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ARTICLE

Formation of electron radiation belts at Saturn
by Z-mode wave acceleration
E.E. Woodfield 1, R.B. Horne 1, S.A. Glauert 1, J.D. Menietti2, Y.Y. Shprits3,4,5 & W.S. Kurth 2

At Saturn electrons are trapped in the planet’s magnetic field and accelerated to relativistic

energies to form the radiation belts, but how this dramatic increase in electron energy occurs

is still unknown. Until now the mechanism of radial diffusion has been assumed but we show

here that in-situ acceleration through wave particle interactions, which initial studies dis-

missed as ineffectual at Saturn, is in fact a vital part of the energetic particle dynamics there.

We present evidence from numerical simulations based on Cassini spacecraft data that a

particular plasma wave, known as Z-mode, accelerates electrons to MeV energies inside 4 RS
(1 RS= 60,330 km) through a Doppler shifted cyclotron resonant interaction. Our results

show that the Z-mode waves observed are not oblique as previously assumed and are much

better accelerators than O-mode waves, resulting in an electron energy spectrum that closely

approaches observed values without any transport effects included.
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Radiation belts are formed when charged particles (usually
electrons and protons) are trapped by large scale planetary
magnetic fields. The particles then undergo significant

acceleration up to relativistic energies1–3. Radial diffusion is
usually assumed to be the dominant mechanism accelerating
electrons in planetary radiation belts4. In recent years, however,
acceleration by Doppler shifted cyclotron resonant wave particle
interactions has been shown to be a key process in the Earth’s
radiation belts5–8 and at Jupiter9,10. However, at Saturn, local
wave particle interactions have been dismissed as unlikely to
significantly accelerate electrons11,12.

Whilst radial diffusion can result in transport of charged
particles towards the high magnetic field strength nearer the
planet thus increasing their energy (assuming the first two adia-
batic invariants are conserved), wave particle interactions are a
local process acting in situ. Wave particle interactions transfer
energy between circularly polarized plasma waves and charged
particles gyrating around the planetary magnetic field lines.
Waves can diffuse electrons not only in pitch angle (a change in
the particle’s velocity vector with respect to the local magnetic
field) but also in energy resulting in particle acceleration5 and an
increase in the electron flux at higher energies. The acceleration
process depends on the wave type, initial particle energy,
pitch angle distribution and the plasma and magnetic field
conditions13.

Previous attempts to assess electron acceleration by wave
particle interactions at Saturn have assumed that whistler mode
chorus waves would be most likely to produce acceleration as
these waves are very effective at the Earth and Jupiter. However,
at Saturn a combination of lower chorus wave power and higher
plasma density means that electron acceleration by chorus waves
is very weak11. We suggest that a different approach is required at
Saturn where magnetic and plasma conditions are such that Z-
mode waves are intense inside 4 RS

14. Initial studies of Z-mode
interactions with electrons at the Earth show they are a very good
candidate for electron acceleration7,15.

We find that Z-mode waves are very effective at accelerating
electrons inside 4 RS and are capable of increasing the electron
flux by four orders of magnitude in a year from an essentially
empty radiation belt to a value comparable with observations. In
comparison to radial diffusion in this region the Z-mode waves
are more effective at filling in an empty radiation belt. We also
show that Z-mode waves propagate much closer to the magnetic
field than previously assumed16 and that O-mode waves are much
less effective at accelerating electrons than the Z-mode.

Results
Z-mode wave observations at Saturn. Saturn’s magnetosphere is
dominated by the presence of the Enceladus torus, a region of
water group particles emanating from the moon Enceladus just
inside 4 RS. The plasma density drops off very rapidly with lati-
tude and also decreases notably away from the plasma source of
Enceladus. Z-mode waves are frequently observed inside 4 RS

where the combination of low plasma density and higher mag-
netic field strength resulting from proximity to the planet allows
an abundance of Z-mode waves to propagate14. A case study of
Z-mode waves at Saturn16 assumed that the direction of wave
propagation with respect to the magnetic field (known as the
wave normal angle (WNA)) was highly oblique. However,
Z-mode waves can also propagate along the magnetic field
direction17,18.

Figure 1a shows an example of wave activity from the Cassini
radio and plasma wave instrument19 (RPWS) as the spacecraft
crossed from the northern to the southern hemisphere. The
strong band of emissions near 5 kHz just before 10:00 occurred

below the local plasma frequency fpe (white+) but above the L
mode cut-off frequency flcut (pink x) in a region where fpe < fce
(gyrofrequency). The apparent polarization20,21 of these emis-
sions was predominantly less than zero (Fig. 1b) indicating left-
hand circular polarized waves in the plasma convention. Since
only Z-mode waves can propagate with left-hand polarization
between flcut and fpe the emissions have been identified as
Z-mode. The emissions at higher frequencies of 10−20 kHz are
also left-hand polarized but since in this instance they lie in the
range fpe < f < fce they correspond to left-hand polarized O-mode
waves. Z-mode and O-mode waves were also detected after the
spacecraft crossed the ring plane in the southern hemisphere,
where in this hemisphere an apparent polarization > 0 (red)
corresponds to left-hand polarized waves. The 5 kHz wave band
remains Z-mode despite changing polarization at ~12:30 because
fpe falls rapidly at this time such that the 5 kHz band is now in the
regime fpe < f < fce, where Z-mode waves are RH polarized.
The intensity of the Z-mode waves in Fig. 1a is higher than the
O-mode.

The Cassini RPWS instrument cannot directly observe the
propagation angle of the waves with respect to the local magnetic
field for waves with frequencies greater than 2.5 kHz but we can
infer this from the polarization of the waves. A circularly
polarized wave propagating parallel to the magnetic field with a
small WNA will appear with a circular polarization, one
propagating across the magnetic field or along the field with a
highly oblique WNA will appear with a linear polarization.
Fig. 1b shows that there is a mixture of strong and weak left-hand
circular polarization with components of linear polarization (not
shown) indicating that there is a distribution of WNAs which
includes parallel propagation. Instability analysis shows that
Z-mode waves can be generated in the field-aligned direction by
an unstable distribution of electrons17,18. An analysis of the
polarization data for this case shows that the WNAs are mostly
close to the magnetic field with a peak at ~22° (Fig. 2).

The effect of the waves on electron energy. To model the effect
of Z-mode and O-mode waves on the flux of energetic electrons
we calculated the diffusion coefficients for the waves using the
pitch angle and energy diffusion of ions and electrons (PADIE)
code15 (described in the Methods section). We have calculated
these coefficients for both Z-mode and O-mode waves since these
waves often coexist with frequencies near 5 and 20 kHz. Figure 3
shows that electron pitch angle diffusion by Z-mode waves
(Fig. 3a) using the WNA distribution from Fig. 2 is much higher
than that for O mode waves (Fig. 3c). This is also true for energy
diffusion (Fig. 3a and d). Pitch angle diffusion extends up to
about 60° (Fig. 3a), indicating that Z-mode waves can scatter
electrons into the loss cone at small pitch angles and cause
electron loss into the atmosphere of Saturn. Note that the diffu-
sion occurs in two energy bands, one extending up to about 1
MeV and another centered on 1–2MeV. These bands correspond
to Z-mode waves in two frequency bands near 20 and 5 kHz,
respectively.

Figure 3b shows that energy diffusion extends from a few tens
of keV up to several MeV. Since electron phase space density falls
rapidly with increasing energy, this suggests that electron energy
diffusion to higher energies, i.e., acceleration, is very effective.

The local effect of Z-mode electron acceleration. The effect
these diffusion coefficients have on the evolution of electron flux
at different energies can be simulated using the British Antarctic
Survey (BAS) Radiation Belt model22 adapted for Saturn (this
solves the Fokker–Planck equation as described in the Methods
section). Figure 4 shows how the electron energy spectrum
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evolves over a period of 365 days for the Z-mode and O-mode
waves.

Figure 4a shows that Z-mode waves with a small WNA can
accelerate electrons significantly from <0.1 to >5MeV. The
energy spectrum reaches the range of the empirical SATRAD
model based on Pioneer 11 and Voyager 1 and 2 data after
365 days. It is remarkable that the spectrum can be reproduced
over such a wide range of energies from wave acceleration alone
with no transport effects included. In comparison, the effect of
O-mode waves is very small (Fig. 4b).

The intensity of the waves is the main consideration for the
strength of electron acceleration in this region because the
plasma density is so low. The 20 kHz Z-mode waves are
particularly important in accelerating electrons in the hundreds
of keV range in these simulations where the initial condition is
essentially an empty radiation belt with a low-energy seed
population. To a good approximation in this case an increase or
reduction in the overall Z-mode power will change the rate of
acceleration by the same amount, e.g. increasing the wave
power by a factor of 10 will produce the same level of flux in the
simulation 10 times sooner. Cosmic Ray Albedo Neutron Decay
(CRAND) will provide an additional source of electrons in the
same energy range as the 20 kHz band resonates as will radial
diffusion of electrons.

Z-mode wave acceleration and radial diffusion. The intensity of
the Z-mode waves varies with radial distance from Saturn,
exponentially increasing towards the planet14. Figure 5a, b show
how the strength of the acceleration by Z-mode waves varies with
radial distance. The changes in plasma density and magnetic field
strength parameters counteract the increase in wave strength as
we move closer to the planet14 by shifting upwards the energy
range over which electrons resonate with the Z-mode waves.
Inside ~2.7 RS the acceleration becomes slower, although it is still
present all the way to the outer edge of the A-ring at 2.3 Rs. The
A-ring absorbs all energetic particles which is reflected in the zero
increase in 1MeV electrons over time at L= 2.3.

Radial diffusion is sufficiently slow that it would take some
time longer to fill the region inside 2.7 RS by transporting
electrons inwards as shown in Fig. 5c, d where the rate of filling
inside 2.7 RS is not increased by adding radial diffusion. Since it is
not clear how many electrons can be transported past the orbit of
Mimas23 or the other moons in this region we have used a worst
case scenario and assumed that all electrons will be absorbed (in
reality, at the very least, electrons drifting with the same period as
the moon orbit will not be absorbed). Fig. 5e, f show a simulation
of the effect of radial diffusion on its own over the same period as
Fig. 5a–d. This shows that the Z-mode waves are more effective at
filling up an empty radiation belt than just radial diffusion.
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Discussion
Our results show that Z-mode waves play a major role in the
formation of Saturn’s radiation belts inside the orbit of Enceladus.
We suggest the localized nature of this acceleration could explain
the observed asymmetries in the high-energy electron population
in this region24 as asymmetries in Z-mode wave intensity are also
observed14. Our results suggest that Z-mode waves may also play
an important role in radiation belt dynamics at Jupiter, particu-
larly inside the orbit of Io where the plasma density is low, and
also at the other magnetized planets of the solar system.

Methods
Cassini data. The values for the gyro frequency have been determined from
magnetic data taken by the Cassini MAG instrument. The plasma frequency is
calculated from data taken by the Langmuir probe on the RPWS instrument on
Cassini.

Radiation Belt Model. The British Antarctic Survey Radiation Belt Model (BAS
RBM) uses the well-established method of quasi-linear theory to solve the modified
Fokker Planck equation (Eq. (1)) on a planetary scale22.
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where f is the phase space density, t is time, α is the equatorial pitch angle, Dαα,
DEE, and DLL are the drift-averaged and bounce-averaged pitch angle, energy, and
radial diffusion coefficients, respectively, E is the energy, L is the L-shell, µ and J are
the first and second adiabatic invariants, E0 is the electron rest energy, and τ is the
loss timescale.

The diffusion coefficients are calculated using the PADIE code15 which solves
the resonance condition for cold plasma dispersion in a magnetic field. We use a
centered dipole magnetic field with an equatorial surface magnetic field strength,

B0, of 2.1951 × 10−5 T which is a good approximation this close to Saturn. We also
use a model of the plasma density25 including the density from the rings based on
the Saturn Orbit Insertion data from Cassini.

The BAS RBM uses implicit methods to solve Eq. (1) on a two-grid system with
one grid in α, E, and L and the other in µ, J, and L (L is the same in both grids). The
pitch angle and energy diffusion are calculated as a separate step26 using a time step
of 5 s and then interpolated using cubic splines onto the µ, J, L grid which is solved
every 500 s. The grid resolution is 90 × 30 × 30 points (α, E, L) and the energy grid
uses equal spacing in the natural log of the energy (from 40 to 8000 keV at the
maximum L value for the simulations in Fig. 4, from 40 to 3900 keV in Fig. 5 also at
maximum L). We calculate the pitch angle at which all electrons are assumed to be
lost to the atmosphere (the loss cone angle) at an altitude of 1000 km above the
planet radius of 60,330 km.

The boundary conditions make use of the SATRAD27 electron distribution
model at Saturn. This is code that encapsulates the data from Pioneer 11, and
Voyagers 1 and 2 and is freely available to download with documentation at http://
www.openchannelfoundation.org/projects/SATRAD/. We use the SATRAD
differential flux value to define the minimum energy boundary. Although the
SATRAD model is the best currently available for this region at Saturn there are
significant uncertainties due to the small amount of data included. Comparing the
SATRAD model to the spacecraft passes that it is derived from using figure A1 in
the SATRAD report shows that there is at least an order of magnitude uncertainty
in the fluxes from the model at energies of a few hundred to a few MeV. We
therefore show a range of fluxes that span from SATRAD divided by 10 to
SATRAD multiplied by 10.

The maximum energy boundary is set at a low value of phase space density, f=
1050 kg−3 s3 m−6 at the minimum pitch angle. The inner and outer L-shell
boundaries required for the runs involving radial diffusion are subject to the
condition f= 0 with the inner boundary set just outside each moon orbit and the
outer boundary just inside (three separate runs are used to cover the L space from
Epimetheus to Enceladus, separated by each moon). The maximum and minimum
boundaries in α are set to ∂f/∂α= 0. The initial grid is set to be a straight line in
log10(f) vs. log10(E) with a negative gradient from Emin to Emax. The precise gradient
of the initial grid is unimportant10 since the initial rise from a step function of f
with E at Emin is so rapid compared to the overall timescale. For the radial diffusion
only run a seed population at maximum L (just inside each moons orbit) is added
by including the flux spectrum from the SATRAD model. The initial dependence of
f on α is set at (sin α)2 to match the dependence in SATRAD.

The uncertainty in the SATRAD values also has an important impact on the
initial and boundary conditions for the model runs with the flux at minimum
energy acting as a source. We have therefore shown the range of possible fluxes that
could be reached assuming that the flux and the minimum energy boundary varies
within the SATRAD uncertainty range.

We have deliberately included a worst case scenario of moon absorption to
demonstrate that the moons do not have a significant impact on the wave
acceleration even when combined with radial diffusion. In fact the moons have a
much less significant effect on the electrons in this region than they do on the
protons24. Also some moons are more effective absorbers of energetic electrons
than others23. To further isolate the effects of the Z-mode and O-mode waves we
have not included CRAND as a source, or losses due to rings and other plasma
waves.

Diffusion coefficients. The pitch angle diffusion coefficient, Dαα, is the sum of the
coefficients from the wave–particle interactions and the diffusion introduced by
collisions in Saturn’s atmosphere and the neutral torus produced by Enceladus. The
PADIE15 code is used to calculate Dαα_wave with the information on the wave
properties from the Z-mode wave survey14. Z-mode waves are assumed to exist in
two wave bands, 5 and 20 kHz, with wave power assumed to be a Gaussian shape
with frequency. In general the 20 kHz banded emission can be either O-mode, as in
Fig. 1, or Z-mode as in the case presented by Gu and co-authors16 depending on
the plasma properties. The frequency values of the 5 kHz band are peak 5.0 kHz,
bandwidth 1.1 kHz, lower cut-off 3.5 kHz, and upper cut-off 7.5 kHz14. For the 20
kHz band these are: peak 17.0 kHz, bandwidth 3.0 kHz, lower and upper cut-offs,
10.0 and 26.0 kHz16.

The wave power14 is also assumed to vary with both latitude, λ, and radial
distance, R (Supplementary Figure 1). We have assumed that R is radial distance
along the equator and therefore equivalent to L in a dipole field.

B2
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The latitude of peak power is λm= 25.0° and the width is λw= 14.142°. Note
that wave power taken from Figure 7d in the paper by Menietti and co-authors14 is
the average wave power over latitude but the power required in the equation above
is the peak power with latitude. We therefore divide the average wave power by the
mean of a Gaussian with a peak power of 1 with the peak power latitude and width
values given above, over the range of 0–50° latitude (which is the range over which
data is available). This results in the factor of 1.75 × 10−4 in the equation above.
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The WNA of the waves is also assumed to have a Gaussian shape based on the
information in Fig. 2 with waves having a peak power at a WNA of 21.88°, a width
of 17.18° and lower and upper cut-offs of 0° and 56.24°.

The O-mode at Saturn tends to appear in the same narrow band
structures as the Z-mode. There are no published surveys of the O-mode
at Saturn so for the best comparison of the acceleration capabilities of

the two wave modes we replicate all of the Z-mode wave parameters for the
O-mode.

For the PADIE calculations we use the cold plasma density model for the
Enceladus torus25 combined with the ring plasma density from Cassini Saturn
Orbit Insertion data25. We use a scale height28 to extend the equatorial densities to
higher latitudes. We use a centered dipole magnetic field model as in the BAS
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RBM. One further consideration when calculating the diffusion coefficients for the
Z-mode waves is the presence of a reverse resonance cone which exists where the
wave frequency is lower than the upper hybrid frequency but higher than both the
electron gyro frequency and plasma frequency.

We have included scattering from particles in the neutral torus created by
Enceladus by calculating a value of pitch angle scattering for the presence of water
ions. We use a model of water ions from Enceladus29 to calculate Dαα_torus

30. We
have assumed that the neutral torus is azimuthally symmetric around Saturn and
consists of H2O, OH, and O with a defined scale height away from the equator31.

We have included the pitch angle scattering due to the atmosphere of Saturn
using the same method30 to calculate Dαα_atmos. This gives a very high value for the
total Dαα at pitch angles up to the loss cone angle. To avoid cubic spline
interpolation overshoot issues near the loss cone we use the value of Dαα_atmos at α
= 0° and then we use a quadratic curve to join this up to the value of Dαα_atmos at
the pitch angle grid point closest to the loss cone. The loss timescale within the loss
cone is based on the time taken for the electron energy to decay32 by 1/e. The ratio
of Dαα_atmos to the loss time is calculated at α= 0° and then the loss time is
calculated at other points inside the loss cone using this ratio and the Dαα_atmos at
each grid point.

The radial diffusion coefficient DLL= 2 × 10−14 L7 s−1 is calculated from
Cassini electron data2. We regard this as an upper limit for the radial diffusion as
the value is likely to be contaminated by wave–particle interactions and to some
extent the CRAND process.

Data availability
Cassini RPWS and MAG data are archived in calibrated, full resolution at the
NASA Planetary Data System website: http://pds.nasa.gov. The Meudon Cassini
RPWS/HFR polarization database is located at http://www.lesia.obspm.fr/kronos/
data. Other datasets generated during the current study are available from the
corresponding author on reasonable request.
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