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Abstract Microbial communities can potentially

mediate feedbacks between global change and eco-

system function, owing to their sensitivity to envi-

ronmental change and their control over critical

biogeochemical processes. Numerous ecosystem

models have been developed to predict global change

effects, but most do not consider microbial mecha-

nisms in detail. In this idea paper, we examine the

extent to which incorporation of microbial ecology

into ecosystem models improves predictions of

carbon (C) dynamics under warming, changes in

precipitation regime, and anthropogenic nitrogen

(N) enrichment. We focus on three cases in which

this approach might be especially valuable: temporal

dynamics in microbial responses to environmental

change, variation in ecological function within

microbial communities, and N effects on microbial

activity. Four microbially-based models have

addressed these scenarios. In each case, predictions

of the microbial-based models differ—sometimes
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substantially—from comparable conventional mod-

els. However, validation and parameterization of

model performance is challenging. We recommend

that the development of microbial-based models must

occur in conjunction with the development of theo-

retical frameworks that predict the temporal

responses of microbial communities, the phyloge-

netic distribution of microbial functions, and the

response of microbes to N enrichment.

Keywords Community composition � Functional

groups � Global change � Nitrogen � Precipitation �
Temporal dynamics � Warming

Introduction

Ecosystem processes are governed to a large extent

by microorganisms and their metabolic activities

(Schlesinger 1997). For example, microbes perform

critical roles in the global carbon (C) cycle, by

decomposing organic material and releasing green-

house gases such as CO2 and CH4 into the atmo-

sphere (Conrad 1996). In addition, microbes often

respond to alterations in environmental conditions,

including many aspects of global change. Anthropo-

genic N enrichment, global warming, and alterations

in water availability have received particular atten-

tion in terms of their effects on microbes (e.g., Evans

and Wallenstein 2011; Wallenstein and Hall 2011;

Yavitt et al. 2011). In field experiments, microbial

biomass and/or community composition can be

altered by warming (Allison and Martiny 2008 and

references therein; Allison and Treseder 2008; Brad-

ford et al. 2008; Castro et al. 2010; Frey et al. 2008;

Joergensen et al. 1990; Rillig et al. 2002), N

fertilization (reviewed in Allison and Martiny 2008;

Lecerf and Chauvet 2008; Treseder 2008), and

sometimes in manipulations of precipitation regimes

(Castro et al. 2010; Evans and Wallenstein 2011;

Hawkes et al. 2011; Schimel et al. 1999; Williams

2007). If these shifts alter rates of decomposition or

the production of greenhouse gases, then microbes

can potentially mitigate or accentuate climate change

(e.g., Strengbom et al. 2002; Todd-Brown et al. 2011;

Wagner and Liebner 2009), which is a critical

scientific, political, and economic issue (IPCC 2007).

In this idea paper, we ask whether we can improve

our predictions of C dynamics in response to global

change by explicitly including microbiological

details in biogeochemical models, and if so, are the

improvements over conventional models (i.e., those

with more limited microbial detail) substantial

enough to merit the effort? We address C cycling in

three cases: temporal dynamics of microbes, variation

in ecological function within microbial communities,

and N loading in ecosystems. For each case, we first

briefly survey pertinent empirical evidence. Next, we

present a description of the relevant models and their

explicit microbial mechanisms. We performed an

exhaustive search for published models that (1)

explicitly couple microbes to the processes that they

control, (2) predict changes in C dynamics, and (3)

are compared with more conventional models. To the

best of our knowledge, only the four ‘‘case study’’

models discussed below meet these criteria. We then

evaluate the degree to which these models improve

predictions of C cycling compared to conventional

models. Finally, we provide ideas for prioritizing

future work in this area.

Incorporating temporal responses of microbes

into ecosystem models

The speed and duration with which microbes respond

to global change can influence the extent to which

ecosystems form positive or negative feedbacks on

global climate (Table 1; Allison and Martiny 2008).

Rapid and sustained responses could generate strong

feedback loops. For example, if global warming led

to sustained (i.e., strong short- and long-term)

increases in soil CO2 efflux, then the greenhouse

effect could be greatly amplified (Trumbore 1997). In

comparison, if microbes are resistant (i.e., weak

short- and long-term), resilient (i.e., strong short-term

but weak long-term), or delayed (i.e., weak short-

term but strong long-term) in their responses to

environmental change, then their contributions to

ecosystem feedbacks may be more constrained. For

instance, microbial community composition, bio-

mass, and respiration often do not change markedly

in response to alterations in water availability in

natural systems (e.g., Cruz-Martinez et al. 2009;

Evans and Wallenstein 2011; Lutgen et al. 2003;

Singh et al. 1989; Vourlitis et al. 2009).
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Changes in microbial activity can occur via a

number of non-exclusive mechanisms, including

physiological responses (e.g., Davidson and Janssens

2006; Schimel and Weintraub 2003), phenotypic

plasticity (e.g., Schimel et al. 2007), population

growth and turnover (e.g., Schimel et al. 1994),

evolutionary adaptation (e.g., Portner et al. 2006), or

shifts in community composition (e.g., Balser et al.

2002), each with potentially different rates of

response. For instance, thermodynamic principles

suggest that microbial enzyme activity and respira-

tion should increase rapidly in response to rising

temperatures, resulting in increased emissions of CO2

to the atmosphere and a positive feedback on global

warming (Davidson and Janssens 2006). Neverthe-

less, in field studies the warming effect often tends to

diminish over time (Rustad et al. 2001), for reasons

that are a matter of debate. Perhaps efficiencies of

microbial growth or enzyme activities decline,

enzymes are down-regulated, or slower-respiring taxa

become dominant in the community (Bradford et al.

2008; Lopez-Urrutia and Moran 2007; Steinweg et al.

2008). The positive feedback could be dampened as a

result, and the time lag between initial response and

development of acclimation would influence the

long-term strength of the feedback.

Case study for temporal responses: modeling

microbial acclimation to global warming

Many conventional models of soil C dynamics

predict that rates of microbial respiration will

increase exponentially as temperatures rise, leading

to a long-term decline in soil C sequestration

(Eliasson et al. 2005; Kirschbaum 2004; Parton

et al. 1988). However, in field-based studies, warm-

ing-induced increases in soil respiration rates can be

short-lived, returning to pre-warming levels within a

decade or so (Jarvis and Linder 2000; Luo et al. 2001;

Melillo et al. 2002; Oechel et al. 2000; Rustad et al.

2001). One potential mechanism for this acclimation

could be the depletion of labile C pools as organic

matter turnover increases (Eliasson et al. 2005;

Kirschbaum 2004). An alternate possibility is that

the capacity of the microbial community to maintain

these elevated respiration rates decreases over time,

owing to acclimation. Acclimation can occur via

Table 1 Examples of temporal responses of microbes to global change, with potential feedbacks on climate

Short-

term

response

Long-

term

response

Type of

response

Feedback

potential

Potential contributing

mechanisms

Example of positive

feedback (i.e.,

acceleration of

global warming)

Example of negative

feedback (i.e., mitigation

of global warming)

Strong Strong Sustained Significant Physiological responses,

phenotypic plasticity,

population growth and

turnover, adaptation,

community composition

shifts

C fixation by

phytoplankton

declines under

warming

(Behrenfeld et al.

2006)

C sequestration by

mycorrhizal fungi

increases under elevated

CO2 for up to 20 years

(Rillig et al. 2000)

Strong Weak Resilient Temporary Adaptation, community

composition shifts,

cumulative physiological

effects, physiological

acclimation, population

recovery

Warming-induced

increases in soil

respiration last

\10 years (Rustad

et al. 2001)

Severe fires reduce

microbial respiration for

several years (e.g.,

Waldrop and Harden

2008)

Weak Strong Delayed Low where

global

change is

transitory

Adaptation, change in

community composition,

cumulative physiological

damage, physiological

acclimation

N2O production

increases with

duration of N

fertilization (Hall

and Matson 1999)

N fertilization-induced

declines in decomposer

biomass increase with

exposure time (e.g.,

Treseder 2008)

Weak Weak Resistant Minimal Dormancy, slow population

turnover, generalist taxa,

physiological adjustments

Stable microbial biomass or respiration under

drying/wetting (e.g., Evans and Wallenstein

2011; Lutgen et al. 2003; Singh et al. 1989;

Vourlitis et al. 2009)
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plasticity in physiological traits, shifts in community

composition, or evolutionary trade-offs associated

with adaptation to the new temperature regime.

However, empirical evidence for this mechanism is

mixed in field- (Bradford et al. 2008) and laboratory-

based (Hartley et al. 2008) manipulations.

In a recent study, Allison et al. (2010) constructed

a soil model that incorporated two mechanisms of

microbial acclimation to predict soil C dynamics

under 5�C warming. For the first mechanism, they

allowed C use efficiency (i.e., microbial biomass

produced per unit C assimilated) to decline with

increased temperature. This response has been

observed empirically (Steinweg et al. 2008), but not

in every case (Lopez-Urrutia and Moran 2007). For

the second mechanism, they forced a 50% reduction

in maximal activity (Vmax) of respiratory enzymes

along with a 50% increase in their half-saturation

constant (Km) under higher temperatures. Together,

these two mechanisms produced temporal patterns of

soil respiration and microbial biomass that were

qualitatively consistent with field data, although

formal validation exercises were not performed. This

model formulation elicited a subtle increase in soil C

storage over thirty years of warming. In contrast, a

comparable conventional model (without the two

mechanisms) predicted a substantial decrease in soil

C storage over the same time frame (Allison et al.

2010). Although further study is required to deter-

mine if these particular mechanisms are actually

operating in the field, this case study illustrates that

incorporation of temporal responses of microbes

could reverse the direction of predicted soil C storage

under global warming.

Case study for temporal responses: modeling

microbial responses to moisture pulses

Another facet of climate change is the alteration of

precipitation regimes. Over the next century, precip-

itation is expected to occur more sporadically,

resulting in longer dry periods punctuated by pulses

of moisture (Bell et al. 2004; Christensen et al. 2007).

Although conventional models of soil dynamics often

include moisture-response functions, they generally

simulate quasi-steady-state conditions, which may

not necessarily be appropriate for pulsed events

(Melillo et al. 1995; Schimel et al. 1997; Smith et al.

1997). In a laboratory incubation, Miller et al. (2005)

added water to chaparral soil every two or four

weeks, allowing the soil to dry between additions.

Additional treatments experienced constant moisture.

Miller et al. (2005) found that the amount of C

released via microbial respiration was higher in the

pulsed than in the constant moisture treatments.

Similar results have been observed in laboratory-

based experiments on C-amended soils (Sorensen

1974) and annual grassland soils (Xiang et al. 2008).

Together, these studies imply that sporadic rainfall

may induce greater soil C loss than might be

predicted by models of longer-term dynamics.

Lawrence et al. (2009) constructed soil models

with and without explicit microbial mechanisms, and

compared their accuracy in predicting the temporal

pattern of soil respiration in the Miller et al. (2005)

study. The models range in complexity and are either

conventionally-structured (with first-order controls

over turnover of active, slow, and passive soil C

pools) or include more detailed microbial mecha-

nisms (by splitting the active C pool into microbial,

extracellular enzyme, or bio-available C pools). In

the most complex microbial model, extracellular

enzymes are produced in proportion to microbial

biomass, and their activity generates bio-available C

that accumulates if not immediately taken up by

microbial biomass. This model assumes that uptake

of bio-available C is sensitive to soil moisture, but

enzyme activity is not. As a result, the pool of bio-

available C expands during dry periods and then is

processed quickly following a moisture pulse. Com-

pared to the other models, this enzyme model predicts

most accurately the pattern of soil respiration

observed by Miller et al. (2005) in the 2 week

rewetting treatment. However, this model performs

more poorly than the others in regard to the constant

moisture treatments, where respiration rates are either

over- or underestimated, depending on the moisture

level. Although the enzyme model functions well

specifically for the pulsed system of Miller et al.

(2005), it may not capture microbial mechanisms that

operate under wide-ranging precipitation regimes.

Other mechanisms such as breakdown of aggregates

or lysis of microbial cells could be important (Fierer

and Schimel 2002), but more empirical data are

required to directly assess these possibilities and

to parameterize and validate potential models

(Lawrence et al. 2009).
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Incorporating functional groups of microbes

in ecosystem models

The idea that microbial community composition

could influence ecosystem functioning has received

much recent attention (Balser et al. 2002, 2006;

Cavigelli and Robertson 2000; Fierer et al. 2007;

Green et al. 2008; Levine et al. 2011; Schimel and

Gulledge 1998). Microbial communities can shift

under warming, N fertilization, and precipitation

manipulations in natural ecosystems (Allison and

Martiny 2008 and references therein; Castro et al.

2010; Evans and Wallenstein 2011; Hawkes et al.

2011; Schimel et al. 1999; Williams 2007), but

consequences of these shifts for C dynamics are

difficult to predict (Allison and Martiny 2008; Kent

and Triplett 2002; Rousk et al. 2009). If microbial

species vary in their ecological functions (e.g.,

decomposition of particular organic compounds)

within ecosystems, then alterations in microbial

community composition could accentuate or amelio-

rate ecosystem feedbacks. Alternately, if functions

are highly redundant among taxa, then shifts in

communities could be negligible.

Generally, functions that are more broadly distrib-

uted among taxa are likely to be more redundant

within a given community. At least some species of

bacteria and fungi overlap in their contributions to

ecosystem processes (Strickland and Rousk 2010;

Yin et al. 2000). For instance, multiple taxa can

degrade cellulose or take up NH4
?. Alternately, the

random arrangement of chemical groups within

humic compounds in the soil could provide innumer-

able targets for specialized decomposers, resulting in

diverse opportunities for niche specialization. Some

processes such as glycolysis and denitrification are

conducted among a wide phylogenetic distribution of

taxa (Philippot 2002), while others like glomalin

production are more narrowly distributed (Wright and

Upadhyaya 1996). Indeed, McGuire et al. (2010)

found that use of tannin-protein complexes by

Alaskan fungi is more phylogenetically clustered

than is the use of glutamate, a common amino acid.

Altogether, more narrowly-distributed functions may

be more sensitive to microbial community composi-

tion, and these might benefit most from explicit

consideration of separate functional groups in eco-

system models (McGuire and Treseder 2010; Schimel

1995; Schimel et al. 2004).

In microcosm studies of microbial diversity, rates

of nutrient transformation often increase linearly as

the first several microbial taxa are added (Bell et al.

2005; Degens 1998; Fernandez et al. 2000; Griffiths

et al. 2000; Naeem et al. 2000; Naeem and Li 1998;

Setala and McLean 2004; van der Heijden et al. 1998;

Violi et al. 2007; Wertz et al. 2007; Wohl et al.

2004). These positive diversity-function relationships

are expected if the microbial taxa perform different

ecological functions (Heemsbergen et al. 2004) such

as transforming different types of compounds. In a

laboratory experiment, Strickland et al. (2009) inoc-

ulated plant litter with communities of microbes

derived from grassland, pine, and rhododendron-

dominated habitats. They found that community type

explained between 22 and 86% of the variation in

decomposition rates across samples, providing evi-

dence for the functional dissimilarity of microbial

communities. Even so, contrasting microcosm studies

have documented significant redundancy in function

among microbial groups (Kemmitt et al. 2008; Rousk

et al. 2008), so this issue remains an important

matter of debate.

Case study: modeling decomposition by distinct

functional groups of microbes

If functional groups of microbes vary in their

responses to environmental conditions, then rates of

decomposition of organic material could be altered as

those conditions change. Under these circumstances,

models that distinguish among functional groups

might better predict decomposition rates than those

that gather microbes into a ‘‘black box’’. The guild-

based decomposition model (GDM) takes this

approach (Moorhead and Sinsabaugh 2006). The

GDM uses three microbial guilds that target different

organic matter components while varying in their

responses to N availability. ‘‘Opportunists’’ colonize

litter during the first stages of decay and consume

labile, soluble C. They have a high N demand driven

by high growth rates, and they are displaced by

slower-growing guilds after the soluble-C substrate

pool is depleted. ‘‘Decomposers’’ displace opportu-

nists from litter and decompose cellulose (and, to a

lesser extent, lignin) by producing cellulases. They

have a lower N demand than opportunists and are

more efficient at N uptake and retention. ‘‘Miners’’

Biogeochemistry (2012) 109:7–18 11
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specialize on lignified cellulose, lignins and other

condensed aromatic polymers by producing ligninas-

es. They have the slowest relative growth rate and

thus the smallest N demand. The GDM calculates

litter decay rate as a function of the combined activity

of the three guilds. Thus, N effects on decomposition

occur as a function of the N demands of different

microbial guilds in relation to pools of external N.

In general, the GDM predicts well the rates of total

mass loss (soluble C ? holocellulose-C ? lignin-C)

in 64 empirical decomposition studies, with mean r2

values of 0.80–0.99 between simulations and empir-

ical results (Herman et al. 2008). However, in terms of

individual components of litter, GDM overestimates

loss rates of soluble C and underestimates loss rates of

holocellulose-C. Moorhead and Sinsabaugh (2006)

compared the behavior of two versions of their GDM:

one with three distinct guilds, and one with a single

pool of decomposers (‘‘black box’’). They found that

in the more complex version, the amount of relatively

stable C remaining after litter decomposition was

lower overall and was less sensitive to N relative to

the black box version. In fact, in the black box version,

the amount of stable C remaining tends to increase

with N enrichment. In contrast, the complex version

predicts a slight decline. Unfortunately, few decom-

position studies have provided chemistry and mass

loss data of sufficient resolution to rigorously validate

GDM under multiple levels of N availability, and

almost none have determined the identity and abun-

dance of the relevant microbial guilds in situ.

Incorporating microbial responses to N

in biogeochemical models

Nitrogen fertilization, cultivation of N-fixing crops,

and fossil fuel burning by humans have approxi-

mately doubled the rate at which reactive (i.e.,

bioavailable) N is deposited on ecosystems globally

(Galloway and Cowling 2002; Holland et al. 2005;

Vitousek et al. 1997). In addition, global warming

could stimulate N mineralization in soils—Rustad

et al. (2001) noted a 46% increase, on average, in net

N mineralization rates across 12 field-based warming

experiments. Owing to the complexity of nitrogen

dynamics, however, it is currently difficult to predict

the potential feedbacks of N enrichment on climate

(Holland et al. 2004).

At this point, it is not clear whether N enrichment

will increase or decrease global soil C storage and the

release of CO2 or CH4 into the atmosphere. In forests,

N additions increase soil C content while reducing

microbial biomass, heterotrophic respiration, and soil

CO2 efflux when averaged across 34–50 field-based

experiments (Janssens et al. 2010). Nevertheless, as

with many meta-analyses, N responses vary widely

among studies, ranging between 57% decreases to

63% increases in heterotrophic respiration (Janssens

et al. 2010). In other biomes, field-based N fertiliza-

tion has elicited a range of responses in soil C stocks,

including increases of 43% in an agricultural system

(McAndrew and Malhi 1992) and declines of 17% in

a temperate grassland (Rice et al. 1994). Wide

variability in N effects among ecosystems has proven

a challenge in forming large-scale predictions regard-

ing ecosystem feedbacks on climate (Hobbie 2008).

A portion of this variability among ecosystems

might be attributable to differences in the composi-

tion of soil organic matter among ecosystems, since

N additions can speed the turnover rates of certain C

fractions while slowing others (Fog 1988). In a meta-

analysis of over 500 field- and laboratory-based

decomposition studies, Knorr et al. (2005) observed

that N additions stimulated mass loss rates of high

quality (i.e., low lignin/high nutrient) plant litter by

2% while inhibiting loss rates of low quality litter

by 5%. For soil organic matter, Neff et al. (2002)

similarly found that N enrichment in the field

increased the turnover rate of light (i.e., decadal

residence times) compounds, and decreased turnover

rates of heavy (i.e., multidecadal to century residence

times) compounds in an alpine ecosystem. Compara-

ble field-based results have been observed in a mixed

conifer forest (Nowinski et al. 2009). It remains to be

seen, though, whether these responses in soil organic

matter (as opposed to litter) occur across a broad

range of ecosystems.

The specific microbial mechanisms underlying

opposing N responses for labile versus recalcitrant

organic material are not well-understood. In a number

of ecosystems, field-based N fertilization enhances

the activity of extracellular enzymes that target labile

compounds or reduces those that target recalcitrant

compounds (Allison et al. 2008; Keeler et al. 2009;

Waldrop et al. 2004). Microbes may be regulating the

production of these enzymes by altering resource

allocation following N fertilization. For example, an

12 Biogeochemistry (2012) 109:7–18
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investment of N toward the construction of labile

C-targeting enzymes could increase supply rates of

energy or C to support microbial growth. In this case,

we would expect an increase in microbial biomass

concurrent with an increase in activity of labile

C-targeting enzymes (Schimel and Weintraub 2003).

At the same time, microbes may down-regulate the

production of extracellular enzymes that target

recalcitrant C such as lignin and other polyphenols.

Since these compounds are often cross-linked with

nitrogenous compounds, microbes may invest in their

breakdown to obtain N when N is scarce; when N

is abundant, investment in these enzymes could

decrease (Fog 1988). In this case, microbial biomass

should remain constant (if N were not previously

limiting to growth) or increase (if N limitation

were alleviated). Alternately, evolutionary constraints

may elicit negative effects on lignin-decomposing

microbes (e.g., white rot fungi or actinobacteria)

under high N conditions. This functional group might

be relatively susceptible to toxic compounds that are

produced via condensations between soil organic

matter and nitrogenous compounds (Fog 1988; Ha-

ider and Martin 1967; Hodge 1953; Soderstrom et al.

1983). On average, microbial biomass decreases

moderately (about 15%) in response to N enrichment

in 29 field studies, and toxicity effects are one

potential mechanism (Treseder 2008). However, a

general decline in microbial abundance is not neces-

sarily consistent with the increase in labile C use

observed in some studies. Either the augmentation in

labile C turnover was not common to the studies

included in the Treseder (2008) meta-analysis, or the

use of labile C does not scale linearly with the

biomass of the microbial community as a whole.

Case study: modeling N feedbacks on global

carbon cycling

Global C models occasionally incorporate N dynam-

ics, but typically in a limited manner. Gerber et al.

(2010) have developed one of the more comprehen-

sive models of C–N interactions to date. They

integrated a number of mechanisms that allowed soil

microbes to respond to N, with consequences for C

and N dynamics. Specifically, they assume that

decomposers are N-limited, so that mineralization

of litter C and N respond positively to inorganic N

availability. To ensure that N limitation of microbes

is sustained, they incorporate a mechanism restricting

microbial activity to the litter surface. In addition, C

and N fluxes into the recalcitrant pool are allowed to

increase as N availability rises, based on empirical

findings from natural ecosystems (e.g., Neff et al.

2002; Nowinski et al. 2009). Gerber et al. (2010)

did not determine if the inclusion of these microbial

mechanisms improves the accuracy of the model.

A sensitivity analysis indicated that compared to a

conventional model formulation with no C–N feed-

backs, addition of the microbial mechanisms results

in a decrease in the predicted total terrestrial C pool.

However, the decrease is subtle—about 6% for a

temperate site and 3% for a tropical site. Further

validation and experimental data are required to

determine whether the microbial mechanisms are

operating as assumed, and whether their inclusion in

the model improves its accuracy.

Evaluation of model performance

The four case-study models indicate that the addition

of microbial mechanisms could alter predictions of C

dynamics in ecosystems in some cases (Table 2).

Nevertheless, it has not yet been demonstrated that

these additions can improve model performance

across a broad range of conditions. Of the four case

studies, only Lawrence et al. (2009) benchmarked

model performance against empirical data in com-

parison with a conventional model. The accuracy of

the remaining three case-study models was not

explicitly evaluated in comparison to conventional

models, so it is difficult to determine if the inclusion

of microbial mechanisms improved predictions.

Many conventional soil models can fit empirical

data reasonably well without a great deal of microbial

detail (e.g., t values within ± tcrit 2.5% for soil organic

C, Smith et al. 1997; r2 values: 0.72–0.93 for litter

mass loss, Zhang et al. 2008). The integration of

microbial details into ecosystem models often

requires parameterization of new variables that can

be difficult to assess (e.g., in situ Vmax values for

extracellular enzymes; Todd-Brown et al. 2011), or

the invocation of mechanisms that are relatively

unexamined in situ (e.g., moisture sensitivity of

enzyme activity versus microbial C uptake, Lawrence

et al. 2009). To substantiate the additional effort and
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complexity of the new model formulations, we

recommend performing benchmarking tests in com-

parison with conventional models (sensu Todd-

Brown et al. 2011). Randerson et al. (2009) proposed

a framework for benchmarking that includes tests of

model performance against multiple sets of observa-

tions across a range of ecosystems and temporal

scales. In terms of the case-study models, the relevant

observations might include heterotrophic CO2 respi-

ration, extracellular enzyme activity, microbial bio-

mass, relative abundance of microbial functional

groups, litter decomposition rate, or soil C stocks. For

the first four variables, especially, it is challenging to

obtain long-term, high temporal resolution measure-

ments from diverse ecosystems. It is not surprising

that benchmarking exercises were limited in most of

the case-study models.

Conclusion

Temporal dynamics in microbial responses, variation

in ecological function within microbial communities,

and effects of N enrichment on microbial activity are

three cases in which the addition of microbial mech-

anisms to biogeochemical models could improve

predictions of ecosystem responses to global change.

Specifically, microbial responses to global change can

be short-lived, as is suggested by warming experi-

ments; or resilient, as has been documented for changes

in water availability. These temporal dynamics could

mediate positive or negative feedbacks on climate in

ways that might not otherwise be predicted by

conventional models. Furthermore, empirical studies

have demonstrated that microbial functions are not

fully redundant among taxa, and that shifts in commu-

nity composition can alter biogeochemical functions.

‘‘Black box’’ models may not sufficiently predict soil

dynamics following changes in microbial communi-

ties. Finally, microbial responses to N enrichment are

complex, highly variable, and involve mechanisms

that are not well-understood, so it is important to

formulate large-scale models that incorporate broadly-

applicable N effects on microbial activity. Four case-

study models have addressed these scenarios. In each

case, additions of microbial mechanisms have altered

(but not necessarily improved) model predictions, and

the changes were substantial for two of the models.

Future directions

Many opportunities exist for foundational research

integrating microbial ecology into ecosystem models,

especially within the three highlighted cases (temporal

responses, functional groups, and N feedbacks). The-

oretical frameworks that provide general guidelines

for modelers would be particularly useful for each of

these cases. In terms of temporal dynamics, we

recommend focusing on the relative rates of global

change (i.e., gradual versus abrupt) compared to

rates of microbial responses (i.e., sustained, resilient,

delayed, or resistant), as discussed by Wallenstein and

Hall (2011). In terms of modeling functional groups of

microbes and their influence on ecosystems, we might

consider the hypothesis that ecosystem processes that

are narrowly-distributed within phylogenies should be

most sensitive to changes in microbial community

Table 2 Summary of evaluations of case study models

Model Sensitivity: predictions

substantially different

from conventional model?

Validation: how

accurate is the

model?

Benchmark: does incorporation

of microbial mechanisms improve

the model predictions?

Microbial enzyme model,

Allison et al. (2010)

Yes Qualitatively

similar to

empirical results

Not determined

EC2, Lawrence et al. (2009) Yes Depends on

environmental

conditions

Yes, under certain

circumstances

GDM, Moorhead and

Sinsabaugh (2006)

No Average r2 values

of 0.80–0.99.

Not determined

Version of LM3V,

Gerber et al. (2010)

No Predictions within

±1 standard error

Not determined
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composition (Levine et al. 2011; Schimel 1995;

Schimel et al. 2004). If this hypothesis is valid, how

might we develop a theoretical framework to predict

how various functions (i.e., decomposition of recalci-

trant versus labile compounds) are phylogenetically

distributed? In addition, explicit incorporation of

functional groups into ecosystem models may most

likely improve model predictions where microbial

species interactions or dispersal limitation of micro-

bial species influence microbial community composi-

tion (McGuire and Treseder 2010). In terms of N

feedbacks on the C cycle, we need to understand why

ecosystems vary widely in responses to N enrichment.

Where and when should decomposition rates increase

or decrease?

We recommend a few priorities in the structure

and evaluation of microbially-detailed models. As

Todd-Brown et al. (2011) detail, second-order models

that explicitly incorporate microbial biomass may

improve predictions of CO2 efflux and soil C

sequestration. Benchmarking with multiple datasets

and output parameters is also critical to establish the

advantages of microbially-based models in compar-

ison to conventional models. Ideally, modeling

efforts would occur in collaboration with empirical

campaigns, since model scenarios could inform data

acquisition and vice versa.
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