
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Neurosymbolic Tools for Effective Coding and Debugging

Permalink
https://escholarship.org/uc/item/0b2298fh

Author
Sakkas, Georgios

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0b2298fh
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Neurosymbolic Tools for Effective Coding and Debugging

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Georgios Sakkas

Committee in charge:

Professor Ranjit Jhala, Chair
Professor Loris D’Antoni
Professor Philip Guo
Professor Sorin Lerner

2024

Copyright

Georgios Sakkas, 2024

All rights reserved.

The dissertation of Georgios Sakkas is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2024

iii

DEDICATION

To my parents, Maria and Panagiotis, and my brother, Vasilis, your unwavering love

and support have been my foundation throughout this long and challenging journey. From the

very beginning, you instilled in me the values of hard work, perseverance, and the belief that I

could achieve whatever I set my mind to. You’ve always been there through every success and

setback, offering guidance and encouragement. Words cannot fully express how grateful I am for

everything you’ve done to help me get to this point. This accomplishment is as much yours as it

is mine.

To my friends from Greece (Vasilis, Thodoris, Giannis, Giannis, Giorgos, Thymios,

Anastasis, Vasilis, Rafail, Thomas, Kostas, Stavros, Nikos, Giannis, Dimitris, Tasos), you have

been a source of endless joy and comfort, no matter the distance. Even though we’ve been apart,

the good times we’ve shared and the support you’ve given me from afar have meant the world.

To my friends in San Diego and across the U.S.A (Dimitris, Eleni, Thodoris, Lydia, Giannis,

Maria, Petros, Marialena, Nikos, Nana-Ama, Giannis, Giorgos, Chris, Jacob, Gen, Isaak, Fritz,

Panagiota), you’ve made this chapter of my life so much richer. Whether through study sessions,

conversations, or moments of laughter, you’ve been there to help me keep going and to remind

me to enjoy the process along the way.

To my wonderful partner, Eleni, for the fun, adventure, and happiness you’ve brought into

my life. From our time together here in San Diego to our travels and explorations, you’ve shown

me a world full of new experiences. You’ve helped me grow as a person and made me a better

version of myself, and for that, I’m endlessly thankful.

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . x

Acknowledgements . xi

Vita . xiii

Abstract of the Dissertation . xiv

Chapter 1 Introduction . 1

Chapter 2 Type Error Feedback via Analytic Program Repair 7
2.1 Introduction . 8
2.2 Overview . 11

2.2.1 Representing Fixes . 12
2.2.2 Acquiring a Fix-Labeled Training Set 13
2.2.3 Learning Candidate Fix Templates 14
2.2.4 Predicting Templates via Multi-classification 15
2.2.5 Synthesizing Feedback from Templates 16

2.3 Learning Fix Templates . 19
2.3.1 Representing User Fixes 19
2.3.2 Extracting Fix Templates from a Dataset 21
2.3.3 Partitioning the Templates 22

2.4 Predicting Fix Templates . 23
2.4.1 Feature and Label Extraction 24
2.4.2 Training Predictive Models 27
2.4.3 Predicting Fix Templates 28
2.4.4 Discussion . 30

2.5 Template-Guided Repair Synthesis 31
2.5.1 Local Synthesis from Templates 31
2.5.2 Ranking Error Locations 32

2.6 Evaluation . 34
2.6.1 RQ1: Accuracy . 35
2.6.2 RQ2: Efficiency . 38
2.6.3 RQ3: Usefulness . 39

v

2.6.4 RQ4: Impact of Templates on Quality 42
2.7 Related Work . 44
2.8 Conclusion . 47
2.9 Acknowledgements . 47

Chapter 3 SEQ2PARSE: Neurosymbolic Parse Error Repair 48
3.1 Introduction . 49
3.2 A Case for Parse Error Repair . 52
3.3 Overview . 56

3.3.1 Error-Correcting Parsing 57
3.3.2 Abstracting Program Token Sequences 61
3.3.3 Training Sequence Classifiers 64
3.3.4 Predicting Error Rules with Sequence Classifiers 65

3.4 Abstracting Programs with Parse Errors 67
3.4.1 Earley Partial Parses . 68
3.4.2 Probabilistic Context-Free Grammars 69
3.4.3 Abstracted Token Sequences 70

3.5 Training Sequence Classifiers . 72
3.6 Building a Fast Error-Correcting Parser 75

3.6.1 Learning Error Production Rules 75
3.6.2 Training and Using a Transformer Classifier 76
3.6.3 Generating an Efficient Error-Correcting Parser 77

3.7 Evaluation . 79
3.7.1 RQ1: Accuracy . 80
3.7.2 RQ2: Repaired Program Preciseness 82
3.7.3 RQ3: Efficiency . 84
3.7.4 RQ4: Usefulness . 86

3.8 Related Work . 90
3.9 Conclusion . 95
3.10 Acknowledgements . 95
3.11 Data Availability Statement . 96

Chapter 4 Neurosymbolic Modular Refinement Type Inference 97
4.1 Introduction . 98
4.2 Background . 101

4.2.1 Refinement Type Checking with LIQUIDHASKELL 101
4.2.2 Neural Type Inference with LLMs 104

4.3 Overview . 107
4.3.1 Initialization . 107
4.3.2 Building the LLM prompt 108
4.3.3 Generating type predictions 109
4.3.4 Verifying types . 109
4.3.5 Updating the working list 110

vi

4.3.6 Back-jumping to a dependency when predictions fail 112
4.3.7 Asking the user for a type 114

4.4 Algorithm . 116
4.4.1 Generating type predictions 117
4.4.2 Trying type predictions . 118
4.4.3 Back-jumping to the least tested dependency 119

4.5 Evaluation . 121
4.5.1 RQ1: Single type prediction accuracy 123
4.5.2 RQ2: Whole codebase precision 126
4.5.3 RQ3: Efficiency . 128
4.5.4 Threats to Validity . 129

4.6 Related Work . 131
4.7 Acknowledgements . 134

Chapter 5 Conclusion and Future Work . 135
5.1 Conclusion . 135
5.2 Future Work . 136

Bibliography . 139

vii

LIST OF FIGURES

Figure 2.1: (top) An ill-typed OCAML program that should multiply each element of a
list by an integer. (bottom) The fixed version by the student. 11

Figure 2.2: A candidate repair for the mulByDigit program. 17
Figure 2.3: Syntax of λML . 19
Figure 2.4: Syntax of λRT L . 19
Figure 2.5: (left) The fix from example Figure 2.1 and (right) a possible template for that

fix. 21
Figure 2.6: A high-level API for converting program pairs to feature vectors and template

labels. 25
Figure 2.7: Results of our template prediction classifiers using the 50 most popular

templates. We present the results up to the top 6 predictions, since our
synthesis algorithm considers that many templates before falling to a different
location. 36

Figure 2.8: The confusion matrix of the top 30 templates. Bolder parts of the heatmap
show templates that are often mis-predicted with another template. The
bolder the diagonal is, the more accurate predictions we make. 38

Figure 2.9: The proportion of the test set that can be repaired within a given time. . . . 39
Figure 2.10: Three erroneous programs with the repairs that RITE and SEMINAL generated

for the red error locations. 41
Figure 2.11: Rating the errors generated by RITE, SEMINAL and NAIVE enumeration. . 42

Figure 3.1: The Python error type distribution. 52
Figure 3.2: The repair rates of the Python dataset. 53
Figure 3.3: The Python dataset ratio that is fixed under the given number of token changes. 54
Figure 3.4: The average time the user needed to fix the erroneous program for the needed

token changes. 54
Figure 3.5: A Python program example with syntax errors (left) and its fix (right). . . . 56
Figure 3.6: SEQ2PARSE’s overall approach. 56
Figure 3.7: Simplified Python production rules. 57
Figure 3.8: The partial parse tree generated for bar in the example at Figure 3.5a . . . 57
Figure 3.9: The rest of the problematic function in Figure 3.8 and two possible error-

correcting parses . 60
Figure 3.10: The token sequences for the Python program example in Figure 3.5. 62
Figure 3.11: The production rules shown in Figure 3.7 with their learned probabilities. . 63
Figure 3.12: A high-level API of the SEQ2PARSE system that learns to repair syntax errors. 67
Figure 3.13: Results of our error production rule prediction classifiers for the simple

original token sequences and their abstracted versions using the PCFG. . . 80
Figure 3.14: Experimental results of SEQ2PARSE’s repair approaches. The (parenthe-

sized) numbers in the Median Parse Time columns represent the median time
for larger programs, i.e. programs with more than 100 tokens. 83

Figure 3.15: The repair rate for all the ABSTRACTED approaches in Figure 3.14. 85

viii

Figure 3.16: Three example buggy programs followed by their historical human and
SEQ2PARSE repairs. For (a) and (b), SEQ2PARSE’s repair was rated more
helpful by participants. For (c), the human repair was more helpful. 89

Figure 4.1: An example measure for refinement types. 101
Figure 4.2: Using measures in LIQUIDHASKELL. 102
Figure 4.3: Haskell module with multiple dependent functions. 103
Figure 4.4: Refinement type prompt for querying LLMs. 105
Figure 4.5: LLM prompt for divide. 108
Figure 4.6: Refinement type predictions for divide. 109
Figure 4.7: Refinement type predictions for size. 111
Figure 4.8: Partially annotated program, where average is yet to be annotated. 112
Figure 4.9: Refinement type predictions for average. 114
Figure 4.10: Pretrained and fine-tuned LLM accuracy in generating single refinement

types for the LHTUTORIAL benchmark. 124
Figure 4.11: LHC accuracy in generating and verifying refinement types for our Haskell

benchmarks. 125

ix

LIST OF TABLES

Table 4.1: LHTUTORIAL results: 68 total single type benchmark, where we divided the
user-intended type into 3 difficulty categories. We also present the pass@k
metrics for the full benchmark. 124

Table 4.2: HSALSA20 verification results (96 functions) 126
Table 4.3: BYTESTRING verification results (45 functions) 127

x

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisor, Prof.

Ranjit Jhala. Your guidance, wisdom, and mentorship have shaped my journey as a researcher

and as a person. From the very beginning, you provided me with opportunities that allowed me

to grow and pursue my passions, not just within this dissertation but also in my career. I am

incredibly grateful for the trust and confidence you placed in me, as well as for the countless

insightful discussions that have helped me navigate both research challenges and professional

opportunities.

I would also like to extend my sincere thanks to Prof. Westley Weimer. Your unwavering

support throughout my PhD has been invaluable. From helping to rewrite papers and refine ideas

to preparing for presentations, you have always offered the kind of feedback that sharpened my

work and made it better. I truly appreciate your time, effort, and commitment to helping me

become a better researcher and communicator.

A special thank you goes to my co-authors and collaborators, Madeline Edres and Ben-

jamin Cosman. Our time working together during your own PhD journeys (now both Professors),

has been one of the most rewarding parts of my experience. The support, knowledge, and cama-

raderie we shared during long hours of research and writing papers has meant a great deal to me.

I’m incredibly proud of what we accomplished together.

I also want to extend my appreciation to the rest of my PhD committee: Prof. Loris

D’Antoni, Prof. Sorin Lerner, and Prof. Phillip Guo and ex-committee member Prof. Nadia

Polikarpova. Your feedback, insightful comments, and fresh perspectives have been invaluable in

shaping this dissertation. Each of you brought unique expertise and ideas that pushed me to think

more deeply and critically about my work. I am grateful for your time, support, and commitment

to my success throughout this process.

Finally, I would like to thank everyone else who has contributed to this journey in one

way or another. This dissertation would not have been possible without the support, collaboration,

xi

and guidance of so many people along the way.

Chapter 2, in part, is a reprint of the material as it appears in the Proceedings of the 41st

ACM SIGPLAN Conference on Programming Language Design and Implementation. Georgios

Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, Ranjit Jhala, PLDI 2020. The

dissertation author was the primary investigator and author of this paper.

Chapter 3, in part, is a reprint of the material as it appears in the Proceedings of the ACM

on Programming Languages, Volume 6 (OOPSLA2). Georgios Sakkas, Madeline Endres, Philip

J Guo, Westley Weimer, Ranjit Jhala, SPLASH 2022. The dissertation author was the primary

investigator and author of this paper.

Chapter 4, in part, is a reprint of the material as it will appear in the Proceedings of the

2025 IEEE/ACM 46th International Conference on Software Engineering. Georgios Sakkas,

Pratyush Sahu, Kyeling Ong, Ranjit Jhala, ICSE 2025. The dissertation author was the primary

investigator and author of this paper.

xii

VITA

2018 B. S. in Electrical and Computer Engineering, National Technical Univer-
sity of Athens, Greece

2022 M. S. in Computer Science, University of California San Diego, U.S.A.

2024 Ph. D. in Computer Science, University of California San Diego, U.S.A.

PUBLICATIONS

Georgios Sakkas, Pratyush Sahu, Kyeling Ong, Ranjit Jhala, “Neurosymbolic Modular Refine-
ment Type Inference”, Accepted at ICSE, 2025.

Sarah Fakhoury, Aaditya Naik, Georgios Sakkas, Saikat Chakraborty, Madan Musuvathi, Shu-
vendu Lahiri, “Exploring the Effectiveness of LLM based Test-driven Interactive Code Generation:
User Study and Empirical Evaluation”, Proceedings of the 2024 IEEE/ACM 46th International
Conference on Software Engineering: Companion Proceedings, 390-391, 2024.

Georgios Sakkas, Madeline Endres, Philip J Guo, Westley Weimer, Ranjit Jhala, “Seq2Parse:
Neurosymbolic Parse Error Repair”, Proceedings of the ACM on Programming Languages,
Volume 6 (OOPSLA2), 1180-1206, 2022.

Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, Ranjit Jhala, “Type Error
Feedback via Analytic Program Repair”, Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 16-30, 2020.

xiii

ABSTRACT OF THE DISSERTATION

Neurosymbolic Tools for Effective Coding and Debugging

by

Georgios Sakkas

Doctor of Philosophy in Computer Science

University of California San Diego, 2024

Professor Ranjit Jhala, Chair

This dissertation presents neurosymbolic approaches for developing tools that enhance

programming and debugging by combining symbolic reasoning with machine learning techniques.

As modern programming languages grow more complex, the need for automated tools that can

efficiently identify and fix errors becomes more critical. By integrating traditional program analy-

sis methods with the predictive power of machine learning models, neurosymbolic approaches

offer a robust solution for automated program repair and synthesis. This work focuses on creating

tools that target common errors in OCaml and Python, and aiming to reduce manual intervention

in Haskell program verification, while improving the accuracy and efficiency of error detection

and correction.

xiv

The first contribution of this research is RITE, a tool that provides type error feedback

in OCaml programs through a data-driven approach to program repair. RITE uses a training

dataset of ill-typed programs and their fixes to predict and generate repairs for new errors. The

second contribution is SEQ2PARSE, a neurosymbolic tool that addresses syntax errors in Python

by combining neural sequence models with symbolic error-correcting parsers. This hybrid

method can efficiently pinpoint relevant corrections and generate accurate fixes. Lastly, this

dissertation introduces LHC, a tool that uses large language models (LLMs) to automatically

generate refinement type annotations in Haskell programs. LHC drastically reduces the time and

expertise needed to perform formal verification by leveraging LLMs and symbolic refinement

type checking.

Each tool demonstrates the effectiveness of neurosymbolic approaches in simplifying the

programming and debugging process. Evaluations show that these methods not only improve the

accuracy of repairs but also provide users with clear and useful feedback. This work concludes

with an exploration of future directions for neurosymbolic tools, particularly their potential to scale

automated program repair techniques across different programming languages and development

environments. These findings highlight the promise of neurosymbolic methods in optimizing

software development and improving the overall efficiency of programming tasks.

xv

Chapter 1

Introduction

In today’s fast-paced software industry, the demand for reliable, efficient, and scalable

software is at an all-time high [1, 14, 49, 63, 71, 129]. However, as software systems grow in

complexity, so does the difficulty of ensuring their correctness [1, 18, 22, 42, 63, 94, 112, 124].

Large-scale projects often involve multiple developers working on millions of lines of code,

increasing the likelihood of errors that are time-consuming to detect and fix. For example, a

type error in a statically typed language like OCaml might ripple through a codebase, leading to

cascading failures if not promptly addressed. Similarly, a single syntax error in a dynamically

typed language like Python can prevent an entire application from running. Traditional symbolic

debugging tools, though powerful, struggle to keep pace with the scale and complexity of

modern software development, making the development of modern automated programming

and debugging tools essential.

Formal verification offer a rigorous approach to ensuring program correctness, addressing

many limitations of manual testing and traditional debugging methods. Program verification tools,

for example, enable the detection of a plethora of bugs at compile-time, significantly reducing

the reliance on runtime or testing-phase error discovery. However, their complexity often makes

them inaccessible to non-experts, limiting their widespread adoption in the software industry. For

1

instance, utilizing a refinement type system in Haskell [126, 135] in order to prove correctness

properties of a codebase’s functions, requires deep expertise and significant manual effort, limiting

their adoption in everyday development. Automated tools [1,18,22,42,63,94,112,124] that assist

in error detection, correction, and formal verification can bridge this gap, making high-assurance

software development more accessible.

A promising direction to overcome these limitations is the integration of machine learning

models into traditional symbolic methods. Machine learning models trained on large code datasets,

often augmented by natural language data, can predict error locations and suggest appropriate

fixes through supervised learning techniques. Recent advances in combining machine learning

with symbolic reasoning have resulted in tools that not only reduce the manual effort associated

with programming and debugging but also minimize the risk of human error, ultimately improving

the software development lifecycle [24, 29, 39, 41, 51, 77, 82, 99, 130]. hese hybrid approaches

leverage the predictive power of machine learning with the rigorous, logical precision of symbolic

reasoning to create robust error detection and correction systems.

This dissertation seeks to address the challenges posed by manual debugging and for-

mal verification by developing automated neurosymbolic tools that enhance various aspects of

programming, from type error feedback to syntax error correction and formal verification. Specifi-

cally, this dissertation investigates methods for addressing errors in programs written in languages

such as OCAML and Python, and augmenting program verification in Haskell. By integrating

machine learning models with symbolic reasoning, we aim to streamline error detection, provide

clearer feedback, and automate much of the error-correction process, significantly reducing the

manual intervention typically required.

One example of this work is the development of RITE, a tool for providing type error

feedback via analytic program repair. RITE is based on the idea that similar errors often require

similar repairs. Using a dataset of ill-typed programs and their corrected versions, RITE learns

from past errors to generate candidate repair templates, predict the most suitable template for a

2

new error, and synthesize a concrete repair.

Another significant contribution is SEQ2PARSE, a neurosymbolic approach to fixing

syntax errors in Python programs. Traditional symbolic parsers can generate repairs, but they often

struggle with the overwhelming number of irrelevant error-correction rules. Neural approaches,

while capable of identifying relevant patterns, are prone to generating inaccurate or overly broad

fixes. SEQ2PARSE combines the best of both worlds by using neural models to pinpoint relevant

error-correction rules, which are then applied by a symbolic parser.

Finally, this dissertation introduces LHC, a neurosymbolic tool for automating refinement

type inference in Haskell. Refinement types are a powerful method for verifying correctness prop-

erties in programs, but they require developers to write detailed annotations for each function in

their code, which can be a highly time-consuming task. LHC uses large language models (LLMs)

and heuristic-based search algorithm to automatically generate these annotations, drastically

reducing the time and expertise needed to perform formal verification.

Throughout this dissertation, we explore how neurosymbolic techniques can be applied

to various aspects of program repair and debugging. By integrating machine learning with

traditional programming language methods, we aim to create tools that are not only effective

at fixing errors but also provide developers with insightful and actionable feedback. These

contributions represent significant steps toward automating many of the tedious and error-prone

aspects of software development, helping to optimize the programming and debugging process

for developers working in diverse environments.

The rest of this dissertation is structured as presented in the following Overview.

3

Overview

Chapter 2: Type Error Feedback via Analytic Program Repair

This chapter presents Analytic Program Repair, a data-driven strategy for providing

feedback for type-errors via repairs for the erroneous program. Our strategy is based on insight

that similar errors have similar repairs. Thus, we show how to use a training dataset of pairs of ill-

typed programs and their fixed versions to: (1) learn a collection of candidate repair templates by

abstracting and partitioning the edits made in the training set into a representative set of templates;

(2) predict the appropriate template from a given error, by training multi-class classifiers on the

repair templates used in the training set; (3) synthesize a concrete repair from the template by

enumerating and ranking correct (e.g. well-typed) terms matching the predicted template. We

have implemented our approach in RITE: a type error reporting tool for OCAML programs. This

chapter also presents an evaluation of the accuracy and efficiency of RITE on a corpus of 4,500

ill-typed OCAML programs drawn from two instances of an introductory programming course,

and a user-study of the quality of the generated error messages that shows the locations and final

repair quality to be better than the state-of-the-art tool in a statistically-significant manner.

Chapter 3: SEQ2PARSE: Neurosymbolic Parse Error Repair

This chapter presents SEQ2PARSE, a language-agnostic neurosymbolic approach to

automatically repairing parse errors. SEQ2PARSE is based on the insight that Symbolic Error

Correcting (EC) Parsers can, in principle, synthesize repairs, but, in practice, are overwhelmed

by the many error-correction rules that are not relevant to the particular program that requires

repair. In contrast, Neural approaches are fooled by the large space of possible sequence level

edits, but can precisely pinpoint the set of EC-rules that are relevant to a particular program. We

show how to combine their complementary strengths by using neural methods to train a sequence

classifier that predicts the small set of relevant EC-rules for an ill-parsed program, after which, the

4

symbolic EC-parsing algorithm can make short work of generating useful repairs. Additionally,

in this chapter, we train and evaluate our method on a dataset of 1,100,000 Python programs,

and show that SEQ2PARSE is accurate and efficient: it can parse 94% of our tests within 2.1

seconds, while generating the exact user fix in 1 out 3 of the cases; and useful: humans perceive

both SEQ2PARSE-generated error locations and repairs to be almost as good as human-generated

ones in a statistically-significant manner.

Chapter 4: Neurosymbolic Modular Refinement Type Inference

This chapter presents LHC, a neurosymbolic agent that uses LLMs to automatically

generate refinement type annotations for all the functions in an entire package or module, using

the refinement type checker LIQUIDHASKELL as an oracle to verify the correctness of the

generated specifications. Refinement types, a type-based generalization of Floyd-Hoare logics,

are an expressive and modular means of statically ensuring a wide variety of correctness, safety,

and security properties of software. However, their expressiveness and modularity means that to

use them, a developer must laboriously annotate all the functions in their code with potentially

complex type specifications that specify the contract for that function. This chapter showcases

a dataset of three Haskell packages where refinement types are used to enforce a variety of

correctness properties from data structure invariants to low-level memory safety and use this

dataset to evaluate LHC. Previously these packages required expert users several days to weeks

to annotate with refinement types. Our evaluation shows that even when using relatively smaller

models like the 3 billion parameter StarCoder LLM, by fine-tuning it and carefully chosen

contexts, our neurosymbolic agent generates refinement types for up to 94% of the functions

across entire libraries automatically in just a few hours, thereby showing that LLMs can drastically

shrink the human effort needed to use formal verification.

5

Chapter 5: Conclusion and Future Work

The conclusion summarizes this dissertation that demonstrated the power of neurosym-

bolic approaches in enhancing programming and debugging tools through the development of

RITE, SEQ2PARSE, and LHC. Each of these tools combines machine learning and symbolic rea-

soning to automate program repair and verification across OCaml, Python, and Haskell, achieving

high accuracy and efficiency while offering valuable insights to developers. Future work includes

broadening these methods to support additional programming languages, more complex error

types, and adaptive feedback for novice programmers. Additionally, there is potential to enhance

neurosymbolic techniques through semi-supervised learning or reinforcement learning, aiming

to further reduce the need for extensive labeled data and expand the capabilities of automated

program assistance.

6

Chapter 2

Type Error Feedback via Analytic Program

Repair

7

2.1 Introduction

Languages with Hindley-Milner style, unification-based inference offer the benefits of

static typing with minimal annotation overhead. The catch, however, is that programmers must

first ascend the steep learning curve associated with understanding the error messages produced

by the compiler. While experts can, usually, readily decipher the errors, and view them as

invaluable aids to program development and refactoring, novices are typically left quite befuddled

and frustrated, without a clear idea of what the problem is [129]. Owing to the importance

of the problem, several authors have proposed methods to help debug type errors, typically,

by slicing down the program to the problematic locations [42, 95], by enumerating possible

causes [18, 69], or by ranking the possible locations using MAX-SAT [89], Bayesian [137] or

statistical analysis [112]. While valuable, these approaches at best help localize the problem but

students are still left in the dark about how to fix their code.

Repairs as Feedback. Several recent papers have proposed an inspiring new line of attack on the

feedback problem: using techniques from synthesis to provide feedback in the form of repairs that

students can apply to improve their code. These repairs can be found by symbolically searching a

space of candidate programs circumscribed by an expert-defined repair model [46,114]. However,

for type errors, the space of candidate repairs is massive. It is quite unclear whether a small set of

repair models exists or even if it does, what it looks like. More importantly, to scale, it is essential

that we remove the requirement that an expert carefully curate some set of candidate repairs.

Alternately, we can generate repairs via the observation that similar programs have

similar repairs, i.e. by calculating “diffs” from the student’s solution to the “closest” correct

program [39, 130]. However, this approach requires a corpus of similar programs, whose syntax

trees or execution traces can be used to match each incorrect program with a “correct” version

that is used to provide feedback. Programs with static type errors have no execution traces. More

importantly, we desire a means to generate feedback for new programs that novices write, and

8

hence cannot rely on matching against some (existing) correct program.

Analytic Program Repair. In this work, we present a novel error repair strategy called Analytic

Program Repair that uses supervised learning instead of manually crafted repair models or

matching against a corpus of correct code. Our strategy is based on the key insight that similar

errors have similar repairs and realizes this insight by using a training dataset of pairs of ill-typed

programs and their fixed versions to: (1) learn a collection of candidate repair templates by

abstracting and partitioning the edits made in the training set into a representative set of templates;

(2) predict the appropriate template from a given error, by training multi-class classifiers on

the repair templates used in the training set; (3) synthesize a concrete repair from the template

by enumerating and ranking correct (e.g. well-typed) terms matching the predicted template,

thereby, generating a fix for a candidate program. Critically, we show how to perform the crucial

abstraction from a particular program to an abstract error by representing programs via bag-

of-abstracted-terms (BOAT) i.e. as numeric vectors of syntactic and semantic features [110].

This abstraction lets us train predictors over high-level code features, i.e. to learn correlations

between features that cause errors and their corresponding repairs, allowing the analytic approach

to generalize beyond matching against existing programs.

RITE. We have implemented our approach in RITE: a type error reporting tool for OCAML

programs. We train (and evaluate) RITE on a set of over 4,500 ill-typed OCAML programs

drawn from two years of an introductory programming course. Given a new ill-typed program,

RITE generates a list of potential solutions ranked by likelihood and an edit-distance metric. We

evaluate RITE in several ways. First, we measure its accuracy: we show that RITE correctly

predicts the right repair template 69% of the time when considering the top three templates and

surpasses 80% when we consider the top six. Second, we measure its efficiency: we show that

RITE is able to synthesize a concrete repair within 20 seconds 70% of the time. Finally, we

measure the quality of the generated messages via a user study with 29 participants and show

9

that humans perceive both RITE’s edit locations and final repair quality to be better than those

produced by SEMINAL, a state-of-the-art OCaml repair tool [69] in a statistically-significant

manner.

10

2.2 Overview

We begin with an overview of our approach to suggesting fixes for faulty programs by

learning from the processes novice programmers follow to fix errors in their programs.

1 let rec mulByDigit i l =
2 match l with
3 | [] -> []
4 | hd::tl -> (hd * i) @ mulByDigit i tl

1 let rec mulByDigit i l =
2 match l with
3 | [] -> []
4 | hd::tl -> [hd * i] @ mulByDigit i tl

Figure 2.1: (top) An ill-typed OCAML program that should multiply each element of a list by
an integer. (bottom) The fixed version by the student.

The Problem. Consider the program mulByDigit shown at the top of Figure 2.1, written

by a student in an undergraduate Programming course. The program is meant to multiply all

the numbers in a list with an integer digit. The student accidentally misuses the list append

operator (@), applying it to a number and a list rather than two lists. Novice students who are still

building a mental model of how the type checker works are often perplexed by the compiler’s

error message [83]. Hence a novice will often take a long time to arrive at a suitable fix, such as

the one shown at the bottom of Figure 2.1, where @ is used with a singleton list containing the

multiplication of the head hd and i. Our goal is to use historical data of how programmers have

fixed similar errors in their programs to automatically and rapidly guide novices to come up with

candidate solutions like the one above.

Solution: Analytic Program Repair. One approach is to view the search for candidate repairs

as a synthesis problem: synthesize a (small) set of edits to the program that yields a good (e.g.

type-correct) one. The key challenge is to ensure that synthesis is tractable by restricting the

repairs to an efficiently searchable space, and yet precise so the search does not miss the right

11

fixes for an erroneous program. In this work, we present a novel strategy called Analytic Program

Repair which enables tractable and precise search by decomposing the problem into three steps:

First, learn a set of widely used fix templates. Second, predict, for each erroneous program, the

correct fix template to apply. Third, synthesize candidate repairs from the predicted template. In

the remainder of this section, we give a high-level overview of our approach by describing how

to:

1. Represent fixes abstractly via fix templates (§ 2.2.1),

2. Acquire a training set of labeled ill-typed programs and fixes (§ 2.2.2),

3. Learn a small set of candidate fix templates by partitioning the training set (§ 2.2.3),

4. Predict the appropriate template to apply by training a multi-class classifier from the

training set (§ 2.2.4), and

5. Synthesize fixes by enumerating and checking terms from the predicted templates to give

the programmer localized feedback (§ 2.2.5).

2.2.1 Representing Fixes

Our notion of a fix is defined as a replacement of an existing expression with a new

candidate expression at a specific program location. For example, the mulByDigit program

is fixed by replacing (hd * i) with the expression [hd * i] on line 4. We focus on AST-level

replacements as they are compact yet expressive enough to represent fixes.

Generic Abstract Syntax Trees. We represent the different possible candidate expressions

via abstract fix templates called Generic Abstract Syntax Trees (GAST) which each correspond

to many possible expressions. GASTs are obtained from concrete ASTs in two steps. First, we

abstract concrete variable, function, and operator names. Next, we prune GASTs at a certain

12

depth d to keep only the top-level changes of the fix. Pruned sub-trees are replaced with holes,

which can represent any possible expression in our language.

Together, these steps ensure that GASTs only contain information about a fix’s structure

rather than the specific changes in variables and functions. For example, the fix [hd * i] in the

mulByDigit example is represented by the GAST of the expression [_ ⊕ _], where variables hd

and i are abstracted into holes (e.g. by pruning the GAST at a depth d = 2) and * is represented

by an abstract binary operator ⊕. Our approach is similar to that of Lerner et al. [69], where

AST-level modifications are used, however, our proposed GASTs represent more abstract fix

schemas.

2.2.2 Acquiring a Fix-Labeled Training Set

Previous work has used experts to create a set of ill-typed programs and their fixed

versions [69, 73], or to manually create fix templates [56] that can yield repair patches [78, 79].

These approaches are hard to scale up to yield datasets suitable for machine learning. Also, they

do not discover the frequency in practice of particular classes of novice mistakes and their fixes. In

contrast, we show that such fix templates can be learned from a large, automatically constructed

training set of ill-typed programs labeled with their repairs. Fixes in our dataset are represented

as the ASTs of the expressions that students changed in the ill-typed program to transform it into

the correct solution.

Interaction Traces. Following [112], we extract a labeled dataset of erroneous programs and

their fixed versions from interaction traces. Usually students write several versions of their

programs until they reach the correct solution for a programming assignment. An instrumented

compiler is used to capture such sequences (or traces) of student programs. The first type-correct

solution in this sequence of attempts is considered to be the fixed version of all the previous ones

and thus a pair for each of them is added to the dataset. For each program pair, we then produce

13

a diff of their abstract syntax trees (ASTs), and assign as the dataset’s fix labels the smallest

sub-tree that changed between the correct and ill-typed attempt of the program.

2.2.3 Learning Candidate Fix Templates

Each labeled program in our dataset contains a fix, which we abstract to a fix template. For

example, for the mulByDigit program in Figure 2.1 we get the candidate fix [hd * i] and hence

the fix template [_ ⊕ _]. However, a large dataset of fix-labeled programs, which may include

many diverse solutions, can introduce a huge set of fix templates, which can be inappropriate for

predicting the correct one to be used for the final program repair.

Therefore, the next step in our approach is to learn a set of fix templates that is small

enough to automatically predict which template to apply to a given erroneous program, but

nevertheless covers most of the fixes that arise in practice.

Partitioning the Fixes. We learn a suitable small set of fix templates by partitioning all the

templates obtained from our dataset, and then selecting a single GAST to represent the fix

templates from each fix template set. The partitioning serves two purposes. First, it identifies a

small set of the most common fix templates which then enables the use of discrete classification

algorithms to predict which template to apply to a new program. Second, it allows for the

principled removal of outliers that arise because student submissions often contain non-standard

or idiosyncratic solutions that we do not wish to use for suggesting fixes.

Unlike previous repair approaches that have used clustering to group together similar

programs (e.g., [39, 130]), we partition our set of fix templates into their equivalence classes

based on a fix similarity relation.

14

2.2.4 Predicting Templates via Multi-classification

Next, we train models that can correctly predict error locations and fix templates for a

given ill-typed program. We use these models to generate candidate expressions as possible

program fixes. To reduce the complexity of predicting the correct fix templates and error locations,

we separate these problems and encode them into two distinct supervised classification problems.

Supervised Multi-Class Classification. We propose using a supervised multi-class classifica-

tion problem for predicting fix templates. A supervised learning problem is one where, given a

labeled training set, the task is to learn a function that accurately maps the inputs to output labels

and generalizes to future inputs. In a classification problem, the function we are trying to learn

maps inputs to a discrete set of two or more output labels, called classes. Therefore, we encode

the task of learning a function that will map subexpressions of ill-typed programs to a small set

of candidate fix templates as a multi-class classification (MCC) problem.

Feature Extraction. The machine learning models that we will train to solve our MCC problem

expect datasets of labeled fixed-length vectors as inputs. Therefore, we define a transformation

of fix-labeled programs to fixed-length vectors. Similarly to Seidel et al. [112], we define a set

of feature extraction functions f1, . . . , fn, that map program subexpressions to a numeric value

(or just {0,1} to encode a boolean property). Given a set of feature extraction functions, we can

represent a single program’s AST as a set of fixed-length vectors by decomposing the AST e

into a set of its constituent subexpressions {e1, . . . ,em} and then representing each ei with the

n-dimensional vector [f1(ei), . . . , fn(ei)]. This method is known as a bag-of-abstracted-terms

(BOAT) representation in previous work [112].

Predicting Templates via MCC. Our fix-labeled dataset can be updated so the labels represent

the corresponding template that fixes each location, drawn from the minimal set of fix templates

15

that were acquired through partitioning. We then train a Deep Neural Network (DNN) classifier

on the updated template-labeled data set.

Neural networks have the advantage of associating each class with a confidence score

that can be interpreted as the model’s probability of each class being correct for a given input

according to the model’s estimated distribution. Therefore, confidence scores can be used to rank

fix template predictions for new programs and use them in descending order when synthesizing

repairs. Exploiting recent advances in machine learning, we use deep and dense architectures [109]

for more accurate fix template predictions.

Error Localization. We view the problem of finding error locations in a new program as a

binary classification problem. In contrast with the template prediction problem, we want to learn

a function that maps a program’s subexpressions to a binary output representing the presence of

an error or not. Therefore, this problem is equivalent to MCC with only two classes and thus,

we use similar deep architectures of neural networks. For each expression in a given program,

the learned model outputs a confidence score representing how likely it is an error location that

needs to be fixed. We exploit those scores to synthesize candidate expressions for each location

in descending order of confidence.

2.2.5 Synthesizing Feedback from Templates

Next, we use classic program synthesis techniques to synthesize candidate expressions

that will be used to provide feedback to users. Additionally, synthesis is guided by predicted fix

templates and a set of possible error locations, and returns a ranked list of minimal repairs to

users as feedback.

Program Synthesis. Given a set of locations and candidate templates for those locations, we

are trying to solve a problem of program synthesis. For each program location, we search over

16

all possible expressions in the language’s grammar for a small set of candidate expressions that

match the fix template and make the program type-check. Expressions from the ill-typed program

are also used during synthesis to prune the search space of candidate expressions.

Synthesis for Multiple Locations. It is often the case that more than one location needs to be

fixed. Therefore, we do not only consider the ordered set of single error locations for synthesis, but

rather its power set. For simplicity, we consider fixing different program locations as independent;

the probability we assign that a set of locations needs to be fixed is thus the product of their

individual confidence scores. This is unlike recent approaches to multi-hunk program repair [104]

where modifications depend on each other.

Ranking Fixes. Finally, we rank each solution by two metrics, the tree-edit distance and

the string-edit distance. Previous work [39, 69, 130] has used such metrics to consider minimal

changes, i.e. changes that are as close as possible to the original programs, so novice programmers

are presented with more coherent feedback.

1 let rec mulByDigit i l =
2 match l with
3 | [] -> []
4 | hd::tl -> [v1 * v2] @ mulByDigit i tl

Figure 2.2: A candidate repair for the mulByDigit program.

Example. We see in Figure 2.2 a minimal repair that our method could return ([v1 * v2] in

line 4) using the template discussed in § 2.2.3 to synthesize it. While this solution is not the

highest-ranked that our implementation returns (which would be identical to the human solution),

it demonstrates relevant aspects of the synthesizer. In particular, this solution has some abstracted

variables, v1 and v2. Our algorithm suggests to the user that they can replace the two variables

with two distinct variables and insert the whole expression into a list, in order to obtain the correct

17

program. We hypothesize that such solutions produced by our algorithm can provide valuable

feedback to novices, and we investigate that claim empirically in § 2.6.3.

18

e ::= x | λx.e | e ē | let x = e in e
| n | b | e+ e | if e then e else e
| ⟨e,e⟩ | match e with ⟨x,x⟩ → e

| [] | e :: e | match e with

{
[]→ e
x :: x→ e

n ::= 0,1,−1, . . .

b ::= true | false
t ::= α | bool | int | t→ t | t× t | [t]

Figure 2.3: Syntax of λML

e ::= _ | x̂ | λx̂.e | x̂ ē | let x̂ = e in e
| n̂ | e⊕ e | if e then e else e
| ⟨e,e⟩ | match e with ⟨x̂, x̂⟩ → e

| [] | e :: e | match e with

{
[]→ e
x̂ :: x̂→ e

Figure 2.4: Syntax of λRT L

2.3 Learning Fix Templates

We start by introducing our approach for extracting useful fix templates from a training

dataset comprised of paired erroneous and fixed programs. We express those templates in terms

of a language that allows us to succinctly represent fixes in a way that captures the essential

structure of various fix patterns that novices use in practice. However, extracting a single fix

template for each fix in the program pair dataset yields too many templates to perform accurate

predictions. Hence, we define a similarity relation between templates, which we use to partition

the extracted templates into a small but representative set, that will make it easier to train precise

models to predict fixes.

2.3.1 Representing User Fixes

Repair Template Language. Figure 2.4 describes our Repair Template Language, λRT L, which

is a lambda calculus with integers, booleans, pairs, and lists, that extends our core ML language

19

λML (Figure 2.3) with syntactic abstraction forms:

1. Abstract variable names x̂ are used to denote variable occurrences for functions, variables

and binders, i.e. x̂ denotes an unknown variable name in λRT L;

2. Abstract literal values n̂ can represent any integer, float, boolean, character, or string;

3. Abstract operators ⊕ similarly denote unknown unary or binary operators;

4. Wildcard expressions _ are used to represent any expression in λRT L, i.e. a program hole.

Recall from § 2.2.1 that we define fixes as replacements of expressions with new candidate

expressions at specific program locations. Therefore, we use candidate expressions over λRT L to

represent fix templates.

Generalizing ASTs. A Generic Abstract Syntax Tree (GAST) is a term from λRT L that repre-

sents many possible expressions from λML. GASTs are abstracted from standard ASTs over the

core language λML using the abstract function that takes as input an expression eML over λML

and a depth d and returns an expression eRT L over λRT L, i.e. a GAST with all variables, literals

and operators of eML abstracted and all subexpressions starting at depth greater than d pruned and

replaced with holes _.

Example. Recall our example program mulByDigit in Figure 2.1. The expression [hd * i]

replaces (hd * i) in line 4, and hence, is the user’s fix, whose AST is given in Figure 2.5a. The

output of abstract, given this AST and a depth d = 2 as input, would be the GAST in Figure 2.5b,

where the operator * has been replaced with an abstract operator ⊕, and the sub-terms hd and i at

depth 2 have been abstracted to wildcard expressions _. Hence, the λRT L term [_ ⊕ _] represents

a potential fix template for mulByDigit.

20

::

*

hd i

[]

(a) Fix AST

::

⊕

_ _

[]

(b) Template GAST
Figure 2.5: (left) The fix from example Figure 2.1 and (right) a possible template for that fix.

2.3.2 Extracting Fix Templates from a Dataset

Our approach fully automates the extraction of fixes by harvesting a set of fix templates

from a training set of program pairs. Given a program pair (perr, p f ix) from the dataset, we extract

a unique fix for each location in perr that changed in p f ix. We do so with an expression-level

diffRules [68] function. Recall that our fixes are replacements of expressions, so we abstract these

extracted changes as our fix templates.

Contextual Repairs. Following Felleisen et al. [28], let C be the context in which an expression

e appears in a program p, i.e. the program p with e replaced by a hole _. We write that p = C[e],

meaning that if we fill the hole with the original expression e we obtain the original program p.

In this fashion, diffRules finds a minimal (in number of nodes) expression replacement e f ix for an

expression eerr in perr, such that perr = Cperr [eerr] and Cperr [e f ix] = p f ix. There may be several

such expressions, and diffRules returns all such changes.

Examples. If f x is rewritten to g x, the context is C = _ x and the fix is g, since C[g] = g x. If

f x is rewritten to (f x)+1, the context is C = _, and the fix is the whole expression (f x)+1,

thus C[(f x)+1] = (f x)+1. (Even though f x appears in both the original and fixed programs,

we consider the application expression f x — but not f or x — to be replaced with the + operator.)

21

2.3.3 Partitioning the Templates

Programs over λML force similar fixes, such as changes to variable names, to have identical

GASTs. Our next step is to define a notion of program fix similarity. Our definition supports the

formation of a small but widely-applicable set of fix templates. This small set is used to train a

repair predictor.

GAST Similarity. Two GASTs are similar when the root nodes are the same and their child

subtrees (if any) can be ordered such that they are pairwise similar. For example, x+3 and 7− y

yield the similar GASTs x̂⊕ n̂ and n̂⊕ x̂, where the root nodes are both abstract binary operators,

one child is an abstract literal, and one child is an abstract variable.

Partitioning. GAST similarity defines a relation which is reflexive, symmetric, and transitive

and thus an equivalence relation. We can now define partitioning as the computation of all

possible equivalence classes of our extracted fix templates w.r.t. GAST similarity. Each class

can consist of several member-expressions and any one of them can be viewed as the class

representative. Each representative can then be used as a fix template to produce repairs for

ill-typed programs.

For example, x̂⊕ n̂ and n̂⊕ x̂ are in the same class and either one can be used as the

representative. The repair algorithm in section 2.5 will essentially consider both when fixing an

erroneous program with this template.

Finally, our partitioning algorithm returns the top N equivalence classes based on their

member-expressions frequency in the dataset. N is a parameter of the algorithm and is chosen to

be as small as possible while the top N classes represent a large enough portion of the dataset.

22

2.4 Predicting Fix Templates

Given a candidate set of templates, our next task is to train a model that, when given an

(erroneous) program, can predict which template to use for each location in that program. We do

so by defining a function predict which takes as input (1) a feature extraction function Features,

(2) a dataset DataSet of program pairs (perr, p f ix), and (3) a list of fix templates T. It returns as

output a fix-template-predictor which, given an erroneous program, returns the locations of likely

fixes, and the templates to be applied at those locations.

We build predict using three helper functions that carry out each of the high-level steps.

First, the extract function extracts features and labels from the program pair dataset. Next, these

feature vectors are grouped and fed into train which produces two models, LModel and TModel,

that are respectively used for error localization and predicting fix templates. Finally, rank takes

the features for a new (erroneous) program and queries the trained models to return the likely fix

locations and corresponding fix templates.

Next, we describe the key data-types in Figure 2.6, our implementations of the three key

steps, and how they are combined to yield the predict algorithm.

Confidences, Data and Labels. As shown in Figure 2.6, we define EMap a as a mapping from

expressions e to values of type a, and TMap a as a mapping from templates T to such values. For

example, TMap C is a mapping from templates T to their confidence scores C . Data represents

feature vectors used to train our predictive models, while Label B are the dataset labels for

training and Label C are the output confidence scores. Finally, Pair is a program pair (perr, p f ix).

Features and Predictors. We define Features as a function that generates the feature vectors

Data for each subexpression of an input program e. Those feature vectors are given in the form

of a map EMap Data, which maps all subexpressions of the input program e to its feature vector

Data.

23

Predictors are learned fix-template-predictors returned from our algorithm that are used

to generate confidence score mappings for input programs e. Specifically, they return a map

EMap (Label C) that associates each subexpression of the input program e with a confidence

score Label C .

Architecture. First, the extract function takes as input the feature extraction functions Features,

a list of templates [T] and a single program pair Pair and generates a map EMap (Data×Label B)

of feature vectors and boolean labels for all subexpressions of the erroneous input program from

Pair. All feature vectors Data and labels Label B are then accumulated into one list, which is

given as input to train and are used for training the two models LModel and TModel that are

respectively used for predicting error locations and fix templates. Next, the two trained models

LModel and TModel, along with Data from a new and previously unseen program, can be fed into

rank. This produces a Predictor, which can be used to map subexpressions of the new program to

possible error locations and fix templates.

2.4.1 Feature and Label Extraction

The machine learning algorithms that we use for predicting fix templates and error

locations expect fixed-length feature vectors Data as their input. However, we want to repair

variable-sized programs over λML. We thus use the extract function to convert programs to feature

vectors.

Following Seidel et al. [112], we choose to model a program as a set of feature vectors,

where each element corresponds to a subexpression in the program. Thus, given an erroneous

program perr we first split it into its constituent subexpressions and then transform each subexpres-

sion into a single feature vector, i.e. Features perr :: EMap Data. We only consider expressions

inside a minimal type-error slice. We show here the five major feature categories used.

24

C .
= {r ∈ R | 0≤ r ≤ 1}

B .
= {b ∈ R | b = 0∨b = 1}

T
.
= eRT L

EMap a .
= e→ a

TMap a .
= T→ a

Data
.
= [C]

Label a .
= a×TMap a

Pair
.
= e× e

DataSet
.
= [Pair]

Features
.
= e→ EMap Data

Predictor
.
= e→ EMap (Label C)

abstract : e→ T
diffRules : Pair→ [e]

extract : Features→ [T]→ Pair
→ EMap (Data×Label B)

train : [Data×Label B]→ LModel×TModel
rank : LModel→ TModel→ Data→ Label C

predict : Features→ [T]→ DataSet→ Predictor

Figure 2.6: A high-level API for converting program pairs to feature vectors and template
labels.

25

Local syntactic features. These features describe the syntactic category of each expression e.

In other words, for each production rule of e in Figure 2.3 we introduce a feature that is enabled

(set to 1) if the expression was built with that production, and disabled (set to 0) otherwise.

Contextual syntactic features. The context in which an expression occurs can be critical for

correctly predicting error sources and fix templates. Therefore, we include contextual features,

which are similar to the local syntactic features but describe the parent and children of an

expression. For example, the IS-[]-C1 feature would describe whether an expression’s first child

is []. This is similar to the n-grams used in linguistic models [33, 47].

Expression size. We also include a feature representing the size of each expression, i.e. how

many subexpressions does it contain? This allows the model to learn that, e.g., expressions closer

to the leaves are more likely to be fixed than expressions closer to the root.

Typing features. The programs we are trying to repair are untypeable, but a partial typing

derivation from the type checker could still provide useful information to the model. Therefore,

we include typing features in our representation. Due to the parametric type constructors · → ·,

·× ·, and [·], there is an infinite set of possible types — but we must have a finite set of features.

We add features for each abstract type constructor that describes whether a given type uses that

constructor. For example, the type int→ int→ bool would enable the · → ·, int, and bool

features.

We add these features for parent and child expressions to summarize the context, but also

for the current expression, as the type of an expression is not always clear syntactically.

Type error slice. We wish to distinguish changes that could fix the error from changes that

cannot possibly fix the error. Thus, we compute a minimal type-error slice (e.g. [42, 123]) for

the program (i.e. the set of expressions that contribute to the error) and if the program contains

26

multiple type-errors, we compute a minimal slice for each error. We then have a post-processing

step that discards all expressions that are not included in those slices.

Labels. Recall that we use two predictive models, LModel for error localization and TModel

for predicting fix templates. We thus require two sets of labels associated with each feature

vector, given by Label B . LModel is trained using the set [Data×B], while TModel using the set

[Data×TMap B].

LModel’s labels of type B are set to “true” for each subexpression of a program perr that

changed in p f ix. A label TMap B , for a subexpression of perr, maps to the repair template T

that was used to fix it. TMap B associates all subexpressions with a fixed number of templates

[T] given as input to extract. Therefore, for the purpose of template prediction, TMap B can

be viewed as a fixed-length boolean vector that represents the fix templates used to repair each

subexpression. This vector has at most one slot set to “true”, representing the template used to fix

perr. These labels are extracted using diffRules and abstract, similarly to the way that templates

were extracted in § 2.3.2.

2.4.2 Training Predictive Models

Our goal with the train function is to train two separate classifiers given a training set

[Data×Label B] of labeled examples. LModel predicts error locations and TModel predicts fix

templates for a new input program perr. Critically, we require that the error localization classifier

output a confidence score C that represents the probability that a subexpression is the error that

needs to be fixed. We also require that the fix template classifier output a confidence score C for

each fix template that measures how sure the classifier is that the template can be used to repair

the associated location of the input program perr.

We consider a standard learning algorithm to generate our models: neural networks. A

thorough introduction to neural networks is beyond the scope of this work [45, 87].

27

Neural Networks. The model that we use is a type of neural network called a multi-layer

perceptron. A multi-layer perceptron can be represented as a directed acyclic graph whose nodes

are arranged in layers that are fully connected by weighted edges. The first layer corresponds

to the input features, and the final to the output. The output of an internal node is the sum of

the weighted outputs of the previous layer passed to a non-linear function, called the activation

function. The number of layers, the number of nodes per layer, and the connections between

layers constitute the architecture of a neural network. In this work, we use relatively deep neural

networks (DNN). We can train a DNN LModel as a binary classifier, which will predict whether

a location in a program perr has to be fixed or not.

Multi-class DNNs. While the above model is enough for error localization, in the case of

template prediction we have to select from more than two classes. We again use a DNN for our

template prediction TModel, but we adjust the output layer to have N nodes for the N chosen

template-classes. For multi-class classification problems solved with neural networks, usually a

softmax function is used at output layer [11, 37]. Softmax assigns probabilities to each class that

must add up to 1. This additional constraint speeds up training.

2.4.3 Predicting Fix Templates

Our ultimate goal is to be able to pinpoint what parts of an erroneous program should be

repaired and what fix templates should be used for that purpose. Therefore, the predict function

uses rank to predict all subexpressions’ confidence scores C to be an error location and confidence

scores TMap C for each fix template. We show here how all the functions in our high-level API

in Figure 2.6 are combined to produce a final list of confidence scores for a new program p.

Algorithm 1 presents our high-level predict algorithm.

28

Algorithm 1 Predicting Templates Algorithm
Input: Feature Extraction Functions F , Fix Templates T s, Program Pair Dataset D
Output: Predictor Pr

1: procedure PREDICT(F, T s, D)
2: DML← /0

3: for all perr× p f ix ∈ D do
4: d← EXTRACT(F, T s, perr× p f ix)
5: DML← DML∪ INSLICE(perr, d)
6: Models← TRAIN(DML)
7: Data← λp. INSLICE(p, EXTRACT(F, T s, p× p))
8: Pr← λp. MAP(λp̃. RANK(Models, p̃[0]), Data(p))
9: return Pr

The Prediction Algorithm. Our algorithm first extracts the machine-learning-amenable dataset

DML from the program pairs dataset D. For each program pair in D, EXTRACT returns a mapping

from the erroneous program’s subexpressions to features and labels. Then, INSLICE keeps only

the expressions in the the type-error slice and evaluates to a list of the respective feature and

label vectors, which is added to the DML dataset. This dataset is used by the TRAIN function to

generate our predictive Models, i.e. LModel and TModel.

At this point we want to generate a Predictor for a new unknown program p. We perform

feature extraction for p with EXTRACT, and use INSLICE to restrict to expressions in p’s type-error

slice. The result is given by Data(p).

RANK is then applied to all subexpressions produced by Data(p) with MAP, which will

create a mapping of the type EMap (Label C) associating expressions with confidence scores. We

apply RANK to each feature vector that corresponds to an expression in the type-error slice of p.

These vectors are the first elements of p̃ ∈ Data(p), which are of type Data×Label B . Finally,

Predictor Pr is returned, which is used by our synthesis algorithm in section 2.5 to correlate

subexpressions in p with their confidence scores.

29

2.4.4 Discussion

An alternative to the two separate predictive models, LModel and TModel, would be to

have one joint model to predict both error locations and fix templates. One could simply add an

“empty” fix template to the set of the N extracted templates. Then, a multi-class DNN could be

trained on the dataset, using N +1 classes instead. When the “empty” fix template is predicted, it

denotes no error at that location, while the rest of the classes denote an error along with the fix

template to be used. While the approach of one joint model is quite intuitive, we found in our

early experiments that it does not produce as accurate predictions as the two separate models.

Learning representations is a remarkable strength of DNNs, so manually extracting

features is usually discouraged. Recently, there has been some work in learning program repre-

sentations for use in predictive models [6, 10]. However, we found that the BOAT features are

essential for high accuracy (see subsection 2.6.1) given the relatively small size of our dataset,

similarly to previous work [112]. In future work, however, it would be interesting to learn features

automatically and avoid the step of manually extracting them.

30

2.5 Template-Guided Repair Synthesis

We use program synthesis to fully repair a program using predicted fix templates and

locations from our machine learning models. We present in § 2.5.1 a synthesis algorithm for

producing local repairs for a given program location. In § 2.5.2, we show how we use local

repairs to repair programs that may have multiple error locations.

2.5.1 Local Synthesis from Templates

Enumerative Program Synthesis. We utilize classic enumerative program synthesis that is

guided by a fix template. Enumerative synthesis searches all possible expressions over a language

until a high-level specification is reached. In our case, we initially synthesize independent local

repairs for a program that already captures the user’s intent. Therefore, the required specification

is that the repaired program is type-safe. However, if the users provide type signatures for their

programs, they can be used as a stricter specification.

Given a location l, a template t and a maximum depth d, Algorithm 2 searches over all

possible expressions over λML that will satisfy those goals by generating a local repair that fills t’s

GAST with concrete variables, literals, functions etc. Our technique can also reuse subexpressions

e at location l for t’s concretization to further optimize the search.

Template-Guided Local Repair. Using the REPAIR method (Algorithm 2), we produce local

repairs R for a given location L of an erroneous program P. REPAIR fills in a template T based on

the context-free grammar λML. It traverses the GAST of template T from root node downward,

producing candidate local repairs of maximum depth D.

When a hole α ∈ T is found, the algorithm expands T ’s GAST one more level using

λML’s production rules Q. The production rules are considered in a ranked order based on the

subexpressions that already appear in the rest of the template T and program location L. Each

rule is then applied to template T , returning an instantiated template T̂ , which is inserted into the

31

Algorithm 2 Local Repair Algorithm

Input: Language Grammar λML, Program P, Template T , Repair Location L, Max Repair Depth D
Output: Local Repairs R

1: procedure REPAIR(λML, P, T, L, D)
2: R← /0

3: for all d ∈ [1 . . .D] do
4: α̃← NONTERMINALSAT(T, d)
5: for all α ∈ RANKNONTERMINALS(α̃, P, L) do
6: if ISHOLE(α) then
7: Q← GRAMMARRULES(λML)
8: β̃←{β | (α, β) ∈ Q}
9: for all β ∈ RANKRULES(β̃, T) do

10: T̂ ← APPLYRULE(T, (α, β))
11: R← R∪{T̂}
12: else
13: for all σ ∈ GETTERMINALS(P, L, λML) do
14: T̂ ← REPLACENODE(T, α, σ)
15: R← R∪{T̂}
16: return R

list of candidate local repairs R.

If node α is not a hole, terminals from the subexpressions at location L, the program P in

general and the grammar λML are used to concretize that node, depending on the λRT L terminal

node α. For each of these template T modifications, we insert an instantiated template T̂ into R.

2.5.2 Ranking Error Locations

Error Location Confidence. Recall from section 2.4 that for each subexpression in a program’s

type-error slice, LModel generates a confidence score C for it being the error location, and

TModel generates scores for the fix templates.

Our synthesis algorithm ranks all program locations based on their confidence scores C .

For all locations in descending confidence score order, a fix template is used to produce a local

repair using Algorithm 2. Fix templates are considered in descending order of confidence. Then

expressions from the returned list of local repairs R replace the expression at the given program

location. The procedure tries the remaining repairs, templates, and locations until a type-correct

32

program is found.

Following [69], we allow our final local repairs to have program holes _ or abstracted

variable x̂ in them. However, Algorithm 2 will prioritize the synthesis of complete solutions.

Abstract λRT L terms can have any type when type-checking concrete solutions, similarly to

OCAML’s raise Exn.

Multiple Error Locations. In practice, frequently more than one program location needs to

be repaired. We thus extend the above approach to fix programs with multiple errors. Let the

confidence scores C for all locations L in the type error slice from our error localization model

LModel be (l1,c1), . . . ,(lk,ck), where li is a program location and ci its error confidence score. We

assume for simplicity that the probabilities ci are independent. Thus the probability that all the

locations {li . . . l j} need to be fixed is the product ci · · ·c j. Therefore, instead of ranking and trying

to find fixes for single locations l, we use sets of locations ({li},{li, l j},{li, l j, lk}, etc.), ranked by

the products of their confidence scores. For a given set, we use Algorithm 2 independently for

each location in the set and apply all possible combinations of local repairs, looking again for a

type-correct solution.

33

2.6 Evaluation

We have implemented analytic program repair in RITE: a system for repairing type

errors for a purely functional subset of OCAML. Next, we describe our implementation and an

evaluation that addresses three questions:

• RQ1: How accurate are RITE’s predicted repairs? (§ 2.6.1)

• RQ2: How efficiently can RITE synthesize fixes? (§ 2.6.2)

• RQ3: How useful are RITE’s error messages? (§ 2.6.3)

• RQ4: How precise are RITE’s template fixes? (§ 2.6.4)

Training Dataset. For our evaluation, we use an OCAML dataset gathered from an undergrad-

uate Programming Languages university course, previously used in related work [110, 112]. It

consists of erroneous programs and their subsequent fixes and is divided in two parts; the Spring

2014 class (SP14) and the Fall 2015 class (FA15). The homework required students to write 23

distinct programs that demonstrate a range of functional programming idioms, e.g. higher-order

functions and (polymorphic) algebraic data types.

Feature Extraction. RITE represents programs with BOAT vectors of 449 features from each

expression in a program: 45 local syntactic, 315 contextual, 88 typing features, and 1 expression

size feature. For contextual features, for each expression we extract the local syntactic features of

its first 4 (left-to-right) children. In addition, we extract those features for its ancestors, starting

from its parent and going up to two more parent nodes. For typing features, we support int s,

float s, chars, string s, and the user-defined expr. These features are extracted for each expression

and its context.

34

Dataset Cleaning. We extract fixes as expressions replacements over a program pair using

diffRules. A disadvantage of using diffRules s with this dataset is that some students may have

made many, potentially unrelated, changes between compilations; at some point the “fix” becomes

a “rewrite”. These rewrites can lead to meaningless fix templates and error locations. We discard

such outliers when the fraction of subexpressions that have changed in a program is more than

one standard deviation above the mean, establishing a diffRules threshold of 40%. We also

discard programs that have changes in 5 or more locations, noting that even state-of-the-art

multi-location repair techniques cannot reproduce such “fixes” [104]. The discarded changes

account for roughly 32% of each dataset, leaving 2,475 program pairs for SP14 and 2,177 pairs

for FA15. Throughout, we use SP14 as a training set and FA15 as a test set.

DNN based Classifier. RITE’s template prediction uses a multi-layer neural network DNN

based classifier with three fully-connected hidden layers of 512 neurons. The neurons use

rectified linear units (ReLU) as their activation function [85]. The DNN was trained using early

stopping [45]: training is stopped when the accuracy on a distinct small part of the training set

is not improved after a certain amount of epochs (5 epochs, in our implementation). We set the

maximum number of epochs to 200. We used the ADAM optimizer [58], a variant of stochastic

gradient descent that converges faster.

2.6.1 RQ1: Accuracy

Most developers will consider around five or six suggestions before falling back to manual

debugging [61, 88]. Therefore, we consider RITE’s accuracy up to the top six fix template

predictions, i.e. we check if any of the top-N predicted templates actually correspond to the

users’s edit. These predicted templates are not shown to the user; they are only used to guide the

synthesis of concrete repairs which are then presented to the user.

35

RANDOM POPULAR DTREE SVM DNN
0 %

10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

A
cc

ur
ac

y
Top-6
Top-3
Top-1

Figure 2.7: Results of our template prediction classifiers using the 50 most popular templates.
We present the results up to the top 6 predictions, since our synthesis algorithm considers that
many templates before falling to a different location.

Baselines. We compare RITE’s DNN-based predictor against two baseline classifiers: a RAN-

DOM classifier that returns templates chosen uniformly at random from the 50 templates learned

from the SP14 training dataset, and a POPULAR classifier that returns the most popular templates

in the training set in decreasing order. We also compare to a decision tree (DTREE) and an

SVM classifier trained on the SP14 data, since these are two of the most common learning

algorithms [45].

Results: Accuracy of Prediction. Figure 2.7 shows the accuracy results of our template

prediction experiments. The y-axis describes the fraction of erroneous sub-terms (locations) for

which the actual repair was one of the top-K predicted repairs. The naive baseline of selecting

templates at random achieves 2% Top-1 accuracy (12% Top-6), while the POPULAR classifier

achieves a Top-1 accuracy of 14% (41% Top-6). Our DNN classifier significantly outperforms

these naive classifiers, ranging from 45% Top-1 accuracy to 80% Top-6 accuracy. In fact, even

with only DNN’s first prediction one outperforms top 6 predictions of both RANDOM and

POPULAR. The RANDOM classifier’s low performance is as expected. The POPULAR classifier

performs better: some homework assignments were shared between SP14 and FA15 quarters and,

36

while different groups of students solved these problems for each quarter, the novice mistakes

that they made seem to have a pattern. Thus, the most popular “fixes” (and therefore the relevant

templates) from SP14 were also popular in FA15.

We also observe that DTREE achieves a Top-1 accuracy close to that of DNN’s (i.e. 44%

vs. 45%) but fails to improve with more predictions (i.e. with Top-6, 55% vs. 80%). On the other

hand, the SVM does poorly on the Top-1 accuracy (i.e. 30% vs. 45%) but does significantly

better with more predictions (i.e. with Top-6, 72% vs. 80%). Therefore, we observe that more

sophisticated learning algorithms can actually learn patterns from a corpus of fixed programs,

with DNN classifiers achieving the best performance in each category.

Results: Template “Confusion”. The confusion matrix of the each location’s top prediction

shows which templates our models mix up. Figure 2.8 shows this matrix for the top 30 templates

acquired from the SP14 training set and were tested on the FA15 dataset. Note that most templates

are predicted correctly and only a few of them are often mis-predicted for another template. For

example, we see that programs that require template 20 (let ẑ = match t̂ with (x̂, ŷ)→ â in _)

to be fixed, almost always are mis-predicted with template 11 (let (x̂, ŷ) = t̂ in (_, _)). We

observe that these templates are still very similar, with both of them having a top-level let that

manipulates tuples t̂.

RITE learns correlations between program features and repair templates, yielding almost 2x

higher accuracy than the naive baselines and 8% more than the other sophisticated learning

algorithms. By abstracting programs into features, RITE is able to generalize across years

and different kinds of programs.

37

T
m

pl
-1

T
m

pl
-2

T
m

pl
-3

T
m

pl
-4

T
m

pl
-5

T
m

pl
-6

T
m

pl
-7

T
m

pl
-8

T
m

pl
-9

T
m

pl
-1

0

T
m

pl
-1

1

T
m

pl
-1

2

T
m

pl
-1

3

T
m

pl
-1

4

T
m

pl
-1

5

T
m

pl
-1

6

T
m

pl
-1

7

T
m

pl
-1

8

T
m

pl
-1

9

T
m

pl
-2

0

T
m

pl
-2

1

T
m

pl
-2

2

T
m

pl
-2

3

T
m

pl
-2

4

T
m

pl
-2

5

T
m

pl
-2

6

T
m

pl
-2

7

T
m

pl
-2

8

T
m

pl
-2

9

T
m

pl
-3

0

Predicted Label

Tmpl-1

Tmpl-2

Tmpl-3

Tmpl-4

Tmpl-5

Tmpl-6

Tmpl-7

Tmpl-8

Tmpl-9

Tmpl-10

Tmpl-11

Tmpl-12

Tmpl-13

Tmpl-14

Tmpl-15

Tmpl-16

Tmpl-17

Tmpl-18

Tmpl-19

Tmpl-20

Tmpl-21

Tmpl-22

Tmpl-23

Tmpl-24

Tmpl-25

Tmpl-26

Tmpl-27

Tmpl-28

Tmpl-29

Tmpl-30

T
ru

e
L

ab
el

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.8: The confusion matrix of the top 30 templates. Bolder parts of the heatmap show
templates that are often mis-predicted with another template. The bolder the diagonal is, the
more accurate predictions we make.

2.6.2 RQ2: Efficiency

Next we evaluate RITE’s efficiency by measuring how many programs it is able to generate

a (well-typed) repair for. We limit the synthesizer to 90 seconds. (In general the procedure is

undecidable, and we conjecture that a longer timeout will diminish the practical usability for

novices.) Recall that the repair synthesis algorithm is guided by the repair template predictions.

We evaluate the efficiency of RITE by comparing it against a baseline NAIVE implementation that,

given the predicted fix location, attempts to synthesize a repair from the trivial “hole” template.

Figure 2.9 shows the cumulative distribution function of RITE’s and NAIVE’s repair rates

over their synthesis time. We observe that using the predicted templates for synthesis allows RITE

to generate type-correct repairs for almost 70% of the programs in under 20 seconds, which is

nearly 12 points higher than the NAIVE baseline. We also observe that RITE successfully repairs

38

0 10 20 30 40 50 60 70 80 90

Synthesis Time (sec.)

0

10

20

30

40

50

60

70

80

90

R
ep

ai
r

R
at

e
(%

)
Rite

Naive

Figure 2.9: The proportion of the test set that can be repaired within a given time.

around 10% more programs than NAIVE for times greater than 20 seconds. While the NAIVE

approach is still able to synthesize well-typed repairs relatively quickly, we will see that these

repairs are of much lower quality than those generated from the predicted templates (§ 2.6.4).

RITE can generate type-correct repairs for the vast majority of ill-typed programs in under 20

seconds.

2.6.3 RQ3: Usefulness

The primary outcome is whether the repair-based error messages generated by RITE were

actually useful to novices. To assess the quality of RITE’s repairs, we conducted an online human

study with 29 participants. Each participant was asked to evaluate the quality of the program fixes

and their locations against a state-of-the-art baseline (SEMINAL [69]). For each program, beyond

39

the two repairs, participants were presented with the original ill-typed program, along with the

standard OCAML compiler’s error message and a short description of what the original author of

the program intended it to do. From this study, we found that both the edit locations and final

repairs produced by RITE were better than SEMINAL’s in a statistically significant manner.

User Study Setup. Study participants were recruited from two public research institutes (Uni-

versity of California, San Diego and University of Michigan), and from advertisement on Twitter.

Participants had to assess the quality of, and give comprehensible bug descriptions for, at least 5 /

10 stimuli. The study took around 25 minutes to complete. Participants were compensated by

entering a drawing for an Amazon Echo voice assistant. There were 29 valid participants. We

created the stimuli by randomly selecting a corpus of 21 buggy programs from the 1834 programs

in our dataset where repairs were synthesized. From this corpus, each participant was shown 10

randomly-selected buggy programs, and two candidate repairs: one generated by RITE and one by

SEMINAL. For both algorithms, we used the highest-ranked solution returned. Participant were

always unaware which tool generated which candidate patch. Participants were then asked to

assess the quality of each candidate repair on a Likert scale of 1 to 5 and were asked for a binary

assessment of the quality of each repair’s edit location. We also collected self-reported estimates

of both programming and OCAML-specific experience as well as qualitative data assessing factors

influencing each participant’s subjective judgment of repair quality. From the 29 participants, we

collected 554 patch quality assessments, 277 each for RITE and SEMINAL generated repairs.

Results. In a statistically-significant manner, humans perceive that RITE’s fault localization and

final repairs are both of higher quality than those produced by SEMINAL (p= 0.030 and p= 0.024

respectively).1 Regarding fault localization, we find that humans agreed with RITE-identified edit

locations 81.6% of the time but only agreed with those of SEMINAL 74.0% of the time. As for the

final repair, humans also preferred RITE’s patches to those produced by SEMINAL. Specifically,

1All tests for statistical significance used the Wilcoxon signed-rank test.

40

(a) RITE (4.5/5) better than SEMI-
NAL (1.1/5) with 12 responses p =
0.002.

(b) RITE (1.5/5) worse than SEMI-
NAL (4.1/5) with 18 responses p =
0.0002.

(c) RITE (4.8/5) better than
SEMINAL (1.2/5) with 17 re-
sponses p = 0.0003.

Figure 2.10: Three erroneous programs with the repairs that RITE and SEMINAL generated for
the red error locations.

RITE’s repairs achieved an average quality rating of 2.41/5 while SEMINAL’s repairs had an

average rating of only 2.11/5, a 14% increase (p = 0.030), showing a statistically-significant

improvement over SEMINAL.

Qualitative Comparison. We consider several case studies where there were statistically-

significant differences between the human ratings for RITE’s and SEMINAL’s repairs. The

task in Figure 2.10a is that wwhile(f, b) should return x where there exist values v0, ...,vn

such that: b = v0, x = vn, and for each i between 0 and n−2, we have f vi = (vi +1, true) and

f vn−1 = (vn, f alse). The task in Figure 2.10b is to return a list of n copies of x. The task in

Figure 2.10c is to return the sum of the squares of the numbers in the list xs. Humans rated

RITE’s repairs better for the programs in Fig 2.10a and 2.10c. In both cases, RITE’s found a

solution which type-checks and conforms to the problem’s semantic specification. SEMINAL,

however, found a repair that was either incomplete (2.10a) or semantically incorrect (2.10c). On

the other hand, in 2.10b, RITE does worse as the second parameter should be n-1. In fact, RITE’s

second ranked repair is the correct one, but it is equal to the first in terms of edit distance.

Humans perceive both RITE’s edit locations and final repair quality to be better than those

produced by SEMINAL, a state-of-the-art OCAML repair tool, in a statistically-significant

41

Figure 2.11: Rating the errors generated by RITE, SEMINAL and NAIVE enumeration.

manner.

2.6.4 RQ4: Impact of Templates on Quality

Finally, we seek to evaluate whether RITE’s template-guided approach is really at the

heart of its effectiveness. To do so, as in § 2.6.2, we compared the results of using RITE’s error

messages synthesized from predicted templates to those generated by a NAIVE synthesizer that

returns the first well-typed term (i.e. synthesized from the trivial “hole” template).

User Study Setup. For this user study, we used a corpus of 20 buggy programs randomly

chosen in § 2.6.3. For each of the programs we generated three messages: using RITE, using

SEMINAL, and using the NAIVE approach but at the same location predicted by RITE. We then

randomized and masked the order in which the tools’ messages were reported, and asked three

experts (authors of the original paper who had not seen the output of any tool for any of those

instances) to rate the messages as one of “Good”, “Ok” or “Bad”.

Results. Figure 2.11 summarizes the results of the rating. Since each of 20 programs received

3 ratings, there are a total of 60 ratings per tool. RITE dominates with 22 Good, 20 Ok and 18

42

Bad ratings; SEMINAL follows with only 12 Good, 11 Ok and 37 Bad; while NAIVE received

no Good scores, 12 Ok scores and a dismal 48 Bad scores. On average (with Bad = 0, Ok = 0.5,

Good = 1), RITE scored 0.53, SEMINAL 0.30, and NAIVE just 0.1. Our rating agreement kappa is

0.54, which is considered “moderate agreement”.

Repairs generated from predicted templates were of significantly higher quality than those

from expert-biased enumeration (SEMINAL) or NAIVE enumeration.

43

2.7 Related Work

There is a vast literature on automatically repairing or patching programs: we focus on

the most closely related work on providing feedback for novice errors.

Example-Based Feedback. Recent work uses counterexamples that show how a program went

wrong, for type errors [111] or for general correctness properties where the generated inputs show

divergence from a reference implementation or other correctness oracle [115]. In contrast, we

provide feedback on how to fix the error.

Fault Localization. Several authors have studied the problem of fault localization, i.e. winnow-

ing down the set of locations that are relevant for the error, often using slicing [42, 95, 123, 129],

counterfactual typing [18] or bayesian methods [137]. NATE [112] introduced the BOAT represen-

tation, and showed it could be used for accurate localization. We aim to go beyond localization,

into suggesting concrete changes that novices can make to understand and fix the problem.

Repair-model based feedback. SEMINAL [69] enumerates minimal fixes using an expert-

guided heuristic search. The above approach is generalized to general correctness properties

by [114] which additionally performs a symbolic search using a set of expert provided sketches

that represent possible repairs. In contrast, RITE learns a template of repairs from a corpus

yielding higher quality feedback (§ 2.6).

Corpus-based feedback. CLARA [39] uses code and execution traces to match a given incorrect

program with a “nearby” correct solution obtained by clustering all the correct answers for a

particular task. The matched representative is used to extract repair expressions. Similarly,

SARFGEN [130] focuses on structural and control-flow similarity of programs to produce repairs,

by using AST vector embeddings to calculate distance metrics (to “nearby” correct programs)

more robustly. CLARA and SARFGEN are data-driven, but both assume there is a “close” correct

44

sample in the corpus. In contrast, RITE has a more general philosophy that similar errors have

similar repairs: we extract generic fix templates that can be applied to arbitrary programs whose

errors (BOAT vectors) are similar. The TRACER system [3] is closest in philosophy to ours,

except that it focuses on single-line compilation errors for C programs, where it shows that

NLP-based methods like sequence-to-sequence predicting DNNs can effectively suggest repairs,

but this does not scale up to fixing general type errors. We have found that OCAML’s relatively

simple syntactic structure but rich type structure make token-level seq-to-seq methods quite

imprecise (e.g. deleting offending statements suffices to “repair” C but yields ill-typed OCAML)

necessitating RITE’s higher-level semantic features and (learned) repair templates.

HOPPITY [24] is a DNN-based approach for fixing buggy JavaScript programs. HOPPITY

treats programs as graphs that are fed to a Graph Neural Network to produce fixed-length

embeddings, which are then used in an LSTM model that generates a sequence of primitive edits

of the program graph. HOPPITY is one of the few tools that can repair errors spanning multiple

locations. However, it relies solely on the learned models to generate a sequence of edits, so it

doesn’t guarantee returning valid JavaScript programs. In contrast, RITE, uses the learned models

to get appropriate error locations and fix templates, but then uses a synthesis procedure to always

generate type-correct programs.

GETAFIX [7] and REVISAR [99] are two more systems that learn fix patterns using

AST-level differencing on a corpus of past bug fixes. They both use anti-unification [64] for

generalizing expressions and, thus, grouping together fix patterns. They cluster together bug fixes

in order to reduce the search space of candidate patches. While REVISAR [99] ends up with one

fix pattern per bug category using anti-unification, GETAFIX [7] builds a hierarchy of patterns

that also include the context of the edit to be made. They both keep before and after expression

pairs as their fix patterns, and they use the before expression as a means to match an expression

in a new buggy program and replace it with the after expression. While these methods are quite

effective, they are only applicable in recurring bug categories e.g. how to deal with a null pointer

45

exception. RITE on the other hand, attempts to generalize fix patterns even more by using the

GAST abstractions, and predicts proper error locations and fix patterns with a learned model from

the corpus of bug fixes, and so so can be applied to a diverse variety of errors.

PROPHET [74] is another technique that uses a corpus of fixed buggy programs to learn

a probabilistic model that will rank candidate patches. Patches are generated using a set of

predefined transformation schemas and condition synthesis. PROPHET uses logistic regression

to learn the parameters of this model and uses over 3500 extracted program features to do so. It

also uses an instrumented recompile of a faulty program together with some failing input test

cases to identify what program locations are of interest. While this method can be highly accurate

for error localization, their experimental results show that it can take up to 2 hours to produce a

valid candidate fix. In contrast, RITE’s pretrained models make finding proper error locations and

possible fix templates more robust.

46

2.8 Conclusion

We have presented analytic program repair, a new data-driven approach to provide repairs

as feedback for type errors. Our approach is to use a dataset of ill-typed programs and their fixed

versions to learn a representative set of fix templates, which, via multi-class classification allows

us to accurately predict fix templates for new ill-typed programs. These templates guide the

synthesis of program repairs in a tractable and precise manner.

We have implemented our approach in RITE, and demonstrate, using a corpus of 4,500

ill-typed OCAML programs drawn from two instances of an introductory programming course,

that RITE makes accurate fix predictions 69% of the time when considering the top three templates

and surpass 80% when we consider the top six, and that the predicted templates let us synthesize

repairs for over 70% of the test set in under 20 sec. Finally, we conducted a user study with 29

participants which showed that RITE’s repairs are of higher quality than those from the state-

of-the-art SEMINAL tool which incorporates several expert-guided heuristics for improving the

quality of repairs and error messages. Thus, our results demonstrate the unreasonable effectiveness

of data for generating better error messages.

2.9 Acknowledgements

Chapter 2, in part, is a reprint of the material as it appears in the Proceedings of the 41st

ACM SIGPLAN Conference on Programming Language Design and Implementation. Georgios

Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, Ranjit Jhala, PLDI 2020. The

dissertation author was the primary investigator and author of this paper.

47

Chapter 3

SEQ2PARSE: Neurosymbolic Parse Error

Repair

48

3.1 Introduction

Parse errors can vex novices who are learning to program. Traditional error messages

only indicate the first error or produce messages that are either incomprehensibly verbose or not

descriptive enough to help swiftly remedy the error [94, 124]. When they occur in larger code

bases, parse errors may even trouble experts, and can require a great deal of effort to fix [1,22,63].

Owing to their ubiquity and importance, there are two established lines of work on

automatically suggesting repairs for parse errors. In the first line, Programming Languages

researchers have investigated symbolic approaches starting with classical parsing algorithms, e.g.,

LR [4] or Earley [25]. These algorithms can accurately locate syntax errors, but do not provide

actionable feedback on how to fix the error. [5] extends these ideas to implement error-correcting

parsers (EC-Parsers) that use special error production rules to handle programs with syntax errors

and synthesize minimal-edit parse error repairs. Sadly, EC-parsers have remained mostly of

theoretical interest, as their running time is cubic in the program size, and quadratic in the size of

the language’s grammar, which has rendered them impractical for real-world languages [80, 97].

In the second line, Machine Learning and NLP researchers have pursued Deep Neural

Network (DNN) approaches using advanced sequence-to-sequence models [44, 119] that use a

large corpus of code to predict the next token (e.g., at a parse error location). Unfortunately, these

methods ignore the high-level structure of the language (or must learn it from vast amounts of

data) and hence, lack accuracy in real-world contexts. For example, state-of-the-art methods such

as [2] parse and repair only 32% of real student code with up to 3 syntax errors while [133] repair

only 58% of syntax errors in a real-world dataset.

In this chapter, we present SEQ2PARSE, a new language-agnostic approach to automati-

cally repairing parse errors based on the following key insight. Symbolic EC-Parsers [5] can, in

principle, synthesize repairs, but, in practice, are overwhelmed by the many error-correction rules

that are not relevant to the particular program that requires repair. In contrast, Neural approaches

49

are fooled by the large space of possible sequence level edits, but can precisely pinpoint the set of

EC-rules that are relevant to a particular program. Thus, SEQ2PARSE addresses the problem of

parse error repair by a neurosymbolic approach that combines the complementary strengths of

the two lines of work via the following concrete contributions.

1. Motivation. Our first contribution is an empirical analysis of a real-world dataset of more

than a million novice Python programs that shows that parse errors constitute the majority of

novice errors, take a long time to fix, and that the fixes themselves can often require multiple

edits. This analysis clearly demonstrates that an automated tool that suggests parse error repairs

in a few seconds could greatly benefit many novices (§ 3.2).

2. Implementation. Our second contribution is the design and implementation of SEQ2PARSE,

which exploits the insight above to efficiently and accurately suggest repairs in a neurosymbolic

fashion: (1) train sequence classifiers to predict the relevant EC-rules for a given program (§ 3.5),

and then (2) use the predicted rules to synthesize repairs via EC-Parsing (§ 3.6).

3. Abstraction. Predicting the rules is challenging. Standard NLP token-sequence based

methods are confused by long trailing contexts that are independent of the parse error. This

confusion yields to inaccurate classifiers that predict irrelevant rules yielding woefully low repair

rates. Our second key insight eliminates neural confusion via a symbolic intervention: we show

how to use Probabilistic Context Free Grammars (PCFGs) to abstract long low-level token

sequences so that the irrelevant trailing context is compressed into single non-terminals, yielding

compressed abstract token sequences that can be accurately understood by DNNs (§ 3.4).

4. Evaluation. Our final contribution is an evaluation of SEQ2PARSE using a dataset of more

than 1,100,000 Python programs that demonstrates its benefits in three ways. First, we show

its accuracy: SEQ2PARSE correctly predicts the right set of error rules 81% of the time when

50

considering the top 20 rules and can parse 94% of our tests within 2.1 seconds with these

predictions, a significant improvement over prior methods which were stuck below a 60% repair

rate. Second, we demonstrate its efficiency: SEQ2PARSE parses and repairs erroneous programs

within 20 seconds 83% of the time, while also generating the user fix in almost 1 out 3 of the cases.

Finally, we measure the quality of the generated repairs via a human study with 39 participants

and show that humans perceive both SEQ2PARSE’s edit locations and final repair quality to be

useful and helpful, in a statistically-significant manner, even when not equivalent to the user’s fix

(§ 3.7).

51

SyntaxError

77.4%

TypeError

13.6%

AttributeError
3.0% IndexError
2.6%

ValueError2.3%
Other Errors1.1%

Figure 3.1: The Python error type distribution.

3.2 A Case for Parse Error Repair

We motivate SEQ2PARSE by analyzing a dataset comprising 1,100,000 erroneous Python

programs and their respective fixes. This dataset was gathered from PythonTutor.com [40]

between the years 2017 and 2018, previously used in related work [21, 27]. Each program which

throws an uncaught PYTHON exception is paired with the next program by the same user that

does not crash, under the assumption that the latter is the fixed version of the former. We discard

pairs that are too different between buggy and fixed versions, since these are usually unrelated

submissions or complete refactorings. We also discard submissions that violate PythonTutor’s

policies (e.g., those using forbidden libraries). The resulting dataset contains usable program

pairs, representing students from dozens of universities (PythonTutor has been used in many

introductory courses [40]) as well as non-traditional novices.

One might imagine that parse (or syntax) errors are usually easier to locate and repair than

other algorithmic or runtime errors [22]. For example, the Python parser will immediately inform

the programmer about missing parentheses in function argument lists or improper indentation.

However, as has also been shown in previous work [1, 63], our data confirm that programmers

(especially novices) deal with these kinds of errors regularly and spend a considerable amount of

52

0 200 400 600 800
User Fix Duration (sec)

0

20

40

60

80

100

F
ix

ed
D

at
as

et
R

at
e

(%
)

Parse Errors

Runtime Errors

Figure 3.2: The repair rates of the Python dataset.

time fixing them.

Observation 1: Parse errors are very common. Figure 3.1 presents the statistics of the

different types of errors that users encountered in this dataset. We observe that 77.4% of all faulty

programs failed with a syntax error, accounting for the vast majority of the errors that (novice)

programmers face with their programs. The second category is merely 13.6% of the dataset and

represents Python type errors. This is a strong indication that parse errors are a very common

category of error.

Observation 2: Parse errors take time to fix. The web-based compiler used to obtain this

dataset provides server timestamps. The timestamp is associated with each program attempt

submission, erroneous or not. The repair time is the difference between the erroneous and fixed

program timestamps. This timing can be imprecise, as there are various reasons these timings

may be exaggerated, (e.g., users stepping away from the computer, internet lag etc.). However,

in aggregate, due to the large dataset size, these timings can still be viewed as an approximate

metric of the time it took novice programmers to repair their errors.

Figure 3.2 shows the programmer repair rate, i.e. the dataset percentage that is repaired

under a given amount of time. It presents the repair rate for parse errors and the rest of the error

53

1 2 3 4 5 6 7 8 9 10+
Token Changes (#)

0

5

10

15

20

25

F
ix

ed
D

at
as

et
R

at
io

(%
)

Figure 3.3: The Python dataset ratio that is fixed under the given number of token changes.

1 2 3 4 5 6 7 8 9 10+
Token Changes (#)

0

50

100

150

U
se

r
F

ix
D

u
ra

ti
on

(s
ec

)

Figure 3.4: The average time the user needed to fix the erroneous program for the needed token
changes.

types, grouped together here as runtime errors. As expected, parse errors are fixed faster than

the rest, but not by a large difference. For example, we observe that within 2 minutes, 46% of

the runtime errors are repaired, while 63% of the syntax errors are. Although this is a non-trivial

difference, we observe that there are still many “simpler” parse errors that required more than 2

minutes to fix.

Observation 3: Parse errors may need multiple edits to fix. The average token-level changes

needed to fix a program with syntax errors, i.e. the number of changes in the lexed program token

54

sequence, is 10.7 token changes, while the median is 4. (This does not count lexeme content

changes, such as variable renamings, and thus underapproximates the work required.) As shown

in Figure 3.3, 14.2% of errors need only 1 token change, 23.2% need 2 token changes, 7.0% need

3 and 9.0% need 4. Ultimately, 46.6% of these errors require more than 4 token changes.

Observation 4: Parse errors with more edits take longer to fix. Figure 3.4 shows the average

time for users to fix syntax errors as a function of the number of token changes needed. As

expected, with an increasing number of token changes needed, programmers need more time

to implement those changes. Most importantly, even for 1 or 2 token changes the average user

spends 25 sec, which is still a considerable amount of time for such simple and short fixes. The

repair time jumps to 56 sec for three token changes.

These four observations indicate that, while some errors can be easily and quickly fixed

by programmers using existing error messages, there are many cases where novices struggle with

fixing syntax errors. Therefore, we can conclude that an automated tool that parses and repairs

such programs in only a few seconds could benefit many novices.

55

1 def foo(a):
2 return a + 42
3
4 def bar(a):
5 b = foo(a) + 17
6 return b +

(a) A Python program with two functions that ma-
nipulate an integer. The second one has a parse
error.

1 def foo(a):
2 return a + 42
3
4 def bar(a):
5 b = foo(a) + 17
6 return b

(b) A fixed version for the previous example that
has no parse errors.

Figure 3.5: A Python program example with syntax errors (left) and its fix (right).

Program Partial
Parser

Dataset

Buggy
Programs

Fixed
Programsx

PCFG

Abstr-Seq Sequence
Classifier ECE-Parser Fixed

Program
Error-Rules

Figure 3.6: SEQ2PARSE’s overall approach.

3.3 Overview

We begin with an overview of SEQ2PARSE’s neurosymbolic approach to repairing parse

errors, that uses two components. (Neural) Given a dataset of ill-parsed programs and their

fixes, we partially parse the programs into abstract sequences of tokens (§ 3.3.2), that can be

used to train sequence classifiers (§ 3.3.3), that predict program-relevant error rules for new

erroneous programs (§ 3.3.4). (Symbolic) Next, given an erroneous program, and a (small) set of

predicted program relevant error rules, the ECE-parser can exploit the high-level grammatical

structure of the language to make short work of synthesizing the best repair (§ 3.3.1). We now

give an overview of SEQ2PARSE, describing these elements in turn, using as a running example,

the program in Figure 3.5a where the programmer has introduced an extra + operator after the

return b on line 6. This extra + should be deleted, as shown in the developer-fixed program in

Figure 3.5b.

56

S → Stmts end_marker
Stmts → Stmt \n | Stmt \n Stmts
Stmt → FuncDef | ExprStmt

| RetStmt | PassStmt | ...
FuncDef → def name Params : Block
Block → \n indent Stmts dedent
RetStmt → return | return Args
Args → ExprStmt | ExprStmt , Args
ExprStmt → ArExpr | ...
ArExpr → Literal

| ArExpr BinOp Literal
Literal → name | number | ...

Figure 3.7: Simplified Python production rules.

FuncDef

def name Params

(name)

: Block

\n indent Stmts

Stmt

ExprStmt

\n Stmts1

Stmt \n

dedent

Figure 3.8: The partial parse tree generated for bar in the example at Figure 3.5a

3.3.1 Error-Correcting Parsing

Earley Parsers for Python. An Earley parser accepts programs that belong to a language that

is defined by a given grammar G by using dynamic programming, to store top-down partial

parses in a data structure called a chart [25]. The grammar G has a starting symbol S and a

set of production rules. Figure 3.7 presents some simplified production rules for the Python

programming language that will help parse the program in Figure 3.5a. Terminal symbols (or

tokens) are syntactical symbols and are here presented in lowercase letters. Uppercase letters

denote non-terminal symbols, which are rewritten using production rules during a parse. For

example, the non-terminal Stmt defines all possible Python statements, including expressions

57

(ExprStmt), return statements (RetStmt), etc. Figure 3.8 shows the top levels of the parse tree for

the bar function in Figure 3.5a using these productions rules.

Error-Correcting Parsers for Python. An Error-Correcting Earley (ECE) Parser extends the

original algorithm’s operations, to find a minimum-edit parse for a program with parse errors [5].

An ECE-Parser extends the original grammar G with a set of error production rules to create

a new error grammar G′ which has rules to handle insertion, deletion, and replacement errors.

Let’s see how to adapt Python’s production rules for an ECE-Parser. First, the ECE-Parser adds

to G′ a new start symbol New_S, the helper symbol Replace that is used for replacement errors

and the symbols Insert and Token that introduce insertion errors. Additionally, for each terminal

t in G it adds the new non-terminal E_t that introduces errors relevant to the t symbol.

Next, in addition to the existing production rules, the error grammar G′ has the following

error rules. The new start symbol uses the old one with the option of an insertion error at the end:

• New_S → S | S Insert

Additionally, for each production rule of a non-terminal T in G, another non-terminal error rule is

added that introduces the terminal symbols E_t, for each original terminal t it has. For example,

the Stmts, Block and RetStmt rules are updated as:

• Stmts → ... | Stmt E_\n | Stmt E_\n Stmts

• Block → ... | E_\n E_indent Stmts E_dedent

• RetStmt → ... | E_return | E_return Args

Next, for each terminal t in G, we add four error rules of the type:

• E_t → t | ε | Replace | Insert t

These four new error rules have the following usage for each terminal t:

58

1. The E_t → t rule will match the original terminal t without any errors. This error rule is

used in cases that the non-error version of the rule is needed. For example, in Block →

E_\n E_indent Stmts E_dedent it can be the case that only E_dedent is needed to match

the error and E_\n and E_indent can match their respective symbols.

2. Using E_t → ε a deletion error is considered. The error rule will match nothing, or the

empty token ε, in the program, meaning the terminal is missing.

3. Using E_t → Replace a replacement error is considered. Replace will match any terminal

token that is different than t, making a replacement possible.

4. The rules E_t → Insert t will introduce an insertion error, i.e. Insert will match any

sequence of Tokens that are not supposed to precede t in order to make the program parse.

For example, for the terminal tokens return, number and \n (a new line) the relevant

error production rules are:

• E_return → return | ε | Replace | Insert return

• E_number → number | ε | Replace | Insert number

• E_\n → \n | ε | Replace | Insert \n

Finally, the Replace non-terminal can match any possible terminal in G to introduce replacement

errors, the Insert non-terminal will introduce a sequence of insertion errors by using Token which

also matches every terminal and we just differentiate the name in order to be able to distinguish

the different types of errors.

• Replace → return | pass | \n | + | ... [all terminals]

• Insert → Token | Insert Token

• Token → return | pass | \n | + | ... [all terminals]

59

Stmts1

Stmt

RetStmt

return Args

ExprStmt

ArExpr

ArExpr

Literal

name

BinOp

+

. . .

\n

(a) The partial parse tree for
the example at Figure 3.5a.

Stmts1

Stmt

RetStmt

return Args

ExprStmt
ArExpr

ArExpr

Literal
name

BinOp

+
Literal
E_number

ε

\n

(b) Adding a number with the green
E_number error rule.

Stmts1

Stmt

RetStmt

return Args

ExprStmt

ArExpr

Literal

name

E_\n

Insert

Token

+

\n

(c) Deleting the + with red E_\n
error rule.

Figure 3.9: The rest of the problematic function in Figure 3.8 and two possible error-correcting
parses

ECE Parsing Considerations for Python. Unfortunately, we run into various problems if

we try to directly use an ECE-Parser for large, real-world languages like Python. Figure 3.9a

presents a partial parse of the problematic statements Stmts1 of Figure 3.8. Considering a

deletion error (Figure 3.9b), the E_number → ε error rule is used to match the empty symbol and

generate a parse that suggests that a number is missing after the + operator. On the other hand,

the E_\n → Insert \n error rule can be used to consider an insertion error (Figure 3.9c) before

the new line character, basically deleting the + operator. In this case, ArExpr → Literal is used

to parse the program instead of ArExpr → ArExpr BinOp Literal.

The ECE-Parser is an effective approach on finding minimum distance parses for programs

than do not belong in the given programming language, i.e. have parse errors. However, this

parsing algorithm has limited use in large real-world programming languages, e.g. Python or

Java, and more time- and memory-efficient parsing algorithms are often used, e.g. LR parsing

etc. [16, 59]. For example, Python has 91 terminal symbols (including the program’s end_marker)

which means that for all the cases of the error rules E_t (excluding the non-error base case

E_t → t), Replace and Token, 455 terminal error rules have to be added to the grammar G′. The

Python grammar that we used has also 283 production rules, from which 182 rules have terminals

60

in them, meaning another 182 error rules need to be added. Including the four helper production

rules, e.g. for the new start symbol, the new grammar G′ has 641 new error production rules. This

large amount of error rules renders the ECE-Parser not scalable for large programs or programs

with a lot of parse errors when using real-world programming languages.

One of our insights, as seen in our running example in Figure 3.9, is that only a handful

of error rules are relevant to each parse error. Therefore, we propose to improve ECE-Parsing’s

scalability by only adding a small set of error production rules, i.e. keeping the size of G′ limited

and only slightly larger than the original grammar G. We propose to do so by training classifiers

to select a small set of error rules only relevant to the parse error. However, the program token

sequences that we can use may have irrelevant information, e.g. the foo function in our example

in Figure 3.5 that does not contribute to the parse error. To address this problem, we propose to

further abstract our program token sequences.

3.3.2 Abstracting Program Token Sequences

As shown in Figure 3.6, our neural component has the task of training a classifier to

predict the relevant error rules for a given ill-parsed program.

Problem: Representing Ill-parsed Programs. As the inputs are ill-parsed, the training and

classification cannot use any form of analysis that requires a syntax tree as input [39,78,106,130].

One option is to view the ill-parsed program as a plain sequence of tokens eliding variable names

and such, as shown in Figure 3.10a. Unfortunately, we found such token sequences yielded

inaccurate classifiers that were confused by irrelevant trailing context and predicted rules that

were not relevant to repair the error at hand.

Solution: Abstract with Partial Parses. SEQ2PARSE solves the problem of irrelevant context

by abstracting the token sequences using partial parses to abstract away the irrelevant context.

61

1 def name(name): \n
2 indent return name + number \n
3 dedent \n
4
5 def name(name): \n
6 indent name = name(name) + number \n
7 return name + \n
8 dedent end_marker

(a) The program token sequence generated by the lexer.

1 Stmt \n
2
3 def name Params: \n
4 indent Stmt \n
5 return Expr BinOp \n
6 dedent end_marker

(b) The abstracted token sequence for the same
program. Parts of the program that can’t be
abstracted (e.g. def name) remain the same.

Figure 3.10: The token sequences for the Python program example in Figure 3.5.

That is, we can use partial parse trees to represent ill-parsed programs as an abstracted token

sequence shown in Figure 3.10b, where any completed production rules can be used to abstract

the relevant token sub-sequences with the high-level non-terminal.

Figure 3.8 shows how partial parses can be used to abstract long low-level sequences of

tokens into short sequences of non-terminals. (1) The function foo is completely parsed, since it

had no parse errors and the highest level rule that can be used to abstract it is Stmt → FuncDef.

(2) Similarly, note that Params → (name) is another completed production rule, therefore

the low-level sequence of parameter tokens in the bar function can be abstracted to just the

non-terminal Params. (3) However, the production rule for FuncDef is incomplete since the last

statement Stmt (under Stmts1) has a parse error as shown in Figure 3.9a.

Problem: Ambiguity. The generation of this abstraction, however, poses another difficulty.

Earley parsing collects a large amount of partial parses (via dynamic programming) until the

program is fully parsed. That means at each program location, multiple partial parses can be

chosen to abstract our programs. This ambiguity can be seen even in the two suggested repairs in

Figure 3.9: if we delete the colored nodes in Figure 3.9b and Figure 3.9c we obtain two possible

partial parses for our program, the first one matching Figure 3.9a and the second one not shown

here.

62

S → Stmts end_marker (p = 100.0%)
Stmts → Stmt \n (p = 38.77%) | Stmt \n Stmts (p = 61.23%)
Stmt → ExprStmt (p = 62.64%) | RetStmt (p = 7.59%) | ...
RetStmt → return (p = 1.61%) | return Args (p = 98.39%)
Args → ExprStmt (p = 99.20%) | ...
ExprStmt → ArExpr (p = 29.40%) | ...
ArExpr → Literal (p = 86.89%) | ArExpr BinOp Literal (p = 13.11%)
Literal → name (p = 64.89%) | number (p = 20.17%) | ...

Figure 3.11: The production rules shown in Figure 3.7 with their learned probabilities.

Solution: Probabilistic Context-Free Grammars. SEQ2PARSE solves the ambiguity problem

of choosing between multiple possible partial parses via a data-driven approach based on Proba-

bilistic Context-Free Grammars which have been used in previous work to select complete parses

for ambiguous grammars [19, 50]. A PCFG associates each of its production rules with a weight

or probability. These weights can be learned [19] by using the data set to count the production

rules used to parse a number of programs belonging to that language. SEQ2PARSE uses PCFGs

to resolve the ambiguity of partial parses by associating each partial tree (in the Earley table)

with a probability which is the product of the used rules’ probabilities. The tree with the highest

probability is selected as a final parse tree which can then be used to generate an abstracted token

sequence, as described above.

Figure 3.11 shows the learned probabilities for the example Python grammar. We observe,

for example, that ReturnStmt has two possible production rules and almost 98.4% of the times a

return is followed by an argument list. Additionally, 62.6% of the times a Stmt is an ExprStmt

and only 7.6% of the times it is a RetStmt. Thus, in our example, the probability that would

be assigned to the partial parse for Stmts1 in Figure 3.9b (only the sub-tree without the colored

error nodes) is the product of the probabilities of the production rules Stmts→ Stmt \n, Stmt

→ RetStmt, RetStmt → return Args, Args → ExprStmt etc. which is 38.77% · 7.59% ·

98.39% · 99.20% · · · · = 4.57‰, while the partial parse for Stmts1 in Figure 3.9c would

similarly be calculated as 47.61‰, making it the proper choice for the abstraction of the program.

63

3.3.3 Training Sequence Classifiers

The abstracted token sequences we extracted from the partial parses present us with

short abstracted sequences that abstract irrelevant details of the context into non-terminals. Next,

SEQ2PARSE uses the NLP approach of sequence models [44, 119] to (use the abstract token

sequences) to train a classifier that can predict the relevant error rules.

Seq2Seq Architectures. Sequence-to-sequence (seq2seq) architectures transform an input

sequence of tokens into a new sequence [119] and consist of an encoder and a decoder. The

encoder transforms the input sequence into an abstract vector that captures all the essence and

context of the input. This vector does not necessarily have a physical meaning and is instead an

internal representation of the input sequence into a higher dimensional space. The abstract vector

is given as an input to the decoder, which in turn transforms it into an output sequence.

SEQ2PARSE uses a sequence classifier that can correctly predict a small set of relevant

error production rules for a given abstracted token sequence. We use a transformer encoder [125]

to encode the input sequences into abstract vectors that we then feed into a DNN classifier to

train and make accurate predictions [109].

Training From a Dataset. Given a dataset of fixed parse errors, such as Figure 3.5, we extract

the small set of relevant error rules needed for each program to make it parse with an ECE-Parser.

Running the ECE-Parser on every program in the dataset with the full set of error production

rules is prohibitively slow. Therefore, we extract the erroneous and fixed program token-level

differences or token diffs and map them to terminal error production rules. The non-terminal

error rules can be inferred using the grammar and the terminal rules. Next, we run the ECE-Parser

with the extracted error rules to confirm which ones would make the program parse and assign

them as labels.

For example, the diff for the program pair in Figure 3.5 would show the deleted + operator,

64

thus extracting the error rules Token → + and E_\n → Insert \n, since the extra + precedes a

newline character \n. Similarly, if a token t is added in the fixed program, the error rule E_t → ε

is added and if a token t replaces a token a, the error rules E_t → Replace and Replace → a

are added.

3.3.4 Predicting Error Rules with Sequence Classifiers

The learned sequence classifier model, which has been trained on the updated error-

rule-labeled data set can now be used to predict the relevant rules for new erroneous programs.

Additionally, neural networks have the advantage of associating each class with a confidence

score that can be used to rank error rule predictions for new programs, letting us select the top-N

ones that will yield accurate repairs when used with the ECE-Parser.

For our running example, in Figure 3.5a, we abstract the program as shown in Figure 3.10b

and then we predict the error production rules for it with the trained sequence classifier. We rank

the full set of terminal error rules based on their predicted confidence score from the classifier

and return the top 10 predictions for our example. Therefore, the predicted set of error rules

is the following: E_number → ε, E_number → Insert number, E_\n → Insert \n, E_(→ ε,

E_return → ε, Token →), Token → +, Token → :, Token → name, Token → number.

The classifier predicts mostly relevant error rules such as the ones that use E_number, E_\n

and E_return for example, as we showed previously. There are also rules that are not very relevant

to this parse error but the classifier predicts probably due to them being common parse errors,

e.g. Token →), Token → :. Finally, we added the non-terminal error rules needed to intro-

duce these errors, which can be inferred by them. For example, we can infer Stmts → Stmt E_\n,

Stmts → Stmt E_\n Stmts and Block → E_\n indent Stmts dedent from E_\n (we don’t need

E_indent or E_dedent here since no such terminal error rules were predicted).

We then parse the program in Figure 3.5a with the ECE-Parser and these specific error

rules to generate a valid parse. We observe that it takes our implementation (as we show later

65

in depth) less than 2 seconds to generate a valid parse, which is also the one that leads to the

user repair in Figure 3.5b! On the other hand, when we use a baseline ECE-Parser with the full

set of error rules it takes 2 minutes and 55 seconds to generate a valid parse, which is, however,

not the expected user parse but the one shown in Figure 3.9b. These examples demonstrate the

effectiveness of accurately predicting error rules using sequence classifiers, which are trained on

abstracted token sequences.

In the next three sections, we describe in depth the specifics of our approach by defining

all the methods in Figure 3.12. We start by presenting the program abstraction (section 3.4) using

partial parses and a learnt PCFG, we then explain how we train sequence models for making error

rule predictions (section 3.5) and, finally, we demonstrate our algorithms for building SEQ2PARSE

(section 3.6), an approach for efficiently parsing erroneous programs.

66

G .
= (N, Σ, P, S)

PCFG
.
= (N, Σ, P, S, W)

G′ .
= (N′, Σ, P′, S′)

P′ .
= P ∪ ErrorRules

N′ .
= N ∪ {S′, H, I} ∪
{Ea | a ∈ Σ}

e ∈ L(G)
e⊥ /∈ L(G)
Pair

.
= e⊥× e

DataSet
.
= [Pair]

§ 3.4
learnPCFG : G→ [e]→ PCFG
partialParse : PCFG→ e⊥→ ta

§ 3.5
trainDL : [ta×ErrorRules]→ DLModel
predictDL : DLModel→ ta→ ErrorRules

§ 3.6

diffRules : Pair→ ErrorRules
ECEParse : ErrorRules→ e⊥→ e
train : DataSet→ DLModel
predict : DLModel→ G→ e⊥→ ErrorRules

Seq2Parse : G→ DataSet→ (e⊥→ e)

Figure 3.12: A high-level API of the SEQ2PARSE system that learns to repair syntax errors.

3.4 Abstracting Programs with Parse Errors

SEQ2PARSE abstracts programs (with parse errors) into sequences of abstract tokens that

are used to train sequence classifiers. Next, we explain how a traditional Earley parser can be

used to extract partial parses using a Probabilistic Context-Free Grammar (PCFG), to get a higher

level of abstraction that preserves more contextual information than the low-level sequence output

by the lexer.

Lexical Analysis. Lexical analysis (or lexing or tokenization) converts a sequence of characters

into a sequence of tokens comprising strings with an assigned and thus identified meaning (e.g.

numbers, identifiers etc.). Lexing is usually combined with a parser, which together analyze the

syntax of a programming language L(G), defined by the grammar G. When a program has a

syntax error, the output token sequence of the lexer is the highest available level of abstraction as,

since the parser fails without producing a parse tree.

Token Sequences. Our goal is to parse a program token sequence t i, which is a lexed program

with parse errors (i.e. t i /∈ L(G)), and repair it into a fixed token sequence to ∈ L(G) that can

be used to return a repaired program without syntax errors. Let t i be a sequence t i
1, t

i
2, . . . , t

i
n

and to be the updated sequence to
1 , t

o
2 , . . . , t

o
i , . . . , t

o
j , . . . , t

o
k . The subsequence to

i , . . . , t
o
j can either

67

replace a subsequence in t i, it can be inserted in t i or can be the empty subsequence ε and delete

a subsequence in t i to generate the to. It can be the whole program, part of it or multiple parts of

it. to will finally be a token sequence that can be parsed by the original language’s L(G) parser.

However, programs and hence, n can be large which makes these token sequences unsuit-

able for training effectively sequence models. Therefore, our goal is to first generate an abstracted

token sequence ta that removes all irrelevant information from t i and gives hints for the parse

error fix by using the internal states of an Earley parser.

3.4.1 Earley Partial Parses

SEQ2PARSE uses an Earley parser [25] to generate the abstracted token sequence ta for

an input program sequence t i. An Earley parser holds internally a chart data structure, i.e. a list

of partial parses. Given a production rule X → αβ, the notation X → α ·β represents a condition

in which α has already been parsed and β is expected and both are sequences of terminal and

non-terminal symbols (tokens).

Each state is a tuple (X → α ·β, j), consisting of

• the production rule currently being matched (X → αβ)

• the current position in that production (represented by the dot ·)

• the origin position j in the input at which the matching of this production began

We denote the state set at an input position k as S(k). The parser is seeded with S(0)

consisting of only the top-level rule S→ γ. It then repeatedly executes three operations: prediction,

scanning, and completion. There exists a complete parse if the complete top-level rule (S→ γ·,0)

is found in S(n), where n the input length. We define a partial parse to be any partially completed

rules, i.e. if there is (X → α ·β, i) in some state S(k), where i < k ≤ n.

Let, t i
1, t

i
2, . . . , t

i
j, . . . , t

i
k, . . . , t

i
n be the input token sequence t i, where there is a parse error

at location k and the parser has exhausted all possibilities and can not add any more rules in state

68

S(k+1), i.e. S(k+1) = /0. We want to abstract program subsequences t i
j, . . . , t

i
k by getting the

longest possible parts of the program t i that have a partial parse. For example, we start from the

beginning of the program t i
1 by finding the largest j for which there is a rule (X → α ·β,0) ∈ S(j).

We use this rule for X to replace t i
1, t

i
2, . . . , t

i
j in t i with α, thus getting an abstracted sequence ta.

In the same manner, we use the longest possible partial parses that we can extract from the chart

to abstract t i
j+1, . . . , t

i
k, iteratively, until we reach the parse error at location k.

Problem: Multiple Partial Parses. However, each of the states S(j), 0 ≤ j ≤ k, holds a

large number of partial parses and, thus, our heuristic to choose the longest possible partial

parse to abstract programs may not be able to abstract the token sequence fully until the error

location k, or not even until the end location n of the program that may not have any more parse

errors. Additionally, there may be two or more partial parses in S(k), with different lengths, e.g.

{(X → α ·β, j), (X ′→ α′ ·β′, h)} ∈ S(k), j ̸= h. We propose selecting the most probable parse

with the aid of a PCFG.

3.4.2 Probabilistic Context-Free Grammars

We learn a PCFG from a large corpus of programs [e],e ∈ L(G), that belong to a language

L(G), that a grammar G defines, with the learnPCFG procedure as shown in Figure 3.12. We use

the learned PCFG with an augmented Earley parser in partialParse to abstract a program e⊥ into

a abstract token sequence ta.

Probabilistic CFG. A PCFG can be defined similarly to a context-free grammar G .
=(N, Σ, P, S)

as a quintuple (N, Σ, P, S, W), where:

• N and Σ are finite disjoint alphabets of non-terminals and terminals, respectively.

• P is a finite set of production rules of the form X → α, where X ∈ N and α ∈ (N∪Σ)∗.

69

• S is a distinguished start symbol in N.

• W is a finite set of probabilities p(X → α) on production rules.

Given a dataset of programs [e],e ∈ L(G) that can be parsed, let count(X → α) be the

number of times the production rule X → α has been used to generate a final complete parse,

while parsing [e], and count(X) be the number of times the non-terminal X has been seen in the

left side of a used production rule. The probability for a production rule X → α is then defined as:

p(X → α) =
count(X → α)

count(X)

learnPCFG invokes an instrumented Earley parser to calculate all the values count(X →

α),∀X → α : P and count(X),∀X : N. The instrumented parser keeps a global record of these

values, while parsing the dataset [e] of programs. Finally, learnPCFG outputs a PCFG that is

based on the original grammar G that was used to parse the dataset with the learned probabilities

W .

3.4.3 Abstracted Token Sequences

Given a program e⊥ with a parse error and a learned PCFG, partialParse will generate

an abstracted token sequence ta. The PCFG will be used with an augmented Earley parser to

disambiguate partial parses and choose one, in order to produce an abstracted token sequence as

described in § 3.4.1.

We augment Earley states (X → α ·β, j) to (X → α ·β, j, p), where p is the probability

that X → α ·β is a correct partial parse. When there are two (or more) conflicting partial parses

{(X → α ·β, j, p), (X ′→ α′ ·β′, h, p′)} ∈ S(k), the augmented parser selects the partial parse

with the highest probability max(p, p′). The augmented parser calculates the probability p for a

partial parse (X→ α ·β, j, p) in the state S(k), as the product p1 · p2 · · · · · pk−1 of the probabilities

70

p1, p2, . . . , pk−1 that are associated with the production rules (X1 → α1 ·β1, i1, p1),(X2 →

α2 ·β2, i2, p2), . . . that have been used so far to parse the string of tokens α.

71

3.5 Training Sequence Classifiers

Our next task is to train a model that can predict the error production rules that are

needed to parse a given program e⊥ (with syntax errors) according to a given grammar G, by

using its (abstracted) program token sequence ta. We define the function predictDL which takes

as input a pre-trained sequence classifier DLModel and an abstracted token sequence ta and

returns as output a small subset of ErrorRules. We train the DLModel offline with the trainDL

method with a dataset [ta×ErrorRules] of token sequences ta and the exact small set of error

production rules ErrorRules that the ECE-Parser used to generate the user parse. We build our

classifier DLModel using classic Deep Neural Networks (DNNs) and parts of state-of-the-art

Sequence-to-Sequence (seq2seq) models. We leave the high-level details of acquiring the dataset

of labeled token sequences and using the predictor for new erroneous programs for section 3.6.

In the next few paragraphs, we summarize the recent advances in machine learning that help as

build the sequence classifier.

We encode the task of learning a function that will map token sequences of erroneous

programs to a small set of error production rules as a supervised multi-class classification (MCC)

problem. A supervised learning problem is one where, given a labeled training set, the task is

to learn a function that accurately maps the inputs to output labels and generalizes to future

inputs. In a classification problem, the function we are trying to learn maps inputs to a discrete

set of two or more output labels, called classes. We use a Transformer encoder to encode the

input sequences into abstract vectors that we then directly feed into a DNN classifier to build a

Transformer classifier.

Neural Networks. A neural network can be represented as a directed acyclic graph whose nodes

are arranged in layers that are fully connected by weighted edges. The first layer corresponds

to the input features, and the final to the output. The output of an internal node is the sum of

the weighted outputs of the previous layer passed to a non-linear activation function, which in

72

recent work is commonly chosen to be the rectified linear unit (ReLU) [85]. In this work, we

use relatively deep neural networks (DNN) that have proven to make more accurate predictions

in recent work [109]. A thorough introduction to neural networks is beyond the scope of this

work [45, 87].

Sequence Models. Seq2seq models aim to transform input sequences of one domain into

sequences of another domain [119]. In the general case, these models consist of two major layers,

an encoder and a decoder. The encoder transforms an input token sequence x1,x2, . . . ,xn into

an abstract vector V ∈ Rk that captures all the essence and context of the input sequence. This

vector does not necessarily have some physical meaning and is just an internal representation of

the input sequence into a higher dimensional space. The abstract vector is then given as an input

to the decoder, which in turn transforms it into an output sequence y1,y2, . . . ,yn.

The simplest approach historically uses a Recurrent Neural Network (RNN) [103, 131],

which is a natural next step from the classic neural networks. Each RNN unit operates on each

input token xt separately. It keeps an internal hidden state ht that is calculated as a function of the

input token xt and the previous hidden state ht−1. The output yt is calculated as the product of the

current hidden state ht and an output weight matrix. The activation function is usually chosen as

the standard softmax function [11, 37]. Softmax assigns probabilities to each output that must add

up to 1. Finally, the loss function at all steps of the RNN is typically calculated as the sum of the

cross-entropy loss of each step.

Transformers. The Transformer is a DNN architecture that deviates from the recurrent pattern

(e.g., RNNs) and is solely relying on attention mechanisms. Attention has been of interest

lately [8, 57, 125] mainly due to its ability to detect dependencies in the input or output sequences

regardless the distance of the tokens. The nature of this architecture makes the Transformer

significantly easier to parallelize and thus has a higher quality of predictions and sequence

translations after a shorter training period.

73

The novel architecture of a Transformer [125] is structured as a stack of N identical layers.

Each layer has two main sub-layers. The first is a multi-head self-attention mechanism, and

the second is a position-wise fully connected neural network. The output of each sub-layer is

LayerNorm(x+SubLayer(x)), where SubLayer(x) is the function implemented by each sub-layer,

followed by a residual connection around each of the two sub-layers and by layer normalization

LayerNorm(x). To facilitate these residual connections, all sub-layers in the model, as well as

the input embedding layers, produce outputs of the same dimension dmodel .

Transformer Classifier. For our task, we choose to structure DLModel as a Transformer

Classifier. We use a state-of-the-art Transformer encoder to represent an abstracted token

sequence ta into an abstract vector V ∈ Rk. The abstract vector V is then fed as input into a

multi-class DNN. We use trainDL to train the DLModel given the training set [ta×ErrorRules].

The binary cross-entropy loss function is used per class to assign the loss per training cycle.

DLModel predicts error production rules for a new input program ta. Critically, we require that

the classifier outputs confidence scores C that measure how sure the classifier is that a rule can be

used to parse the associated input program e⊥. The predictDL function uses the trained DLModel

to predict the confidence scores [ErrorRules × C] for all error production rules ErrorRules for

a new unknown program e⊥ with syntax errors. The ErrorRules are then sorted based on their

predicted confidence score C and finally the top-N rules are returned for error-correcting parsing.

N is a small number in the 10s that will give accurate predictions without making the ECE-Parser

too slow, as we discuss in section 3.7.

74

3.6 Building a Fast Error-Correcting Parser

We show how SEQ2PARSE uses the abstracted token sequences from section 3.4 and

the trained sequence models from section 3.5 to generate an error-correcting parser (e⊥→ e),

that will parse an input program e⊥ with syntax errors and produce a correct program e. We

first describe how we extract a machine-learning-amenable training set from a corpus of fixed

programs and finally how we structure everything to train our model.

3.6.1 Learning Error Production Rules

The trainDL method requires a dataset of token sequences ta that is annotated with an

exact and small set of error production rules, i.e. [ta×ErrorRules]. These ErrorRules are just a

subset of all the possible error rules that are needed to parse and fix ta. The straight-forward

approach is to use ECEParse with all possible error production rules for each program e⊥ in the

dataset. Then, when ECEParse returns with a successful parse, we extract the rules that where

used to parse the program e⊥. This approach generates a dataset with the smallest possible set of

error rules as labels per program, since the original ECE-Parser returns the minimum-distance edit

parse. However, this approach completely ignores the programmer’s fix and takes an unreasonable

amount of time to parse a dataset with millions of programs, due to the inefficient nature of the

ECE-Parser.

We suggest using an O(ND) difference algorithm [84] to get a small but still representative

set of error production rules for each program e⊥. We employ this algorithm to find the differences

between the input program token sequence t i, which is the lexed program e⊥ and the fixed token

sequence to, which is the lexed program e. This algorithm returns changes between token

sequences in the form of inserted or deleted tokens. It is possible that this algorithm returns a

sequence of deletions followed by a sequence of insertions, which can in turn be interpreted as a

replacement of tokens. We map these three types of changes to the respective error production

75

rules. Let t i be a sequence t i
1, t

i
2, . . . , t

i
n and to be the updated sequence to

1 , t
o
2 , . . . , t

o
m. We map:

• an inserted output token to
j to a deletion error Eto

j
→ ε.

• a deleted input token t i
k to an insertion error Tok → t i

k and the helper rule Et i
k+1
→ Ins t i

k+1.

• a replaced token t i
k with to

j to a replacement error Repl → t i
k and the helper rule Eto

j
→ Repl.

In the case of an insertion error, we also include the helper rules Ins → Tok and

Ins → Ins Tok, that can derive any nonempty sequence of insertions. To introduce (possible)

insertion errors at the end of a program, we include the starting production rules S′→ S and

S′→ S Ins.

The above algorithm, so far, adds only the terminal error productions. We have to include

the non-terminal error productions that will invoke the terminal ones. If X→ a0b0a1b1 . . .ambm, m≥

0, is a production in P such that ai is in N∗ and bi is in Σ, then we add the error production

X → a0Xb0a1Xb1 . . .amXbm, m≥ 0 to P′, where each Xbi , is either a new non-terminal Ebi that was

added with the previous algorithm, or just bi again if it was not added.

Finally, we further refine the new small set of error productions for each program e⊥ with

ECE-Parser, in order to create the final annotated dataset [ta×ErrorRules]. The changes that we

extracted from the programmers’ fixes might include irrelevant changes to the parse error fix, e.g.

code clean-up. Therefore, filtering with the ECE-Parser is still essential to annotate each program

with the appropriate error production rules. We implement this error-rule-extracting approach in

the function diffRules, which extracts the token differences between an erroneous program e⊥

and a fixed program e and returns the appropriate error production rules.

3.6.2 Training and Using a Transformer Classifier

Given a (probabilistic) grammar G and a dataset Ds, Algorithm 3 extracts a machine-

learning appropriate dataset DML in order to train a Transformer classifier Model with trainDL.

The classifier Model can then be used to predict error rules for new erroneous programs perr.

76

Algorithm 3 Training Seq2Parse’s model DLModel

Input: Probabilistic Grammar G, DataSet Ds
Output: Classifier Model

1: procedure TRAIN(G, Ds)
2: DML← /0

3: for all perr× p f ix ∈ Ds do
4: ta← PARTIALPARSE(G, perr)
5: rules← DIFFRULES(perr× p f ix)
6: DML← DML ∪ (ta× rules)
7: Model← TRAINDL(DML)
8: return Model

Algorithm 4 Predicting error production rules
with Seq2Parse’s model DLModel

Input: Classifier Model, Probabilistic Grammar
G, Program P

Output: Error Production Rules Rls
1: procedure PREDICT(Model, G, P)
2: ta← PARTIALPARSE(G, P)
3: Rls← PREDICTDL(Model, ta)
4: return Rls

The dataset DML starts as an empty set. For each program pair perr× p f ix, we, first,

employ partialParse with the PCFG G and an erroneous program perr to extract the abstracted

token sequence ta. Second, we use the token difference algorithm diffRules to extract the specific

error rules that fix perr based on p f ix. The abstracted sequence ta is annotated with the label rules

and is added to DML. The Transformer classifier Model is trained with trainDL and the newly

extracted dataset DML, which is finally returned by the algorithm. Finally, the training procedure

can be performed offline and thus won’t affect the performance of the final program repair.

Having trained the Transformer classifier Model, we can now predict error rules Rls, that

will be used by an ECE-Parser, by using the predict procedure defined in Algorithm 4. predict

uses the same input grammar G to generate an abstracted token sequence ta for the program P

with the partialParse procedure. Finally, the predictDL procedure predicts a small set of error

production rules Rls for the sequence ta given the pre-trained Model.

3.6.3 Generating an Efficient Error-Correcting Parser

Algorithm 5 presents our neurosymbolic approach, SEQ2PARSE. This is the high-level

algorithm that combines everything that we described so far in the last three sections. SEQ2PARSE

first extracts the fixed programs ps from the dataset Ds to learn a probabilistic context-free gram-

mar PCFG for the input grammar G with learnPCFG. It then trains the Transformer classifier

77

Algorithm 5 Generating the final ECEP

Input: Grammar G, DataSet Ds
Output: Error-Correcting Parser Prs

1: procedure SEQ2PARSE(G, Ds)
2: ps← MAP(λ.p→ SND(p), Ds)
3: PCFG← LEARNPCFG(G, ps)
4: Model← TRAIN(PCFG, Ds)
5: ERULEPREDICTOR← PREDICT(Model, PCFG)
6: Prs← (λ.perr→ ECEPARSE(ERULEPREDICTOR(perr), perr))
7: return Prs

Model to predict error production rules. We define an error rule predictor, ERULEPREDICTOR,

using the predict procedure with the pre-trained Model and grammar PCFG. Finally, the algo-

rithm returns the ECE-Parser Prs, which we define as a function that takes as input an erroneous

program perr that uses the ERULEPREDICTOR to get the set of error rules needed by ECEParse

to parse and repair it.

78

3.7 Evaluation

We have implemented our approach in SEQ2PARSE: a system for repairing parse errors for

PYTHON in its entirety. The code for SEQ2PARSE is publicly available at https://github.com/

gsakkas/seq2parse and a simplified online demonstration is available at http://seq2parse.

goto.ucsd.edu/index.html. Next, we describe our implementation and an evaluation that

addresses four questions:

• RQ1: How accurate are SEQ2PARSE’s predicted error production rules? (§ 3.7.1)

• RQ2: How precisely can SEQ2PARSE repair parse errors? (§ 3.7.2)

• RQ3: How efficiently can SEQ2PARSE repair parse errors? (§ 3.7.3)

• RQ4: How useful are SEQ2PARSE’s suggested repairs? (§ 3.7.4)

Training Dataset. For our evaluation, we use the same PYTHON dataset that we used in our

error data analysis in section 3.2 gathered from PythonTutor.com [40] between the years 2017

and 2018. The dataset has more than 1,100,000 usable erroneous Python programs and their

respective fixes. The programs have an average length of 87 tokens, while the abstracted token

sequences have a much shorter average of 43 tokens. We choose 15,000 random programs from

the dataset for all our tests, and the rest we use as our training set.

We first learn a PCFG on the training set of fixed programs to learn the probabilities for

each production rule in the full PYTHON grammar. SEQ2PARSE then extracts the abstracted

token sequences for all programs in the training set. Next, while the full PYTHON grammar

has 455 possible terminal error production rules, in reality, only 340 error rules are ever used

in our dataset and are assigned as labels. We arrive at this set of error rules by parsing all the

erroneous programs in the training set with the ECE-Parser and the “diff” error rules, as described

in subsection 3.6.1.

79

https://github.com/gsakkas/seq2parse
https://github.com/gsakkas/seq2parse
http://seq2parse.goto.ucsd.edu/index.html
http://seq2parse.goto.ucsd.edu/index.html

ORIGINAL NOPCFG ABSTRACTED THRESHOLD
0

10

20

30

40

50

60

70

80

90

100

Pr
ed

ic
tio

n
A

cc
ur

ac
y

(%
)

All: Top-50 Top-20 Top-10
Rare: Top-50 Top-20 Top-10

Figure 3.13: Results of our error production rule prediction classifiers for the simple original
token sequences and their abstracted versions using the PCFG.

Transformer Classifier. SEQ2PARSE’s error rule prediction uses a Transformer classifier with

six transformer blocks, that each has a fully-connected hidden layer of 256 neurons and 12

attention heads. The output of the transformer blocks is then connected to a DNN-based classifier

with two fully-connected hidden layers of 256 and 128 neurons respectively. The neurons use

rectified linear units (ReLU) as their activation function, while the output layer uses the sigmoid

function for each class. Additionally, there are two input embedding layers of a length of 128

units, one for input tokens and one for their positions in the sequence. We also limit the input

abstracted token sequences to a length of 128 tokens, which covers 95.7% of the training set,

without the need of pruning them. Finally, the Transformer classifier was trained using an ADAM

optimizer [58], a variant of stochastic gradient descent, on NVIDIA GeForce RTX 3080 Ti for a

total of 50 epochs.

3.7.1 RQ1: Accuracy

Figure 3.13 shows the accuracy results of our error production rule prediction experiments.

The y-axis describes the prediction accuracy, i.e. the fraction of test programs for which the

80

correct full set of error rules to repair the program (extracted from the user fix) was predicted in

the top-K sorted rules. The ORIGINAL version of our transformer classifier does not consider

the abstracted token sequences and used the full ORIGINAL token sequences, whose results are

presented in the first two bars of Figure 3.13. The next four bars show our final results using the

ABSTRACTED token sequences to train the classifier with NOPCFG and with fully ABSTRACTED

sequences. Finally, the last two dotted bars show the results for when a probability THRESHOLD

is set in order to select the predicted error rules (instead of picking the static top-K ones) but

using again the ABSTRACTED sequences as input. The predicted error rule set ranges between

1–20 elements.

The blue bars show the accuracy on the full test set of ALL 15,000 test programs, while

the green bars show the results on a subset of RARE programs, i.e. programs that did not include

any of the 50 most popular error rules. The RARE programs account for 1233 programs, roughly

8% of our test set.

The ORIGINAL predictor, even with the Top-50 predicted error rules, is less accurate

than the Top-20 predictions of the ABSTRACTED, with an accuracy of 87.13%, which drops to

68.48% and 56.71% respectively for the Top-20 and Top-10 predictions. The ABSTRACTED

predictor significantly outperforms the ORIGINAL predictor with a 72.11% Top-10 accuracy,

81.45% Top-20 accuracy and 92.70% Top-50 accuracy.

The THRESHOLD predictions are almost as accurate as the ABSTRACTED Top-20 predic-

tions with an accuracy of 79.28% and a median number of selected error rules of 14 (average

14.1). This could potentially mean that this predictor is a valid alternative for the static Top-20

predictions.

The classifiers are also not very sensitive in the PCFG probabilities used during abstraction,

as shown in the accuracy of the NOPCFG predictor. The NOPCFG predictor has almost 2%

less Top-10 and Top-20 accuracy, 70.94% and 80.69% respectively, and less than 1% for Top-50

predictions, with 92.11%.

81

Finally, we observe that our ABSTRACTED classifiers generalize efficiently for our dataset

of erroneous PYTHON programs and are almost as accurate for the RARE programs as the rest of

the dataset with a 73.32% Top-20 accuracy (88.81% Top-50 accuracy). The same holds for the

THRESHOLD predictions with a 69.83% RARE accuracy. The NOPCFG also has a drop of more

than 2% accuracy, with a 71.29% Top-20 accuracy (86.29% Top-50 accuracy).

SEQ2PARSE’s transformer classifier learns to encode programs with syntax errors and select

candidate error production rules for them effectively, yielding high accuracies. By abstracting

the tokens sequences, SEQ2PARSE is able to generalize better and make more accurate

predictions with a 81.45% Top-20 accuracy.

3.7.2 RQ2: Repaired Program Preciseness

Next we evaluate SEQ2PARSE’s end-to-end accuracy and preciseness when restricting

SEQ2PARSE’s parsing time to 5 minutes and run our experiments on the 15,000-program test set.

Additionally, we use here the highest-performing transformer classifiers, i.e. the ABSTRACTED,

NOPCFG and THRESHOLD classifiers.

We compare three versions of our SEQ2PARSE implementation (ALLPARSES, MINIMUM-

COST and THRESHOLD) against two versions of the ECE-Parser with a static selection of the 20

and 50 most popular error production rules in our training set. We make this choice because we

observe that the 50 most popular error rules are used as labels for as much as 86% of the training

set. For the ALLPARSES, MINIMUMCOST and THRESHOLD versions, we run our experiments

for the ABSTRACTED and NOPCFG classifier predictions.

The MINIMUMCOST ECE-Parser uses the Top-20 predictions from our ABSTRACTED

or NOPCFG classifier to parse and repair buggy programs. The ALLPARSES and THRESHOLD

ECE-Parsers use the THRESHOLD classifier’s predicted set of error rules to repair programs.

The ALLPARSES ECE-Parser keeps internally all possible states that arise from using the

82

ABSTRACTED NOPCFG

Error Rule Parse Rare Parse User Fix Median Parse Rare Parse User Fix Median
Approach Accuracy Accuracy Accuracy Parse Time Accuracy Accuracy Accuracy Parse Time
20 Most Popular 79.87% 65.01% 16.31% 7.0 sec – – – –
50 Most Popular 90.89% 81.26% 18.56% 13.6 sec – – – –
ALLPARSES 61.46% 59.80% 34.57% 7.1 (14.2) sec 55.52% 56.42% 30.21% 20.3 (24.3) sec
MINIMUMCOST 94.25% 94.01% 20.55% 5.3 (12.9) sec 91.63% 90.89% 17.89% 5.9 (18.7) sec
THRESHOLD 94.19% 93.42% 21.19% 2.1 (7.0) sec 93.70% 91.09% 19.39% 2.5 (9.1) sec

Figure 3.14: Experimental results of SEQ2PARSE’s repair approaches. The (parenthesized)
numbers in the Median Parse Time columns represent the median time for larger programs, i.e.
programs with more than 100 tokens.

predicted error rules similarly to the original ECE-Parser described by [5]. We use a maximum

repair cost of 3 edits (i.e., a maximum of 3 insertions, deletions or replacements) to limit the

search space. The MINIMUMCOST version, however, always keeps the minimum-edit repair

and discards all other states that may lead to a higher cost. This more efficient version of the

ECE-Parser allows for a higher maximum cost of 10 edits. We use the same ECE-Parser and

cost as in MINIMUMCOST for our THRESHOLD parser. The maximum cost for each parser

is a hyperparameter to SEQ2PARSE and is set here arbitrarily to achieve a uniform run time

across experiments while obtaining high-quality multiple-edit repairs. Finally, MINIMUMCOST

will always return the top 1 repair, while ALLPARSES can generate a large number of repairs

and we select to keep only the top 5 repairs after filtering with a static code checker (PYLINT,

https://www.pylint.org/) as most developers will consider only a few suggestions before

falling back to manual debugging [61, 88].

Figure 3.14 shows the percentage of test programs that each of these five versions can

parse successfully (i.e. the parse accuracy), the rare program parse accuracy, and the user

equivalent parse accuracy, i.e. the amount of parses that match the one that the user compiled.

We observe that the ABSTRACTED MINIMUMCOST parser outperforms every other option with

94.25% parse accuracy and 94.01% rare parse accuracy. It also generates the intended user parse

for 20.55% of the set, i.e. over 1 out 5 of the cases. The 20 MOST POPULAR parser with 79.87%

parse accuracy and 65.01% rare parse accuracy is much less accurate, and is 4.24% less likely to

generate the user parse, while the 50 MOST POPULAR is slightly less accurate with 90.89% and

83

https://www.pylint.org/

81.26% accuracy, as expected from the usage of a large number of popular error rules. The 50

MOST POPULAR parser has also a high user fix accuracy of 18.56%. The ALLPARSES parser

has the lowest parse accuracy of 61.46%, however it manages to generate the user fix 34.57% of

the time and also achieve a 59.80% rare accuracy. Finally, the THRESHOLD parser is almost as

accurate as the efficient MINIMUMCOST parser with 94.19% and 93.42% parse and rare accuracy,

while achieving a slightly higher user fix accuracy of 21.19%.

Additionally, the NOPCFG MINIMUMCOST parser achieves 2.6% lower parse accuracy

than then ABSTRACTED version and 3.1% less rare parse accuracy. The NOPCFG THRESHOLD

parser also performs only 0.5% less accurately than then ABSTRACTED version and has a 2.3%

less rare parse accuracy. Finally, both NOPCFG parsers achieve 2.7% and 1.8% respectively

user fix accuracy. These results further confirm that our ECE-Parsers are not very sensitive

to the PCFG use in the abstraction phase. However, the NOPCFG ALLPARSES ECE-Parser

performs much worse with 55.52% accuracy and 56.42% rare parse accuracy, which highlights

the importance of abstracting token sequences with our full algorithm.

SEQ2PARSE can parse and repair 94.25% of programs with syntax errors. In addition, it

generates the exact user fix over 20% of the time.

3.7.3 RQ3: Efficiency

Next we evaluate SEQ2PARSE’s efficiency by measuring how many programs it is able to

parse. We limit each ECE-Parser to 5 minutes. (In general, the procedure is undecidable, and we

conjecture that a longer timeout will diminish the practical usability for developers.) We compare

the efficiency of SEQ2PARSE for all the versions of Figure 3.14 using the full test set of 15,000

programs.

Figure 3.15 shows the cumulative distribution function of all SEQ2PARSE approaches’

84

0 10 20 30 40 50 60
Repair Time (sec.)

0

20

40

60

80

100

R
ep

ai
r

R
at

e
(%

)

20 Most Popular

50 Most Popular

AllParses

MinimumCost

Threshold

Figure 3.15: The repair rate for all the ABSTRACTED approaches in Figure 3.14.

repair rates over their repair time. We observe that using THRESHOLD predictions with the

MINIMUMCOST ECE-Parser is the most efficient and it maintains the highest parse accuracy at

all times, with a repair rate of 83.04% within 20 seconds and a median parse time of 2.1 seconds.

We also observe that the median parse time for larger programs is slightly higher with 7.0 seconds

for programs with more than 100 tokens and increases a bit more for more than 500 tokens, with

10.8 seconds. While the ECE-parser uses dynamic programming that may not scale greatly for

larger programs, SEQ2PARSE’s scalability is mostly proportional to the predicted error rules and

the number of syntax errors, and therefore we don’t get an exponential explosion in parse time

for larger programs.

The MINIMUMCOST with the top 20 error rule predictions is still very efficient with a

repair rate of 78.10% within 20 seconds and a median parse time of 5.3 seconds. For larger

programs the median parse time is 12.9 seconds for programs with more than 100 tokens and

50.8 seconds for more than 500 tokens. We observe that a fixed-length set of predicted error rules

can hinder the ECE-parser, when inaccurate predictions are involved.

We observe that, using a fixed set of the 20 and 50 most popular rules, SEQ2PARSE

85

(with the MINIMUMCOST ECE-Parser) repairs 61.41% and 58.61% of the programs respectively

within 20 seconds, and has median parse times of 7.0 and 13.6 seconds respectively. The 50 most

popular rules admit parsing fewer programs quickly than the 20 most popular.

We also observe that SEQ2PARSE successfully parses around 49.90% of the programs

with its ALLPARSES approach in 20 seconds and has a median parse time of 7.1 and 14.2 seconds

for all programs and programs with more than 100 tokens respectively. While this approach is

much less efficient that the others, it is also able to generate the exact human repair in more than

1 out of 3 cases, representing a valuable quality tradeoff (§ 3.7.2).

SEQ2PARSE can parse programs with syntax errors for the vast majority of the test set in

under 20 seconds with a median parse time of 2.1 seconds.

3.7.4 RQ4: Usefulness

As SEQ2PARSE is intended as an aid for programmers (especially novices) faced with

parse errors, we are also interested in subjective human judgments of the quality and helpfulness

of our repairs. Around 35% of repairs produced by SEQ2PARSE using its ALLPARSES approach

are identical to the historical human repair and thus likely helpful for programmers. However, it

may be that SEQ2PARSE’s parses (and thus repairs) are still helpful for debugging even when

they differ slightly from the human repair (i.e. non-equivalent repairs). To investigate this

hypothesis, we conduct a human study of the quality and debugging helpfulness of SEQ2PARSE’s

non-equivalent repairs.

Human Study Setup. We recruited participants from two large public research institutions

(UC San Diego and University of Michigan) and through Twitter. The study was online, took

around 30 minutes, and participants could enter a drawing for one of two $50 awards. In the

study, participants were each asked to rate 15 debugging hints randomly selected from a corpus

86

of 50 stimuli.1

We created the stimuli by selecting 50 buggy programs from our test set for which

SEQ2PARSE and the human produced different fixes. Other than ensuring a wide array of

difficulty (as assessed by how long the human took to fix the error), programs were selected

randomly. Each stimulus consisted of a buggy program, its associated syntax error message, and a

potential program fix presented as a debugging hint. For each stimulus, we produced two versions:

one where the debugging hint was generated by SEQ2PARSE and one where the debugging hint

was the historical human fix. Note that, in practice, the historical human fix would not be available

to a struggling novice in real situations: it represents future or oracular information. Informally,

in our comparison, the historical human fixes can be viewed as an upper bound.

Participants rated the quality and helpfulness of each debugging hint using a 1–5 Likert

scale. They also indicated if the debugging hint provided helpful information beyond that in the

Python error message. Participants were unaware of whether any given hint was generated by a

human or SEQ2PARSE, and participants were never shown multiple fixes to the same program.

To be included in the analysis, participants had to assess at least four stimuli. Overall, we analyze

527 unique stimuli ratings from n = 39 valid participants (246 for human fixes and 281 for

SEQ2PARSE).

Overall Results. While humans in our study find that non-equivalent repairs produced by

SEQ2PARSE are lower in both quality and debugging helpfulness than those produced manually

(2.9/5 helpfulness for tool-produced repairs vs. 3.7/5 for human-produced repairs, p < 0.001),

humans still often find SEQ2PARSE’s fixes helpful for debugging. Participants found that

SEQ2PARSE repairs contained helpful debugging information beyond that contained in the

Python Error message 48% of the time (134/281). This additional debugging information was

helpful in terms of both the content (73% of the time) and location (55% of the time). Additionally,

1All human study stimuli are included in our replication package at https://github.com/gsakkas/seq2parse
and via the human study website https://dijkstra.eecs.umich.edu/~endremad/APR_HumanEval/.

87

https://github.com/gsakkas/seq2parse
https://dijkstra.eecs.umich.edu/~endremad/APR_HumanEval/

SEQ2PARSE fixes are helpful for easy and hard Syntax Errors alike: we found no statistically-

significant difference between the helpfulness or quality of SEQ2PARSE’s repairs for easy (those

repaired by the human in under 40 seconds) or hard parse errors (over 40 seconds). Overall, these

results indicate that even when SEQ2PARSE repairs differ from historical human repairs, they can

still be helpful for debugging.

Individual Stimuli. Beyond an analysis of SEQ2PARSE’s overall quality, we also analyze the

helpfulness of each stimulus. Of the 48 programs for which we collected sufficient data to permit

statistical comparison, the historical repair was statistically more helpful for debugging than

SEQ2PARSE’s repair for 33% of stimuli (16/48, p < 0.05). However, we found that SEQ2PARSE’s

repair was actually more helpful for debugging than the human’s repair for 15% of stimuli (7/48,

p < 0.05). For the remaining 52% of stimuli, we found no evidence of a statistical difference in

the debugging helpfulness of the two repairs.

To better contextualize these results, we provide examples of stimuli with statistically

significant differences in debugging helpfulness. In Figure 3.16b, SEQ2PARSE’s repair was

significantly more helpful than the historical repair: SEQ2PARSE correctly adds parentheses to

print while the human simply deletes the buggy line, perhaps out of confusion or frustration.

Similarly, Figure 3.16a’s SEQ2PARSE repair was also better than the human repair. In this case,

the user appears to try to implement a function to calculate the greatest common divisor of two

integers, but has empty if and elif statements. To “fix” this bug, the user deletes the if and

elif and modifies the return statement. However, this fix does not correctly calculate the greatest

common divisor. SEQ2PARSE, on the other hand, adds a template variable to the if and break

to the elif. While this also does not implement greatest common divisor, it is viewed as more

helpful than the user repair. This example also demonstrates the beneficial ability of our approach

to conduct multi-edit repairs.

Figure 3.16c, on the other hand, shows an example of a more helpful human repair. In

88

Buggy
def gcdIter(a, b):

for i in range(1, a+1):
if a % i == 0:
elif b % i == 0:

return i
gcdIter(9, 12)

Human
def gcdIter(a, b):

for i in range(1, a+1):
return a % i

gcdIter(9, 12)

Seq2Parse
def gcdIter(a, b):

for i in range(1, a+1):
if a % i == 0: new_var
elif b % i == 0: break

return i
gcdIter(9, 12)

(a) SEQ2PARSE repair significantly more helpful:
4.3/5 vs 1.0/5, p = 0.03

aList = [12, ' yz ' , ' ab '];
aList.reverse();

print "List : ", aList

aList = [12, ' yz ' , ' ab ']
aList.reverse()

aList = [12, ' yz ' , ' ab ']
aList.reverse()

print("List : ", aList)

(b) SEQ2PARSE repair significantly more helpful:
4.75/5 vs 2.0/5, p = 0.02

a = int(input(enter a))
print(a***3)

a = int(input("enter a"))
print(a**3)

a = int(input(enter)(a))
print(a ** (* 3))

(c) Historical human repair significantly more
helpful: 1.8/5 vs 4.75/5, p = 0.01

Figure 3.16: Three example buggy programs followed by their historical human and
SEQ2PARSE repairs. For (a) and (b), SEQ2PARSE’s repair was rated more helpful by par-
ticipants. For (c), the human repair was more helpful.

this case, the human correctly deletes the extraneous * in the power operator while SEQ2PARSE

adds parentheses to make a more complex expression, the result of favoring one insertion over

one deletion.

35% of SEQ2PARSE’s repairs are equivalent to historical repairs. Of the remainder, our

human study found 15% to be more useful than historical repairs and 52% to be equally

useful. In total, including both equivalent and non-equivalent cases, SEQ2PARSE repairs are

at least as useful as historical human-written repairs 78% of the time.

89

3.8 Related Work

There is a vast literature on automatically repairing or patching programs: we focus on

the most closely related work on providing feedback for parse errors.

Error-Correcting Parsers. As we have already demonstrated, error-correcting parses have

been proposed for repairing syntax errors and we have extensively described ECE-Parsers [5].

The technique presented by [13] describes another EC-Parser, which is applicable with LR and

LL parsing. It uses three phases: first attempts to repair the parse error by symbol insertions,

deletions, or substitutions. If that fails, it tries to close one or more open code blocks and if that

fails, it removes code surrounding the erroneous symbol. Finally, it uses deferred parsing that may

be viewed as double parsing, where one main parser moves forward as much as possible, whereas

a second parser is k steps behind, so that it can backtrack to a state k steps before efficiently if a

phase fails. [124] have shown that the previous approach is not applicable in real-world languages

for some specific cases (e.g. multiple function definitions) and has suggested an improvement

that works with the JAVACC parser generator and a form of follow-set error recovery. [20] have

suggested an error-correcting version of the popular LR parser. Rather than focusing on error

production rules, this method adds error-repair transitions along with the regular shift/reduce

operations. It employs a simple cost model and heuristics to limit the explosion of the repair

search space. Finally, [122] has suggested using probabilistic parsing to overcome the drawback

of selecting the minimal-edit repair by using a PCFG to select the most probable repair parse.

However, these approaches are impractical and inefficient for real-world applications, as they can

only successfully parse small examples or use tiny grammars. In contrast, SEQ2PARSE relies on

pre-trained sequence models to efficiently explore the repair search space for a minimal overhead

in real-time parsing.

90

Sequence Models in Software Engineering. [96] and [128] have suggested using pre-trained

auto-regressive transformer models, such as GPT-3 [12], to augment pre-existing program

synthesis techniques. They use pre-trained models to acquire semantic power over smaller

subproblems that can’t be solved with the syntactic power of classic program synthesis. Similar

to SEQ2PARSE, their work uses established pre-existing algorithms from the NLP and PL

research areas. However, SEQ2PARSE trains its own Transformer-based model to augment an

error-correcting parsing algorithm, providing more focused prior knowledge than a pre-trained

sequence model, thus making our model highly accurate.

Sequence Models for Parsing. SYNFIX [9] and sk_p [92] are two systems that use seq2seq

models consisting of Long Short-Term Memory networks (LSTMs). They mostly focus on

educational programming tasks in order to learn task-specific patterns for fixing erroneous task

solutions. SYNFIX uses a model per task and uses as an input sequence the program prefix until

the error locations that the language parser provides. sk_p (while it does not solely focus on syntax

errors) makes sequence predictions per program line, by considering only the abstracted context

lines (previous and next lines). The model is applied to every program line and the predictions

with the highest probabilities are selected. SEQ2PARSE manages to parse and repair a large

number of programs regardless the task they are trying to solve by encoding the full erroneous

programs with a state-of-the-art Transformer model and utilizing an EC-Parser to parse them

accordingly, thus achieving a much higher accuracy. Additionally, it uses a real-world dataset of

millions of PYTHON programs to learn to effectively parse programs, while SYNFIX and sk_p are

trained on smaller datasets of correct programs that have errors manually introduced on training,

possibly skewing the predictions away from real-world fixes.

DEEPFIX [41] is another seq2seq approach for repairing syntactical errors in C programs.

It relies on stacked gated recurrent units (GRUs) with attention and applies some simple abstrac-

tion over the terminal tokens. The input programs are broken into subsequences for each line and

91

the model gets as input all the line subsequences with their associated line numbers. DEEPFIX

only predicts single line fixes and its predictions are applied iteratively multiple times, if multiple

parse errors exist or until the parse error is fixed. DEEPFIX struggles with the same problems as

previous work, as it solely relies on the sequence models’ capability to learn the full grammar

and repair programs with minimal abstraction and prior knowledge over the language.

Lenient parsing [2] presents another sequence model approach. It uses two seq2seq

Transformer models and trains them with a large corpus of code. One model is trained to

repair and create proper nested blocks of code, called BLOCKFIX, and the second one, called

FRAGFIX, repairs and parses fragments of code (e.g. program statements) within a repaired

block. BLOCKFIX tokenizes input program block in a similar manner to our abstracted token

sequences, by abstracting identifiers, constants, expressions, etc., and is trained on pairs of valid

and manually-corrupted blocks. On the other hand, FRAGFIX repairs on a program-statement

level within blocks (mostly focusing on missing semicolons and commas), by using serialized

versions of ASTs and error hints manually injected on the ASTs. While this overall approach is

mostly automatic, it relies on the manual corruption of a dataset to generate erroneous programs

that may not correlate to the errors actual developers make and solely relies on the seq2seq models

to learn the underlying language model and make repairs. In contrast, SEQ2PARSE mitigates this

problem by learning how programmers fixed programs from a large corpus and by abstracting

via partial parses. Additionally, our use of EC-Parsers and the language grammar significantly

improves program repairs.

Graph models for parsing. Graph-based Grammar Fix (GGF) [133] suggested using a Gated

Graph Neural Network encoder for the partial parse trees that can be acquired from a LALR parser

and a GRU encoder for the parts of the program sequence that are not parsed. This approach

aims to better summarize the context of the program in order to train more accurate models. Its

models then predict an error location in the program sequence and a token suggestion for the

92

repair. This single-token repair approach is applied iteratively multiple times until the program

correctly parses. While this approach is much more accurate than any previous work, it still lacks

the advantages of using a parser with the actual grammar as the final step of the repairing process

that SEQ2PARSE takes benefit from and relies again on the model to learn the semantics of the

language.

Neural Machine Translation (NMT) for Program Repair. COCONUT [77] proposed a com-

plex architecture that uses a new context-aware NMT model that has two separate Convolutional

Neural Network (CNN) encoders, one for the buggy lines and one for their surrounding lines.

It also uses ensemble learning to train NMT models of different hyper-parameters to capture

different relations between erroneous and correct code. This approach uses a minimal level of

abstraction over the input programs, with only a subword-level tokenization to minimize the

vocabulary size and make training tractable. CURE [51] suggested a similar code-aware NMT

model that is pre-trained using unsupervised learning on correct programs. It also uses a program-

ming language GPT [12] model that learns to predict the next token in program sequences and

uses beam search to maintain a small set of accurate repairs.

Qualitative Comparison to SEQ2PARSE. SEQ2PARSE performs quite well compared to the

aforementioned published state of the art for the particular domain of novice programs. Noting

that many of these are on different benchmarks or datasets, permitting only an indirect comparison.

we believe that SEQ2PARSE compares favorably in terms of accuracy and efficiency, since it

completely repairs 94.25% of our tests within 2.1 seconds, while generating the exact user fix in

more than 1 out 3 of the cases, a metric that most papers ignore.

Specifically, DEEPFIX [41] uses a multi-layer seq2seq model to repair programs that may

have up to 5 syntax errors, but initial results, although promising, yield error-free compilation

for only 27% out of the 6971 benchmark programs. Lenient parsing [2] leverages a large corpus

of code and error seeding to train a transformer-based neural network, resulting in a broadly

93

applicable approach, but one with potentially lower accuracy in our domain (a top-1 repair

accuracy of only 32% for real student code with up to 3 syntax errors). GGF [133] tries to

encode program context in a novel way by using a graph neural network and partial parses, which

leads to a higher repair accuracy of 58% of the syntax errors in a real-world dataset. Lastly,

COCONUT [77] is a recent state-of-the-art automated repair technique that depends on a different

approach of context-aware NMTs and is evaluated on standard software defect benchmarks.

While COCONUT is able to repair a broader range of defects than syntax errors, it only repairs

509 out of 4456 (11.42%) benchmark defects.

94

3.9 Conclusion

We have presented neurosymbolic parse program repair, a new language-agnostic neu-

rosymbolic approach to automatically repair parse errors. Our approach is to use a dataset of

ill-parsed programs and their fixed versions to train a Transformer classifier (neural component)

which allows us to accurately predict EC-rules for new programs with syntax errors. In order

to make accurate predictions, we abstract the low-level program token sequences using partial

parses and probabilistic grammars. A small set of predicted EC-rules is finally used with an

ECE-Parser (symbolic component) to parse and repair new ill-parsed programs in a tractable and

precise manner. We believe that the novel combination of neural and symbolic components helps

outperform previous work in terms of repair accuracy and efficiency.

We have implemented our approach in SEQ2PARSE, and demonstrated, using a corpus of

1,100,000 ill-parsed PYTHON programs drawn from two years of data from an online web-based

educational compiler, that SEQ2PARSE makes accurate EC-rule predictions 81% of the time

when considering the top 20 EC-rules, and that the predicted EC-rules let us parse and repair over

94% of the test set in 2.1 sec median parse time, while generating the user fix in almost 1 out of 3

cases. Finally, we conducted a user study with 39 participants which showed that SEQ2PARSE’s

edit locations and repairs are useful and helpful, even when they are not equivalent to the user’s

fix.

3.10 Acknowledgements

Chapter 3, in part, is a reprint of the material as it appears in the Proceedings of the ACM

on Programming Languages, Volume 6 (OOPSLA2). Georgios Sakkas, Madeline Endres, Philip

J Guo, Westley Weimer, Ranjit Jhala, SPLASH 2022. The dissertation author was the primary

investigator and author of this paper.

95

3.11 Data Availability Statement

All code for extracting ML-appropriate datasets, training the sequence models and

repairing and parsing ill-parsed programs with SEQ2PARSE is publicly available at https:

//github.com/gsakkas/seq2parse. Additionally, a simplified online demonstration is avail-

able at http://seq2parse.goto.ucsd.edu/index.html. Finally, the code is also packaged

in the available artifact [105].

96

https://github.com/gsakkas/seq2parse
https://github.com/gsakkas/seq2parse
http://seq2parse.goto.ucsd.edu/index.html

Chapter 4

Neurosymbolic Modular Refinement Type

Inference

97

4.1 Introduction

Refinement types are a type-based generalization of Floyd-Hoare logics, where the

programmer can specify correctness requirements by decorating classical types (e.g.Int) with

logical predicates (e.g.0 <= v) that provide additional constraints on the values that can inhabit

the type, thereby providing a modular and expressive means of statically enforcing a wide variety

of correctness, safety, and security properties of software. Refinement types have been developed

for various languages, from the ML family [101, 120, 126, 135], to C [93, 100, 107], Ruby [54],

Rust [35, 65], TypeScript [127], Scala [43], Solidity [121], Racket [55]. A recent paper presented

a user study of 30 developers using refinement types for Java [36] that concluded that “LiquidJava

helped users detect and fix more bugs, and that Liquid (Refinement) Types are easy to interpret

and learn with few resources.”

Sadly, as with other expressive and modular program verification tools like ESCJava [30]

or Dafny [66], the wider usage of refinement types is hindered by the fact that to effectively use

refinement types across their codebase, developers must laboriously annotate all the functions in

their code with potentially complex type specifications that specify the behavior of that function to

the rest of the code. The expressiveness of refinement contracts means that (unlike in classical type

systems where often a type can be uniquely determined from the code) there is an infinite space

of possible specifications for each function, which makes it tricky for the developer to determine

the right one. The problem is exacerbated by modularity which means that the refinement type or

contract specified for a function f may be “correct” for f in isolation, but may not suffice to verify

f’s clients, and so the developer has to go back and forth changing the annotations of functions to

get the entire codebase to verify.

In this chapter, we present LHC1, a neurosymbolic agent that uses large language

models (LLMs) to automatically generate refinement type annotations for the functions in an

entire codebase, using the refinement type checker LIQUIDHASKELL as an oracle to verify the

1Stands for Liquid Haskell Copilot or LHCOPILOT

98

correctness of the generated specifications. We develop our approach via three contributions.

1. Agent. Our main contribution is an agent that systematically traverses the codebase’s call-

graph to generate each function’s refinement type annotation. If we think of the refinement

type annotation as the analog of a procedure summary, then we can think of our agent as

a neurosymbolic program analysis, that combines a “bottom-up” analysis which uses neural

LLMs to generate refinement type annotations (summaries) for functions, with a “top-down”

analysis that kicks in when the LLM fails to generate correct types, that instead uses a symbolic

predicate abstraction technique to generate refinement types from predicate templates obtained

from the failed LLM predictions. Thus, even where the LLM fails to generate the correct type,

its predictions can be used to generate an abstract domain that allows the symbolic analysis to

succeed.

2. Dataset. Our second contribution is a dataset comprising three Haskell packages: a suite

of programs which are part of a tutorial on refinement types, a Haskell implementation of the

Salsa20 cipher, and a widely used library that implements Byte-Strings with low-level pointer

operations. The dataset includes a diverse set of functions, totalling about 5KLoC annotated

with refinement types that enforce a variety of correctness properties ranging from data structure

invariants to low-level memory safety. This dataset was curated to deliberately exclude code

present in the popular open-source code LLM training dataset The Stack [70, 75], to ensure that

successful type generation is not simply due to memorization.

3. Evaluation. Our final contribution is an evaluation of LHC on our dataset, using a variety

of pre-trained LLMs, including StarCoder and CodeLlama which were not trained on the code

in our dataset. We demonstrate that by fine-tuning these LLMs on a small set of about 9,000

LIQUIDHASKELL programs, we can greatly improve the agent. We show how by combining the

bottom-up generation of the neural models with top-down symbolic inference using qualifiers

99

from the LLMs predictions, LHC can automatically generate refinement types for up to 94% of

the functions across entire libraries. Furthermore, the entire generation process can be completed

in just a few hours, a significant improvement over the several days or weeks of human effort that

originally went into annotating the packages, thereby indicating that LLMs can drastically shrink

the human effort needed to use formal verification.

100

4.2 Background

We start with some preliminaries showing how refinement types can be used to specify

and verify properties of programs § 4.2.1, and how LLMs can be used to automatically generate

the type annotations required for verification § 4.2.2.

4.2.1 Refinement Type Checking with LIQUIDHASKELL

Specification. Refinement type checkers like LIQUIDHASKELL let the programmer specify

correctness requirements decorating classical types with logical predicates — typically drawn

from an SMT-decidable theory — which provide additional constraints on the values that can

inhabit the type. A refined base type of the form {v:T|p(v)} defines the set of values v of

type T such that additionally, the constraint p(v) is true of the value v. For example, the type

{v:Int | 0 <= v} specifies the set of non-negative integer values. A refined function type of

the form x:{In|pre(x)} -> {v:Out|post(v, x)} can specify pre- and post-conditions for

the underlying functions via constraints on the Input and Output types. For example, the type

x:{Int|0 <= x} -> {v:Int|v >= x} specifies a function that requires non-negative inputs,

and ensures that the returned value is at least as large as the input x.

Refinement type checkers also allow the programmer to specify properties of data using

measure functions [53, 126], which are pure and total functions that map data types (such as

lists, trees, etc.) to SMT-decidable values (such as integers, booleans, sets etc.). For example,

the measure notEmp (Figure 4.1) defines a boolean predicate on lists that is true if the list is

non-empty,

measure notEmp :: [a] -> Bool
notEmp [] = False
notEmp (_:_) = True

Figure 4.1: An example measure for refinement types.

and we can use it to specify that a particular function should only be called with non-empty lists:

101

{-@ head :: {v:[a] | notEmp v} -> a @-}
head (x:_) = x
head [] = error "empty list" -- runtime crash

Figure 4.2: Using measures in LIQUIDHASKELL.

Verification. Refinement type checkers like LIQUIDHASKELL verify the specifications by

generating verification conditions (VCs) — logical formulas whose validity, determined by an

SMT solver [86], ensures that the program is type-safe. For example, consider the code for the

head function shown above, and assume that error — which aborts the program with a run-time

panic — is a library function that is given the type

{-@ error :: {v:String | False} -> a @-}

That is, the precondition of error says it can only be called with String messages such that

the predicate False holds. Since there are no such Strings, the program will only verify if

at compile-time, the refinement type checker can prove that error is never actually called.

LIQUIDHASKELL verifies the code for head by generating the VC:

∀v. notEmp(v) ⇒ ¬notEmp(v) ⇒ False

The first antecedent comes from the precondition that the input list is a non-empty list, the

second antecedent comes from the fact that in the second case (where we call error) the input

list is matched against [] whose measure is False, and the consequent False arises from the

pre-condition of error. The SMT solver proves the above VC valid to verify that head will never

crash on non-empty lists.

Modularity and Annotations. Refinement type checking is modular in that when we check a

client (e.g.head) that calls a function (e.g.error) the only information known about the callee

(error) is its type signature. This means that to analyze an entire package or module, the

programmer must annotate all the functions of the module with (refinement) type signatures.

102

type NonZero = {v:Int | v /= 0}

type NEList a = {v:[a] | notEmp v}

{-@ divide :: Int -> NonZero -> Int @-}
divide :: Int -> Int -> Int
divide _ 0 = error "divide -by-zero"
divide x n = x `div` n

{-@ size :: xs:_ -> {v:Nat | notEmp xs => v>0} @-}
size :: [a] -> Int
size [] = 0
size (_:xs) = 1 + size xs

{-@ average :: NEList Int -> Int @-}
average xs = divide total elems
where

total = sum xs
elems = size xs

Figure 4.3: Haskell module with multiple dependent functions.

For example, consider the code in Figure 4.3 which shows a small Haskell module that

implements a function that computes the average of a list of integers by computing the sum of

the integers and then invoking divide with the size of the list. The divide function panics

with error when the divisor is 0, and otherwise calls the mathematical div operator. The size

function recursively traverses the input list to count the number of elements in it.

To verify this module, the programmer must annotate each of the three functions with a

type signature. First, for divide they must specify that the second argument is NonZero — so

that LIQUIDHASKELL can verify that error will not be called at run-time. Second, for size they

must specify that the function returns a strictly positive result if the input is non-empty. Finally,

for average they must specify that the input list is itself non-empty, which lets LIQUIDHASKELL

determine — using the annotation for size — that total is strictly positive, and hence that the

call to divide is also safe.

Symbolic Type Inference with Qualifiers. Refinement type checkers require type annotations

in many places, e.g. for (recursive) functions, polymorphic type instantiation and so on. These

103

can be viewed as type-based generalizations of the classic problem of having to specify pre- and

post-conditions and loop- annotation invariants in Floyd-Hoare style verifiers like ESCJava or

Dafny [30, 67]. As with loop invariants, refinement type inference is undecidable in general,

but the type-based setting allows LIQUIDHASKELL to use a form of abstract interpretation

called predicate abstraction [38, 101]. Here, the programmer provides a set of qualifiers —

predicate fragments or templates — that LIQUIDHASKELL can then automatically conjoin to

infer refinement types. In our running example in Figure 4.3, we could provide templates:

qualif Qual0(v: a): v > 0

qualif Qual1(v: a, xs: b): notEmp xs => v > 0

and then simply annotate average and size with the wildcard types: average :: _ -> _ ->

_ and size :: _ -> _ after which LIQUIDHASKELL will be able to automatically infer the

refinement type annotations needed to verify the module [101]. Additionally, LIQUIDHASKELL

can automatically extract qualifiers from annotated type specifications. For example if the pro-

grammer wrote a specification x:Int -> {v:[a] | x < len v} -> a then LIQUIDHASKELL

would automatically extract a qualifier Qual2(v: a, x: b): x < len v and then use it for

subsequent type inference.

4.2.2 Neural Type Inference with LLMs

Even with symbolic refinement type inference, there is a substantial burden on the

programmer as they must be able to either write down the types for all functions or divine a set of

suitable qualifiers from which types can be inferred. We aim to reduce this burden by using large

language models (LLMs), specifically code-specific models, trained on large tracts of source

code, to assist the programmer in generating the necessary type annotations needed to verify

entire modules.

104

Constructing prompts. LHC infers refinement types for entire modules by repeatedly crafting

prompts that can guide the LLM to generate accurate and relevant refinement types for each

function. In the case of refinement types, LHC uses LLMs that have been pre-trained on infilling

missing (masked) parts of programs, and generate prompts that provide context about the Haskell

code while indicating where the refinement type is missing. For Figure 4.3, LHC builds the

following LLM prompt to generate a refinement type for divide

-- Fill in the masked refinement type
{-@ type NonZero = {v:Int | v /= 0} @-}

{-@ measure notEmp :: [a] -> Bool
notEmp [] = False
notEmp (_:_) = True @-}

{-@ type NEList a = {v:[a] | notEmp v} @-}

{-@ divide :: <mask> @-}
divide :: Int -> Int -> Int
divide _ 0 = error "divide -by-zero"
divide x n = x `div` n

Figure 4.4: Refinement type prompt for querying LLMs.

Few-shot prompting with function dependencies. Few-shot prompting is a technique used

in the context of LLMs where the model is provided with some examples (typically between

one and a few dozen) to illustrate the task it needs to perform. This approach helps the LLM

understand the pattern and context of the task, improving its performance on similar tasks. In

contrast, zero-shot prompting provides no specific examples to the LLM, relying entirely on the

model’s pre-trained knowledge to perform the task based on a descriptive prompt. Few-shot

prompting generally yields better results than zero-shot prompting as it gives the LLM concrete

examples to learn from, thereby reducing ambiguity and increasing accuracy.

In the context of refinement types, few-shot prompting can be particularly useful. For

instance, when asking a Code LLM to generate refinement type annotations for Haskell code,

a few-shot prompt would include several examples of functions annotated with appropriate

105

refinement types. This helps the LLM learn the patterns and constraints associated with these

types. By seeing specific examples, the LLM can more accurately predict and infill the missing

refinement type annotations in new, un-annotated code.

Specifically, LHC adds all the functions and their types in the prompt, that the target

function depends on. For our example in Figure 4.3, when we query a LLM to generate types

for average, the functions divide and size with their type signatures will also be added to the

prompt as extra examples to help the LLM generate the correct type for average.

106

4.3 Overview

Let’s look at an overview of how LHC systematically infers the refinement type annota-

tions needed to automatically verify a given Haskell codebase, by traversing the call-graph of

the codebase, in a bottom-up order, prompting the LLM to generate new type predictions that

can be locally verified by LIQUIDHASKELL, and then back-jumping to a dependency when the

predictions fail.

4.3.1 Initialization

The input for LHC is an un-annotated program, i.e. a program where some functions are

not yet annotated with a refinement type. Based on the running example the initial program is

the code from Figure 4.3 where we removed the orange specifications for the target functions

divide, size and average. Helper type aliases, such as NEList and NonZero, are standard in

LIQUIDHASKELL and very commonly used by more complicated refinement types in order to

simplify them. Therefore, here, they are left untouched for more context when prompting the

LLM to get more accurate predictions.

LHC State. During the entire type inference process, LHC maintains a global state S that

captures the current state S f of each function f which corresponds to a triple (fuel, type, predicts).

The fuel represents the maximum number of times that LHC will attempt to infer a type for f

before giving up and asking the programmer to provide a type. The type represents the current

type that the function f has been assigned and against which the implementation of f has been

verified, or ⊥ if no such type has been assigned. The predicts queue stores all the predicted types

from a LLM that are yet to be tried. For our example, the initial global state S maps each of

divide, size and average to a triple where fuel is 10, type is ⊥ and predicts is empty.

107

Dependencies. Next, we identify the potential dependencies between the different functions,

because the order that we generate types and verify them matters for the correctness of our

approach. We build the program’s call-graph and get all function dependencies, where deps f

is the set of functions that f calls. For our example, average calls divide and size, each of

which have no dependencies. Thus, the call-graph has a depth of 2: the dependencies of divide

and size are empty, and of average is [divide, size].

Worklist. Finally, LHC maintains a worklist wkl with all the functions that are yet to be

explored and verified by our approach. We initialize the wkl with all the root functions, i.e.

functions that have no dependencies. These roots will be the starting points at which LHC will

infer types. For our example we initialize wkl with [divide, size].

4.3.2 Building the LLM prompt

LHC starts by popping divide from the working list wkl. Since we have no type

predictions so far, we need to call the LLM to generate some. For that we make the following

prompt (as described in § 4.2.2):

measure notEmp :: [a] -> Bool
notEmp [] = False
notEmp (_:_) = True

type NonZero = {v:Int | v /= 0}

type NEList a = {v:[a] | notEmp v}

{-@ divide :: <mask> @-}
divide :: Int -> Int -> Int
divide _ 0 = error "divide -by-zero"
divide x n = x `div` n

Figure 4.5: LLM prompt for divide.

The prompt contains the program up to the function that we are generating refinement

types for, where we add a “dummy” refinement type <mask> that the LLM needs to fill in.

108

DEPENDENCIES Optimization. As described in § 4.2.2, this optimization is a few-shot prompt

technique where all dependencies that the target function calls, are added in the prompt. While

divide and size don’t have any dependencies and their prompts remain as described above, the

prompt for average would include both of these functions when the DEPENDENCIES optimization

is enabled, since averag calls both of them.

4.3.3 Generating type predictions

Given the above prompt for divide, the LLM will generate the following types for

example where the 3rd one is the correct one. 2

divide :: NonZero -> Pos -> Pos -- rejected
divide :: NonZero -> Nat -> Pos -- rejected
divide :: Int -> NonZero -> Int -- correct
divide :: {v:Int | v /= 0} -> Nat -> Nat
divide :: NonZero -> Int -> {v:Int | v > 0}

Figure 4.6: Refinement type predictions for divide.

4.3.4 Verifying types

The next step is to identify a type from the prediction queue above, that is locally correct,

i.e. against which LIQUIDHASKELL will verify the given function (here, divide). We iteratively

check divide against each of the candidate types, decreasing divide’s fuel each time, until we

reach a locally correct type that is verified by LIQUIDHASKELL. After this step, the global state

is updated so that for divide, we have two remaining type predictions in the predicts, the fuel has

been decreased by 3 since we tested that many type predictions and the current type is updated to

2We consider here the top 5 predictions but in reality can generate up to 50 types in total

109

Int -> NonZero -> Int.

function fuel type/predicts

divide 7 Int -> NonZero -> Int /

NonZero -> Nat -> Nat

NonZero -> Int -> Nat

size 10 - /-

average 10 - /-

QUALIFIERS Optimization. As described in § 4.2.1, the programmer can provide a set of

qualifiers and a wildcard type for the target function in order to enable LIQUIDHASKELL to

automatically infer the appropriate refinement type. When we enable the QUALIFIERS optimiza-

tion, we add the wildcard type for the target function at the end of the list of predicted types, i.e.

divide :: _ -> _ -> _ for our example, in order for this type to be tested as a last resort if all

other types fail verification. Additionally, we extract automatically all possible predicates from

the predicted refinement types to add the corresponding qualifiers in the program. For example,

for divide we would extract Qual1(v: a): v /= 0 and Qual2(v: a): v > 0 from the last

two predictions from § 4.3.3

4.3.5 Updating the working list

After we locally verify divide with one of the predicted types, we look up all functions

f that call divide, i.e. the functions f such that deps f contains divide, and we add them to the

working list wkl if all their dependencies are resolved, i.e. all functions in deps f have also been

locally verified against their current type. In this case average calls divide but average also

depends on size, which we have yet to explore. Therefore, no new functions are added to the

working list wkl, which now, only contains size.

110

As in § 4.3.2 and § 4.3.3, we perform the same steps for size to generate type predictions:

size :: xs:[a] -> {v:Int | v > 0}
size :: xs:[a] -> {v:Int | v >= 0}
size :: xs:[a] -> {v:Int | v = size xs}
size :: xs:[a] -> {v:Nat | notEmp xs => v>0}
size :: xs:[a] -> {v:Nat | v = len xs}

Figure 4.7: Refinement type predictions for size.

The first predicted type xs:[a] -> {v:Int | v > 0} is rejected by LIQUIDHASKELL

as it is not locally correct as size can return 0 on an empty list. The second type xs:[a] ->

{v:Int | v >= 0}, however, is locally correct – the output of size is always non-negative.

(Note, however, it is not the type that is needed to verify the whole module, in particular, that

is needed to verify average which we still have not explored. We show next how this issue is

resolved in our approach.) At this point, the global state is updated to

function fuel type/predicts

divide 7 Int -> NonZero -> Int /

NonZero -> Nat -> Nat

NonZero -> Int -> Nat

size 8 xs:[a] -> v:Int | v >= 0 /

xs:[a] -> v:Int | v = size xs

xs:[a] -> v:Nat | notEmp xs => v > 0

xs:[a] -> v:Nat | v = len xs

average 10 - /-

which corresponds to the partially annotated program:

At this stage, since all of average’s dependencies are also locally verified, we can add it

to the working list wkl, so that we can generate and try types for it as well.

111

{-@ divide :: Int -> NonZero -> Int @-}
divide :: Int -> Int -> Int
divide _ 0 = error "divide -by-zero"
divide x n = x `div` n

{-@ size :: xs:[a] -> {v:Int | v >= 0} @-}
size :: [a] -> Int
size [] = 0
size (_:xs) = 1 + size xs

average xs = divide total elems
where

total = sum xs
elems = size xs

Figure 4.8: Partially annotated program, where average is yet to be annotated.

4.3.6 Back-jumping to a dependency when predictions fail

Now, LHC repeats the same generate-and-check procedure for average as it did for

divide and size. However, this time, the 5 LLM-predicted types are invalid, in that none of

them can be locally verified against the implementation of average. This could mean one of two

things:

(1) One of average’s function dependencies has a type that is either too weak (i.e. does not

specify what the client requires in its post-condition), or too strong (i.e. has a pre-condition

that rejects the actual inputs provided by the client).

(2) All type predictions for average were wrong.

In this case, condition (1) holds as size had indeed a problematic type as we hinted

earlier, which made average impossible to verify. However, at this stage, LHC cannot distinguish

between (1) or (2) — i.e. we do not know which condition actually holds and therefore we need

to make a decision based on the global state.

Since all of the predictions in the predicts queue for average are exhausted, and we have

available fuel for it, we choose to back-jump to one of average’s function dependencies, in

particular, the one that has the highest remaining fuel, i.e. the one that has been the least tested

112

and thus has the most candidate type predictions left. The dependencies that we can potentially

back-jump to are not just the immediate parent functions in the call graph, but any possible

ancestor, which in this case includes divide and size.

In this case, we would indeed jump back to the problematic size that has the highest

fuel of 8. In this process we clear all current types for functions that directly or transitively call

size and we end up with the following state where average’s fuel has now fallen to 5, as we

made 5 unsuccessful local verification attempts for it and additionally average and size have

no assigned type.

function fuel type/predicts

divide 7 Int -> NonZero -> Int /

NonZero -> Nat -> Nat

NonZero -> Int -> Nat

size 8 - /

xs:[a] -> v:Int | v = size xs

xs:[a] -> v:Nat | notEmp xs => v > 0

xs:[a] -> v:Nat | v = len xs

average 5 - /-

We now repeat the process of trying type predictions from the predicts for size until we get

another locally correct type. Of the three remaining predictions predicts the first of these is

113

rejected by LIQUIDHASKELL’s local verification, but the second is accepted yielding the state:

function fuel type/predicts

divide 7 Int -> NonZero -> Int /

NonZero -> Nat -> Nat

NonZero -> Int -> Nat

size 6 xs:[a] -> v:Nat | notEmp xs => v > 0 /

xs:[a] -> v:Nat | v = len xs

average 5 - /-

At this point, we again add average to the working list wkl, and proceed to generate fresh

candidates, and to locally verify them. In this second time, the LLM generates the candidates:

and LIQUIDHASKELL rejects the first type to locally verify the second candidate NEList Int

average :: xs:[Int] -> {v:Int | size xs > 0}
average :: NEList Int -> Int
average :: NEList a -> Int
average :: xs:NEList Int -> Int
average :: {v:[Int] | notEmp v} -> Int

Figure 4.9: Refinement type predictions for average.

-> Int, thereby completing the verification of the whole program.

4.3.7 Asking the user for a type

Suppose that instead, the LLM generated a slate of incorrect types for average such that

while trying out the generated candidates, the fuel for average falls to 0. In this case, we are

potentially in condition (2), where all the LLM predicted types are wrong (i.e. fail to locally

verify). In this scenario, LHC falls back to ask the user to provide a type for average.

If the verification fails even with the user-provided type, then we back-jump again to

one of the dependencies and repeat the whole process until the function is verified with the

114

user-provided type. That is, we presume that the user-provided type is correct, and we get the

LLM to generate types for the other functions, so that the whole program verifies. Of course, our

goal is to minimize the number of times we have to resort to asking the user for a type signature.

In our example, assuming the user provides the correct type NEList Int -> Int the verification

of the whole program succeeds and we return the fully annotated program (shown in Figure 4.3)

to the user.

115

Algorithm 6 LHC’s algorithm
Input: Code Repository R
Output: Verified Code Repository R′

1: procedure VERIFYCODEREPO(R)
2: S← [f 7→ {fuel= N, type=⊥, predicts= /0}]
3: deps← BUILDCALLGRAPH(R)
4: wkl←{ f ∈ R | deps f = /0}
5: while wkl ̸= /0 do
6: f ← POPTOP(wkl)
7: ps← GETPREDICTIONS(S, f)
8: t← TRYPREDICTIONS(S, f , ps)
9: if t=⊥ then

10: wkl← wkl ∪ BACKJUMP(S, f)
11: else
12: S f .type← t
13: wkl← wkl ∪ SOLVEDCALLERS(S, f , deps)
14: return R(S)

4.4 Algorithm

We describe here the full algorithm of the LHC agent: an interactive approach to verifying

a code repository R, comprising a set of functions, by automatically annotating all the functions

in R with refinement types against which the entire repository verifies.

Algorithm 6 presents LHC’s high-level iterative algorithm.

Global State. We define as S the global state, that maps each function f to its current state

S f which is a triple of the form (fuel, type, predicts). The first element, fuel, is an integer

representing the upper bound on the number of remaining verification attempts for f . The second

element, type, is the current type that has been assigned to and locally verified for f or⊥ denoting

that no type has been assigned. The third element, predicts, is a priority queue of the predicted

types for f against which f has not yet been locally verified. The global state S is initialized

such that for each f in the repository, S f for each function f has a maximum the S f .fuel is some

maximum N, the S f .type is ⊥, and S f .predicts is empty.

116

Call Graph. BUILDCALLGRAPH generates the repository’s call-graph returning returns all

function dependencies deps f which is the set of functions that f calls, which we also call

the immediate dependencies of f . For example, the program in Figure 4.3 has the following

dependencies depsdivide = /0, depssize = /0, depsaverage = [divide,size].

Worklist. Next, we initialize a worklist wkl of functions that our procedure is going to operate

on. The worklist wkl is initialized with all functions f ∈ R, such that the function f has no

dependencies. These are the root functions of the repository from which LHC starts generating

and checking types.

Main Loop. The main body of the algorithm is on lines 5 to 13, which iterates till all functions

are assigned types and wkl is empty. In each iteration we pop the top function f from the wkl stack.

Then, we get new or existing type predictions ps (§ 4.4.1) for the function f . We try to locally

verify f with a type from the predictions ps (§ 4.4.2) until we successfully find a type against

which f locally verifies in the module with the current state S, i.e. with the currently assigned

types for the transitive dependencies of f . If none of the predictions ps verified the function f ,

thus t=⊥, we back-jump to f ’s least tested dependency (§ 4.4.3) to continue the iterations from

there. If instead, a type t that locally verified the function f is found, then we update the state

S f .type with the new type t, and add in wkl the functions in SOLVEDCALLERS(S, f , deps). These

are all the functions g ∈ R such that (a) g calls f (i.e. f ∈ depsg), and (b) all the dependencies of

g have an assigned type, (i.e. ∀h ∈ depsg. Sh.type ̸=⊥). We then continue to the next iteration,

ensuring all functions in wkl have been locally verified.

4.4.1 Generating type predictions

Algorithm 7 describes the procedure of generating new type predictions for a function

f given a global state S. Initially, we check if we have any remaining type predictions in the

117

Algorithm 7 GETPREDICTIONS’s algorithm
Input: State S, Function f
Output: LLM type predictions ps

1: procedure GETPREDICTIONS(S, f)
2: if S f .predicts= /0 then
3: R← PROGRAM(S)
4: prompt← MAKEPROMPT(R, f)
5: S f .predicts← LLMGuess(prompt)

6: ps← S f .predicts
7: return ps

Algorithm 8 TRYPREDICTIONS’s algorithm
Input: State S, Function f , Type Predictions ps
Output: Successful type t or Failure ⊥

1: procedure TRYPREDICTIONS(S, f , ps)
2: while ps ̸= /0 and S f .fuel> 0 do
3: (t, ps)← GETNEXT(ps)
4: S f .fuel← S f .fuel−1
5: if LHVerify(S, f , t) then
6: return t
7: if S f .fuel= 0 then
8: return UserHint(f)
9: return ⊥

function’s queue S f .predicts and if there are, no new types are generated and the remaining queue

is just returned. Otherwise, we retrieve the relevant functions from the codebase, given the current

state S, replacing any types that have already been locally verified (i.e. already assigned to the

type field in S) and make a prompt for function f as discussed in § 4.2.2. This prompt is sent

to the LLM to generate new type predictions, which are then added to f ’s prediction queue

S f .predicts.

4.4.2 Trying type predictions

Algorithm 8 presents the process of trying new type predictions ps for a function f given

a global state S, to find the first prediction against which f locally verifies. In each iteration, we

first check the remaining fuel for the current function f . If it has reached 0 then we ask the user

118

Algorithm 9 BACKJUMP’s algorithm
Input: State S, Function f
Output: Transitive dependency f ′ with max remaining fuel

1: procedure BACKJUMP(S, f)
2: allDeps← /0,wkl←{ f}
3: while wkl ̸= /0 do
4: f ′← POPTOP(wkl)
5: allDeps← allDeps∪{ f ′}
6: wkl← wkl∪{g | g ∈ deps f ′ , g /∈ allDeps}
7: f ′←⊥, maxfuel← 0
8: for all g ∈ allDeps−{ f} do
9: if maxfuel< Sg.fuel then

10: f ′← g, maxfuel← Sg.fuel

11: S← RESETDEPENDENCIES(S, f ′)
12: return f ′

to provide a type, as we discussed in (§ 4.3.7). If there is more fuel left, then we decrement f ’s

fuel S f .fuel by one. Then, we get the next prediction t from the queue ps, and assign the type to f

and query LIQUIDHASKELL to try to locally verify the program using the other types already

assigned in S. If the verification process is successful, we return the locally verified type t, and

otherwise we continue to the next iteration. If we have tried all the predictions in the queue ps

and none of them locally verified the function f , then we return ⊥ signalling that none of the

candidate predictions were successful.

4.4.3 Back-jumping to the least tested dependency

Algorithm 9 outlines the BACKJUMP procedure, which identifies and returns the transitive

dependency of a function f that has the maximum remaining fuel. The algorithm begins by

finding all transitive dependencies of f . This is achieved using a worklist wkl, initialized with f .

The algorithm iteratively processes each function in the worklist by popping the top function f ′,

adding it to the set of all dependencies allDeps, and then including all its immediate dependencies

deps f ′ that are not already in allDeps back into the worklist wkl. This loop continues until the

worklist is empty, ensuring that all transitive dependencies of f are collected.

119

Once all transitive dependencies are identified, the next step is to determine the dependency

with the maximum remaining fuel. The algorithm initializes f ′ to ⊥ and maxfuel to 0. It then

iterates over each function g in allDeps excluding f . If the remaining fuel Sg.fuel for a function g

is greater than maxfuel, it updates f ′ to g and maxfuel to Sg.fuel. This ensures that the function

with the maximum remaining fuel among the transitive dependencies of f is selected.

After identifying the function f ′ with the maximum remaining fuel, the global state

S is reset for this function and its dependencies using the RESETDEPENDENCIES procedure,

thereby restarting the verification process for f ′ from scratch. For each function f that calls f ′,

RESETDEPENDENCIES will set S f .type to ⊥ and recursively will be applied to each caller f

to reset all functions that indirectly depend on f ′. This allows the type verification process to

strategically back-jump to f ′ and restart with updated predictions and fuel. The selected function

f ′ is then finally returned.

120

4.5 Evaluation

Next, we describe our implementation of LHC (LHCOPILOT), and an evaluation that

addresses three research questions:

RQ1: How accurate are LLMs at generating single refinement types? (§ 4.5.1)

RQ2: How precisely can LHC verify whole codebases? (§ 4.5.2)

RQ3: How efficiently can LHC verify a given codebase? (§ 4.5.3)

Large Language Models. For our evaluation, we focus on Code LLMs, i.e. LLMs that have

been pre-trained specifically for generating code. Such models don’t usually require special

system or instruction prompts to effectively generate the target code, unlike CHATGPT or GPT-

4O. Our emphasis is also on smaller and public LLMs for two important reasons. First, they

can be more robust in generating types for the hundreds of times it is necessary to verify the

given codebase (and likely just as effective [15]). Second, and more importantly, to guard

against the possibility of data-leakage (memorization), we wish to ensure that our benchmarks

are not in the training set for the models. Therefore, we use the following LLMs; STARCODER-

3B [70], CODELLAMA-7B [102] and STARCODER2-15B [75] with 3, 7 and 15 billion trainable

parameters respectively. All the models are open-source and have been pre-trained on public

datasets of code [70, 75]. In each case, the training data does not include the benchmarks

considered here. We run all experiments with STARCODER-3B and CODELLAMA-7B on an

NVIDIA GeForce RTX 3080 Ti with 12 GB VRAM and an NVIDIA A100 PCIe with 80 GB

VRAM for STARCODER2-15B.

Fine-tuning datasets. We fine-tune our models using The Stack v2 [75], a public dataset of

open-souce code with permissive licenses, that includes a vast number of programming languages.

While the dataset consists of less than 0.2% of Haskell programs, those programs amount to

121

over 1 million. Of those programs, only 3350 used LIQUIDHASKELL and refinement types.

From these programs, we extract a dataset of 8903 unique refinement types, and we use them to

fine-tune the LLMs. Specifically, we use QLORA [23], an efficient fine-tuning approach that

reduces memory usage enough to fine-tune much larger LLMs on smaller GPUs while preserving

full 16-bit fine-tuning task performance. QLORA backpropagates gradients through a frozen,

4-bit quantized pretrained language model into Low Rank Adapters (LORA [48]). We fine-tune

STARCODER-3B and CODELLAMA-7B for 20 epochs, while the larger STARCODER2-15B for

10 epochs due to limited time and resources and its excessive cost.

Benchmarks. We explore different benchmarks in order to answer our research questions. First,

for single refinement type prediction (RQ1), we evaluate the different LLMs on a new benchmark

based on the publicly available online LIQUIDHASKELL tutorial [98]. We extract 68 refinement

types from the LHTUTORIAL, corresponding to exercises with hidden solutions, into separate

programs along with their relevant context, such as our running example in Figure 4.3. For each

refinement type in this benchmark, we build a LLM prompt that includes the implemented Haskell

function with its type signature and any surrounding context from the corresponding exercise.

For example, any relevant functions, comments or possible input-output test cases that can help

verify the correctness of the target function. Additionally, functions called by the target function

that are already annotated with refinement types were also provided when available.

For the rest of our evaluation (RQ2 and RQ3), we use two public Haskell libraries,

HSALSA20 and BYTESTRING. HSALSA20 is a Haskell implementation of the Salsa20 cipher

with refinement types used to track the sizes of various ciphers and keys. BYTESTRING is a

Haskell library for representing and efficiently operating on byte-strings via pointer operations that

is widely used across the Haskell ecosystem; we use refinement types to statically track pointer

arithmetic and ensure low-level memory safety. HSALSA20 was annotated with refinement types

by its developer, including 96 such annotated functions, while we annotated 45 BYTESTRING

122

functions with refinement types, in order to establish a ground truth type for these benchmarks.

(While there are several other LIQUIDHASKELL repositories available online, they are in the

training data for the LLMs we consider, and hence, are excluded from our evaluation.)

Emulating User Interaction. We selected benchmarks that are already fully annotated with

refinement types for each function, so that we could emulate the user interaction — UserHint in

§ 4.4.2 — in our experiments using these ground truth types. That is, when all the predicted types

fail for a given target function, we use the ground truth type used to annotate the function in the

original benchmark as the type that was provided by the user.

Baselines. We acknowledge the importance of comparing our approach against a baseline.

However, as discussed in section 4.6, symbolic methods for program generation have historically

faced significant challenges in this domain. Recent advances in Machine Learning (ML) and large

language models (LLMs) have enabled substantial improvements, making this problem more

tractable. A purely random generation approach would be of limited utility given the immense

size of the search space; the refinement type space is considerably larger and more complex than

the space of standard Haskell types. Consequently, there aren’t any meaningful baselines in the

existing literature for generating refinement types and verifying entire codebases effectively until

now.

4.5.1 RQ1: Single type prediction accuracy

Table 4.1 presents the cumulative results on the LHTUTORIAL. We have manually cate-

gorized the 68 programs with single target functions that need to be annotated with a refinement

type as Easy, Medium and Hard, based on the complexity of the ground truth refinement type.

For each target function we generate 50 refinement types using the pre-trained LLMs and their

fine-tuned versions. We also show the number of functions that the LLMs successfully verified

123

Table 4.1: LHTUTORIAL results: 68 total single type benchmark, where we divided the user-
intended type into 3 difficulty categories. We also present the pass@k metrics for the full
benchmark.

LLM Total (68) Easy (17) Medium (30) Hard (21) pass@1 pass@5 pass@10 pass@20 pass@50
STARCODER-3B 37 14 16 7 12.91% 30.19% 38.30% 45.82% 54.41%
+ FINE-TUNED 62 17 28 17 65.88% 82.25% 85.22% 87.63% 91.18%

CODELLAMA-7B 41 15 20 6 11.68% 32.01% 42.01% 50.85% 60.29%
+ FINE-TUNED 60 15 27 18 47.97% 71.76% 78.67% 83.62% 88.24%

STARCODER-15B 42 16 19 7 18.79% 41.67% 50.21% 56.78% 61.76%
+ FINE-TUNED 62 16 28 18 57.65% 78.79% 84.26% 88.19% 91.18%

STARCODER-3B CODELLAMA-7B STARCODER2-15B
0

10

20

30

40

50

60

68

C
or

re
ct

ty
pe

s
(#

)

LHTUTORIAL

Pretrained: Hard Medium Easy
Finetuned: Hard Medium Easy

Figure 4.10: Pretrained and fine-tuned LLM accuracy in generating single refinement types for
the LHTUTORIAL benchmark.

at Figure 4.10. We observe that all models showcase great performance for the Easy types,

with slight improvements when fine-tuned. However, we observe great improvement for all

LLMs for the Medium and Hard categories. Specifically, STARCODER-3B shows a 12-program

improvement at the Medium category, while CODELLAMA-7B and STARCODER2-15B show a

7- and 9-program improvement respectively. We see a similar improvement for the Hard programs

with an increase of 10, 12 and 11 programs respectively.

We also present the pass@k results in Table 4.1. [62] introduced the pass@k metric, and

the Codex paper [17] popularized it recently, specifically for evaluating code generation LLMs.

To calculate pass@k, k code samples are generated per problem and the problem is considered

solved if any sample is correct, where pass@k is the total fraction of problems solved. However,

as it has been observed in [17], computing pass@k this way can have high variance. Instead, to

124

STARCODER-3B CODELLAMA-7B STARCODER2-15B
0

10

20

30

40

50

60

70

80

90
96

C
or

re
ct

ty
pe

s
(#

)
HSALSA20

Pretrained: User LHC Finetuned: User LHC
Qualifiers: User LHC Dependencies: User LHC

STARCODER-3B CODELLAMA-7B STARCODER2-15B
0

10

20

30

40

45

C
or

re
ct

ty
pe

s
(#

)

BYTESTRING

Pretrained: User LHC Finetuned: User LHC
Qualifiers: User LHC Dependencies: User LHC

Figure 4.11: LHC accuracy in generating and verifying refinement types for our Haskell
benchmarks.

evaluate pass@k, n≥ k samples per task are generated (in this paper, we use n = 50 and k ≤ 50),

and the number of correct samples c≤ n is counted in order to calculate the unbiased estimator:

pass@k = E
problems

[
1−

(n−c
k

)(n
k

)]

pass@50 here represents the total accuracy of each LLM for the LHTUTORIAL, i.e. the percent-

age of the target functions that the LLMs generated at least one correct refinement type.

By fine-tuning, we observe great improvement for all pass@k metrics, reaching a

pass@10 of 85% and a pass@50 of 91% in some cases. We also see that there isn’t a big

improvement for k > 10 samples, especially for the fine-tuned models, indicating that sampling

even 10 refinement types per function can yield very accurate results with a fine-tuned LLM.

Fine-tuned LLMs — even with a small number of trainable parameters — learn to encode

LIQUIDHASKELL programs and can generate correct refinement types for 91% of the target

functions, an improvement of up to 35% from the out-of-the-box models.

125

Table 4.2: HSALSA20 verification results (96 functions)

LLM Automatically Correct Types LHC Verification
Verified Unverified Iterations Time (mins)

STARCODER-3B 77 +7 562 257
+ FINE-TUNED 76 +9 583 227
+ QUALIFIERS 82 +5 400 295
+ DEPENDENCIES 86 +3 337 238

CODELLAMA-7B 64 +20 760 246
+ FINE-TUNED 78 +9 485 252
+ QUALIFIERS 83 +7 365 239
+ DEPENDENCIES 87 +4 334 201

STARCODER-15B 76 +13 496 351
+ FINE-TUNED 81 +10 472 336
+ QUALIFIERS 88 +3 314 358
+ DEPENDENCIES 91 +2 258 254

4.5.2 RQ2: Whole codebase precision

Next, we evaluate LHC on the two Haskell codebases HSALSA20 and BYTESTRING. We

evaluate here four different approaches with each LLM, presented in Table 4.2 for HSALSA20

and Table 4.3 for BYTESTRING. First, we use the original pretrained LLMs as a backend for

LHC in order to generate the various refinement types. Second, we fine-tune the models as

described before. Next, we enable the QUALIFIERS verification optimization, an optimization

which automatically extracts all qualifiers from the LLM predicted types and adds corresponding

pragmas in the context of the program, as described in § 4.3.4. This optimization also adds

the relevant wildcard type as a last candidate type, that is tested when all LLM-predicted types

are exhausted, which tells LIQUIDHASKELL to perform symbolic type inference using the

qualifiers. Finally, we enable the DEPENDENCIES prompt optimization for additional context.

This optimization uses few-shot prompting to add the verified dependency functions to the LLM

prompts (§ 4.3.2).

Automatically Verified. This metric, in the first column of Table 4.2 and Table 4.3, indicates

the number of functions that were automatically annotated and verified by LHC without human

126

Table 4.3: BYTESTRING verification results (45 functions)

LLM Automatically Correct Types LHC Verification
Verified Unverified Iterations Time (mins)

STARCODER-3B 27 +1 95 73
+ FINE-TUNED 29 +2 104 52
+ QUALIFIERS 33 +3 99 49
+ DEPENDENCIES 35 +1 93 42

CODELLAMA-7B 26 +1 114 87
+ FINE-TUNED 27 +1 110 84
+ QUALIFIERS 30 +0 137 90
+ DEPENDENCIES 32 +1 114 80

STARCODER-15B 30 +1 95 115
+ FINE-TUNED 30 +2 88 110
+ QUALIFIERS 31 +2 101 121
+ DEPENDENCIES 33 +2 100 111

intervention. For example, STARCODER-3B in its fine-tuned version correctly inferred types for

76 functions in HSALSA20 and verifies up to 86 functions when we include the QUALIFIERS and

DEPENDENCIES optimizations. CODELLAMA-7B shows similar improvement. However, the

larger STARCODER2-15B reaches up to 91 functions that are correctly annotated by LHC.

Correct Unverified Type Predictions. This metric shows the number of times that the LLMs

generated a correct refinement type for a function, but LHC ran out of fuel (as discussed in

§ 4.4.2) and the function was not automatically (and locally) verified by LHC — thus not included

in the previous metric. In a real-world setting, however, before asking the user to manually write

a refinement for these unsuccessful functions, as a preliminary step we could provide the list of

LLM-predicted types and have the user select or approve one in order to mitigate the manual

effort. While a higher number for this metric indicates less dependency on manual input, it

still represents wasted cycles for LHC, where it couldn’t arrive to the correct combination of

refinement types in order to locally verify the faulty ones. We observe that all LLMs have

relatively high numbers when QUALIFIERS and DEPENDENCIES were not used. When we use

both optimizations, the numbers go as low as only 2 for STARCODER2-15B, since LHC was able

127

to automatically verify the vast majority of the functions when using this LLM, as we showed

earlier.

Cumulative results. Figure 4.11 also shows the cumulative results of the previous two metrics,

i.e. the total number of functions LHC was able to generate a correct type for and were either

automatically or manually verified. We observe that for HSALSA20 even without the last two

optimizations, LHC generates a significant fraction — nearly 80% — of correct types, but the

optimizations nevertheless improve the accuracy of types automatically generated by LHC to

more than 90%. However, for the more complicated module BYTESTRING though, we observe

that without the QUALIFIERS and DEPENDENCIES optimizations, we can only generate 60%

of the types, and the addition of symbolic qualifier inference and context provides a significant

improvement, allowing LHC to generate correct types for up to 77% of the functions.

LHC can automatically generate formally verified types for up to 94% of a codebase’s

functions.

4.5.3 RQ3: Efficiency

The third and fourth columns of Table 4.2 and Table 4.3 summarize how efficiently LHC

can verify codebases.

LHC Iterations. This metric counts the number of iterations that LHC needs to verify the

full module. Fewer iterations suggest a more efficient verification process. We observe that, for

HSALSA20 that has more functions to verify and deeper dependencies, there is a significant

improvement in the time we spent verifying them when we use QUALIFIERS and DEPENDENCIES.

On the other hand, for BYTESTRING, we observe a slight overhead, for unclear reasons, but

perhaps due increasing the size of the prompts and getting diminishing results from the extra

128

context in terms of efficiency.

Verification Time. The last column in the tables Table 4.2 and Table 4.3 provides an overview

of the total time in minutes that LHC spent in fully verifying the modules. At a high-level, it is

remarkable that LHC is able to annotate and verify entire codebases in 1-4 hours, as typically

this work takes days or weeks for a human to do. (Of course, this comes with the caveat that with

these benchmarks we know that suitable types exist, and we emulated human assistance when the

LLM got stuck). The results also indicate that the verification time varies significantly depending

on the LLM used and the specific optimizations applied. For instance, in the HSALSA20 results,

we see that the baseline STARCODER-3B model required 257 minutes for verification, which was

reduced to 227 minutes with fine-tuning, and further adjusted to 295 minutes with qualifiers, but

significantly drops to 238 minutes with dependency enhancements. Similarly, CODELLAMA-7B

and STARCODER2-15B models show notable reductions in verification time when dependencies

are included. In the BYTESTRING results, the trend is consistent for STARCODER-3B and

CODELLAMA-7B. However, STARCODER2-15B shows no significant improvement.

LHC can, with modest emulated human assistance, annotate and verify entire codebases

in a few hours. The fine-tuning, QUALIFIERS and DEPENDENCIES optimizations greatly

enhance verification efficiency by reducing verification time by an average 18% (and up to

42%) across real-world codebases.

4.5.4 Threats to Validity

We note three threats to the validity of our results. First, we have only considered three

codebases: the LHTUTORIAL, HSALSA20, and BYTESTRING. It is entirely possible that larger

or more complex codebases may require annotations that cannot be generated so effectively

by LLMs. Second, our approach currently doesn’t support mutually recursive functions. A

129

potential solution to this is to break the cycles created by these mutually recursive functions by

either (1) requiring the programmer to specify a type for one of the functions of the cycle, or (2)

speculatively breaking the cycle and letting our backtracking mechanism synthesize the types.

However, we have not tried either of these approached as mutually recursive functions don’t occur

in our benchmarks. Third, we have emulated human assistance in our evaluation, meaning on our

benchmarks we know a priori that suitable refinement type annotations exist. In a more realistic

scenario using LHC on a new codebase, such types may not exist because bugs in the code may

require it to be modified, or because of limitations in the verifier (LIQUIDHASKELL) itself. We

defer the evaluation of LHC on new codebases with actual users to future work (but note that this

is challenging as realistically, annotation requires days or weeks of human effort).

130

4.6 Related Work

Finally, we discuss some related lines of work on using machine learning and LLMs to

automate program verification.

Generating Proof Annotations. LHC is most closely related to several other neurosymbolic

approaches to generating the annotations needed for formal verification. CODE2INV [113], [60],

and Pei et al. [90] present techniques to synthesize loop invariants [32] using neural networks

and fine-tuned LLMs, respectively. Kamath et al. [52] and [132] integrates LLMs natively

with automated reasoners — ESCJava [30] and ESBMC [34] — to additionally check whether

the generated invariants are actually inductive and, optionally, further to repair the invariants

by querying the LLMs and reducing the proposed invariants into an inductive set using the

HOUDINI algorithm [31]. Several studies have also explored the generation of annotations and

formal postconditions using advanced techniques. Similarly, NL2POSTCOND [26] investigates

the transformation of natural language intent into formal method postconditions using LLMs,

proposing metrics for assessing the quality of these transformations. Finally, LAUREL [82]

automatically generates helper assertions for proofs written in DAFNY by leveraging LLMs

as well. All the above focus on a single goal: generating loop invariants, or contracts for

single functions in isolation. In contrast, LHC is an interprocedural method that aims to generate

interdependent refinement type annotations (which generalize invariants, pre- and post-conditions)

across the whole codebase.

Generating Code from Specifications. A different line of work looks at using LLMs to

synthesizing code from formal specifications in proof-oriented languages. Misu et al. [81] and

CLOVER [118] use LLMs to synthesize verified DAFNY code corresponding to natural language

and formal specifications. Similarly, Chakraborty et al. [15] investigate using LLMs to synthesize

F* programs (and proofs) from dependent type specifications. In contrast to the above, LHC’s

131

goal is not to generate code, but only the refinement contract annotations needed for modular

verification of existing code(bases).

LLMs for Proof Generation. Several groups have looked into using machine learning tech-

niques to automate proofs written in tactic-based interactive theorem provers. Sanchez et al. [108]

uses machine learning techniques to generate COQ proofs. BALDUR [29] explores the use of

LLMs to generate entire Isabelle/HOL proofs for program verification, a departure from tradi-

tional proof assistants that generate one proof statement at a time. Complementing this, Yang

et al. [136] introduces LEANDOJO, a tool that combines LLMs with retrieval-augmented mech-

anisms to enhance theorem proving in the LEAN environment, demonstrating improved proof

generation capabilities. Wu et al. [134] evaluates the performance of LLMs in autoformalization

in Isabelle/HOL, introducing a neural theorem prover trained on autoformalized statements.

Unlike the above, LHC is designed to work in the setting of SMT-based “auto-active” verification,

where the only programmer input is the code and the type specification; the rest is handled by the

SMT solver.

In-Context Prompting. In-context prompting techniques have been explored to enhance the

few-shot learning capabilities of LLMs. Liu et al. [72] investigates the relationship between

in-context example selection and GPT-3’s few-shot performance, introducing a retrieval model

for better example selection. Su et al. [117] proposes a framework for selective annotation to

improve accuracy in in-context learning scenarios. Lu et al. [76] demonstrates the importance

of prompt order, using model-generated sequences to find optimal prompts, while Sorensen et

al. [116] introduces an information-theoretic approach to prompt engineering, maximizing mutual

information to select the best prompts without relying on model weights or ground truth labels.

LAUREL [82] introduced a lemma similarity metric to import potentially related lemmas to the

current proof. These lines of work inspired our DEPENDENCIES optimization, where we augment

our prompts with additional context. Unlike the above, LHC does not rely on similarity heuristics

132

but instead, it includes the function dependencies of the target function we are trying to locally

verify.

133

4.7 Acknowledgements

Chapter 4, in part, is a reprint of the material as it will appear in the Proceedings of the

2025 IEEE/ACM 46th International Conference on Software Engineering. Georgios Sakkas,

Pratyush Sahu, Kyeling Ong, Ranjit Jhala, ICSE 2025. The dissertation author was the primary

investigator and author of this paper.

134

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This dissertation has explored neurosymbolic approaches to enhancing the programming

and debugging experience by developing tools that leverage both symbolic reasoning and machine

learning techniques. Through the introduction of three core systems — RITE, SEQ2PARSE,

and LHC — we have demonstrated the effectiveness of neurosymbolic methods in addressing

diverse challenges in automated program repair and verification across different programming lan-

guages. RITE uses analytic program repair to provide meaningful type error feedback in OCaml,

demonstrating that similar errors can often be solved by applying similar repairs. Meanwhile,

SEQ2PARSE tackles syntax errors in Python by blending neural classifiers with error-correcting

parsers, successfully addressing challenges associated with selecting relevant error-correction

rules. Finally, LHC introduces a neurosymbolic approach to refinement type inference in Haskell,

reducing the labor-intensive process of manual annotations required for verification.

Each tool has been evaluated for its accuracy, efficiency, and usability, showing promising

results across large datasets and user studies. These tools not only improve error localization and

repair accuracy but also offer developers insights into the nature of their errors. By employing

135

machine learning alongside traditional programming language methods, we aim to minimize the

need for human intervention in the debugging and verification processes, significantly streamlining

software development workflows.

5.2 Future Work

Future research could broaden the applicability of neurosymbolic methods to a wider

range of programming languages, error types, and real-world software development scenarios.

While this dissertation focuses on OCaml, Python, and Haskell, expanding support to languages

like Java, C++, and Rust, which are widely used in industry, would enable these tools to address

a broader array of software systems. For instance, extending LHC to infer refinement types

in Rust could enhance its safety guarantees through automated verification of ownership and

borrowing rules, thus reducing memory safety vulnerabilities. Similarly, adapting SEQ2PARSE

for JavaScript could mitigate the challenges posed by its dynamically typed nature, where syntax

errors can manifest at runtime environments too.

Another promising direction is to integrate neurosymbolic techniques into more complex

environments such as distributed systems, concurrent programming, and embedded systems. These

domains present unique challenges, including race conditions, deadlocks, and resource constraints,

which traditional debugging tools often struggle to address. For example, a neurosymbolic tool

could leverage neural models to detect potential concurrency issues and symbolic reasoning to

validate fixes, thus enabling developers to manage complex parallel execution patterns effectively.

In the context of tokenization and model pre-training, our exploration with SEQ2PARSE

revealed the potential of tailoring token sequences for specific tasks. Building on this, a future

avenue involves developing custom tokenization strategies that better represent programming

languages. Current tokenizers, like OpenAi’s Tiktoken, are largely optimized for natural language

processing, particularly English, and may not be well-suited for code-related tasks [91]. For

136

example, they can be suboptimal for handling nested syntactic structures inherent in programming

languages. A specialized tokenizer could, for instance, preserve the hierarchical nature of abstract

syntax trees (ASTs), potentially enhancing the performance of Large Language Models (LLMs)

in tasks such as code completion, code summarization, and program synthesis.

Moreover, semi-supervised learning and reinforcement learning present opportunities to

reduce the dependency on large, labeled datasets. Semi-supervised approaches could leverage self-

training or consistency regularization to make use of unlabeled code samples, while reinforcement

learning could optimize model behavior based on real-time developer feedback. For example,

an interactive debugging assistant could use reinforcement learning to adaptively refine error

messages and suggested fixes based on developer responses, leading to more personalized and

effective debugging experiences.

Additionally, future work could explore integrating active learning pipelines, where

models actively query developers for guidance on uncertain cases, improving their performance

over time with minimal manual effort. This approach would be especially beneficial in domains

where labeled data is scarce or expensive to obtain, such as domain-specific languages (DSLs) or

legacy codebases.

Lastly, there is significant potential for expanding neurosymbolic tools beyond error repair

and type inference into broader areas of program synthesis, code optimization, and adaptive

learning environments for novice programmers. For example, a neurosymbolic system could

dynamically adjust the difficulty of coding exercises based on a student’s progress, providing

personalized feedback and targeted hints. This capability could revolutionize programming

education, making it more accessible and effective for learners with diverse backgrounds and

skill levels.

By pursuing these future directions, the neurosymbolic approaches developed in this dis-

sertation could significantly advance the state of automated software development tools, reducing

the cognitive load on developers, improving software reliability, and making programming more

137

accessible across a diverse range of applications and user groups.

138

Bibliography

[1] Alireza Ahadi, Raymond Lister, Shahil Lal, and Arto Hellas. Learning programming,
syntax errors and institution-specific factors. In Proceedings of the 20th Australasian
Computing Education Conference, ACE ’18, pages 90–96, New York, NY, USA, 2018.
Association for Computing Machinery.

[2] Toufique Ahmed, Premkumar Devanbu, and Vincent J Hellendoorn. Learning lenient
parsing & typing via indirect supervision. Empirical Software Engineering, 26(2), mar
2021.

[3] Umair Z. Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, and Sumit Gulwani.
Compilation error repair: for the student programs, from the student programs. In In-
ternational Conference on Software Engineering: Software Engineering Education and
Training, pages 78–87, 2018.

[4] A. V. Aho and S. C. Johnson. Lr parsing. ACM Comput. Surv., 6(2):99–124, jun 1974.

[5] Alfred V. Aho and Thomas G. Peterson. A minimum distance error-correcting parser for
context-free languages. SIAM J. Comput., 1:305–312, 1972.

[6] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent
programs with graphs, 2017.

[7] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. Getafix: learn-
ing to fix bugs automatically. Proceedings of the ACM on Programming Languages,
3(OOPSLA):1–27, Oct 2019.

[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. CoRR, abs/1409.0473, 2015.

[9] Sahil Bhatia and Rishabh Singh. Automated correction for syntax errors in programming
assignments using recurrent neural networks, 2016.

[10] Avishkar Bhoopchand, Tim Rocktäschel, Earl Barr, and Sebastian Riedel. Learning python
code suggestion with a sparse pointer network, 2016.

139

[11] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics), pages 209–210. Springer-Verlag, Berlin, Heidelberg, 2006.

[12] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners, 2020.

[13] Michael G. Burke and Gerald A. Fisher. A practical method for lr and ll syntactic error
diagnosis and recovery. ACM Trans. Program. Lang. Syst., 9(2):164–197, mar 1987.

[14] Michael Carbin, Sasa Misailovic, and Martin C Rinard. Verifying quantitative reliability
for programs that execute on unreliable hardware. ACM SIGPLAN Notices, 48(10):33–52,
2013.

[15] Saikat Chakraborty, Gabriel Ebner, Siddharth Bhat, Sarah Fakhoury, Sakina Fatima, Shu-
vendu Lahiri, and Nikhil Swamy. Towards neural synthesis for smt-assisted proof-oriented
programming, 2024.

[16] Nigel P Chapman. LR Parsing: Theory and Practice. Cambridge University Press, New
York, NY, USA, 1987.

[17] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray,
Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mo-
hammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings,
Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code,
2021.

[18] Sheng Chen and Martin Erwig. Counter-factual typing for debugging type errors. In
Principles of Programming Languages, POPL ’14, pages 583–594, New York, NY, USA,
2014. ACM.

[19] Michael Collins. Probabilistic context-free grammars (pcfgs). Lecture Notes, 2013.

[20] Rafael Corchuelo, José A. Pérez, Antonio Ruiz, and Miguel Toro. Repairing syntax errors
in lr parsers. ACM Trans. Program. Lang. Syst., 24(6):698–710, nov 2002.

140

[21] Benjamin Cosman, Madeline Endres, Georgios Sakkas, Leon Medvinsky, Yao-Yuan Yang,
Ranjit Jhala, Kamalika Chaudhuri, and Westley Weimer. PABLO: Helping Novices Debug
Python Code Through Data-Driven Fault Localization, pages 1047–1053. Association for
Computing Machinery, New York, NY, USA, 2020.

[22] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. All syntax errors are not equal.
In Proceedings of the 17th ACM Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’12, pages 75–80, New York, NY, USA, 2012.
Association for Computing Machinery.

[23] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms, 2023.

[24] Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang. Hoppity:
Laerning graph transformations to detect and fix bugs in programs. In International
Conference on Learning Representations, 2020.

[25] Jay Earley. An efficient context-free parsing algorithm. Commun. ACM, 13(2):94–102,
February 1970.

[26] Madeline Endres, Sarah Fakhoury, Saikat Chakraborty, and Shuvendu K. Lahiri. Can large
language models transform natural language intent into formal method postconditions?
Proc. ACM Softw. Eng., 1(FSE), 2024.

[27] Madeline Endres, Georgios Sakkas, Benjamin Cosman, Ranjit Jhala, and Westley Weimer.
Infix: Automatically repairing novice program inputs. In Proceedings of the 34th
IEEE/ACM International Conference on Automated Software Engineering, ASE ’19, pages
399–410. IEEE Press, 2019.

[28] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science, 103(2):235 – 271, 1992.

[29] Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof
generation and repair with large language models. In Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2023, page 1229–1241, New York, NY, USA, 2023.
Association for Computing Machinery.

[30] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended
static checking for Java. In PLDI, 2002.

[31] Cormac Flanagan and K. Rustan M. Leino. Houdini, an annotation assistant for esc/java.
In Proceedings of the International Symposium of Formal Methods Europe on Formal
Methods for Increasing Software Productivity, FME ’01, page 500–517, Berlin, Heidelberg,
2001. Springer-Verlag.

141

[32] R. W. Floyd. Assigning meanings to programs. Mathematical aspects of computer science,
19(19-32):1, 1967.

[33] Mark Gabel and Zhendong Su. A study of the uniqueness of source code. In Foundations
of Software Engineering, FSE ’10, pages 147–156, New York, NY, USA, 2010. ACM.

[34] Mikhail R. Gadelha, Felipe R. Monteiro, Jeremy Morse, Lucas C. Cordeiro, Bernd Fischer,
and Denis A. Nicole. Esbmc 5.0: an industrial-strength c model checker. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE
’18, page 888–891, New York, NY, USA, 2018. Association for Computing Machinery.

[35] Lennard Gäher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer. Re-
finedrust: A type system for high-assurance verification of rust programs. Proc. ACM
Program. Lang., 8(PLDI):1115–1139, 2024.

[36] Catarina Gamboa, Paulo Canelas, Christopher Steven Timperley, and Alcides Fonseca.
Usability-oriented design of liquid types for java. In 45th IEEE/ACM International
Conference on Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023,
pages 1520–1532. IEEE, 2023.

[37] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, pages 180–184.
MIT Press, 2016. http://www.deeplearningbook.org.

[38] Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with PVS. In Orna
Grumberg, editor, Computer Aided Verification, 9th International Conference, CAV ’97,
Haifa, Israel, June 22-25, 1997, Proceedings, volume 1254 of Lecture Notes in Computer
Science, pages 72–83. Springer, 1997.

[39] Sumit Gulwani, Ivan Radicek, and Florian Zuleger. Automated clustering and program
repair for introductory programming assignments. Programming Language Design and
Implementation, 2018.

[40] Philip J. Guo. Online python tutor: Embeddable web-based program visualization for cs
education. In Proceeding of the 44th ACM Technical Symposium on Computer Science
Education, SIGCSE ’13, pages 579–584, New York, NY, USA, 2013. Association for
Computing Machinery.

[41] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix: Fixing common
c language errors by deep learning. Proceedings of the AAAI Conference on Artificial
Intelligence, 31(1), Feb. 2017.

[42] Christian Haack and J B Wells. Type error slicing in implicitly typed Higher-Order
languages. In Programming Languages and Systems, Lecture Notes in Computer Science,
pages 284–301. Springer Berlin Heidelberg, 7 April 2003.

[43] Jad Hamza, Nicolas Voirol, and Viktor Kuncak. System FR: formalized foundations for
the stainless verifier. Proc. ACM Program. Lang., 3(OOPSLA):166:1–166:30, 2019.

142

http://www.deeplearningbook.org

[44] Momchil Hardalov, Ivan Koychev, and Preslav Nakov. Towards automated customer
support. In International Conference on Artificial Intelligence: Methodology, Systems, and
Applications, pages 48–59. Springer, 2018.

[45] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer
New York, 2009.

[46] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo, Loris
D’Antoni, and Björn Hartmann. Writing reusable code feedback at scale with mixed-
initiative program synthesis. In Learning @ Scale, pages 89–98, 2017.

[47] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the
naturalness of software. In International Conference on Software Engineering, ICSE ’12,
pages 837–847, Piscataway, NJ, USA, 2012.

[48] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

[49] Lakshmi S Iyer, Babita Gupta, and Nakul Johri. Performance, scalability and reliability
issues in web applications. Industrial Management & Data Systems, 105(5):561–576,
2005.

[50] Frederick Jelinek, John D Lafferty, and Robert L Mercer. Basic methods of probabilis-
tic context free grammars. In Speech Recognition and Understanding, pages 345–360.
Springer, 1992.

[51] Nan Jiang, Thibaud Lutellier, and Lin Tan. CURE: Code-aware neural machine translation
for automatic program repair. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, may 2021.

[52] Adharsh Kamath, Aditya Senthilnathan, Saikat Chakraborty, Pantazis Deligiannis, Shu-
vendu K. Lahiri, Akash Lal, Aseem Rastogi, Subhajit Roy, and Rahul Sharma. Finding
inductive loop invariants using large language models, 2023.

[53] M. Kawaguchi, P. Rondon, and R. Jhala. Type-based data structure verification. In PLDI,
2009.

[54] Milod Kazerounian, Niki Vazou, Austin Bourgerie, Jeffrey S. Foster, and Emina Torlak.
Refinement types for ruby. CoRR, abs/1711.09281, 2017.

[55] Andrew M. Kent, David Kempe, and Sam Tobin-Hochstadt. Occurrence typing modulo
theories. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’16, page 296–309, New York, NY, USA, 2016.
Association for Computing Machinery.

143

[56] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch gen-
eration learned from human-written patches. In International Conference on Software
Engineering, pages 802–811, 2013.

[57] Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. Structured attention
networks. CoRR, abs/1702.00887, 2017.

[58] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 22 De-
cember 2014.

[59] Donald E. Knuth. On the translation of languages from left to right. Information and
Control, 8(6):607–639, 1965.

[60] Naoki Kobayashi, Taro Sekiyama, Issei Sato, and Hiroshi Unno. Toward neural-network-
guided program synthesis and verification, 2021.

[61] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. Practitioners’ expectations
on automated fault localization. In International Symposium on Software Testing and
Analysis, pages 165–176. ACM, 2016.

[62] Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken,
and Percy S Liang. Spoc: Search-based pseudocode to code. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[63] Sarah K. Kummerfeld and Judy Kay. The neglected battle fields of syntax errors. In
Proceedings of the Fifth Australasian Conference on Computing Education - Volume 20,
ACE ’03, pages 105–111, AUS, 2003. Australian Computer Society, Inc.

[64] Temur Kutsia, Jordi Levy, and Mateu Villaret. Anti-unification for unranked terms and
hedges. volume 52, pages 219–234, 01 2011.

[65] Nico Lehmann, Adam T. Geller, Niki Vazou, and Ranjit Jhala. Flux: Liquid types for rust.
Proc. ACM Program. Lang., 7(PLDI), jun 2023.

[66] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness.
In Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning, pages 348–370, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[67] K. Rustan M. Leino. Dafny: An Automatic Program Verifier for Functional Correctness.
In Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), 2010.

[68] Eelco Lempsink. Generic type-safe diff and patch for families of datatypes. Master’s
thesis, Universiteit Utrecht, 2009.

144

[69] Benjamin S Lerner, Matthew Flower, Dan Grossman, and Craig Chambers. Searching
for type-error messages. In Programming Language Design and Implementation, pages
425–434. ACM, 2007.

[70] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii
Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade,
Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin,
Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp Patel,
Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Urvashi
Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim
Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire
Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer
Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy,
Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the
source be with you, 2023.

[71] Henry H Liu. Software performance and scalability: a quantitative approach. John Wiley
& Sons, 2011.

[72] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for gpt-3?, 2021.

[73] Calvin Loncaric, Satish Chandra, Cole Schlesinger, and Manu Sridharan. A practical
framework for type inference error explanation. In Object-Oriented Programming, Systems,
Languages, and Applications, pages 781–799, 19 October 2016.

[74] Fan Long and Martin Rinard. Automatic patch generation by learning correct code.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’16, page 298–312, New York, NY, USA, 2016.
Association for Computing Machinery.

[75] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier,
Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max
Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry
Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu,
Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß,
Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas
Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone,
Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier
Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien
Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary,
Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes,

145

Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder 2 and the
stack v2: The next generation, 2024.

[76] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fan-
tastically ordered prompts and where to find them: Overcoming few-shot prompt order
sensitivity, 2022.

[77] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and Lin
Tan. Coconut: Combining context-aware neural translation models using ensemble for
program repair. In Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2020, pages 101–114, New York, NY, USA, 2020.
Association for Computing Machinery.

[78] Matias Martinez, Laurence Duchien, and Martin Monperrus. Automatically extracting in-
stances of code change patterns with AST analysis. In 2013 IEEE international conference
on software maintenance, pages 388–391. IEEE, 2013.

[79] Matias Martinez and Martin Monperrus. Mining software repair models for reasoning on
the search space of automated program fixing. Empirical Software Engineering, 20(1):176–
205, 2015.

[80] Philippe McLean and R. Nigel Horspool. A faster earley parser. In CC, 1996.

[81] Md Rakib Hossain Misu, Cristina V. Lopes, Iris Ma, and James Noble. Towards ai-assisted
synthesis of verified dafny methods. Proceedings of the ACM on Software Engineering,
1(FSE):812–835, July 2024.

[82] Eric Mugnier, Emmanuel Anaya Gonzalez, Ranjit Jhala, Nadia Polikarpova, and Yuanyuan
Zhou. Laurel: Generating dafny assertions using large language models, 2024.

[83] Jonathan P. Munson and Elizabeth A. Schilling. Analyzing novice programmers’ response
to compiler error messages. J. Comput. Sci. Coll., 31(3):53–61, January 2016.

[84] Eugene W Myers. An o(nd) difference algorithm and its variations. Algorithmica, 1(1-
4):251–266, 1986.

[85] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In International Conference on Machine Learning, pages 807–814, 2010.

[86] C. G. Nelson. Techniques for Program Verification. PhD thesis, Stanford University, 1980.

[87] Michael A Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

[88] Chris Parnin and Alessandro Orso. Are automated debugging techniques actually helping
programmers? In International Symposium on Software Testing and Analysis, pages
199–209. ACM, 2011.

146

[89] Zvonimir Pavlinovic, Tim King, and Thomas Wies. Finding minimum type error sources.
In Object Oriented Programming Systems Languages & Applications, pages 525–542.
ACM, 2014.

[90] Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. Can large
language models reason about program invariants? In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org, 2023.

[91] Aleksandar Petrov, Emanuele La Malfa, Philip H. S. Torr, and Adel Bibi. Language model
tokenizers introduce unfairness between languages, 2023.

[92] Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina Barzilay. sk_p: a
neural program corrector for moocs, 2016.

[93] Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan Memarian, Peter Sewell,
and Neel Krishnaswami. CN: verifying systems C code with separation-logic refinement
types. Proc. ACM Program. Lang., 7(POPL):1–32, 2023.

[94] Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in
introductory programming: A literature review. ACM Trans. Comput. Educ., 18(1), oct
2017.

[95] Vincent Rahli, Joe Wells, John Pirie, and Fairouz Kamareddine. Skalpel: A type error
slicer for standard ML. Electron. Notes Theor. Comput. Sci., 312:197–213, 24 April 2015.

[96] Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le, Daniel Morris, Arjun Radhakr-
ishna, Gustavo Soares, and Ashish Tiwari. Multi-modal program inference: A marriage of
pre-trained language models and component-based synthesis. Proc. ACM Program. Lang.,
5(OOPSLA), oct 2021.

[97] Sanguthevar Rajasekaran and Marius Nicolae. An error correcting parser for context free
grammars that takes less than cubic time, 2014.

[98] Niki Vazou Ranjit Jhala, Eric Seidel. Programming with refinement types, 2014.

[99] Reudismam Rolim, Gustavo Soares, Rohit Gheyi, Titus Barik, and Loris D’Antoni. Learn-
ing quick fixes from code repositories, 2018.

[100] P. Rondon, M. Kawaguchi, and R. Jhala. Low-level liquid types. In POPL, 2010.

[101] Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In Proceedings of
the 29th ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’08, page 159–169, New York, NY, USA, 2008. Association for Computing
Machinery.

147

[102] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen
Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron,
Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama:
Open foundation models for code, 2024.

[103] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning Representations
by Back-propagating Errors. Nature, 323(6088):533–536, 1986.

[104] Seemanta Saha, Ripon K. Saha, and Mukul R. Prasad. Harnessing evolution for multi-hunk
program repair. In International Conference on Software Engineering, pages 13–24, 2019.

[105] George Sakkas, Ranjit Jhala, Westley Weimer, and Madeline Endres. gsakkas/seq2parse:
Oopsla2 2022 code release, September 2022.

[106] Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, and Ranjit Jhala.
Type error feedback via analytic program repair. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2020, pages
16–30, New York, NY, USA, 2020. Association for Computing Machinery.

[107] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer,
and Deepak Garg. Refinedc: automating the foundational verification of C code with
refined ownership types. In Stephen N. Freund and Eran Yahav, editors, PLDI ’21:
42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 2021, pages 158–174. ACM, 2021.

[108] Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner. Generating
correctness proofs with neural networks. In Proceedings of the 4th ACM SIGPLAN
International Workshop on Machine Learning and Programming Languages, MAPL 2020,
page 1–10, New York, NY, USA, 2020. Association for Computing Machinery.

[109] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, Jan 2015.

[110] Eric L Seidel and Ranjit Jhala. A Collection of Novice Interactions with the OCaml
Top-Level System, June 2017.

[111] Eric L Seidel, Ranjit Jhala, and Westley Weimer. Dynamic witnesses for static type errors
(or, ill-typed programs usually go wrong). In International Conference on Functional
Programming, pages 228–242, 2016.

[112] Eric L. Seidel, Huma Sibghat, Kamalika Chaudhuri, Westley Weimer, and Ranjit Jhala.
Learning to blame: Localizing novice type errors with data-driven diagnosis. Proc. ACM
Program. Lang., 1(OOPSLA):60:1–60:27, October 2017.

148

[113] X. Si, A. Naik, H. Dai, M. Naik, and L. Song. Code2inv: A deep learning framework for
program verification. In S. K. Lahiri and C. Wang, editors, Computer Aided Verification
- 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020,
Proceedings, Part II, volume 12225 of Lecture Notes in Computer Science, pages 151–164.
Springer, 2020.

[114] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feedback gen-
eration for introductory programming assignments. Acm Sigplan Notices, 48(6):15–26,
2013.

[115] Dowon Song, Myungho Lee, and Hakjoo Oh. Automatic and scalable detection of
logical errors in functional programming assignments. Proc. ACM Program. Lang.,
3(OOPSLA):188:1–188:30, October 2019.

[116] Taylor Sorensen, Joshua Robinson, Christopher Rytting, Alexander Shaw, Kyle Rogers,
Alexia Delorey, Mahmoud Khalil, Nancy Fulda, and David Wingate. An information-
theoretic approach to prompt engineering without ground truth labels. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Linguistics, 2022.

[117] Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin, Rui Zhang,
Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu. Selective annotation
makes language models better few-shot learners, 2022.

[118] Chuyue Sun, Ying Sheng, Oded Padon, and Clark Barrett. Clover: Closed-loop verifiable
code generation, 2024.

[119] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks, 2014.

[120] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud,
Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf
Kohlweiss, Jean Karim Zinzindohoue, and Santiago Zanella Béguelin. Dependent types
and multi-monadic effects in f. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016, pages 256–270. ACM, 2016. 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016 ; Conference
date: 20-01-2016 Through 22-01-2016.

[121] Bryan Tan, Benjamin Mariano, Shuvendu K. Lahiri, Isil Dillig, and Yu Feng. Soltype:
refinement types for arithmetic overflow in solidity. Proc. ACM Program. Lang., 6(POPL),
jan 2022.

[122] Richard A. Thompson. Language correction using probabilistic grammars. IEEE Transac-
tions on Computers, C-25(3):275–286, 1976.

149

[123] Frank Tip and T B Dinesh. A slicing-based approach for locating type errors. ACM Trans.
Softw. Eng. Methodol., 10(1):5–55, January 2001.

[124] P. van der Spek, N. Plat, and C. Pronk. Syntax error repair for a java-based parser generator.
SIGPLAN Not., 40(4):47–50, April 2005.

[125] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30, pages 5998–6008. Curran
Associates, Inc., 2017.

[126] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones.
Refinement types for haskell. In Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’14, page 269–282, New York, NY, USA,
2014. Association for Computing Machinery.

[127] P. Vekris, B. Cosman, and R. Jhala. Refinement types for typescript. In PLDI, 2016.

[128] Gust Verbruggen, Vu Le, and Sumit Gulwani. Semantic programming by example with
pre-trained models. Proc. ACM Program. Lang., 5(OOPSLA), oct 2021.

[129] Mitchell Wand. Finding the source of type errors. In Principles of Programming Languages,
pages 38–43, 1986.

[130] Ke Wang, Rishabh Singh, and Zhendong Su. Search, align, and repair: Data-driven
feedback generation for introductory programming exercises. In Programming Language
Design and Implementation, pages 481–495, 2018.

[131] P.J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 78(10):1550–1560, 1990.

[132] Haoze Wu, Clark Barrett, and Nina Narodytska. Lemur: Integrating large language models
in automated program verification, 2024.

[133] Liwei Wu, Fei Li, Youhua Wu, and Tao Zheng. GGF: A Graph-Based Method for Pro-
gramming Language Syntax Error Correction, page 139–148. Association for Computing
Machinery, New York, NY, USA, 2020.

[134] Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik,
and Christian Szegedy. Autoformalization with large language models, 2022.

[135] H. Xi and F. Pfenning. Eliminating array bound checking through dependent types. In
PLDI, 1998.

[136] Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu,
Saad Godil, Ryan Prenger, and Anima Anandkumar. Leandojo: Theorem proving with
retrieval-augmented language models, 2023.

150

[137] Danfeng Zhang and Andrew C Myers. Toward general diagnosis of static errors. In
Principles of Programming Languages, pages 569–581, 2014.

151

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Type Error Feedback via Analytic Program Repair
	Introduction
	Overview
	Representing Fixes
	Acquiring a Fix-Labeled Training Set
	Learning Candidate Fix Templates
	Predicting Templates via Multi-classification
	Synthesizing Feedback from Templates

	Learning Fix Templates
	Representing User Fixes
	Extracting Fix Templates from a Dataset
	Partitioning the Templates

	Predicting Fix Templates
	Feature and Label Extraction
	Training Predictive Models
	Predicting Fix Templates
	Discussion

	Template-Guided Repair Synthesis
	Local Synthesis from Templates
	Ranking Error Locations

	Evaluation
	RQ1: Accuracy
	RQ2: Efficiency
	RQ3: Usefulness
	RQ4: Impact of Templates on Quality

	Related Work
	Conclusion
	Acknowledgements

	Seq2Parse: Neurosymbolic Parse Error Repair
	Introduction
	A Case for Parse Error Repair
	Overview
	Error-Correcting Parsing
	Abstracting Program Token Sequences
	Training Sequence Classifiers
	Predicting Error Rules with Sequence Classifiers

	Abstracting Programs with Parse Errors
	Earley Partial Parses
	Probabilistic Context-Free Grammars
	Abstracted Token Sequences

	Training Sequence Classifiers
	Building a Fast Error-Correcting Parser
	Learning Error Production Rules
	Training and Using a Transformer Classifier
	Generating an Efficient Error-Correcting Parser

	Evaluation
	RQ1: Accuracy
	RQ2: Repaired Program Preciseness
	RQ3: Efficiency
	RQ4: Usefulness

	Related Work
	Conclusion
	Acknowledgements
	Data Availability Statement

	Neurosymbolic Modular Refinement Type Inference
	Introduction
	Background
	Refinement Type Checking with LiquidHaskell
	Neural Type Inference with LLMs

	Overview
	Initialization
	Building the LLM prompt
	Generating type predictions
	Verifying types
	Updating the working list
	Back-jumping to a dependency when predictions fail
	Asking the user for a type

	Algorithm
	Generating type predictions
	Trying type predictions
	Back-jumping to the least tested dependency

	Evaluation
	RQ1: Single type prediction accuracy
	RQ2: Whole codebase precision
	RQ3: Efficiency
	Threats to Validity

	Related Work
	Acknowledgements

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

