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ABSTRACT

Characterizing the binding behaviors of RNA-binding
proteins (RBPs) is important for understanding their
functional roles in gene expression regulation. How-
ever, current high-throughput experimental methods
for identifying RBP targets, such as CLIP-seq and
RNAcompete, usually suffer from the false negative
issue. Here, we develop a deep boosting based ma-
chine learning approach, called DeBooster, to accu-
rately model the binding sequence preferences and
identify the corresponding binding targets of RBPs
from CLIP-seq data. Comprehensive validation tests
have shown that DeBooster can outperform other
state-of-the-art approaches in RBP target prediction.
In addition, we have demonstrated that DeBooster
may provide new insights into understanding the reg-
ulatory functions of RBPs, including the binding ef-
fects of the RNA helicase MOV10 on mRNA degra-
dation, the potentially different ADAR1 binding be-
haviors related to its editing activity, as well as the
antagonizing effect of RBP binding on miRNA re-
pression. Moreover, DeBooster may provide an ef-
fective index to investigate the effect of pathogenic
mutations in RBP binding sites, especially those re-
lated to splicing events. We expect that DeBooster
will be widely applied to analyze large-scale CLIP-
seq experimental data and can provide a practically
useful tool for novel biological discoveries in under-
standing the regulatory mechanisms of RBPs. The
source code of DeBooster can be downloaded from
http://github.com/dongfanghong/deepboost.

INTRODUCTION

RNA binding proteins (RBPs) play important roles in mul-
tiple aspects of gene expression regulation, such as alterna-
tive splicing, RNA modification, mRNA export and local-
ization (1). Not only does the dysregulation of RBPs induce
abnormality, but also the mutations in their binding targets
have the potential to cause diseases (2). So, capturing the
intrinsic binding preferences of RBPs and identifying their
binding targets in a precise and large-scale manner are es-
sential to understand the regulatory roles of RBPs and re-
veal their connections to the pathogenesis of complex dis-
eases.

Before the development of high-throughput techniques
for characterizing RNA-protein interactions, only a few
RBPs were well studied based on the small-scale experi-
ments, such as in vitro EMSA (3) and in vivo fluorescence
methods (4). Recently, several high-throughput sequencing-
based approaches, e.g. CLIP-seq (5–7), SELEX (8,9) and
RNAcompete (10,11), have been proposed to measure RBP
binding sites and binding affinities in a transcriptome-wide
manner. However, despite the huge amount of data gener-
ated by these techniques, they still suffer from the false nega-
tive issue mainly due to experimental noise and bias (12). To
overcome these drawbacks, various computational models
(13–20) have been developed to learn RBP binding prefer-
ences and detect putative RBP targets based on abundant
experimental data.

As many RBPs have been validated to recognize struc-
tured regions (21), there is a tendency in recent studies to
incorporate the structural features of target RNAs into pre-
diction models, such as MEMERIS (15), GraphProt (17)
and our recent deep learning based model (19), where the
integration of RNA structural information has been shown
to largely boost the prediction performance. Nevertheless,
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the current transcriptome-wide experimental techniques for
measuring RNA structures are far from maturity. On the
other hand, predicting RNA structures using computa-
tional models usually requires a substantial amount of ad-
ditional effort and time, and a predicted RNA structure is
generally less accurate compared to that derived from ex-
perimental approaches. In addition, systematic integration
of both sequence and structural information generally re-
quires a more complex prediction model. So far, it remains
largely unknown whether we can derive a sequence based
prediction model that only takes RNA sequence as input,
while still achieving prediction performance comparable to
that of the state-of-the-art prediction methods that require
both sequence and structural profiles. To fill this gap be-
tween modeling accuracy and computational complexity,
we develop a deep boosting based model, called DeBooster,
that requires only sequence information and can capture
RBP binding preferences and predict binding sites from
high-throughput CLIP-seq data with high accuracy and ef-
ficiency.

Through testing on 24 CLIP-seq datasets, we have shown
that even without using RNA structural information, De-
Booster can outperform the state-of-the-art methods that
take both sequence and structural information as input, in-
cluding both GraphProt (17) and our previous deep learn-
ing based model (19). In addition, we have performed com-
prehensive tests to validate the superiority of DeBooster:
(i) DeBooster can accurately capture RBP binding prefer-
ences and generate RBP binding motifs that are consistent
with previous studies in the literature; (ii) The predictions
of DeBooster can be successfully validated through cross-
platform datasets.

In addition to the above extensive validation tests, we
have further demonstrated several new possible applica-
tions of DeBooster in studying the regulatory roles of RBPs.
With an integrative analysis based on other types of data
and our prediction results, we not only derive literature-
consistent results concerning RBP regulation, but also hope
to gain novel insights into the biological rationale of the
regulatory roles of RBPs. In particular, we have confirmed
that the binding targets of the RNA helicase MOV10 pre-
dicted by DeBooster are highly associated with the fold
changes of mRNA half-lives, providing another evidence
on the regulatory functions of RNA helicases on mRNA
half-lives. In addition, it has been confirmed that a fraction
of ADAR2 binding events are ‘non-productive’, i.e. these
bindings may not trigger any RNA editing (22). We have
also observed two potentially different types of ADAR1
binding sites which also show the similar ‘productive’ and
‘non-productive’ patterns, respectively. Moreover, we ap-
plied DeBooster to study the antagonizing effect of RBP
binding on miRNA repression. In particular, it has been
known that in the 3′ UTR of the oncogene ERBB2, the RBP
ELAVL1 (also called HUR) antagonizes the repression ef-
fect of the miRNA miR-331-3p by binding to a U-rich el-
ement (URE) near the miRNA target region called miR-
331b (23). With a mutant URE, we have observed that the
new ELAVL1 binding sites predicted by DeBooster shift to
a position more distant from the miR-331b region, which
is largely consistent with the previous experimental studies.
At last, we have used DeBooster to predict the effects of

the single nucleotide variant (SNV) mutations on the RBP
binding sites related to splicing events, which may provide
useful hints for identifying pathogenic mutations and in-
vestigating their connections to the pathogenesis of com-
plex diseases. Based on these test results, we expect that De-
Booster will have great application potentials and be widely
used by the community to analyze more CLIP-seq exper-
imental data and discover more biologically relevant find-
ings on the functional roles of RBPs in post-transcriptional
gene regulation.

MATERIALS AND METHODS

The DeBooster framework

We have developed a deep boosting based approach, called
DeBooster, to predict the sequence specificities of RNA-
binding proteins (RBPs) from high-throughput CLIP-seq
data (Figure 1). As RNA primary sequence can be viewed
as a string over the alphabet {A, U, C, G}, we mainly use
the basic bag-of-words model (24) as in the natural language
processing field to encode the features of a given RNA se-
quence (Figure 1A). In particular, for each word of fixed
length k, we count how many times it appears in the RNA
sequence and store its frequency information in a vector of
length 4k. We extract the word frequency information for
both an RBP target region and its upstream and down-
stream flanking regions of 150 nucleotides each. We con-
sider words (i.e. the substrings) of lengths 1, 2, 3, which re-
sults in 2 × (4 + 42 + 43) = 168 features in total.

Note that the bag-of-words model mainly focuses on the
occurrences of words and reflects little about the order of
the letters in a sequence. In other words, if we swap the first
half and the second half of an RNA sequence, the features
provided by the bag-of-words model would roughly remain
the same. To better incorporate the order of letters into the
model, we further use the following scheme to extract the
‘second-order’ word count information. For a fixed stride
m and a given RNA sequence a1a2···at, we count the words
a1am + 1, a2am + 2, ..., at − mat and use a vector to record the
corresponding count information. As before, we also con-
sider both an RBP target region and the flanking regions of
150 nucleotides both upstream and downstream. We con-
sider the stride lengths 4, 5 and 6, which generates 2 × 3 ×
42 = 96 more features in total. Moreover, we consider five
additional features, such as the length of the target region,
whether the target length is a multiple of 3, whether the tar-
get region contains the stop codons UAG, UAA and UGA.
Thus, overall we extract 168 + 96 + 5 = 269 features for a
given RNA sequence.

We then apply a deep boosting based method, to learn a
classification model from the above encoded features (Fig-
ure 1B). The deep boosting method (25), similar to other
boosting methods like Adaboost (26), learns an ensemble
of base classifiers. Here, a base classifier is a ‘weak’ classi-
fier that classifies the samples in a moderate accuracy, but
the combination of multiple base classifiers into a stronger
one can achieve higher accuracy. In particular, the classifier
employed in our deep boosting method is in the following
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Figure 1. Schematic overview of DeBooster, a deep boosting approach for identifying the sequence specificities of RNA-binding proteins (RBPs). (A)
Schematic illustration of the strategy for encoding the sequence features of RBP binding targets. The nucleotides in the target region of an input sequence
are represented by capitalized letters while the extended regions on both sides are represented by lowercase letters. Each number within a box stands for the
value of the corresponding feature. The numbers on the right side represent the total number of features in individual categories. (B) Schematic illustration
of the prediction pipeline. More details can be found in the main text.

form:

f (x) =
n∑

t=1

αtht(x), (1)

where f(x) is the final classifier to output, each ht(x) is a base
classifier (in our case a decision tree) and �t is the weight of
the corresponding base classifier.

For the ith training example (xi, yi), the label yi is ±1
and we want the output of f(xi), namely

∑n
t=1 αtht(xi ), to

be as close to yi as possible, which is equivalent to requir-
ing yi (

∑n
t=1 αtht(xi )) as close to 1 as possible. Therefore,

we have the following objective function during the train-
ing process:

E = 1
m

m∑

i=1

�(1 − yi

n∑

t=1

αtht(xi )) +
n∑

t=1

(λrt + β)αt, (2)

where (xi, yi) stands for the ith training example, m stands
for the total number of training examples, � stands for the
loss function (e.g. the exponential (26) or logistic function
(27)), rt is a regularization term for the tth decision tree clas-
sifier, and � and � are two hyper-parameters to be deter-
mined. As the deeper decision trees can always fit the train-
ing examples better, but may lose the generalization for the
unseen samples, the second term in Equation (2) serves as
a regularization term to overcome this overfitting problem.
Specifically, if ht(x) is a decision tree of depth d, then rt is

the Rademacher complexity (28) of the set of all decision
trees of depth d.

The above objective function can be optimized using the
same techniques as in other boosting methods (26,29). Af-
ter the training process, the learned model can be used to
predict the binding specificities of RBPs and also generate
the corresponding binding motifs.

DeBooster is implemented by a combination of C++
and Python. All our computational experiments were per-
formed on a 64-bit version of CentOS server.

Training datasets

We used 24 CLIP-seq datasets to train and validate our pre-
diction model. These datasets were preprocessed in (17) to
construct both positive and negative samples. In particular,
the CLIP-seq binding site was extended with 150 nt both
upstream and downstream (i.e. resulting in sequences that
were 300 nt longer than the binding sites) to generate posi-
tive samples. For negative samples, the unbound sites were
selected by shuffling the coordinates of CLIP-seq binding
sites among the genes with at least one CLIP-seq binding
site. Then, these selected unbound sites were also extended
with 150 nt both upstream and downstream to generate the
negative samples. The list of all RBP names in these datasets
can also be found in Figure 2A. Among these datasets,
AGO1-4 contained the binding sites for four RBPs of the
argonaute family, and IGF2BP1-3 contained the binding
targets of three insulin-like growth factor 2 mRNA-binding
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Figure 2. Performance evaluation of DeBooster on 24 CLIP-seq datasets. (A) The comparisons of the area under receiver operator characteristic curve
(AUROC) scores between different prediction approaches via a 10-fold cross-validation procedure. The best prediction result for each dataset is highlighted
in bold. (B and C) The receiver operator characteristic (ROC) and precision-recall (PR) curves achieved by DeBooster for all 24 CLIP-seq datasets in the
cross-validation results, respectively. (D) Examples of the sequence motifs of the RBP binding targets predicted by DeBooster.

proteins. ELAVL1 HITS-CLIP, ELAVL1 PAR-CLIP(A),
ELAVL1 PAR-CLIP(B) and ELAVL1 PAR-CLIP(C) in-
cluded the binding sites of the RBP ELAVL1 measured
from different experimental platforms.

Determination of hyperparameters

We use an independent validation dataset of RBP
C22ORF28 to determine the optimal setting of the hyper-
parameters of DeBooster, including the type of the loss
function (denoted by �), the number of the base decision
tree classifiers (denoted by n), the maximum depth of
these decision trees (denoted by k), and parameters �,
� controlling the relative importance of the complexity
penalty. This process yields the following optimal setting of
the hyperparameters: the exponential function as the loss
function �, n = 200, k = 5, � = 0.3 and � = 0.

Motif generation

We use the following procedure to generate representative
motifs of the RBP binding sites predicted by DeBooster.
First, we use the set of the weighted decision trees resulting
from the deep boosting algorithm to evaluate the relative
importance of each encoded feature. In particular, for each
decision tree with weight � in the model, we identify the fea-
ture � and the corresponding threshold � used to split the
root node for this feature. Suppose that at the root node a
fraction p1 of all examples in the training set are positive,
and at the right child of the root node (in which the value of
feature � is larger than � ), a proportion p2 of all examples in
the training set are positive. We then use (p1 − p2)� to rep-
resent the importance of feature � . By doing so, we score

each feature based on its contribution to RBP binding. A
higher absolute value of a positive score means higher con-
tribution to RBP binding, while a higher absolute value of
a negative score means less contribution to RBP binding.
We use a vector s to store the importance scores of all en-
coded features. Next, we go through all 8-mers and extract
the feature vector vi for each of them. We then rank these
8-mers according to the inner product of vi and s, and we se-
lect the top 500 8-mers with the highest ranking scores. As
the top 8-mers may come from shifts around the best one,
we align all 8-mers with respect to the top one such that the
largest number of base matchings is achieved. After that, we
generate the binding motif based on this alignment step and
visualize it using the WebLogo site (30).

Predicting the MOV10 targets along the 3′ UTRs

To predict the MOV10 binding sites along the 3′ UTRs
of the genes whose fold-changes of mRNA half-lives were
measured after MOV10 knock-down (31), we trained De-
Booster using the same MOV10 dataset as in the training
data for the validation test, and then performed the anal-
ysis on the same set of 7000 genes as in (31). The UTRs
of these genes were obtained based on UCSC genome an-
notation (32). For a gene with two or more annotated 3′
UTRs, we chose the longest one within 3000 nucleotides.
We then scanned the whole UTR using a sliding window
whose length was equal to the average length of MOV10
binding sites in the training data (34 nt). The step size was
about one-fourth of the average length of MOV10 binding
sites.
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Predicting ELAVL1 binding scores along the 3′ UTR of gene
ERBB2

Both wild-type and mutant 3′ UTR sequences of gene
ERBB2 were obtained from (23) (Supplementary Notes).
The lengths of these sequences are all 119 nt. For each
sequence, we took a window of length 41 nt (the average
length of the ELAVL1 target regions over training samples)
and slided this window along the 3′ UTR of mRNA ERBB2
with a stride length of 1 nt. For each sliding window, we
assigned the resulting prediction score to the central nu-
cleotide of this window. Overall, we obtained the prediction
scores along positions 21-99 for each sequence (Figure 7),
and the first and last 20 nucleotides were not included in our
analysis.

Studying the effects of mutations in RBP binding targets

The mutation data related to splicing events were derived
from COSMIC (33). Sequences with mutation sites in the
middle and lengths equal to those of the corresponding
RBP binding targets were prepared as input samples to De-
Booster. For both pathogenic or neutral mutations near 5′
or 3′ splice sites, we selected those single-nucleotide variant
(SNV) mutations within 10 nt from splice sites. The lengths
of RBP binding targets are usually larger than 20 nt, so gen-
erally splice sites were covered by samples centered at muta-
tion positions. In total, we collected 7000 neutral mutations
in both regions near 5′ and 3′ splice sites, and 4000 and 20
000 mutations in regions near 5′ and 3′ splice sites, respec-
tively. In Figure 8, the change of the prediction score result-
ing from a mutation was calculated as ‘(prediction score for
the mutant sequence)−(prediction score for the wild-type
sequence)’.

In Figure 9 and Supplementary Figure S3, the predic-
tion scores for regions around the mutation sites along both
wild-type and mutant sequences were shown. For each se-
lected mutation, we showed the prediction scores for 41 po-
sitions, including the mutation site and the flanking regions
of 20 nucleotides both upstream and downstream. For each
site, its prediction score was calculated using the window
centered at this position and of length equal to the aver-
age length of the corresponding RBP targets in the training
data.

RESULTS

DeBooster captures the sequence preferences of RBP binding

We used 24 sets of CLIP-seq based data about RBP bind-
ing sites to train and validate our prediction model. Details
about the datasets can be found in the Materials and Meth-
ods section. We first ran a 10-fold cross-validation proce-
dure for each of 24 CLIP-seq datasets to evaluate the over-
all prediction performance of DeBooster. The hyperparam-
eters in the deep boosting framework were determined us-
ing an independent dataset (Methods). We also compared
the performance of DeBooster with the state-of-the-art ap-
proaches for predicting RBP target sites, including Graph-
Prot (17) and the deep belief net (DBN) method (19). The
comparison results (Figure 2A–C) showed that DeBooster
can significantly outperform both GraphProt and the DBN

method, with the increase of the area under receiver oper-
ator characteristic curve (AUROC) by up to 10.1%. Note
that GraphProt and the DBN method integrate both RNA
sequence and structural information (i.e. RNA secondary
structural information (17) or both RNA secondary and
tertiary structural profiles (19)) into the prediction frame-
work, while DeBooster requires only RNA sequence infor-
mation. We also performed additional tests to demonstrate
that the performance improvement in DeBooster was at-
tributed to both our new feature encoding scheme (see Fig-
ure 1A and Materials and Methods) and the better predic-
tive power of the underlying deep boosting model (Sup-
plementary Notes). We further showed that adding extra
structural features did not improve the performance of De-
Booster (Supplementary Notes).

Through a transcriptome-wide analysis on RBP binding
targets, we also found that the difference in the predicted
binding scores of DeBooster over different characterized
genomic regions mostly reflected the known functions of in-
dividual RBPs (Supplementary Notes). In addition, we ex-
amined the sequence motifs of the RBP binding sites gen-
erated from training data (Methods). Our results indicated
that the sequence motifs resulting from DeBooster agreed
well with those reported in the literature (Figure 2D). For
example, the binding sequence motif of AGO2 computed
by DeBooster was enriched with A, U and C but depleted
of G, which was consistent with the previous study (34).
PTB, as indicated by its name (polypyrimidine tract-binding
protein), mainly binds to the U/C-rich regions (35), which
was also reflected in the sequence motif derived from De-
Booster. EWSR1, FUS and TAF15 belong to the FET fam-
ily. Although several works showed that they bind to the
GU-rich motif (36,37), recent studies found that the FET
protein family prefers binding to the AU-rich stem loops,
and the AU-rich sequences achieve higher binding affini-
ties than those enriched with G and U (38). Such an AU-
rich pattern was also observed in the sequence motif gener-
ated by DeBooster. It has been found that the binding tar-
gets of QKI usually contain a core sequence NACUAAY
(where Y stands for a pyrimidine) and a half-site UAAY
(39). The binding motif of QKI identified by DeBooster
also agreed well with such a pattern. DeBooster yielded a
U-rich sequence motif for the binding sites of HNRNPC,
which can also be supported by a known fact that HN-
RNPC generally binds to the poly-U tracts (40). According
to the DeBooster prediction results, SFRS1 prefers binding
to a GA-rich motif, which aligned well with the previous re-
sult (41). As shown in the previous study (7), PUM2 binds
to a consensus motif UGUANAUA, which shared high sim-
ilarity with the corresponding binding motif predicted by
DeBooster. The majority of the TDP43 binding sites pre-
dicted by DeBooster contained the (UG)n motif and was
relatively less enriched with A and C. Such an observation
agreed well with the previous known result (42). Motifs for
all the 24 training datasets and the comparisons between the
motifs generated by DeBooster and GraphProt (17) are also
provided in Supplementary Notes. Taken together, most of
the sequence motifs of RBP binding sites captured by De-
Booster were consistent with the previous known results in
the literature.
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The predictions of DeBooster can be validated through cross-
platform datasets

It is well-known that different CLIP-seq experiments can
yeild a large fraction of non-overlapping results and individ-
ual experiments may miss a vast number of true RBP bind-
ing sites (43,44). Here, we showed that the prediction re-
sults of DeBooster can be validated through cross-platform
CLIP-seq datasets (Figure 3). In particular, we tested
DeBooster on different cross-platform ELAVL1 datasets,
which displayed a large degree of discrepancy between the
original RBP binding targets measured from CLIP-seq ex-
periments (Figure 3A). Such a large variation indicated that
in general a single CLIP-seq experiment cannot cover all
RBP binding sites and individual datasets may have high
false negative rates in current experimental measurement.
The tests on the cross-platform ELAVL1 datasets showed
that the predictions of DeBooster from one dataset can be
well validated by another one collected from a different
platform, achieving both high AUROC scores and similar
sequence motifs (Figure 3B). We also evaluated the cross-
dataset AUROC scores based on the GraphProt (17) pre-
dictions, and showed that GraphProt performed less well
than DeBooster on this task (Supplementary Notes). In
addition, most of the sequence features encoded in De-
Booster displayed highly correlated weights except the out-
liers G and UNNNNU (Figure 3C and D), which was prob-
ably due to experimental bias introduced from the original
CLIP-seq data. These results implied that the predictions
of DeBooster can be well validated through cross-platform
CLIP-seq datasets.

We also investigated the agreement of the DeBooster pre-
diction results between different RBPs from the same fam-
ily. In particular, we examined the consistency between the
DeBooster prediction scores of 8-mers for TAF15, FUS
and EWSR1, all belonging to the FET family. Consistent
with the previous results that these three RBPs have a large
overlap in binding sites (38), our tests showed that the 8-
mers from different RBPs exhibited highly correlated pre-
diction scores (Figure 3E and F). Such observations further
supported the above argument that the prediction results
of DeBooster can be verified from cross-platform CLIP-
seq datasets, even for different RBPs from the same fam-
ily. These results suggested that DeBooster was not prone
to overfitting, and may provide a practically useful tool to
analyze high-throughput CLIP-seq data.

The binding scores predicted by DeBooster match the exper-
imentally measured binding affinity data

To investigate whether the prediction results of DeBooster
can truly reflect the RBP binding preferences, we further
checked the agreement between the binding scores predicted
by DeBooster and the experimentally determined binding
affinity data. In particular, we checked the agreement be-
tween the prediction scores of DeBooster, which was trained
using the in vivo CLIP-seq data, and the experimentally de-
termined Kd values for two RBPs, including SFRS1 and
TDP43 (Figure 4A and B). Our comparison showed that for
the 8-mers as the potential RNA targets of SFRS1, the pre-
diction scores of DeBooster closely matched the in vivo mea-
sured Kd values (45) (Figure 4A). In addition, for the RNA

nucleotides as the potential binding targets of TDP43, the
prediction scores of DeBooster aligned well with the Kd val-
ues experimentally measured from the electrophoretic mo-
bility shift assay (EMSA) (46) (Figure 4B).

The predicted targets of RNA helicases may provide useful
hints for understanding the regulation of mRNA degradation

RNA helicases, such as MOV10, regulate the life cycle of
mRNAs and thus gene expression by remodeling RNA sec-
ondary structures and RNA-protein interactions (47). Here,
we showed that the RNA targets of MOV10 predicted by
DeBooster can be connected to the regulation of mRNA
half-lives and thus may provide useful hints for understand-
ing the functional roles of MOV10 in controlling gene ex-
pression. Our analysis was performed on a set of 7000 mR-
NAs, in which the fold changes of their half-lives had been
measured after MOV10 knockdown (31). These mRNAs
were basically divided into four groups according to the fold
changes of their half-lives, i.e. top 25%, 25–50%, 50–75%
and bottom 25%, which corresponded to Group 1, Group 2,
Group 3 and Group 4, respectively. Only the bottom group
(i.e. Group 4) contained those genes whose expression levels
were unchanged or up-regulated after MOV10 knockdown.

Compared to the results derived directly from the origi-
nal CLIP-seq data (Figure 5A), the fraction of UTRs with
MOV10 binding resulting from DeBooster prediction dis-
played a more evident decreasing trend (Figure 5B). In ad-
dition, the sum of all positive prediction scores per UTR,
which basically considered both binding strength and the
number of hits for the MOV10 binding targets on indi-
vidual genes, also exhibited the same decreasing order for
four groups of genes that were divided and ranked accord-
ing to the fold changes of mRNA half-lives (Figure 5C).
Moreover, when we grouped all transcripts according to
the DeBooster prediction scores, the resulting fold changes
of mRNA half-lives also presented a similar decreasing
trend (Figure 5D). Similar analysis was also conducted us-
ing GraphProt (17) for comparison (Supplementary Notes).
Although both DeBooster and GraphProt performed com-
parably well on this task, there is still an advantage to use
DeBooster, as it can run much faster than GraphProt, which
requires the prediction of secondary structure for each in-
put RNA sequence. Furthermore, the DeBooster prediction
scores for seven genes also showed good agreement with the
fold changes of mRNA half-lives experimentally measured
by qRT-PCR (Figure 5E). Taken together, the above results
demonstrated that the binding targets of the RNA helicase
MOV10 predicted by DeBooster were associated with the
changes of mRNA half-lives. Thus, the prediction results
from DeBooster may provide useful clues for further un-
derstanding the regulatory mechanisms of RNA helicases
on the life cycle of mRNAs.

DeBooster may distinguish two potentially different types of
ADAR1 binding patterns

ADARs are a family of homologous enzymes catalyzing
adenosine-to-inosine (A-to-I) editing in the RNA, and have
similar double-stranded RNA binding domains (dsRBDs)
and a common deaminase domain (48). Despite their major
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A

B

C

E F

D

Figure 3. Performance validation of DeBooster through cross-platform CLIP-seq datasets. (A) The proportional Venn diagrams of four ELAVL1 CLIP-
seq datasets collected from different experimental platforms. If binding region A from a dataset has at least one nucleotide overlap with binding region B
from another dataset, we regarded A and B as a common element of these two datasets. The datasets ELAVL1, ELAVL1(A) and ELAVL1(C) were from the
HEK293 cells, while the dataset ELAVL1(B) was from the HeLa cells. (B) The AUROC scores and binding sequence motifs computed by DeBooster using
different combinations of training and test datasets. The diagonal scores shown in bold correspond to the cross-validation results in which both training
and test datasets were collected from the same experimental platform. (C, D) The plots of the relative weights of individual sequence features computed
by DeBooster for the ELAVL1 datasets collected from different experimental platforms, including ELAVL1(B) vs. ELAVL1 (C) and ELAVL1(A) versus
ELAVL1 (D). (E, F) The plots of the DeBooster prediction scores for all 8-mers across different RBPs within the same family, including TAF15 versus
EWSR1 (E) and FUS versus EWRS1 (F). TAF15, FUS and EWSR1 all belong to the FET family and generally share similar binding preferences.
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used for the binding targets of TDP43 (Supplementary Notes).
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Figure 5. Understanding the predicted binding effects of MOV10 on mRNA degradation. (A, B) Fractions of 3′ UTRs with MOV10 binding for four
groups classified according to the original CLIP-seq data (A) and the DeBooster prediction results (B), respectively. Genes were evenly separated into
four groups according to the fold changes of their mRNA half-lives. Groups 1, 2, 3 and 4 corresponded to top 25%, 25–50%, 50–75% and bottom 25%,
respectively. In the DeBooster prediction results, we only considered those robust binding targets with prediction scores > 0.2 (the default threshold was
zero and the range of prediction scores was in [–1,1]). (C) The sum of positive prediction scores per UTR for four groups of genes, which were classified
and ranked according to the fold changes of their mRNA half-lives in a descending order. *P value < 0.001, Wilcoxon rank sum test. (D) The cumulative
distribution on the fold changes of mRNA half-lives for four groups of genes, classified and ranked according to the DeBooster prediction scores in a
descending order. That is, Groups 1, 2, 3 and 4 corresponded to genes with top 25%, 25–50%, 50–75% and bottom 25% predicted scores, respectively. The
P values were computed using the Wilcoxon rank sum test. (E) The plot of the DeBooster prediction scores versus the fold changes of mRNA half-lives
measured by qRT-PCR for seven genes.
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role as RNA-editing enzymes, a fraction of ADAR2 bind-
ing events have been confirmed to be ‘non-productive’, that
is, these bindings might not trigger any RNA editing (22).
On the contrary, those ADAR2 binding events that indeed
produce RNA editing were considered ‘productive’. Recent
studies showed that many ADAR1 binding sites are distant
from the editing sites (49). It was found that ADAR1 ac-
tually has diverse functions rather than simply catalyzing
RNA editing, and some of these functions are independent
of its editing activity (49). To investigate whether ADAR1
also has potentially different binding patterns, such as ‘pro-
ductive’ and ‘non-productive’ binding modes like ADAR2,
we compared the prediction results from three DeBooster
models, which were trained using all, productive and non-
productive ADAR1 binding sites, respectively.

We first introduced the concept of the binding-editing dis-
tance, which was defined as the genomic distance between a
known or predicted ADAR1 binding position and its clos-
est editing site. The known RNA editing sites were obtained
from the RADAR database (50). Our first model, also
called the all-binding model, was trained using all ADAR1
binding sites measured from CLIP-seq experiments (49) as
the positive samples. The negative samples were defined as
those unbound regions that were adjacent to the positive
samples in transcripts and had the lengths equal to those of
the corresponding positive samples. In our second model,
also called the productive binding model, the CLIP-seq sites
(i.e. the ADAR1 binding sites measured from CLIP-seq
experiments) with small binding-editing distances (0−100
nt) were used as the positive samples, while the CLIP-seq
sites with large binding-editing distances (>1000 nt) to-
gether with the adjacent unbound regions were used as the
negative samples. In our third model, also called the non-
productive binding model, the CLIP-seq sites with large
binding-editing distances (>1000 nt) were used as the pos-
itive samples, while the CLIP-seq sites with small binding-
editing distances (0−100 nt) together with the adjacent un-
bounded regions were used as the negative samples. We then
used the three trained models to search novel ADAR1 bind-
ing sites in the human transcriptome. The distances from
the three groups of the new predicted binding sites to edit-
ing sites were calculated and shown in Figure 6A. The me-
dian of the binding-editing distances resulting from the all-
binding model was 814 nt (Figure 6A), which was roughly
on the same scale as from the original CLIP-seq data (606
nt). The median of the binding-editing distances from the
productive binding model was zero (i.e. the ADAR1 bind-
ing region contained at least one editing site), which was sig-
nificantly different from that of the non-productive binding
model (4665 nt, Figure 6A). The above results showed that
DeBooster may be able to learn the difference between dif-
ferent groups of ADAR1 binding sites, and such difference
may be possibly related to the editing activity of the enzyme.

We also examined the sequence motifs of the ADAR1
binding sites identified by three different DeBooster mod-
els (Figure 6B). Although all three sequence motifs showed
high GC content, the motif generated by the productive-
binding model had relatively higher frequencies of As and
Us than those from the other two models. This observation
indicated that those ADAR1 binding sites with relatively
lower GC content might be more prone to being edited.

This result was also in agreement with the known evidence
that the published motif of the ADAR1 binding sites (49)
contained relatively higher GC content than that of the ge-
nomic regions near the editing sites (51). We also trained
GraphProt (17) on the same three different datasets, and
compared the analysis result to that of DeBooster. More de-
tails about the comparison can be found in Supplementary
Notes.

Although the results shown in Figure 6 may be caused
by the definition of productive and non-productive bind-
ing sites in our problem setting, we argued that this is very
unlikely the case because of the following reasons. First, al-
though we labeled productive and non-productive binding
sites mainly based on the binding-editing distances, such a
distance feature was not fed into our model as input data.
Once the training data had been selected, DeBooster only
used the sequence features of these training data. On the
other hand, we showed that our trained model can well
capture the intrinsic difference between these two binding
types, including the binding-editing distances and the bind-
ing motifs (Figure 6). Second, the ADAR binding sites mea-
sured from CLIP-seq experiments are generally relatively
long (average 190 nt in our training data) compare to those
of other RBPs. The difference between the percentages of
As in productive and non-productive binding sites were al-
most negligible (23.4% versus 22.9%). In addition, among
all As inside the ADAR1 binding sites, only a small frac-
tion of them were edited (about 2.88% in our training data).
Thus, it unlikely that the motif difference shown in Figure
6B was introduced by the bias from our original definition
of productive and non-productive binding sites. Therefore,
most likely our model can capture and distinguish the in-
trinsic sequence features of productive and non-productive
binding sites in our setting.

To summarize, we can seperate the ADAR1 binding sites
into two groups. One contained the binding sites close to the
editing sites, while the other covered the binding sites that
are thousands of nucleotides away from the editing sites.
The different patterns between these two types of binding
sites can be learned by DeBooster and reproduced in the
DeBooster predictions, which indicated that there might be
different regulatory mechanisms underlying these two dif-
ferent groups of ADAR1 binding sites. However, it will still
need more comprehensive investigation to study whether
these two different groups of binding sites actually truly re-
flect the different binding behaviors of the RNA editing en-
zyme, and whether this difference embodies the diverse reg-
ulatory roles of ADAR1.

The shift of the predicted RBP binding scores from muta-
tions may predict the antagonizing effect of RBP binding on
miRNA repression

RBPs and miRNAs are two classes of essential regulators
controlling mRNA degradation and expression, and they
often interplay with each other to display co-regulatory
effects (52). For example, in the 3′ UTR of an oncogene
ERBB2, the RBP ELAVL1 (also called HUR) antagonizes
the repression effect of the miRNA miR-331-3p by bind-
ing to a U-rich element (URE) near the miRNA target re-
gion called miR-331b (23). With a mutant URE, the repres-
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A B

Figure 6. The comparison results on three different DeBooster models, which were trained using all ADAR1 binding sites identified by CLIP-seq experi-
ments, productive ADAR1 binding sites (i.e. triggering A-to-I editing), and non-productive ADAR1 binding sites (i.e. without triggering A-to-I editing),
respectively. (A) The boxplot of the binding-editing distances, which were defined as the genomic distances between the new predicted ADAR1 binding
sites and the closet editing sites, for three different DeBooster models. *P value < 0.001, Wilcoxon rank sum test. (B) The sequence motifs of the ADAR1
binding sites identified by three different DeBooster models. More details can be found in the main text.
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sion effect of ELAVL1 binding on miR-331-3p is weakened,
since the new ELAVL1 binding sites shift to a position that
is more distant from the miR-331b region (Figure 7A), and
also reduces the binding affinity of ELAVL1 (the magnitude
of the experimentally measured Kd values change from 10−8

M to 10−7 M) (23). Here, we showed that DeBooster can
successfully identify this mutational effect that was consis-
tent with the previous experimental observation.

We used the CLIP-seq dataset of ELAVL1 measured
from the Hela cells (53) as training data (those over-
lapping records about the measured binding sites in the
3′ UTR of gene ERBB2 were removed) and performed
a comparative study on the predicted binding scores of
four cases, i.e. WT-URE/WT-331b, MT-URE/WT-331b,

WT-URE/MT-331b and MT-URE/MT-331b, which rep-
resented the wild-type sequence, a URE mutant with the
wild-type miR-331b region, the wild-type URE with a miR-
331b mutant, and a sequence with mutations in both URE
and miR-331b regions, respectively (Figure 7B). All the
binding scores predicted by DeBooster showed obvious
peaks near the URE, indicating the high-affinity binding
of ELAVL1 in this region. More importantly, the predic-
tion results of DeBooster displayed a clear position-shifted
and affinity-decreased pattern of ELAVL1 binding on a
URE mutant (Figure 7B). The curves of the predicted bind-
ing scores for WT-URE/WT-331b (i.e. wild-type) and WT-
URE/MT-331b (i.e. only mutations in the miR-331b re-
gion) had similar shapes, which was consistent with the pre-
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Figure 8. The comparisons between the overall changes of the predicted binding scores of individual RBPs after pathogenic or neutral mutations in regions
near 5′ and 3′ splice sites. *P < 0.001, Student’s t test.

vious experimental result that the mutations in the miR-
331b region rarely affect ELAVL1 binding (23). In addition,
the peaks of these two curves were approximately located
in positions 50-90 along the 3′ UTR of ERBB2, while the
peaks of the other two curves with mutations in the URE
region (i.e. MT-URE/WT-331b and MT-URE/MT-331b)
were located around positions 45-60. Such a position shift
of the ELAVL1 binding sites identified by DeBooster in fact
agreed with the previous experimental RNA footprinting
results (see Figure 7B in (23)). Moreover, the decrease of
the binding scores predicted by DeBooster was also con-
sistent with the loss of the experimentally-determined Kd
values with respect to the same mutations (23). Taken to-
gether, these results indicated that DeBooster can success-
fully identify the changes of the RBP binding scores caused
by the mutations in binding targets which may be used to
predict the antagonizing effect of RBP binding on miRNA
repression.

The prediction scores of DeBooster may provide a useful in-
dex to study pathogenic mutations affecting RNA splicing

Recent studies revealed that abnormal splicing play a vi-
tal role in development of many human diseases, such as
cancer and neurological disorders (55–57). The mutations

near splice sites or on splicing regulatory elements, such
as exonic splicing enhancers (ESEs) and exonic splicing si-
lencers (ESSs), may influence RNA splicing and cause hu-
man diseases by disrupting RBP binding (2). Here, we were
particularly interested in whether DeBooster can provide
a useful tool to study the mutational effects of sequence
variants related to splicing events. We first examined the
overall changes of the predicted binding scores of individ-
ual RBPs with respect to the sequence variants of their
binding targets near 5′ and 3′ splice sites (Methods) and
checked whether the DeBooster prediction results can re-
flect the difference between pathogenic mutations and neu-
tral sequence variants. Our comparisons showed that the
changes of the binding scores predicted by DeBooster for
a majority of pathogenic sequence variants in regions near
5′ and 3′ splice sites were significantly different from those
of neutral mutations (Figure 8). We also confirmed that
if the mutations occurred outside the RBP binding sites,
the predicted RBP binding scores were only affected to a
much smaller extent (Supplementary Notes). In addition,
almost all of these pathogenic mutations displayed relatively
larger changes in the predicted binding scores than neu-
tral variants. On the other hand, most of the neutral mu-
tations near 5′ and 3′ splice sites displayed similar effects
(with only 4 among 20 RBPs showing significant difference
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Figure 9. Examples of the predicted effects on the potentially disease-causing mutations near splice sites or on exonic splicing enhancers (ESEs). (A) The
exonic mutations of the SFRS1 binding sites near a 5′ splice site for gene CDH1. (B, C) The mutations of SFRS1 binding sites disrupting or creating exonic
splicing enhancer (ESE) motifs for genes TCFIL2 and THRAP3, respectively. The ESE motifs were obtained from (54). (D, E) The exonic mutations of
the TIA1 binding sites near the splice sites for genes TRRAP and KTN1, respectively. (F) A mutation near a 5′ splice site of gene ATM that changed the
predicted binding scores of both QKI and FUS. Abbreviation: WT, wild-type; MT, mutant.

with P < 0.001 in the Student’s t test). Furthermore, the
pathogenic mutations near splice sites generally showed a
greater extent of difference in the predicted binding scores
than those pathogenic mutations randomly chosen from the
COSMIC records (33) (Supplementary Figure S2). For in-
stance, among 20 RBPs, 15 and 18 proteins exhibited signif-
icantly different mutational effects on the pathogenic vari-
ants near 5′ and 3′ splice sites, respectively, compared to
only seven RBPs in those pathogenic mutations randomly
selected from COSMIC (Figure 8 and Supplementary Fig-
ure S1). Such an observation implied that the sequence dis-
ruptions of the RBP binding targets around splice sites may
generally play a more important role in the pathogenesis
of a disease. Overall, our studies indicated that the bind-

ing scores derived from DeBooster may provide an effec-
tive indicator for distinguishing pathogenic mutations from
neutral variants in RBP binding targets near splice sites.

Next, we further analyzed the mutational effects pre-
dicted by DeBooster for a number of known pathogenic
single-nucleotide variants (SNVs) obtained from COSMIC
(33). Below we describe several examples (Figure 9). First,
a synonymous substitution of the last base in Exon 7 (G to
A) of gene CDH1 (which encodes the E-cadherin protein)
led to an increase in the SFRS1 binding scores predicted
by DeBooster near a 5′ splice site (Figure 9A), which may
be related to the dysregulation of CDH1 that causes tumor
metastasis (58). Such an observation may also be supported
by a previous experimental validation study that this muta-
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tion can actually alter splicing by causing intron retention
to various extents (59).

As a second example, a mutation from G to A in a
TCF7L2 exon (60) disrupted the ESE motifs (which are 6
nt motifs located in exons and bound by SR proteins to
promote exon splicing (61)) and suppressed SFRS1 binding
(Figure 9B), while a mutation from U to A in a THRAP3
exon (60) enriched the ESE motifs and thus enhanced
SFRS1 binding (Figure 9C). Such disruptions in those
disease-relevant genes may influence the binding behaviors
of the important splicing regulator SFRS1, and thus may be
related to the tumorigenesis associated with aberrant splic-
ing (45).

In our third example, the mutation from U to C near a
3′ splice site of gene TRRAP (60) weakened TIA1 bind-
ing (Figure 9D). TRRAP interacts with oncoproteins MYC
and E2A (62), and its mis-regulation can be heavily related
to various types of cancers (63). On the other hand, another
mutation from C to U near a 3′ splice site of gene KTN1
(60) strengthened TIA1 binding (Figure 9E). KTN1 encodes
kinectin 1, and has been shown to display different splicing
patterns in cancers (64). Thus, these two sequence variants
in the binding sites of TIA1 may be associated with cancer
pathogenesis by changing the alternative splicing modes of
its target genes.

Another interesting example is the intronic mutation near
a 5′ splice site of gene ATM (60), which increased the bind-
ing scores of both FUS and QKI (Figure 9F). Such a muta-
tion may influence the splicing result of this tumor suppres-
sor (i.e. ATM) (65) by creating new potential binding sites
for both splicing regulators (i.e. FUS and QKI).

In addition to the above cases, there were other exam-
ples to demonstrate that the prediction scores of DeBooster
may reflect the pathogenic effects of sequence disruptions in
RBP binding. For instance, a substitution from C to U near
a 5′ splice site of gene NF1 (60) enhanced HNRNPC bind-
ing (Supplementary Figure S3A), which may be associated
with the known related neurologic disorders (66). On the
other hand, a mutation from U to C near a splice site of the
proto-oncogene BRAF (60) decreased the HNRNPC bind-
ing score (Supplementary Figure S3B). In addition, a mu-
tation from A to G (60) near a splice site of gene TET2 may
help form a novel GU-repeat region for strong TDP43 bind-
ing (Supplementary Figure S3C), and thus influence the
splicing process. Moreover, the SMAD4 splicing site may
be disrupted by the mutation from G to U (60) that may in-
crease the PTB binding score (Supplementary Figure S3D)
and thus alter the corresponding splicing result. Both TET2
and the SMAD4 genes act as tumor suppressors (67,68), so
the inhibition of their normal splicing may thus facilitate
cancer formation.

Taken together, the above examples illustrated that the
RBP binding scores predicted by DeBooster may offer a
useful index to investigate the pathogenic effects of sequence
disruptions related to RNA splicing.

CONCLUSION

We developed DeBooster, a deep boosting based frame-
work to model the sequence binding specificities of RNA-
binding proteins (RBPs) from high-throughput CLIP-seq

data. Compared to the state-of-the-art methods which usu-
ally require both sequence and structure profiles, DeBooster
uses only sequence information as input. Tests on 24 CLIP-
seq datasets demonstrated that DeBooster can achieve bet-
ter prediction performance than previous methods. In ad-
dition, the binding sites predicted by DeBooster can be val-
idated through cross-platform datasets. Moreover, the pre-
diction scores of DeBooster agreed with the experimentally-
determined binding affinity scores, such as in vivo measured
Kd values.

We further showed the great application potentials of De-
Booster by applying it to study the regulatory roles of sev-
eral important RBPs. In particular, we demonstrated that
the predicted targets of the RNA helicase MOV10 can bet-
ter explain its binding effects on the regulation of mRNA
degradation than the original CLIP-seq data. In addition,
the predicted RBP binding sites may help understand the
potentially different binding patterns of the RNA-editing
enzymes ADARs. We also showed that a shift of the pre-
dicted ELAVL1 binding scores from wild-type to mutant
in a U-rich element (URE) region of gene ERBB2 can ef-
fectively predict the antagonizing effect of RBP binding on
miRNA regulation. Moreover, DeBooster may be used as
an effective index to identify pathogenic mutations from
normal sequence variants and study the effects of poten-
tial disease-causing mutations in RBP binding sites related
to splicing. Based on these test results and analyses, we ex-
pect that DeBooster will provide a promising tool to analyze
more large-scale CLIP-seq data and gain more biological
insights related to RBP regulation.

The training datasets used in our study were originally
prepared in GraphProt (17), in which the negative data
was randomly selected from the unbound regions of target
genes. Through this manner, the constructed negative data
can include comprehensive information of the background.
However, to better control the local sequence bias in the
prediction results, using the upstream/downstream regions
near target sites as negative samples might be also worthy
of consideration. Further work will be needed to improve
the quality of training and test datasets to achieve better
predictions.
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