landscapes within a site or region. Furthermore, as ocean 
acidification proceeds and the pH of tidepools at the initiation of 
low tide declines, the heterogeneity in pH conditions could be exac-
erbated due to varied biophysical feedbacks in response to elevated 
CO2 (Figure 1; Silbiger & Sorte, 2018) which could drive amplified 
disparity across pools (Briffa et al., 2012).

Ocean acidification effects will be complex, and higher-level 
community processes will underlie important consequences for 
marine ecosystems (Gaylord et al., 2015; Goldenberg et al., 2017). 
Our results indicate that under field conditions and with all the com-
plexity that those varied conditions imply, top-down indirect effects 
of predators can be impaired under reduced seawater pH due to 
perturbed anti-predator behaviors in prey. These results reiterate 
the crucial need for additional field evaluations that isolate the role 
of ocean chemistry in modifying species interactions within natu-
ral marine communities, now and into the future (Kline et al., 2012; 
Riebesell & Gattuso, 2015).
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