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ABSTRACT OF THE DISSERTATION

Emergent patterns in vascular networks and interaction networks:

A network-centric approach for studying complex systems.

by

Elif Tekin

Doctor of Philosophy in Biomathematics

University of California, Los Angeles, 2017

Professor Van Maurice Savage, Chair

Understanding how and at what scale features emerge from complex natural and so-

cial systems has presented daunting challenges for scientists and society. Nevertheless, a

unifying approach that spans different systems can offer more comprehensive insights. In

this respect, network science provides a common ground and a set of abstractions that has

led to important advances in understanding structures, visualizing flows, and establishing

predictive models for complex systems. This dissertation studies drug interactions and car-

diovascular systems by modeling them as networks to identify and investigate emergent

properties. Interaction-based networks play an important role in explaining the characteris-

tics of systems that arise as collective behaviors or responses among different components.

Here, we introduce a theoretical framework for the categorization of higher-order interactions

built upon the conceptual understanding of net interactions (arising from effects of all lev-

els) and emergent interactions (relative to all lower-order effects). Analyzing and dissecting

drug interactions to establish this methodology, we conclude that emergent interactions are

common in three-drug combinations, and we observe greater amounts of antagonism with

three drugs compared to the pairwise drug combinations. This framework provides promis-

ing applications to uncover emergent phenomena into other complex systems with many

interacting components such as food webs and social systems. The subsequent parts of this

dissertation deal with the vascular system. In particular, we present our recent findings

on pervasive asymmetry patterns in cardiovascular branching. Next, we explore the role
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of optimality principles as well as random branching subject to various spatial constraints

from local to intermediate to global in the emergence of these asymmetric patterns. The

investigation of spatial scales is important because spatial constraints have been shown to

play a key role in the organization of foundationally similar systems such as the distribution

of income levels across cities. Overall, this integrative approach focuses on transferring a

conceptual framework and knowledge across different fields to help elucidate and predict

structures, dynamics, and general behaviors in complex systems.
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List of Figures
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(iv). (b) Rescaled DA measure successfully delineates boundaries and tease

apart synergistic, additive and antagonistic interactions via the resulting tri-
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1.3 Loewe Additivity. Adapted from Chait et al. 2007 [8]. Lines of equal

bacterial response (growth) profile with drug combinations are shown in the

right panel. Loewe classifies drugs X and Y as additive if their combined effect
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when Eq. (1.1.2) is satisfied) as represented by the dash-dotted curve. When

the isobole at the level of interest shows downward (concave) deviation from

the linear behavior, then drugs are synergistic. On the contrary, antagonistic

drug pairs are identified by the upward deviation from the additivity line

as they show weaker effect together (dotted curve). The extreme form of

antagonism is shown by the solid curve. . . . . . . . . . . . . . . . . . . . . . 12

1.4 Conceptual and experimental framework for testing N-drug interac-

tions. When N = 2, a pairwise interaction is the only type of interaction that

one can observe. To test for pairwise interactions, we need pathogen response

measurements in the presence of each single drug alone and the pairwise com-

bination of drugs. On the other hand, when there are three components in

the system (N = 3), there are two different categorizations of interactions: 1.

net interaction defined as the total interaction resulting from all the lower-

order effects; 2. emergent interaction defined as the higher-order effects that

are not predictable from the lower-order interactions. To quantify three-way

interactions, pathogen response measurements for all possible subsets of drug

combinations are required. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Metabolic rate and body mass relationship. (a) Adapted from Hem-

mingsen et al. 1960 [9] Empirical evidence showing that metabolic rate and

body mass are related as a power-law with an exponent equal to 3/4. (b)

Adapted from Kolokoktrones et al. 2010 [10]. Second-order curvature is de-

tected by an extensive amount of recent data suggesting that the relationship

between metabolic rate and body mass is a power-law to leading-order but

has a significant and measurable second-order curvature. . . . . . . . . . . . 19
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1.6 Symmetrical vessel branching and labeling schematic for bifurcating

network. Adapted from Savage et al. 2008 [11]. A parent vessel at level k

with radius rk and length lk branches into two identical daughter vessels with

radius rk+1 and length lk+1. Branching level starts at 0 at the heart and

successively increases by 1 as the vascular system branches into the next level. 20

1.7 Illustration of space-filling in two dimensions. Adapted from Etienne et

al. 2006 [12]. The total service volume at level k defined by circles with the

diameter equal to the length of the vessels is conserved at the next branching

level k + 1. (k = 4 in the figure). In three dimensions, service volumes are

defined by spheres, hence total service volume at level k is given by Nkl
3
k. . . 21

2.1 Schematic of triple-drug combination effects according to deviation

from additivity (DA). Relative growth rates for bacteria populations in one-

drug, two-drug, and three-drug combinations are shown as increasing from 0%

growth in the center to 100% growth (no-drug control) at the largest outer

circle of the polar graph. Growth rate is shown for single-drug (black bars),

two-drug (blue bars with corresponding single-drug treatments adjacent), and

triple-drug combinations (radius of inner circle). Shading of the inner circle

indicates nature of pairwise interactions (red: synergistic, green: antagonistic,

no shading for additive). Outline coloring of inner circle indicates measure

of DA (black: additive, red: synergistic, green: antagonistic). Three possible

triple-drug combination effects are depicted schematically for theoretical drugs

X, Y , and Z according to measures of DA. (a) Strictly additive interactions of

all pairwise combinations and three-drug combination. (b) Synergy of three

drugs according to DA. (c) Antagonistic interaction of three drugs according

to DA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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2.2 Schematic of triple-drug combination effects according to emergent

three-way (E3) interactions. Relative growth rates for bacteria popula-

tions in one-drug, two-drug, and three-drug combinations are shown as in-

creasing from 0% growth in the center to 100% growth (no-drug control) at

the largest outer circle of the polar graph. For the E3 interaction measure,

the single, two-drug, and triple-drug combination growth rates, as well as

pairwise interactions, are shown with the same color coding as used for the

DA measure (Fig. 2.1), but with outline coloring of the inner circle indi-

cating measure of E3 (black: additive, red: synergistic, green: antagonistic).

Three possible triple-drug combination effects are depicted schematically for

theoretical drugs X, Y , and Z according to measures of E3. (a) Interactions

combine additively according to E3, even though several pairwise interactions

are synergistic. (b) Emergent synergy of three drugs according to E3. (c)

Emergent antagonism of three drugs according to E3. . . . . . . . . . . . . . 41

2.3 Emergent synergistic and antagonistic interactions in triple antibi-

otic combinations. Data for triple-antibiotic figures are shown according

to emergent three-way (E3) interaction measures. Figures are presented as

described in Figs 2.1 and 2.2. Data are represented as median ± mini-

mum/maximum. (a) The combination of ciprofloxacin 0.013 g/ml (CPR),

clindamycin 31.5 g/ml (CLI), and erythromycin 14 g/ml (ERY) interacts

synergistically in three-drug combinations according to both deviation from

additivity (DA) and emergent (E3) measures. (b) The combination of ery-

thromycin 14 g/ml (ERY), cefoxitin 1.16 g/ml (FOX), and tobramycin 1.3

g/ml (TOB) interacts antagonistically in three-drug combinations according

to the E3 measure and additively according to the DA measure. Only data

for one concentration of each antibiotic is shown, although each three-drug

combination was tested in a minimum of three independent experiments (see

2.2 Materials and Methods). . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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2.4 Comparing interaction measures for triple-drug combinations. Com-

parison of measures of deviation from additivity (DA) and emergent three-way

(E3) interactions are based on 20 triple-drug combination experiments. Of the

20 combinations, E3 is non-applicable in four cases because of both two-drug

and three-drug lethality. Thus, it is impossible to see the effect of the third

drug. DA is applicable in all cases because this measure ignores two-drug

effects. (a) Overlapping histograms for measures of DA (white bars) and E3

interactions (black bars) with bin size of 0.1. (b) Venn diagram compar-

ing overlap between synergistic three-drug interactions according to measures

of DA and E3 interactions. (c) Venn diagram comparing overlap between

antagonistic three-drug interactions according to measures of DA and E3 in-

teractions. In both (b) and (c), the shaded area indicates the combinations

which are fully synergistic or antagonistic, that is, synergistic in both DA and

E3 measurements, or antagonistic in both measurements. . . . . . . . . . . . 44

3.1 Schematic illustration of triple-drug interactions. Interactions are de-

termined based on measurements of bacterial growth and interactions of all

components: single drugs of X, Y , Z, pairwise combinations of XY , Y Z, and

XZ, and triple-drug combination of XY Z. Pairwise interactions of synergis-

tic (XY ), additive (Y Z), and antagonistic (XZ) are marked with red, black,

and green respectively, while the triple interaction is colored as dashed gray

to depict the uncertainty of the interaction. . . . . . . . . . . . . . . . . . . 53
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3.2 The histogram of the unscaled emergent three-way measure (E3)

over all triple-drug combinations. The stacked bars with different colors

on the histogram represent synergistic (red), additive (black), antagonistic

buffering (green), and antagonistic suppression (blue) triples identified via

Rescale 2. (b) The histogram of the scaled emergent three-way measure via

Rescale 2, i.e. [E3]R2. The plot shows a multi-modal distribution with modes

at synergistic, additive, and antagonistic buffering. Cutoffs can be placed

between these modes to categorize interactions. (c-d-e) The histogram of

the scaled emergent three-way measure via Rescale 0, 1 and 3, i.e. [E3]R0,

[E3]R1 and [E3]R3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Comparison of Rescale 0 and Rescale 2. Emergent three-way inter-

actions identified by the old rescaling method ([E3]R0) are contrasted with

the new rescaling method ([E3]R2) for the synergistic, antagonistic buffering,

and antagonistic suppression triples. For each interaction type identified by

Rescale 2, the frequency of each interaction type resulting from Rescale 0 is

represented in separate charts. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Examples of highly synergistic and antagonistic emergent interac-

tions among antibiotics. The bars represent measured growth rates (fit-

ness) under certain drug combinations: no drug (WT), single drugs, pairwise

combinations, and triple combination. (a) The combination of ciprofloxacin

(CPR), clindamycin (CLI), and streptomycin (STR) shows emergent lethal

synergy. (b) The combination of tobramycin (TOB), cefoxitin (FOX), and

erythromycin (ERY) shows a highly suppressive emergent interaction. . . . . 70

3.5 Analysis of the data from Wood et al. [13]. The histogram of the

unscaled emergent three-way measure via Rescale 2 ([E3]R2) applied to Wood
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4.1 Cardiovascular data and schematic illustration of vascular branching

(a) Mouse lung micro-CT images processed by Angicart. (b) Human head

and torso MRI images processed by Angicart.(c) Schematic illustration of

the asymmetric branching geometry and labeling. Parent vessel with radius

r0 and length l0 branches into two daughter vessels with radius ri and length

li with subscript i = 1 or 2. Branching angles, θi, are defined by the angle

between the sides defined by the endpoints of the vessel pairs. Here, subscripts

are determined by the non-adjacent vessel. (see 4.5 Materials and Methods)

(d) Optimization of local branching on a plane finds the optimal location of

the branching junction j when the unshared endpoints (Vi) and the radii (ri)

are fixed (see 4.2.1 General framework for branching angle optimization and

asymmetry). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Comparison of real data for vascular networks versus random simu-

lations of branching junctions. The real and simulated networks (via lo-

cal to global spatial constraints) are separated by different rows. A schematic

small network is given to describe how different simulations are performed.

The vessels and the fixed endpoints of the real branching network are rep-

resented in red. Vessels that result from random branching simulations are

in black. The healthy mouse lung network and the simulated mouse lung

networks are shown within a minimum spherical boundary that contains all

branching data from the real network. Here, the red nodes for each figure

correspond to the real data, whereas the black nodes correspond to the simu-

lated data. Note that the terminal tips and the most upstream node (i.e., the

source) are determined from real data and fixed throughout all simulations.

The resulting asymmetry ratio distributions for length and branching angles

are provided for the real network and for each of the simulations. The sta-

tistical comparisons of random branching simulations with empirical data are

given in Table 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
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4.3 Histograms or frequency distributions of the asymmetry ratios for

radius ( λr), length ( λl), and branching angles ( λθ) of vascular

networks. (a) mouse lung (1 individual) and (b) human head and torso

(18 individuals). Note that radius and branching angle asymmetry ratios

are both skewed towards perfect symmetry, whereas the length asymmetry

ratio shows no skew and reveals much more asymmetry. (c) Histograms of

branching angles for combined data of human and mouse networks appear to

be unimodal both for θ0 and for θ1 & θ2 with peaks at 1.51 and 2.21 radians,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Histograms or frequency distributions of optimal asymmetry ratios

for length ( λl) and branching angle ( λθ) derived from material-cost

(MC) optimizations. Surface-area (MC-SA) results are shown as solid lines

and volume (MC-V) results are shown as dashed lines for (a) mouse lung and

(b) human head and torso. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Histogram of optimal branching angles for combined data of human

and mouse networks for material-cost (MC) optimizations. All his-

tograms appear to have unimodal characteristics both for θ0 and for θ1 & θ2

with respective peaks at (a) 1.79 and 2.25 for the surface-area constraint and

(b) 1.79 and 2.24 for the volume constraint. . . . . . . . . . . . . . . . . . . 98

4.6 Junction-level comparison of optimal versus actual branching angles

for the volume constraint of material-cost optimizations (MC-V).

(a) mouse lung and (b) human head and torso. The Pearson correlation

coefficients and p-values are calculated for each plot. . . . . . . . . . . . . . 99
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4.7 Comparison of approximate solutions with numerical solutions for

the PC-1 (power-cost (PC) optimization beyond single branching).

Approximate solutions define linear boundaries on the c1c2-plane between dif-

ferent categories of the solution space: collapse to daughter endpoint, collapse

to parent endpoint, and no-collapse. The different categories calculated from

numerical simulation are marked by different colors as indicated in the figure.

(a) An example of symmetric branching in vessel radius with parameter val-

ues: |V0V1| = |V0V2| = |V1V2| = 1, r0 = 1.20, r1 = 1 and r2 = 1, where c1

and c2 take values in the range [0, 20]. (b) Zoomed version of (a) into the

plane [0, 2] × [0, 2] with the same resolution as in (a). (c) An example of

asymmetric branching in vessel radius with parameter values: |V0V1| = 0.8,

|V0V2| = |V1V2| = 1, r0 = 1.1, r1 = 0.85, and r2 = 1, where c1 and c2 take val-

ues in the range [0, 20]. (d) Zoomed version of (c) into the plane [0, 2]× [0, 2]

with the same resolution as in (c). . . . . . . . . . . . . . . . . . . . . . . . . 101

A.1 (a) Two-way ANOVA design. When the linear curves are parallel (Eqs (A.0.1)

and (A.0.2) hold), or equivalently when the change in the response variable is

independent of the presence or absence of the second factor Y , then ANOVA

identifies that Y has an additive effect, meaning that X and Y are not inter-

acting. (b) Three-way ANOVA design. The graph in the panel (a) is now

reproduced with the third factor (Z), where it illustrates the two-way interac-

tion between X and Y when the third factor is present. Three-way ANOVA

quantifies the statistical significance of change in the amount of two-way in-

teraction across Z’s absence (panel (a)) and Z’s presence (panel (b)) [14]. . 120

B.1 (a) Schematic of the branching geometry (b) Illustration of degenerate cases

where the branching junction coincides with one of the vertices. . . . . . . . 125
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C.1 (a) The branching geometry of a parent and one of the daughter vessels. (b)

When the vertex J approaches the vertex V0 from the right, x = v2cosϕ1 − l0.

(c) When the vertex J approaches the vertex V0 from the right, x = v2cosϕ1 +l0.128

D.1 Ellipse formed by the points X, Y , and Z. By definition, the sum of the
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D.2 The diagram of the proof to show showing that when θ < V̂0, the branching

junction J will collapse on V 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 133

F.1 (a) Perfectly-balanced branching network with identical daughter impedances

and (b) inclusion of impedances for downstream vessels in entire branching

network and thus beyond just the branching level k. . . . . . . . . . . . . . . 138

xviii



List of Tables

2.1 List of all antibiotics used in the study, abbreviation, dose range, and mech-

anism of action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 List of all antibiotics used in the study, abbreviation, dose range, and mech-

anism of action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Unscaled and rescaled definitions of emergent three-way interaction (E3) . . 65

4.1 Statistical comparison of material-cost (MC) optimizations and random spa-

tial constraints with empirical data. . . . . . . . . . . . . . . . . . . . . . . . 103

xix



Acknowledgments

I would like to thank my advisor Van M. Savage for his supervision and continuous

support throughout my graduate studies. He always provided me the right feedback and

intuition, which I found quite valuable, especially for broadening my understanding of the

concepts, and contributing to come up with original ideas. He prioritized my own contri-

butions, and gave me an immense amount of freedom to pursue my ideas. In addition to

all these, Professor Savage has always been a kind, caring, and encouraging advisor. I am

indebted to him for all his support and guidance throughout my career as a researcher.

I would like to thank Pamela J. Yeh for initiating the collaboration that made it possible

to study collectively on exciting research problems, which turned out to be an important part

of my thesis. I also would like to acknowledge the discussions with my committee members

Elliot M. Landaw, and Tom Chou. I have also enjoyed our discussions with the lab members,

in particular, Mauricio Cruz Loya, Daniel Wieczynski, and Tina Manzhu Kang.

Last but not least, I would like to thank my parents for their everlasting love, support and

belief in me that has always helped me to walk through the adventures of my life, including

the process of research and writing this thesis. I am so blessed to have them. Finally, I

would like to express my sincere gratitude to my husband for being a wonderful, caring and

thoughtful companion. Thank you for not giving up saying and making me say “That is

going to be alright.” whenever I was going through the struggles and challenges.

xx



Vita

2010-2011 E.A.P. Fellow at Mathematics Department, UCLA

2011 Summer Undergraduate Researcher, School of Engineering and Applied Sciences,

Harvard University

2011 Fall Teaching Assistant, Department of Computer Engineering,

Bilkent University, Turkey

2012 B.S. in Mathematics, Bilkent University, Turkey

2014 Fall Teaching Assistant, Life Sciences, UCLA

2014, 2016 Carol Newton Travel Award, UCLA

2012-2016 Research Assistant, Department of Biomathematics, UCLA

2016-2017 Research Assistant, Department of Ecology and Evolutionary Biology,

UCLA

Publications

C. Beppler, E. Tekin, Z. Mao, C. White, C. McDiarmid, E. Vargas, J. H. Miller, V. M.

Savage, P. J. Yeh, Uncovering Emergent Interactions in Three-Way Combinations of Stressors

Journal of the Royal Society Interface 13(125) 20160800.

E. Tekin, C. Beppler, C. White, Z. Mao, V. M. Savage, P. J. Yeh, Enhanced identification

of synergistic and antagonistic emergent interactions among three or more drugs Journal of

the Royal Society Interface 13(119), 20160332.

xxi



E. Tekin, D. Hunt, M. G. Newberry, V. M. Savage, Do vascular networks branch optimally

or randomly across spatial scales? PLOS Computational Biology 12(11) e1005223.

E. Tekin, V. M. Savage, P. J. Yeh, Measuring higher-order drug interactions: A review of

current approaches submitted for publication.

C. Beppler, Z. Mao, E. Tekin, C. White, J. H. Miller, V. M. Savage, P. J. Yeh, When more

antibiotics kill fewer bacteria: emergent suppressive interactions in three-drug combinations

submitted for publication.

xxii



CHAPTER 1

Introduction and Background

Network science has cultivated the scientific knowledge of many biological and physical sys-

tems and has led to important advances in understanding structures, visualizing flows, and

establishing predictive models for complex systems [1, 3, 5, 7, 15–20]. The term “network”

refers to an abstract model of a set of components via nodes that are connected by links that

represent direct associations between these nodes. Such abstraction and common ground

has enabled the transfer of knowledge between different fields, although “network” may refer

to different concepts depending on the application. Its wide range of applications include

1. gene interaction networks, where gene expression levels primarily result from series of

activation or deactivation events mediated by other molecular regulators; 2. ecosystems in-

volving many interacting species via consumer-resource relationships, pollination, and more

under fluctuating environmental conditions; 3. drug interaction networks that are often used

to provide efficient treatment strategies; 4. neural networks in the brain that are responsi-

ble for transmission of synaptic signals to the distant sites of the body; 5. electrical grid

networks that transfer the electricity through the engineered power distribution networks;

and 6. cardiovascular networks distributing the blood from heart to a whole body through

a hierarchical branching network structure.

These and other different biological and physical systems of networks can be categorized

based on their functionality and common characteristics. For example, networks representing

the interaction between different nodes, such as genes, drugs, or species can be categorized

as interaction networks (Fig. 1.1a). These interaction networks consist of functionally sim-

ilar nodes. The exchange of information within such networks are considerably localized

and emerge as whole-system behavior. Another type of networks are flow-transmitting net-
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works, which circulate flow through a specialized structure, such as synaptic signals in the

neural system, currents in an electrical circuit, or blood flow in the vascular system (Fig.

1.1b). These flow-transmitting networks are often called resource-distribution networks. In

contrast to the interaction networks, the flow-transmitting networks are mainly responsi-

ble for delivering resources from a central source or several sources out to a whole volume

and can either be tree-like or grid-like or a combination of both depending on the physical

constraints. We note that the categorization of networks into these two main types is not

exclusionary, meaning that some real networks can possess interactions along with some flow

through its elements. As an example, the food web type networks exhibit both interactions

(via interactions among species within or across different trophic levels) and flow properties

(such as flow of mass or energy through trophic levels) [21–23].

Scientists have sought to understand configurations of such diverse set of networks by

developing measures to describe and quantify certain structural, flow, or connectivity prop-

erties. One of the main challenges in network science is identifying ubiquitous and emergent

patterns in real network structures, and whether those patterns can be explained via ran-

dom formations. In regard to that, Erdös and Rényi have argued that complex networks

are all randomly generated and number of links out from a node is well represented by a

Poisson distribution [19, 20]. Since then, this methodology has been largely debated and

with the emergence of large datasets across wide range of network types, numerous stud-

ies [18] have shown that complex systems differ significantly from the predictions attained

by randomized networks. This implies that complex systems have strict organizational prop-

erties that are governed by essential and generic underlying principles. Indeed, a pairwise

drug interaction study by Yeh et al. [3], Segre et al. [16] has shown that interactions are

mostly monochromatic—clusters or categories of drugs all interact with other clusters in the

same way—signifying a strict functional organization. Moreover, such systematic network

schemes offer common advantages across different complex systems, such as resilience of the

world-wide web to breakdowns [24] and robustness of damage in leaf vascular networks [25].

Altogether, network science has provided an appropriate framework and unifying approach

in understanding and predicting structure and dynamics of various complex phenomena.

2



Figure 1.1: Categorizations of networks. (a) Schematic of interaction networks where
each node represents a single component in the system and the colored edges between two
nodes symbolize the pairwise interaction between them. The schematic representation is
followed by examples from gene interactions [1], foodweb [2], and drug interactions [3]. (b)
A schematic illustration of flow-transmitting networks—some form of flow is transported by
the restrained physical structure—that is followed by examples of such networks: neuronal
network imaged by spatial light interference microscopy [4], micro-CT image of mouse lung
with the cardiovascular structure extracted by our software Angicart [5,6], and power transfer
network engineered by IEEE for usage in testing power system reliability issues such as the
effects of altering a single edge or node on the flows in the whole network [7].
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In this dissertation, our study covers one instance from two main network categories

described above (Fig. 1.1), where we focus on understanding interactions and optimization

properties that span different scales in terms of space, hierarchy, and number of components.

In particular, we focus on multiple component interactions arising in the assessment of

drug combinations for the interaction networks (Chapter 2 and 3) and the cardiovascular

system for flow-transmitting networks (Chapter 4). Leveraging our knowledge on these

different phenomena of drug interactions and vascular networks would potentially yield a

useful scheme in delivering successful treatment strategies to inhibit and disable the tumor

growth that is mainly associated with the abnormal vascularity formed to supply necessary

nutrients or oxygen to the tumor site.

This study has been published in three papers, namely “Uncovering emergent interac-

tions in three-way combinations of stressors” [26], “Enhanced identification of synergistic

and antagonistic emergent interactions among three or more drugs” [27], both published

in The Journal of Royal Society Interface, and “Do vascular networks branch optimally or

randomly across spatial scales” [6] published in Public Library of Science Computational

Biology. Chapters 2, 3 and 4 are entirely formed by these papers, each corresponding to

the respective chapters. Note that some material from these papers are also incorporated

into Chapter 1 and 5 and the supplementary materials referenced in this dissertation can be

retrieved through online access of these articles.

1.1 Drug Interaction Networks and Multiple Component Interac-

tions

Because of their key role in understanding the dynamics of important biological systems

(e.g., cell cycles, food webs), interactions have been extensively studied over time and in

a wide range of organisms [28–35]. In this regard, many methods have been developed for

defining and categorizing interactions into different classes [28, 29]. In a broad context, for

a complex system involving multiple stressors, interactions are determined based on the

response phenotypes that can be measured both separately and in combination for each
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component. For example, in the drug interaction framework where drugs induce stress on

the pathogen proliferation, growth rates (or fitnesses) of pathogen exposed to combinations

of drugs represent the response phenotype. In a different biological interaction network,

such as predator-prey systems, where a certain prey population is encountered with multiple

predators, the response phenotype is given by the mortality and consumption rates of prey

eaten by combinations of multiple predators. In another ecological setting, physiological rates

affected by combinations of ecological stressors can be defined as a response variable. For

these and other examples of interaction networks, phenotype measured in response to single

and combined effects accompanied with an appropriate interaction classification method

provides assessment of interactions between components. Moreover, due to the basic and

foundational similarities, the concepts and measures developed for one setting can often be

translated and employed into other interaction-based networks (see Chapter 2 and Appendix

A).

In general, interactions are classified relative to the case that the single components do

not interact at all, hence they are additive. Assignment of interaction types into categories

of positive (synergistic) or negative (antagonistic) interactions are determined based on the

deviations from this no-interaction (or additive) case. Despite the fact that complex systems

involving many components have the potential for higher-order interactions, previous studies

have primarily focused on two-way or pairwise interactions. This pairwise approach can

cause oversimplification, hence resulting in potentially misleading results when predicting the

overall behavior of the complex system. Therefore, a novel approach to identify interactions

resulting from different levels of interaction is required to obtain more comprehensive insights

into the complex systems research. This raises questions such as: Can we characterize higher-

order, emergent interactions that are not predictable from lower-order components? How

do emergent interactions differ from the overall, net interaction? Are emergent interactions

common in nature? Can we observe patterns in terms of frequencies of emergent interactions

or synergism versus antagonism of higher-order interactions?
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1.1.1 Characterization of two-way (pairwise) drug interactions

In this dissertation, we use an experimental system of the bacteria E. coli exposed to dif-

ferent drug combinations as a model system to investigate these basic yet subtle questions

about complex, higher-order interaction effects. In the drug interaction framework, the ef-

fectiveness of drug therapies is typically determined by a drug’s capability of inhibiting the

pathogen’s growth. Legitimately, the exploration of how drugs affect one another requires

measurements of pathogen growth rates in response to single and combined effects of drugs

relative to growth in the absence of drugs. This is commonly referred as relative fitness and

denoted as wD for drug combination D and takes values between 0 and 1, corresponding re-

spectively to no-growth (best treatment) and maximum (worst treatment) pathogen growth.

In this manner, one can examine drug interactions either at the fixed concentrations for

each of the drugs, or across a gradient of concentrations of the combined drugs, where each

strategy has its own benefits or caveats. In particular, evaluating drug interactions at fixed

concentrations is simple and straightforward, whereas examining drug interactions across

different concentrations is burdensome as it requires prohibitive amounts of work to collect

a sufficient amount of data but it provides more comprehensive information on analyzing

drug interactions.

For pairwise (i.e., two-drug) combinations, there are two common methods to measure

and categorize interactions corresponding to each scheme: Bliss Independence [28] and Loewe

Additivity [29]. These methods quantitatively define the case of no interaction between two

drugs and categorize the interaction type based on the magnitude and direction of deviations

from the non-interacting (additive) case. The interaction is referred as synergistic and antag-

onistic when drugs together are more or less effective than their additive effect, respectively.

Moreover, it is also possible to define special cases of synergistic and antagonistic interac-

tions. For example, lethal synergy where the synergistic interaction causes the complete

inhibition of the pathogen population represents a special case and defines a relative case

for defining the interaction strength [3, 16]. Antagonistic interactions constitute two special

cases where one represents a buffering effect, meaning that one drug completely obscure the
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potency of the other drug. Second, suppression is defined as when the antagonistic effect is

even stronger than the buffering scenario, not just masking but actually reversing some of

the potency of the other drug [36,37]. The most suppressive case can be observed when the

pathogen growth is fully recovered as there is no drug at all. Importantly, identification of

interaction types with these subcategorizations can provide more information about inter-

actions and can be achieved by normalizing the basic metrics as explained below. Now, we

review measures introduced for the identification of two-drug interactions.

First, Bliss Independence characterizes drug interactions when drugs are combined at

fixed concentrations. It defines additivity such that the percent decrease in the relative

fitness of the pathogen when treated with one drug is not impacted by the presence of

another drug at previously determined concentrations. Here, individual drug concentrations

are typically chosen such that they reduce the pathogen growth to a range of 65-90% as

compared to the no-drug (wild type: WT) case. In mathematical terms, the additivity

between drugs X and Y corresponds to the relation wXY = wXwY [28]. For example, if

drugs X and Y yield fitness measurements of 0.5 each, meaning that they both inhibited

the growth by 50%, then it is expected that the combination of drugs XY inhibits the

growth by 75% as wXY = 0.5 ∗ 0.5 = 0.25 = 1 − 0.75 under the null hypothesis that drugs

are not interacting [37]. Note that assuming drug X is additive with itself by Bliss (i.e.,

wXX = wXwX) places specific constraints on the fitness measure as a function of drug X

concentration. This assumption is empirically verified for many of the antibiotics discussed

in this thesis (see Chapter 2.2). By definition, the deviation from additivity (DA) determines

the interaction between drugs given by

DAX,Y = wXY − wXwY (1.1.1)

Consequently, when this measure is greater than 0 corresponding to the case that the com-

bined effect (wXY ) is greater than the expectation based on the independent single drug

effects (wXwY ), then it implies synergistically interacting drugs. In contrast, the opposite

case implies antagonism between drugs X and Y .
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An additional challenge for the classification of combination effects is that the existence

of interactions is not apparent due to the unimodal form of raw interaction values (DA

results) based on empirical data [3, 16]. The definition suggests that the sign of the DA

measure can be easily interpreted as drugs are either enhancing or diminishing the effects

of each other, however, the magnitude of the interaction is not well represented by the DA

measure. Hence, the raw form of the interaction metric leads to a unimodal distribution

around 0 (additivity) that does not clearly define boundaries between different interaction

types (synergy, additive, antagonism) [3, 16]. Therefore, a refinement of the interaction

metric is necessary to evaluate for the actual magnitude of the interaction and thus to make

the identification of interactions more accurate. Such a refinement may require rescaling

(a normalization) based on the special cases of synergy and antagonism. This ambiguity

can be easily seen by the following examples showing that drug combinations with different

interaction strengths (such as weak versus strong antagonism) can map onto an identical

interaction metric (DA) values. Consequently, interactions specified based on the current

form of DA may not be reliable. Now, consider two different drug combination profiles leading

to same DA calculation (Fig. 1.2a): i) When single drug fitnesses are given as wX = 0.54,

wY = 0.91, and the double drug fitness is given as wXY = 0.54, or ii) setting wX= wY = 0.7,

and wXY = 0.54 yield same DA values (= 0.05). There are two conclusions based on this

example along with the same lines of the above arguments. First, it is clear from the fitness

values that the pairwise interaction is antagonistic buffering for the first XY combination,

however based on the DA calculation, one can conclude that there is no interaction between

X and Y since 0.05 is very close to the base line of no-interaction (i.e. DA = 0). Next, the

first scenario shows stronger antagonistic behavior than the second one, however, there is no

way to distinguish them by inferring conclusions merely based on the raw interaction values

as they are identical across these two different instances. A similar example for negative

DA values is given in Fig. 1.2a denoted as cases (iii) and (iv), confirming inconsistencies

in defining the drug interactions when the DA measure is applied. Consequently, the small

white bars—one on the top of other—at the schematic of DA distribution represents cases

that need to be distinguished (Fig. 1.2a). Therefore, it is crucial to devise a revision to the
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Figure 1.2: Effect of rescaling the pairwise interaction measure (DA) on the
frequency distribution. (a) Unimodal distribution of DA does not result in clear cut-
off values, hence does not yield precise regions for distinguishing additive, synergistic, and
antagonistic interactions. In addition, it does not help differentiate cases that yield iden-
tical interaction values but show distinct interaction behaviors as shown by comparisons
of (i) and (ii), as well as (iii) and (iv). (b) Rescaled DA measure successfully delineates
boundaries and tease apart synergistic, additive and antagonistic interactions via the re-
sulting trimodal distribution with peaks around −1 (lethal synergy), 0 (additivity), and 1
(antagonistic buffering). The new rescaled interaction metric also separates case (i) from (ii)
and case (iii) from (iv), and hence reveals the actual magnitude of interaction and correctly
identifies the interaction type corresponding to each of the four cases.

interaction metric that eventually provides enhanced identification of interactions.

In regards to this, previous studies on two-way interactions [3,16] have shown that apply-

ing a rescaling method to the pairwise interaction measure (DA) enhances the classification

of synergies and antagonisms. Two reference cases are taken as a basis for the two-drug

rescaling corresponding to negative and positive values of DA: 1) lethal synergy meaning

that the combined effect deteriorates the pathogen growth at a full capacity (wXY = 0), 2)

complete buffering indicating that the combined effect is the same as the strongest individual

effect (wXY = min (wX , wY )). This rescaled DA measure yields a tri-modal distribution with

peaks at these reference cases (see a schematic representation of rescaling in Fig. 1.2b) lead-

ing to a clear separation among synergistic, antagonistic, and additive interactions [3, 16].

For the above cases of (i) and (ii) provided to exemplify the necessity of improvement in the
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classification of interactions, the rescaled DA metric successfully distinguish the interaction

types as the calculation yields 0.23 in case (i), and 1 in case (ii), where one of the drugs

buffers the effect of the other drug in the pairwise combination. The similar conclusion is

achieved for cases (iii) and (iv) with negative DA values since the degree of interactions is

reflected by the new rescaled metric.

Overall, Bliss Independence—or equivalently the DA measure—offers a feasible way to

classify interactions and has been applied to a wide range of diseases to determine the drug

combination potency, including bacterial infections [3, 13, 37–42], fungal diseases [43–48],

types of cancer [49–54], HIV [55–59], and plant diseases [60, 61]. Moreover, gene epistasis

studies directly and reliably measure the interactions in terms of DA by using growth rates

of single and double knockout mutants as the fitness parameters [16, 62–66] .

On the other hand, Loewe additivity [29, 37] characterizes the interaction based on the

growth response of pathogen (i.e. the relative fitness wD) to a range of drug concentra-

tions that are varied simultaneously. In that respect, drugs are defined as additive (non-

interacting) if the total inhibitory concentration of the combination—the sum of individual

drug concentrations relative to each drug’s Minimum Inhibitory Concentration (MIC)—is

independent of the relative fractions of each drug. A natural example follows from com-

bining a drug with itself, where any fraction of MIC (say c = 0.75) of the drug would be

complemented by the (1 − c = 0.25) MIC of the same drug, meaning that the drug is ad-

ditive with itself. Rephrasing this statement in terms of two different drugs with the given

fraction of MIC of the drug X, one can infer that if the drug X is complemented by the 0.25

MIC of another drug Y , then X and Y are additive. For any value of c, this is equivalent

to saying that drugs do not interact when the combination of drug X at a concentration

CX = c ∗ CX,MIC with the drug Y at a concentration CY = (1− c) ∗ CY, MIC yields full

inhibition of the growth. Thus, the additive relation by Loewe measure corresponds to the

expression
CX

CX,MIC

+
CY

CY,MIC

= 1 (1.1.2)

where the effective concentration terms correspond to the normalized concentration of X and
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Y relative to their MIC, respectively. Thus, two drugs are additive if the inhibitory effect is

attained along a straight line in concentration space defined by the equation above (Fig. 1.3).

On the contrary, if the normalized curve at the inhibitory level (isobologram) is concave, this

implies that a lower effective concentration is enough to inhibit the pathogen, and the drug

interaction is recognized as synergistic. Finally, a convex MIC profile for a drug combination

corresponds to an antagonistic interaction because it indicates that increased drug dosage is

needed to achieve the full pathogen inhibition. Note that the interaction between drugs can

be defined analogously for other response levels that is different than the inhibitory profile

of the pathogen. This can be done by simply normalizing the concentrations relative to

concentrations producing the bacterial inhibition at the level of interest. As an example,

one can determine drug interactions at 50% inhibition of pathogen (IC50) by analyzing the

isobologram at this level, where the MIC terms in the Loewe equation for additivity are

simply replaced by the IC50 terms for each drug.

1.1.2 Higher-order drug interactions

Despite the fact that higher-order drug combinations are becoming more prevalent in the

clinic such as recent therapies for treating patients with complex diseases such as HIV [67] or

Mycobacterium tuberculosis infections [68], a rigorous understanding of how to quantify and

characterize higher-order drug interactions has not yet been fully achieved. This is mainly

because several difficulties arise when the complexity of the system increases—such as going

from two-drug interactions to three-drug combinations. First, for the simplest case where

there are only two drugs in the environment, only two-way interaction relative to the single

drug effects can be observed. However, when there are more than two drugs in the system,

any lower-order mixture of drugs can have an effect on the higher-order drug interaction (Fig.

1.4). This brings out a possibility that an N -way interaction may come from an interaction

of just some subset of the drugs in the combination. For example, a synergistic three-way

interaction may solely arise from a synergy of just two of the drugs, hence would not be a

novel therapeutic option. Indeed, in such a case, the third drug could be irrelevant in terms

of pathogen killing, and thus likely should not be used to decrease the toxic side effects to
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Figure 1.3: Loewe Additivity. Adapted from Chait et al. 2007 [8]. Lines of equal
bacterial response (growth) profile with drug combinations are shown in the right panel.
Loewe classifies drugs X and Y as additive if their combined effect is identical to the linear
effect from the two individual drug outcomes (i.e. when Eq. (1.1.2) is satisfied) as represented
by the dash-dotted curve. When the isobole at the level of interest shows downward (concave)
deviation from the linear behavior, then drugs are synergistic. On the contrary, antagonistic
drug pairs are identified by the upward deviation from the additivity line as they show weaker
effect together (dotted curve). The extreme form of antagonism is shown by the solid curve.
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Figure 1.4: Conceptual and experimental framework for testing N-drug inter-
actions. When N = 2, a pairwise interaction is the only type of interaction that one can
observe. To test for pairwise interactions, we need pathogen response measurements in the
presence of each single drug alone and the pairwise combination of drugs. On the other
hand, when there are three components in the system (N = 3), there are two different cate-
gorizations of interactions: 1. net interaction defined as the total interaction resulting from
all the lower-order effects; 2. emergent interaction defined as the higher-order effects that
are not predictable from the lower-order interactions. To quantify three-way interactions,
pathogen response measurements for all possible subsets of drug combinations are required.

the patient that might arise from the addition of ineffective third drug. On the other hand,

an emergent three-way interaction represents a truly novel effect that could potentially be an

excellent therapeutic option. Therefore, it is crucial to distinguish net—arising from effects

of all levels—and emergent interactions—that only emerge when all drugs are present—by

developing a rigorous and explicit conceptual and theoretical framework. There have been

attempts to extend the mathematical framework introduced for pairwise drug interactions—

Bliss Independence and Loewe Additivity—to higher-order combinations as done by Sanjuan

et al. [62,69], Otto-Hanson et al. [61], Berenbaum et al. [70]. However, these previous studies

do not give information about emergent behavior as those measures merely compare the N -

drug combo effect with the single-drug effects. Such an approach without the consideration

of other lower-order effects fails to fully grasp higher-order interactions. Thus, establishing

a measure to quantify emergent interactions requires more thought.

Next, as in the case of two-drug interactions, higher-order interaction metric should

also be accompanied with an appropriate rescaling method to reflect the magnitude of the

interaction and to provide a clear distinction among different interaction types. This is a
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crucial step as interactions may be missed if the unscaled metric results are used to infer the

interaction type. On the other hand, defining rescaling methods for higher-order interactions

adds an extra layer of difficulty as there may be several choices of baselines for the rescaling

when there are more than two drugs. In particular, it is important to address whether

antagonistic buffering mean three-drug effect is equal to the strongest individual (as done in

Sanjuan et al. [62]), or to couple, or interaction effect due to two interacting drugs.

Finally, to distinguish the lower-order effects from the N -drug interaction, one should

obtain pathogen response measurements in the presence of all possible subsets of drug com-

binations. For example, quantifying emergent three-way interaction among drugs X, Y ,

and Z requires 8 relative fitness measurements—for all singles (wX , wY , wZ), all doubles

(wXY , wXZ , wY Z), and a triple (wXY Z)—whereas an assessment of pairwise drug interaction

requires only 3 measurements per drug combo (Fig. 1.4). When the number of drugs tested

for higher-order combinations (K) increases, the total number of measurements (Etotal) neces-

sary to quantify N -drug interactions increases as well, given by Etotal =
∑N

i=1

(
K
i

)
, resulting

in increasing experimental complexity. In other words, collecting this extensive amount of

detailed data requires putting a substantial effort into performing experiments, which may

not always be feasible. Note that all the concepts and issues raised here on higher-order

(three or more) drug interactions are applicable to higher-order interactions in other com-

plex systems.

Recent studies on higher-order drug interactions have made significant contributions to-

ward examining interactions that are beyond the pairwise effects. Particularly, a recent study

by Wood et al. [13] employed maximum entropy method to quantify three-way interactions

that could not be predicted from two-way interactions. Using six triple-antibiotic combina-

tions that are varied across different concentrations, they recognized that their maximum

entropy method result in similar conclusions when a simple algebraic formula, known as

Isserlis theorem, is utilized. Then, they suggested that Isserlis formula can be used to de-

termine higher-order effects beyond pairwise combination effects. Note, however, that when

there are more than three components in the system, one should distinguish the higher-order

effects from effects from all lower-order combinations not just from pairwise combinations.
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Another study by Zimmer et al. [71] used a mathematical framework by applying Bliss Inde-

pendence to growth curves defined by Hill functions at the effective dosages of drugs, which

are determined based on the pairwise interactions with other drugs in the combination. The

studies reviewed here (i.e. Wood et al. [13] and Zimmer et al. [71]) both concluded that for

most of the cases pairwise combinations are sufficient to identify the higher-order effects,

meaning that there is no emergent interaction.

In studies of multi-way stressor interactions, especially predator-prey systems and some-

times epistasis, full factorial design of ANOVA has been used to infer higher-order interac-

tions between stressors [30,72,73]. For instance, Chen and colleagues analyzed effects of three

stressors on zooplankton and amphibians using three-way ANOVA [73]. However, ANOVA

has a few limitations that are related with the above points raised about the identification of

higher-order interactions [74]. First, ANOVA only identifies the existence of an interaction,

but does not yield an indication of the direction or a classification as synergy or antagonism.

Second, it is unclear how to rescale a three-way ANOVA, making it more challenging to

identify interactions [16]. Third, ANOVA tests for significance by comparing variances that

assume Gaussian or parametric distributions, which require significant amounts of data for

each response variable in the system (singles, doubles, triples etc.), which does not exist

in the literature to the best of our knowledge. Finally, pseudo-variance argument (or com-

monly referred as hidden replication)—used to provide statistical power even with a limited

replication—only works when there is no interaction, which is not necessarily true and would

not be a reasonable assumption as we aim for identifying a deviation from the no-interaction

scenario [75]. All these potential shortcomings about ANOVA that is frequently used in

multi-stressor interaction studies should be reviewed in depth and the framework of ANOVA

should be further contrasted with other interaction-classification methods analytically and

conceptually.

In this dissertation, we study multiple-drug interactions at fixed concentrations—as in

the definition of Bliss Independence [28]—where the experimental data consists of growth

rates of bacteria in all single, pairwise, and triple combinations of antibiotics, allowing a

setup with the necessary information for the characterization of three-way interactions. In
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doing so, we use an interaction metric by extending Bliss Independence (DA) to bacterial

systems exposed to more than 2 drugs to quantify whether any net interaction exists at

all relative to the single-component effects. Importantly, we develop a novel and highly

informative interaction metric (E3) that quantifies whether there are three-way interactions

beyond what is expected from the effects of all pairwise combinations. This is done by

building up from the definition of Bliss Independence for drugs in a way that properly

weights and subtracts off the pairwise predictions from the net interaction. In that respect,

in Chapter 2, we introduce a framework that uncovers emergent three-way interactions by

deriving a conceptually clear and computationally straightforward framework with no free

parameters. Along with the derivation of 3-way interaction measures, we also establish a

generalization of our interaction metrics to systems with four or five components. In short,

our DA and E3 measures effectively distinguish between net and emergent interactions, and

are derived starting from the definition of no-interaction, and are also easily calculable.

As in the case of two-way interactions, the higher-order interaction metrics also require

adapting an appropriate rescaling method to clearly delineate and distinguish the types of

interactions. However, adapting the rescaling method established for pairwise interactions to

three or more drugs requires a more thorough assessment. In particular, we need to address

whether the baselines of synergy or antagonism differ when there are more than two drugs,

e.g. whether antagonistic buffering means the three-drug effect is equal to the strongest in-

dividual effect, stronger pairwise drug effect, or the interaction effect due to two interacting

drugs that combine information from single-drug effects and pairwise interactions? There-

fore, in Chapter 3, by taking our conceptual and theoretical framework as a baseline, we

propose and test several rescaling methodologies for enhancing the classification of higher-

order interactions. Using these new rescaling methods to examine the triple-drug data, we

demonstrate that there are many more higher-order emergent interactions than previously

identified [13, 71]. By choosing an appropriate rescaling approach and applying it to exten-

sive data from our model system, we see that our new interaction metric accompanied with

a more effective rescaling can successfully identify and distinguish among different categories

of interactions. Finally, we conclude that emergent interactions are common in three-drug
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combinations, and we observe greater amounts of antagonism compared to the pairwise drug

combinations.

In Appendix A of this dissertation, we also provide a comprehensive review to assess dif-

ferences between the standard statistical method ANOVA and our drug interaction frame-

work based methods—rescaled Deviation from Additivity (DA) and Emergent Three-way

Interaction (E3) metrics. In particular, we present mathematical translation of standard

two-way and three-way ANOVA into a measure and recognize that ANOVA applied to the

log transformed data for three-way combinations gives conceptually closer terms with our

emergent interaction metric (E3). Then, we perform a three-way ANOVA to our drug com-

bination data in both linear and log space, and determined how well our model results and

ANOVA results match (Chapter 2).

As presented above, the interaction-based networks (Fig. 1.1a) are one network type that

is covered in this dissertation. For that, the following 2 chapters establish a coherent theory

for the characterization of higher-order interactions via an experimental system of bacteria

exposed to multiple drug combinations. In these chapters, we have also included a discussion

of the existing models of interaction categorizations, and contrasted with our framework. As

we study different network types, the rest of this chapter introduces the proper background

needed to understand our study of the cardiovascular system as an instance of the second

category of networks, i.e. flow-transmitting networks (Fig. 1.1b).

1.2 Flow-transmitting Cardiovascular Network

It is of a great scientific interest to study the cardiovascular network for understanding how

it distributes the resources and oxygen throughout the body, investigating its role in the

metabolic activities, and revealing patterns in the structural organization of the network.

All these inquiries about the cardiovascular system are relevant in explaining and predicting

the empirical observations that metabolic rate (B) scales approximately as the 3/4 power of

the body mass (M),

B ∝M
3
4 (1.2.1)
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Figure 1.5: Metabolic rate and body mass relationship. (a) Adapted from Hem-
mingsen et al. 1960 [9] Empirical evidence showing that metabolic rate and body mass are
related as a power-law with an exponent equal to 3/4. (b) Adapted from Kolokoktrones et
al. 2010 [10]. Second-order curvature is detected by an extensive amount of recent data
suggesting that the relationship between metabolic rate and body mass is a power-law to
leading-order but has a significant and measurable second-order curvature.

This canonical 3/4 value was first observed by Kleiber in 1947 [76] based on data from 13

animal species and later termed as metabolic scaling theory or allometric scaling law since

it is preserved as body shapes change with size [11, 77–79]. Eq. (1.2.1) can equivalently

be expressed by a line with a slope of 3/4 in log-log space (Fig. 1.5a). Recent theories

for the cardiovascular system [79–83] that rely on series of assumptions about its structure

and flow properties have ultimately been able to predict this power-law relationship between

metabolic rate and the body mass.

Specifically, West, Brown, and Enquist (WBE Model [79]) modeled the vascular system as

a hierarchical branching structure constrained by several physical and biological principles.

Here, the hierarchy of the vascular network is represented by a successive arrangement of

branching vessels that start from the main vessel, i.e. heart. Therefore, in this model

the branching levels are computed as the hierarchical distance (Fig. 1.6)—defined as the

number of branching junctions away from the heart (level 0). An alternative labeling

scheme introduced by Horton-Strahler [84,85] computes the branching degree starting from

the most downstream branch of the network, i.e. the capillaries. When proceeding from

one branching level to the next, Horton-Strahler increments the labeling by 1 (such as k to
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k + 1) if the vessel has two or more children that are labeled by Horton-Strahler number k.

Otherwise, (i.e. if one child is labeled as k, but all other children are labeled less than k) the

Horton-Strahler number for the current vessel stays at k. This essentially means that Horton-

Strahler assigns higher values to branches with larger number of downstream vessels in the

network, whereas such distinction is not apparent in the case of the hierarchical ordering of

vessels. Labeling of the vessel based on some metric distance to the most upstream vessel

has provided a computational framework for the study of hierarchical branching networks

including the cardiovascular system.

WBE assume that the vascular network is symmetric in the sense that sibling vessels,

as defined by flow coming into them from a shared upstream parent vessel, are identical

in terms of their structural and flow properties such as radius, length, flow rate, and pres-

sure [11,79]. Next, from the observation of fractal-like structures—pattern that is held across

large and small scales—in the cardiovascular system, WBE assume a constant value for the

number of vessels branching out from a single parent vessel, which is called the branching

ratio, n. Here, self-similarity is a direct consequence of the fractal assumption and suggests

scale-free properties in the branching structure that are characterized by power-law relation-

ships. Assuming that vessels within the same level of the hierarchy are identical leads to a

characterization of the overall network structure via the length and radius ratios between

parent and daughter vessels, which are commonly referred to as scaling ratiosβk and γk

βk =
rk+1

rk
= n−ak , γk =

lk+1

lk
= n−bk (1.2.2)

with the scaling exponents ak and bk [11, 79]. Again, the self-similarity of the branching

network may indeed yield level-independent scaling ratios or equivalently scaling exponents

as it means that the properties are conserved across all branching generations. In that case,

we can simply drop the subscript for these parameters, and use the generic scale-free ratios

β, γ, and exponents a, b. That is, at any location of the network, the scaling relationships

between parent vessel to their daughter vessels remain constant and characterized by a

power-law relationship with the branching ratio n.
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Figure 1.6: Symmetrical vessel branching and labeling schematic for bifurcating
network. Adapted from Savage et al. 2008 [11]. A parent vessel at level k with radius
rk and length lk branches into two identical daughter vessels with radius rk+1 and length
lk+1. Branching level starts at 0 at the heart and successively increases by 1 as the vascular
system branches into the next level.

Imposing several more assumptions on the vascular system has eventually led to the

predictions of radius and length scaling exponents. Essentially, WBE posit that to deliver

blood to all the cells at the capillary level, the network should have a space-filling geometry,

meaning that capillaries must be close enough to all cells to supply them with oxygen, and

branching levels upstream from the capillaries must be distributed in such a way to allow

downstream vessels like the capillaries to span the body [11,86]. This latter part implies the

total volume serviced is conserved from one level to the next. Denoting the service volume

of a vessel at level k by vk and the number of vessels at a level k by Nk (= nk, where n

represents the branching ratio for a network), the space-filling property of the network can

be expressed as vnet := Nkvk for all k. Thus, service volume ratio between the parent and

child vessels (i.e. vk+1/vk) are simply given by Nk/Nk+1 = n−1. Now, the main question

is how the volume serviced by each vessel is related to their vessel size. Specifically, what

is the geometry of the volume serviced, and how do its dimensions depend on the radius

and length of the vessels, and does this change across hierarchical levels of the network? In

regards to this, WBE assume the service volume of a vessel is related to the volume of a

sphere with a diameter proportional to the length of the vessel, hence the service volume for
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Figure 1.7: Illustration of space-filling in two dimensions. Adapted from Etienne
et al. 2006 [12]. The total service volume at level k defined by circles with the diameter
equal to the length of the vessels is conserved at the next branching level k + 1. (k = 4 in
the figure). In three dimensions, service volumes are defined by spheres, hence total service
volume at level k is given by Nkl

3
k.

a vessel at level k can be written as vk ∝ lk
3 (Fig. 1.7). Substituting this into Eq. (1.2.2)

leads to a length-scaling exponent (b) that is independent of level k

γ =
lk+1

lk
=

(
Nk

Nk+1

)1/3

= n−1/3 (1.2.3)

Next, the minimization of power-loss for the blood flow leads to a radius ratio that

is independent of level k but depends on two regions corresponding to large and small

vessels [11, 79]. This is because power loss is dominated by different processes based on

the size of the vessel radius. First, blood flow through large vessels exhibits pulsatile flow

with an elastic wall and boundary, so the flow and pressure generate wave reflections at the

branching junctions that ultimately cause power loss. Hence, minimizing the power loss due

to the wave reflections is simply done by setting the pressure of the wave reflection at a

branching point equal to zero. Eliminating wave reflections leads to impedance matching of

pulsatile flow [87, 88]—where the impedance (Z) is inversely proportional with the square

of the vessel radius [87]—in successive branching levels. Consequently, applying impedance

matching at a branching junction from level k to k+1, hence compensating for the impedance

of a parent vessel at level k with the total impedance coming from the n parallel daughter
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vessels at level k + 1, yields a radius scaling ratio in the case of large vessels as

β> =
rk+1

rk
=

(
Nk

Nk+1

)1/2

= n−1/2 (1.2.4)

[11,79]. In other words, the cross-sectional area of a parent vessel (πr2k) is equal to the sum

of the cross-sectional area of its daughter vessels (nπr2k), so large vessels can be described as

area-preserving vessels, which is also known as Da Vinci’s rule.

In contrast, power dissipation through vessels with small radius is largely dominated by

viscous forces between the blood and vessel walls that cannot be eliminated. To minimize

power loss—given by Q̇0
2
Znet where Q̇0 is the blood volume flow rate and Znet is the total

impedance of the blood—the method of Lagrange multipliers is implemented under three

constraints that the network is: (i) of fixed size, (ii) contained within a fixed body mass, and

(iii) space-filling [11, 79]. Assuming incompressible laminar flow, i.e. Poiseuille flow, results

in

β< =
rk+1

rk
=

(
Nk

Nk+1

)1/3

= n−1/3 (1.2.5)

or equivalently r3k =
∑
r3k+1. In contrast to the pulsatile flow regime, this last equation

states that the total cross-sectional area of daughter vessels exceeds the cross-sectional area

of their parent vessel, so vessels with this property have been referred to as area-increasing.

The notion of relating the parent vessel radius as a sum of cubic powers of daughter vessel

radii was first introduced by Murray [89] through an optimization scheme at a local branching

junction based on two assumptions: (i) fluid is conserved at a branching junction and (ii)

the sum of the power loss of blood flow and the power cost of the blood volume for a single

vessel are jointly minimized. Overall, these two flow regimes (pulsatile and dissipation)

characterize the dominant form of the radius scaling exponents where a = 1/2 for large

vessels and a = 1/3 for small vessels [11,79].

Now, to relate metabolic rate with the body mass, WBE make the following two observa-

tions. First, under the assumption that capillaries are the only units of the network responsi-

ble for exchanging materials, one can simply write the total metabolic rate as B = NcapBcap,

where Ncap denotes number of capillaries, and Bcap denotes the metabolic rate of a single
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capillary. Assuming identical anatomical and physiological capillary characteristics across

different organisms and species, such as invariance of capillary length, radius, and metabolic

rate (Bcap) for the capillary, then whole-body metabolic rate is proportional to the number

of capillaries of an organism, i.e. B ∝ Ncap. Next, as blood vessels fill the body, body mass

is proportional to total blood volume [11], so M ∝ Vnet. By these proportionality relations,

arriving at a general relationship between the metabolic rate and body mass is equivalent to

attaining a mathematical formula describing how number of capillaries and total volume of

the network are related. Here, the invariance of capillary characteristics allows the capillary

level to serve as a reference unit that sets the scale in the derivation of Vnet (or equivalently

M) as a function of number of capillaries, hence a function of metabolic rate (B). Follow-

ing Krogh’s model that regards vessels as cylinders [90], Vnet can be written as the sum of

cylindrical blood volumes from the level of the heart to the capillary level. Considering two

distinct branching flow regimes—corresponding to area-preserving and area-increasing vessel

characteristics—that are separated by a branching level that does not depend on body mass,

and assuming the number of capillaries are infinitely large, yields metabolic rate B being

proportional to M3/4 (Eq. (1.2.1)), supporting the empirical data evidence of the metabolic

scaling relationship (Fig. 1.5).

Overall, WBE has proposed a highly predictive, network-centric approach to explain the

empirical observations of metabolic rate and body mass by considering the vascular system

as a main driver whose properties can be derived by implementation of network science

methods as well as imposing biological and physical constraints on the architectural design

and blood flow properties of the vascular system. This framework has been shown to be

useful for studying the large-scale complex structure of the cardiovascular system. However,

it has also led to several controversies about assumptions that simplify the dynamics and

structure of the network. The debates mostly arise about the validity of the assumptions

about the vascular networks that are included in the model. For example, it is unclear if real

vascular networks satisfy the assumptions of the structural properties, such as the symmetric

branching between sibling vessels, scale-free branching ratios of radius and length across

branching junctions, or assumptions about the flow properties such as instantaneous change
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of flow regimes. Moreover, using extensive data that include more than 600 mammalian

species and 64 plant species, it has been shown that the relationship between the metabolic

rate and body mass can be better elucidated by a convex curve in log-log space [91–94]

(Fig. 1.5b). This evidence further necessitates the need of revising the WBE model by

revisiting and altering the underlying assumptions behind the theory. As shown by Savage

et al. [11], allowing a finite number of capillaries results in the inclusion of higher-order terms

to the approximation that relates metabolic rate and body mass, and combining this with

more accurate fluid dynamic relations results in a curvature in the opposite direction as the

empirical data. This suggests that revisiting the assumptions behind the existing models is

valuable and may lead to promising results in regards to explaining the mismatch between

the current allometric scaling theories and the empirical data.

Testing foundations of the allometric scaling theory and accordingly providing a foun-

dation for a revised allometric scaling theory requires access to high quality vascular data.

Most of the vascular network data collected to this date is from plasticene casts or dyeing

methods of real vasculature and obtained by manual vessel measurements that were time-

consuming and labor-intensive [95,95–97]. However, these methods are error prone as there

is a high potential of measurement bias and because the process of casting may damage or

alter the shape of vessels. Moreover, manual measurements limit the size of the vessels that

can be studied, and hence do not provide sufficiently extensive and detailed data to test the

assumptions on the vascular system. To overcome with this lack of vascular data problem,

Newberry et al. [5] has recently developed a novel software package, Angicart, that allows

automated extraction of vascular network data from angiographic images. In short, given

the aligned stacks of three-dimensional images, Angicart extracts the topology of the vascu-

lar network with the individual vessel measurements such as branching junctions (nodes of

the network) coordinates, radius, length, and volume. By using Angicart on angiographic

images, we have access to vast amounts of highly detailed vascular data that is crucial for ex-

amining the validity of current models as well as establishing and testing new models [5,98].

The amount and quality of data collected through Angicart is mainly determined by dif-

ferent imaging techniques as they affect the resolution and the spatial scales that they can
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identify [5]. In this dissertation, we use Angicart to analyze the cardiovascular structure

from micro-CT images of mouse lung (with vessel sizes > 10 microns) as well as the MRI of

18 different subject images of human head and torso (with vessel sizes >1 mm).

Using Angicart, recent studies by Newberry et al. [5] and Hunt et al. [98] have analyzed

the assumptions on the properties of vessel sizes that are commonly accepted by allometric

scaling theories. These studies have demonstrated that the empirical data measurements

of radius support the model predictions and assumptions, whereas vessel length scaling and

asymmetries do not. For testing the symmetry assumption, the ratios of sibling vessel radii

or length has been used, and referred to as asymmetry ratios λr and λl, respectively.

λr =
rsibling,1
rsibling,2

, λl =
lsibling,1
lsibling,2

(1.2.6)

where the smaller value (either radius or length) is divided by the larger value. This allows the

asymmetry measure to range in between 0 and 1 [99]. By definition, siblings are symmetric

if and only if λr and λl are equal to 1 (Fig. 1.6), whereas deviation from 1 indicates the

deviation from the symmetry (see more detailed discussion in Chapter 4). Intriguingly,

the symmetry assumption that sibling vessels have identical characteristics such as radius

or length has been shown to fail for vessel length, whereas it provides a reasonably good

approximation for the radius for both mouse lung and human head and torso data. In other

words, the asymmetry measures λr and λl—characterizing degree of asymmetry—exhibit

systematic features of asymmetry across these two-distinct datasets. Moreover, these findings

are consistent with asymmetry patterns observed in plant vascular system [100–102]. As

the symmetric branching does not realistically represent the real vasculature, incorporating

asymmetry into the model provides a practical direction for revising the modern allometric

scaling theories. Indeed, a recent study by Brummer et al. [103] has relaxed the symmetry

assumption by introducing a perturbation from the symmetric case and has shown that

asymmetry can lead to a variation in the metabolic scaling exponent. This suggests that

incorporating asymmetry into the model could eventually help explain the deviation from

the pure power-law. Moreover, evidence of systematic asymmetry patterns is suggestive
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of the role of shared developmental processes and evolutionary principles on the vascular

branching.

Developmental processes such as those driven by the metabolic demands of growing tissue

and Vascular Endothelial Growth Factor (VEGF) signaling has been shown to be effective

in the formation of vascular branching [104]. However, these processes could potentially

introduce some stochasticity in the branching geometry especially at the local spatial scale

as the curvature of the branching vessel may affect the branching location. Moreover, as

the architecture of vascular networks must balance complex demands to efficiently deliver

oxygen and resources throughout the entire body, it has been proposed that evolutionary

pressures to fulfill these demands must constrain the possible forms of vasculature. In re-

gards to these constraints, two different principles have been posited to play a key role in

the determination and optimization of vessel branching: 1. Minimization of material cost

required for the construction and maintenance of the vascular system, 2. Minimization of

power cost for providing efficient blood flow mechanism, which are referred to as material-

cost (MC) optimization and power-cost (PC) optimization, respectively [89,105,106]. These

evolutionary constraints are hypothesized to generate deterministic branching organization,

and in principle these principles may act at different spatial scales that range from local

(junction-level) to global (whole network) with some form of intermediate spatial scale in

between local and global.

In Chapter 4 of this dissertation, we first test the validity of the symmetry assumption

about vascular branching that is widely used in allometric scaling theories. In addition to

the metrics defined for the radius and length for characterizing asymmetry (i.e. λr and λl as

denoted above), we introduce a similar metric for characterizing branching angle asymmetry

represented by λθ (see Fig. 4.1c on the schematic illustration of asymmetric branching). Us-

ing high-quality vascular network data of mouse lung and human head and torso—obtained

via our software Angicart—we identify novel, systematic patterns of asymmetry in vascular

branching, potentially explaining previously documented mismatches between predictions

(power-law or concave curvature) and observed empirical data (convex curvature) for the

allometric scaling of metabolic rate. To examine why these systematic asymmetries in vas-
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cular branching might arise, we construct a mathematical framework to derive predictions

based on local, junction-level optimality principles that have been proposed to be favored

in the course of natural selection and development, i.e. MC and PC optimizations. To

quantify the degree of spatial scales as well as stochasticity of the branching process, we

further explore random branching that is constrained at spatial scales that vary from local

to global. Subsequently, we compare our predictions and random simulations of branching

with real data and identify differences in vascular branching of mouse lung and human head

and torso. Providing a comprehensive evaluation of these different branching schemes help

us to better understand how the structure of vascular system is constrained by important

biological and physical principles as well as the spatial scales.

Overall, in this research, we examine two distinct networks—drug interaction networks

and cardiovascular networks—by addressing several shortcomings of previous studies and

offering advanced understanding of these networks with the help of our comprehensive data

analysis and rigorous mathematical framework. Via our network-centric approach, we iden-

tify emergent patterns in higher-order drug interactions and vascular networks and subse-

quently argue that integration of our knowledge across these network systems are especially

valuable towards analyzing and forecasting the emergent properties in other complex sys-

tems.
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CHAPTER 2

Uncovering Emergent Interactions in Three-Way

Combinations of Stressors

2.1 Introduction

Drugs are now a pervasive part of our everyday environment and have both helpful and

harmful effects on biological systems from the molecular up to the individual, population,

and whole ecosystem level [107]. In the clinic, drugs are used to combat pathogens but

resistance to drugs such as antibiotics is becoming more common, largely because these

drugs are used so pervasively throughout our environment, from hand soaps to agricul-

ture. One strategy for countering antibiotic resistance is to use drugs in combination to

more effectively kill pathogens, to combat drug-resistant strains, and to help slow the evo-

lution of resistance [28, 29, 37, 108]. Ideally, this strategy would be used in tandem with the

development of new drugs, but pharmaceutical companies are not investing heavily in antibi-

otics [109]. Thus, there is a compelling case for the critical importance of devising effective

antibiotic combinations for use in the clinic. Past work has largely focused on two-drug

interactions [28, 29, 110, 111], but multi-drug therapies in the clinic are increasingly moving

in the direction of higher-order combinations (those involving three or more drugs). Indeed,

some of the best-known drug treatments, including HIV drug cocktails [112] and treatments

for Mycobacterium tuberculosis infections [68], involve three-drug combinations.

To find effective higher-order drug combinations, one of the key challenges is to correctly

identify the type and magnitude of drug interactions because combining non-interacting

drugs does not leverage the benefits of certain interaction types. A useful categorization

when two drugs are combined is: 1. Synergistic—the interaction of the two drugs enhances
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the effect expected based on each drug alone with no interactions; 2. Antagonistic—the inter-

action reduces the expected effects; or 3. Additive—there is no interaction and the combined

effect matches the expected effect. Synergistic drug combinations are useful because they

kill bacteria more effectively and are advantageous for individual patients, while antagonis-

tic drug combinations are useful because they may be able to help slow the evolution of

antibiotic resistance [37,38,113]. In this paper, we extend ideas about these categorizations

to higher-order interactions, including both net (arising from either pairwise or three-way

combinations) and emergent (not arising solely from pairwise combinations) interactions.

Empirical studies of ecotoxicology and ecological disturbances have examined the nature

of interactions in the lab [114–116] and in the wild [117,118]. Both synergistic [119–126] and

antagonistic [124, 127–129] interactions have been uncovered in a wide range of organisms,

environments, and systems that range from gene epistasis [130–132] to predator-prey inter-

actions [74]. Nevertheless, higher-order interactions that involve more than two stressors

are still poorly understood. Moreover, because three-drug combinations have received sub-

stantially less attention than two-drug combinations, there are many basic questions about

three-way and higher-order interactions that remain, such as: Are there emergent properties

that arise in three-drug combinations that cannot be predicted from the pairwise parts? As

we increase the number of drugs, do we increase the proportion of synergistic or antagonistic

interactions?

This lack of understanding and answers for three-way and higher-order interactions is

partly due to the difficulty of obtaining measurements for the effects of all single, pairwise,

and higher-order combinations and partly due to the lack of a rigorous quantitative and

conceptual framework that distinguishes between net and emergent interactions. Here we

help address both issues by using a tractable, empirical lab system in which Escherichia coli

is exposed to environments of antibiotic combinations that allows measurements of effects

of all subsets of drug combinations, and by developing an explicit and rigorous theoretical

framework that encompasses both net and emergent higher-order interactions.

Empirically, as a model system for studying and addressing outstanding questions about

interactions among stressors, antibiotics and bacteria offer several advantages: i) the control
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of levels of the drugs in the environment and of fluctuations in concentration across time

and space; ii) the use of a specific ordered set or randomized set of antibiotics; and iii)

knowledge about the mechanisms of action for the antibiotics used in this study, allowing

the selection of specific pathways in the bacteria that we want to disrupt. Moreover, the use

of well-designed experiments in highly simplified microbial systems can make even complex

problems tractable [133].

We also develop a novel theoretical framework to understand and to quantify which

higher-order combinations of stressors produce emergent interactions, meaning that the in-

teraction does not arise from single and pairwise interactions alone. For example, in the

system of drugs as stressors, a three-drug synergy or antagonism may not actually be the

result of all three drugs in combination. Instead, such interactions may come from an in-

teraction of just two of the drugs. On the other hand, it may be possible that synergy can

arise in a three-drug combination in which no two-drug interactions show synergy, i.e. an

emergent synergy. This is an important distinction because true synergies—those that only

emerge with all three drugs—could provide novel treatments, whereas a three-way synergy

that merely arises from a synergistic pairwise interaction would not be particularly novel.

Such superficial three-drug synergies may be detrimental to the patient because additional

drugs might be added that are in actuality not needed for increased pathogen killing effi-

ciency. As a result, it is challenging to determine which specific drug combinations are most

clinically relevant [3, 28,108].

Key advances were made in the few previous studies that focused on three (or more)

drug interactions. In particular, Wood et al. [13] applied Maximum Entropy methods to

six combinations of three antibiotics that varied across a range of concentrations. In this

way, they searched for three-way interactions that could not be predicted from pairwise

interactions. As part of this study, they discovered a simple and highly informative algebraic

metric related to the one for emergent interactions we derive below. More recently, Zimmer

et al. [71] used a framework that incorporates interaction coefficients as part of a model based

on Hill functions to show how to increase predictive power for three-way interactions based

on limited information about pairwise interactions across a range of drug concentrations.
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Our work shares some core goals and similarities with these previous approaches. Al-

though our study is currently more limited with regard to understanding ranges of drug

concentrations as studied in Wood et al. [13] and Zimmer et al. [71], there are a few cen-

tral contributions represented by our approach. First, our study provides a clear conceptual

derivation for the simple algebraic measures presented below, and in so doing, further reveals

a way to differentiate between the emergent interaction (an interaction that only exists when

all three drugs are present) and the net interaction (the overall interaction in comparison

to single drug effects). Second, in contrast to other higher-order interaction studies, we also

rescale the raw magnitude of our metrics in order to compare information and categories

that correspond to baselines for synergistic and antagonistic interactions, as previously done

by Segre and colleagues for pairwise interactions [16]. Third, we consider a much larger set of

three-antibiotic combinations (20 as opposed to 6 [13]), though we only take measurements at

fixed concentrations for these combinations. We also identify higher levels of net and emer-

gent three-way interactions, including both synergy and antagonism, than previous studies

on higher-order interactions, as explained in the Discussion section. As we will demonstrate

below, the distinction between net versus emergent interaction provides compelling results,

especially in the case of antagonistic interactions for combinations of antibiotics.

More generally, for any system involving more than two stressors, it is not obvious a priori

whether the higher-order combination will interact in ways that are easily predictable from

their single or pairwise effects. Although the theory and experiments in this paper have been

developed using antibiotics and bacteria as an example, we suggest the terms and concepts

developed here could be usefully translated, at least as a starting point, to think about other

stressors and systems. For instance, studies of how multiple predators affect prey population

dynamics may provide a strong correspondence because the survival rates of prey species

are analogous to the growth rates of bacteria in multiple drug environments (for example,

see [127]) and appear in the Multiple Predator Effects (MPE) metrics in the same exact form

as in our metrics for net interactions (i.e., the deviation from additivity measure) below.

Notably, MPE methods do not differentiate between net and truly emergent interactions or

rescale the magnitude of their metrics to assess the information about interactions, which is
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why we think our framework might also be generalized to resolve questions about MPEs. In

the Discussion, we provide more details on how the framework with drugs as stressors can

be applied to MPEs and other systems that cover similar concepts to those described in this

paper.

In the remainder of the paper, we explain our approach for quantifying and understand-

ing higher-order interactions. In doing so, we create a framework to classify higher-order

combinations of stressors by examining net three-drug interactions and comparing them with

all three pairwise interactions for each three-drug combination. Next, we use this framework

to uncover interactions among a set of six antibiotics by examining systematically all 20 of

the possible three-drug combinations. In experiments with wild-type E. coli, we measure

growth rates of bacteria in single, pairwise, and three-drug combinations, and we identify

emergent three-drug combinations that require all three antibiotics to yield synergistic or

antagonistic interactions.

2.2 Materials and Methods

2.2.1 Experimental data

Escherichia coli strain and growth conditions.The strain of E. coli used in these ex-

periments is BW25113, the wild-type strain (lacIq rrnBT14 ∆lacZWJ16 hsdR514 ∆araBADAH33

∆rhaBADLD78) [134] derived from the strain W1485 background [135]. All experiments were

conducted using LB media (10 g/l tryptone, 5 g/l yeast extract, and 10 g/l NaCl). Frozen

glycerol cultures, stored at -80◦C, were made by inoculating from a culture made from a

single colony. Experiments were started by inoculating from a resuspension of this glycerol

culture in MC buffer stored at 4◦C and grown for 5 hours in a 37◦C incubator before being

used to seed overnight cultures. Overnight cultures were seeded by inoculating 975 µl cul-

tures with 25 µl of a 10−4 dilution of the over-day culture. After 18 hours of incubation at

37◦C in a shaker at 215 rpm, the optical density at 600 nm (OD600) was measured.

Antibiotics. Antibiotics included in this survey were chosen to cover a broad range of
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biochemical classifications [136]. Drugs included are clindamycin hydrochloride (Sigma C-

5269), ciprofloxacin hydrochloride (MP Biomedicals 199020), tobramycin sulfate (Sigma T-

1783), streptomycin sulfate (Sigma Aldrich S-6501), cefoxitin sodium salt (Fluka C4786), and

erythromycin (Sigma Aldrich E-6376). Mechanisms of action, abbreviations, and dosage are

listed in Table 2.1.

Drug Abbreviation Dose Range
(µ g ml−1)

Main Mechanism(s) of Action

Clindamycin CLI 17.5-31.5 Protein synthesis, 50S
Ciprofloxacin CPR 0.009-0.013 DNA gyrase
Tobramycin TOB 0.5-1.3 Aminoglycoside, protein synthesis, 30S
Streptomycin STR 1.0-5.0 Aminoglycoside, protein synthesis, 30S
Cefoxitin FOX 0.90-1.16 Cell wall
Erythromycin ERY 12-30 Protein synthesis, 50S

Table 2.1: List of all antibiotics used in the study, abbreviation, dose range, and mechanism
of action.

Growth measurements of no drug and single, double, and triple antibiotic com-

binations. A range of concentrations was first tested for each individual drug to determine

the appropriate non-lethal concentration required to reduce growth by 15-35% compared to

the no drug-control (LB). We choose this amount of reduction in growth rate because larger

reductions would yield lethality in two-drug combinations, making three-drug effects irrele-

vant, and also because smaller reductions may make it difficult to tease apart additivity and

antagonism. The range from 15-35% was necessitated by the variability in antibiotic sensi-

tivity of single-drug treatments in our empirical system, representing a limit to our ability

to choose the exact same reduction in growth rate across all drugs and experiments. We

use an additive design, meaning that we test bacterial response to a set concentration of X

(denoted [X]), a set concentration of Y (denoted [Y]), a set concentration of Z (denoted [Z]),

and all pairwise combinations, [X]+[Y], [Y]+[Z], and [X]+[Z], and the triple combination

[X]+[Y]+[Z]. This additive design is standard in the field of drug interactions [28], and we

use the additive design to standardize with other drug interaction studies.

To measure the effect of the triple combination of drugs versus the pairwise and individual

effects, each experiment was performed using a no-drug control, a control for each individual
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drug at the previously determined concentration, pairwise combinations of the three drugs,

and a triple-drug combination (Supplementary Table 1). We also examine dose-dependence

for ten different drugs, including the six drugs used in the triple combination experiments.

For each drug, we measure effects of concentrations [X], [2X], and [3X] (Supplementary

Table 2) according to the metrics defined here (Equations (2.2.2) and (2.2.4)). These data

show that our methods usually classify drugs as additive with themselves, meaning that the

growth rates predicted bywXwX or wXwXwX based on concentration [X] matches with the

measured effects from drug concentrations of [2X] and [3X], respectively.

In all cases, drugs were added to appropriate concentrations in 1 ml LB (inoculated as

described above), and 100 µl was aliquoted into 4 to 6 wells of a 96-well plate. Cell densities

were then determined after 18 hours of incubation (as described above) using optical density

analysis at 600 nm. Optical density readings were used to calculate growth percentages as

compared to the no-drug control. Each three-drug combination experiment was repeated at

least three times, but due to minor changes in drug concentrations across different exper-

iments, the number of replicates reported for each specific concentration of drugs may be

two in some cases. Data are represented as median, minimum, and maximum for repeated

three-drug combination experiments. Graphs of triple-antibiotic interactions were produced

using MATLAB version R2013a.

2.2.2 Theoretical framework

Pairwise Interaction Measure. In previous work on pairwise interactions of drugs [3]

and metabolic genes [16], drug interactions have often been classified using the definition

of Bliss Independence (BI) [28]. BI defines drugs to be independent (or additive) when

the percent change in bacterial fitness in the presence of one drug (X) does not depend

upon the presence or absence of the other drug (Y ) (see Eq. 2.2.1 below). The percent

change in fitness can be measured by the relative fitness, defined as the ratio of growth of

the bacteria in the presence of a drug relative to the growth when no drug is present. For

instance, in the presence of drug X, the bacteria has relative fitness, wX = e−sX , where sX
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is the selection coefficient that measures how a specific drug concentration of X affects the

bacterial fitness. We follow the same notation for other drugs Y or Z or any combination

of drugs. According to BI, in the presence of two non-interacting drugs, the fitness of the

bacteria is wXY = wXwY = e−(sX+sY ), where the XY subscript denotes a combination of

drugs X and Y (denoted by X + Y in our figures) and is consistent with previous notation.

This non-interacting case is called additive because the selection coefficients add together,

sX + sY . Consequently,

DAX,Y = wXY − wXwY (2.2.1)

measures the deviation from additivity (DA). By definition, this measure is zero when X

and Y are additive. When this measure is positive and sufficiently large in magnitude (see

below), the interaction is called antagonistic because the drugs are working against each other

such that the bacterial growth is higher than would be expected based on the two single-

drug effects and no interactions between the drugs (i.e., additivity). When this measure is

negative and sufficiently large in magnitude, the interaction is synergistic because the drugs

are working together such that the bacterial growth rate is lower than would be expected

based on the two single-drug effects and no drug interactions. The additive range defined

below in terms of the rescaled measure is based on conservative values described by Yeh et

al. [3]. When considering pairwise combinations of X and Y with a third drug, Z, there are

two more pairwise DA measures that describe X interacting with Z, DAX,Z = wXZ−wXwZ ,

and Y interacting with Z, DAY,Z = wY Z − wYwZ .

Three-Way interaction measures. We now develop two interaction measures for three-

drug combinations. The first is the direct extension of the DA measure for two drugs in Eq.

(2.2.1) [13,62,69]. When the drugs do not interact, the fitness of the bacteria exposed to the

three-drug combination should be equal to the product of the fitnesses of bacteria exposed to

each single drug alone, i.e., wXY Z = wXwYwZ . Therefore, deviation from additivity (DA),

which measures the net interaction, is given by

DAX,Y,Z = wXY Z − wXwYwZ (2.2.2)
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To characterize emergent interactions that arise when all three drugs are combined, we

need to assess how much of the three-drug interaction does not originate from pairwise

interactions. To measure how much of the interaction arises from a single pairwise interac-

tion, we recognize that a single pairwise interaction creates the entire three-drug interaction

when the third drug is additive with the other two drugs. That is, the interaction be-

tween drugs X, Y , and Z is due solely to the interaction between drugs X and Y when

drug Z is additive with their combination (e.g., wXY Z = wXYwZ). For this special case,

DAX,Y,Z = wXYwZ − wXwYwZ = wZ(wXY − wXwY ) = wZDAX,Y based on Eqs. (1-2).

By identical reasoning, the contribution coming solely from the interaction of drugs Y and

Z is wXDAY,Z and from the interaction of drugs X and Z is wY DAX,Z . For three drugs,

these three terms represent all three of the possible pairwise interactions among single drugs.

Therefore, all three of these pairwise contributions need to be subtracted from the overall

three-drug interaction (Supplementary Fig. 1) in order to introduce a new measure that we

term the emergent three-way (E3) interaction

E3 = DAX,Y,Z − wXDAY,Z − wY DAX,Z − wZDAX,Y (2.2.3)

When all of the pairwise interactions are additive (i.e., wXY = wXwY , etc.), no part of

the three-way interaction could possibly originate from pairwise interactions, and the E3

measure reduces to the DA measure (E3 = DAX,Y,Z), as it must. Substituting Eqs. (2.2.1)

and (2.2.2) into Eq. (2.2.3) allows the E3 measure to be expressed purely in terms of relative

fitnesses

E3 = wXY Z − wXwY Z − wYwXZ − wZwXY + 2wXwYwZ (2.2.4)

In summary, by construction our new E3 measure provides a simple calculation for cap-

turing the part of the three-drug interaction that is emergent and not due to pairwise inter-

actions, while the DA measure captures whether there is an interaction at all.

Re-scaled three-way interaction measures. Following Segre et al. [16] we rescaled both
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of our interaction measures, DAX,Y,Z in Eq. (2.2.2) and E3 in Eq. (2.2.4), by dividing them

by the absolute value of the same functional form as the unscaled metrics, but with wXY Z

replaced by 0 when the unscaled metric is negative (synergistic) and by the minimum value of

the single-drug fitness, min(wX , wY , wZ), when the unscaled metric is positive (antagonistic)

[62, 69]. Effectively, this rescaling allows us to characterize the degree of synergy relative to

the extreme lethal synergy case—when the combination of drugs completely kills the bacteria

so that fitness (wXY Z) is 0, even though no single drug completely killed the bacteria. All

positive interactions are rescaled by the case of buffering antagonism—when drugs combine

to have the same effect as the single drug with the strongest effect.

Our re-scaled E3 measure is similar to a term introduced by Darroch [137] and Kroo-

nenberg and Andersen [138] who considered regression models and interaction terms. Im-

portantly, our measure differs from these regression models because we assume non-linear

exponential fitness functions rather than linear approximations implied by linear dependen-

cies for single-drug effects in these previous regression models. This linear approximation will

be especially problematic for drug interactions that push growth rates more towards lethality

(often synergy) or wild type (often antagonism) and correspond to the exact regions where

this linear approximation must break down. Moreover, these previous studies always re-scale

according to our synergistic case, meaning they are using the wrong baseline or scale bar for

antagonistic interactions. Finally, they either assume or hypothesize that their measure is

always zero, meaning they assume there is no interaction before even comparing with data.

Cut-off values for determining three-way interaction types. Because of the variabil-

ity between different interaction measures, and between fractional inhibitory concentration

index data [139], cut-off values for determining three-way interaction types must be chosen

cautiously. Our method for determining the type of three-way interaction follows previous

work [3, 16]. To calculate our rescaled three-way interaction measures, we use the median

of replicate measurements for each experiment at a single antibiotic concentration. We then

use the conservative cut-off values of rescaled DAX,Y,Z (or rescaled E3) > 0.5 for antagonism

and rescaled DAX,Y,Z (or rescaled E3) < −0.5 for synergy. Note that rescaled interaction

measures tend to range from values of −1 (synergistic lethality) to 1 (complete antagonis-
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tic buffering). Hence, any value between −0.5 and 0.5 represents an additive interaction.

These cut-off values are also based on natural breaks in the histogram distribution for the

rescaled epsilon value and are consistent with the conservative values described for pairwise

interactions in Yeh et al. [3].

2.3 Results

2.3.1 Identification of triple-drug interactions

Comparing the two distinct interaction measures, as depicted using schematics with idealized

data (Figs 2.1 and 2.2) and explained above we found that three-drug combinations can

in principle have several distinct effects—additive according to either or both measures,

synergistic according to either or both measures, and antagonistic according to either or

both measures (Supplementary Fig. 2 and Supplementary Table 1). Experimental data are

shown in triple-drug combination figures for examples of both synergistic (Fig. 2.3a) and

antagonistic (Fig. 2.3b) interactions according to our emergent three-way (E3) interaction

measure, which captures three-drug interactions that do not arise from pairwise interactions.

Overall, examination of all 20 of our three-drug combinations revealed that 35% exhibit

emergent, higher-order interactions, including two emergent synergistic interactions (Fig.

2.3a and Supplementary Fig. 2) and five emergent antagonistic interactions (Fig. 2.3b and

Supplementary Fig. 2).

2.3.2 Deviation from additivity (DA) versus emergent three-way (E3) interac-

tions

Our data show that when we categorized interaction types according to the DA measure,

the distribution of interactions was skewed towards synergistic effects (Fig. 2.4a, skewness

= 0.71). Conversely, when we used the E3 measure, the distribution skewed towards antag-

onistic effects (Fig. 2.4a, skewness = -0.98). We also compared the number of synergistic

and antagonistic interactions according to each method (Figs 2.4b and 2.4c). We found
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Figure 2.1: Schematic of triple-drug combination effects according to deviation
from additivity (DA). Relative growth rates for bacteria populations in one-drug, two-
drug, and three-drug combinations are shown as increasing from 0% growth in the center to
100% growth (no-drug control) at the largest outer circle of the polar graph. Growth rate
is shown for single-drug (black bars), two-drug (blue bars with corresponding single-drug
treatments adjacent), and triple-drug combinations (radius of inner circle). Shading of the
inner circle indicates nature of pairwise interactions (red: synergistic, green: antagonistic,
no shading for additive). Outline coloring of inner circle indicates measure of DA (black: ad-
ditive, red: synergistic, green: antagonistic). Three possible triple-drug combination effects
are depicted schematically for theoretical drugs X, Y , and Z according to measures of DA.
(a) Strictly additive interactions of all pairwise combinations and three-drug combination.
(b) Synergy of three drugs according to DA. (c) Antagonistic interaction of three drugs
according to DA.
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Figure 2.2: Schematic of triple-drug combination effects according to emergent
three-way (E3) interactions. Relative growth rates for bacteria populations in one-
drug, two-drug, and three-drug combinations are shown as increasing from 0% growth in
the center to 100% growth (no-drug control) at the largest outer circle of the polar graph.
For the E3 interaction measure, the single, two-drug, and triple-drug combination growth
rates, as well as pairwise interactions, are shown with the same color coding as used for
the DA measure (Fig. 2.1), but with outline coloring of the inner circle indicating measure
of E3 (black: additive, red: synergistic, green: antagonistic). Three possible triple-drug
combination effects are depicted schematically for theoretical drugs X, Y , and Z according
to measures of E3. (a) Interactions combine additively according to E3, even though several
pairwise interactions are synergistic. (b) Emergent synergy of three drugs according to E3.
(c) Emergent antagonism of three drugs according to E3.
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Figure 2.3: Emergent synergistic and antagonistic interactions in triple antibiotic
combinations. Data for triple-antibiotic figures are shown according to emergent three-way
(E3) interaction measures. Figures are presented as described in Figs 2.1 and 2.2. Data
are represented as median ± minimum/maximum. (a) The combination of ciprofloxacin
0.013 g/ml (CPR), clindamycin 31.5 g/ml (CLI), and erythromycin 14 g/ml (ERY) interacts
synergistically in three-drug combinations according to both deviation from additivity (DA)
and emergent (E3) measures. (b) The combination of erythromycin 14 g/ml (ERY), cefoxitin
1.16 g/ml (FOX), and tobramycin 1.3 g/ml (TOB) interacts antagonistically in three-drug
combinations according to the E3 measure and additively according to the DA measure. Only
data for one concentration of each antibiotic is shown, although each three-drug combination
was tested in a minimum of three independent experiments (see 2.2 Materials and Methods).
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9 of 20 cases to be synergistic according to the DA measure. That is, the growth of the

triple combination was often lower than the expected growth based on single-drug effects.

However, only two of these cases were synergistic according to the E3 measure. Because the

E3 measure leads to fewer synergistic classifications than the DA measure, the synergistic

effects measured by DA are often the result of synergistic pairwise interactions, rather than

an emergent interaction of the three drugs. Conversely, only three of 20 combinations were

antagonistic according to the DA measure whereas five of 20 cases were found to be antag-

onistic according to the E3 measure, meaning that the growth of bacteria under triple-drug

combinations was considerably higher than the expected growth based on pairwise inter-

actions. Frequency of specific antibiotics involved in emergent synergistic and antagonistic

three-drug interactions are given in Supplementary Fig. 3.
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Figure 2.4: Comparing interaction measures for triple-drug combinations. Com-
parison of measures of deviation from additivity (DA) and emergent three-way (E3) inter-
actions are based on 20 triple-drug combination experiments. Of the 20 combinations, E3 is
non-applicable in four cases because of both two-drug and three-drug lethality. Thus, it is
impossible to see the effect of the third drug. DA is applicable in all cases because this mea-
sure ignores two-drug effects. (a) Overlapping histograms for measures of DA (white bars)
and E3 interactions (black bars) with bin size of 0.1. (b) Venn diagram comparing overlap
between synergistic three-drug interactions according to measures of DA and E3 interactions.
(c) Venn diagram comparing overlap between antagonistic three-drug interactions according
to measures of DA and E3 interactions. In both (b) and (c), the shaded area indicates the
combinations which are fully synergistic or antagonistic, that is, synergistic in both DA and
E3 measurements, or antagonistic in both measurements.

In the case of synergies, every emergent synergy was also considered synergistic as mea-

sured by DA (Fig. 2.4b). This was not true for antagonism, where most emergent antagonis-

tic combinations (four out of five as measured by E3) were not also antagonistic by the DA

43



measure (Fig. 2.4c). In addition, there were only two triple-drug combinations that were

antagonistic solely from the DA measure, compared to seven triple-drug combinations that

were synergistic solely from the DA measure.

2.4 Discussion

In this paper, we have conducted comprehensive experiments to measure all single, pair-

wise, and three-way interactions for a set of 6 antibiotics. We also developed a metric to

quantify whether there are interactions that arise only when all three drugs are present and

are not simply a result of pairwise combinations, and we refer to this type of interaction

as an emergent three-way interaction. Using these experiments and theory, we systemati-

cally investigated three-drug interactions for our set of 6 antibiotics and showed that our

new emergent three-way (E3) measure is conceptually distinct and yields considerably dif-

ferent results from the default method for analyzing interactions according to the deviation

from additivity (DA) measure. As we explained, this DA measures quantifies net three-way

interactions that could be arising from interactions among either drug pairs or all three

drugs. Thus, the E3 measure can be used to identify three-component interactions that have

emergent properties—whether synergistic or antagonistic.

Notably, we find higher levels of emergent drug interactions than previous work, including

an impressive study by Wood et al. [13] that involved 6 three-way antibiotic combinations

at a range of concentrations (in contrast to our 20 three-way combinations at fixed concen-

trations). Interactions in these data were searched for by Wood et al. [13] using Maximum

Entropy methods and more recently by Zimmer et al. [71] using a model based on Hill

functions and interaction coefficients. Those studies concluded that the vast majority of

three-way interactions are additive or can be predicted from pairwise interactions. This im-

portant difference in results and conclusions is likely because neither of these previous studies

performed a rescaling based on Maximum Entropy or other methods to set a baseline expec-

tation for synergy or antagonism as done here or in previous pairwise studies [3,16]. Indeed,

some of us recently re-analyzed Wood et al.’s data using a few rescaling methods and did
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find the existence of several higher-order emergent interactions [6].

In addition, these previous studies did not explicitly distinguish between net interactions

and emergent interactions as done here, and thus did not look for patterns that we find,

such as emergent (E3) higher-order interactions tending to be more antagonistic than net

(DA) higher-order interactions. Indeed, our results suggest emergent synergies in three-drug

combinations are infrequent but do exist. Before further investigation of these emergent

synergies, however, it is important to note that there are cases of emergent synergies that may

not be clinically advantageous. From a clinical standpoint, designing the most effective drug

treatments requires using three-drug combinations that have a net interaction—producing

more effect than expected based on single drugs—and that have an emergent interaction—all

three drugs produce more effect than expected based on pairwise interactions. Otherwise,

there is little to be gained by using the three-drug combination because more drugs would

be used than may really be necessary. Consequently, the optimal three-drug combinations

are likely those that show the same type of interaction according to both the DA and E3

measures, corresponding to the shaded intersection region in the Venn diagrams in Figs.

4b and 4c. We see there are two such fully synergistic interactions (and one such fully

antagonistic interaction) among the 20 combinations we studied.

This relative paucity of synergistic interactions can be better understood by taking a

wider perspective and by looking at the entire histogram of the E3 measure that reveals the

overall distribution of interaction types. Our study shows that when taking into account

pairwise (as opposed to single-drug) effects, the amount of antagonism increases, as seen by

the rightward shift of the distribution in Fig. 2.4a. According to the DA measure, it may

appear that the addition of more drugs leads to greater synergism. However, when we look

for emergent properties of three-component interactions according to the E3 measure, we

find that emergent interactions are in fact more often antagonistic. Natural populations,

such as soil environments, often have many different species, including multi-drug resistant

strains that produce many different antibiotics [140, 141]. It therefore seems likely that in

the wild the outcome of many interacting antibiotics would be antagonistic to attenuate the

effects suffered by natural bacteria. Given that synergistic and antagonistic interactions are
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roughly equally represented among pairwise interactions [3], there is no obvious explanation

for this potential paradox.

Interestingly, within the drug literature, synergistic interactions appear to garner more

attention and research than antagonistic ones. In the clinic, the goal is to use the synergy

as a positive to eradicate the entire population of harmful bacteria due to the greater killing

efficiency of synergistic drugs. However, from a basic rather than applied perspective, there

is no reason to place primacy on synergism because the percentage of antagonistic interac-

tions, in both drug-drug and ecological-driver effects, are roughly equal to the percentage of

synergistic interactions. (In drug studies, 26% were found to be synergistic and 37% antag-

onistic [3]; in terrestrial systems, 35% synergistic and 42% antagonistic [127]; and in marine

systems, 36% synergistic and 38% antagonistic [72]). Moreover, our study suggests that an-

tagonism becomes more frequent than synergism when searching for emergent higher-order

interactions. Furthermore, antagonism itself is relevant and interesting when examining drug

combinations, given that that antagonistic drug combinations may be better at slowing down

the evolution of resistance [38] and decreasing the likelihood of resistance evolving [113].

A natural extension of the methods and results in this paper would be to allow stressors to

be adjusted across a large gradient by changing drug concentrations, thereby covering cases

like those studied by others Wood et al. and Zimmer et al. [13,71], to determine if our findings

about the prevalence of synergistic and antagonistic interactions still hold. Dose-dependent

interactions with three or more drugs [56, 70, 71, 142] have been studied by extending the

Loewe Additivity measure that classifies two-drug interactions based on lines of equivalent

growth rates (isobolograms) across a range of concentrations of the combined drugs. In

this regard, a study by Jonker et al. [143] utilizes Loewe Additivity and provides a model

that can test whether the interaction type is independent of the absolute concentrations of

the combined drugs or dependent only upon the dose-ratios of the drugs. Further work is

required to extend our framework in order to identify emergent interactions when there is a

gradient of drug concentrations.

Another possibility to consider for combinations of drugs is that stressors can occur in

sequence, rather than simultaneously, and with different timings [117]. If drug interactions
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depend on the sequence and timing with which the drugs are administered, these factors

could be optimized for pathogen treatments for patients. Therefore, sequential multi-stressor

interactions are a topic that could be explored in the future by using and extending our new

framework on emergent interactions.

This framework could also be generalized to other systems with three or more component

interactions that require quantitative analysis. As an example of our framework applied to

more than three components, we derive the emergent four-way interaction measure in Supple-

mentary Text 1. Although our experiments were carried out in a bacteria-antibiotics system,

the questions addressed here about interactions are also relevant to larger scale systems in

terms of ecological drivers and survival of populations, species, and biodiversity. Most of

the core questions in ecology revolve around how species interact with each other and the

environment. Although several meta-analyses of ecological two-stressor interactions have

been conducted, three-stressor interactions have been examined much less frequently (but

see [72, 73]). Crain and colleagues conducted a comprehensive review of how a third stres-

sor affects two-stressor interactions in marine systems. In their paper, they quantified the

pairwise interactions in the presence and absence of the third stressor, and they found that

the addition of a third stressor often caused the interaction between the first two stressors

to become more synergistic [72]. Similarly, Chen and colleagues used three-way ANOVA to

analyze an empirical study with three stressors on zooplankton and amphibians. They found

that the three-stressor combination had synergistic effects that harmed survival and repro-

duction of the two study species [73]. However, in these studies, it is difficult to determine

what is an emergent interaction because the effects of the three-stressors combined together

are not explicitly compared with all single and all pairwise stressor interactions. More dis-

cussion on the comparison of three-way ANOVA and our emergent three-way interaction

measure can be found in Appendix A and Supplementary Text 2.

Within the field of ecology, analogous to the idea of emergent properties from three-drug

combinations is the idea of emergent effects from multiple predators, known as multiple

predator effects (MPEs). There are very few empirical studies that examine higher-order

interactions that result from three or more predators, and even fewer that examine the
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entire factorial of combinations (single predator effects, all pairwise effects, and a three-

predator effect). Indeed, we could find only three such studies, and these studies involved

a single prey species [144–146]. In MPE studies that look for interactions among three

predators, multiplicative models are typically used and are equivalent to the deviation from

additivity (DA) measure, where the fitness parameters are survival rates [144–147]. However,

as discussed throughout this paper, DA is not capable of distinguishing truly emergent

interactions that require all three predators and do not arise from pairwise interactions.

Moreover, these studies have no equivalent method to our E3 measure for quantifying and

identifying emergent interactions. In this sense, the generalized emergent measure (E3)

we propose here should be highly informative in deciding whether complex predator-prey

relationships are actually a result of subsets of simpler interactions (with less components).

Indeed, recent work by Cheng et al. [148] shows the importance of subsets of three-way

interactions for understanding emergence in a five species predator-prey model and suggests

similar approaches may be fruitful.

Applying these ideas to ecological systems, however, will also require additional consider-

ations. For example, Barrios-O’Neill and colleagues examined how multiple predators affect

prey when the predators are of different trophic levels and are allowed to evolve [35]. They

found that when there is a secondary predator one trophic level up, MPEs behave differently

when involving native versus invasive predators, demonstrating how predator-prey systems

and food web dynamics are often more complex than the interactions presented here using

drugs and bacteria. We recognize this as a limitation of our system being applied to ecologi-

cal questions that involve multiple species and trophic levels because our study involves only

one species and one trophic level of “predator” (antibiotics). Furthermore, antibiotics do not

evolve in the ways predators do, thus simplifying our system but also limiting its generality.

Nevertheless, we suggest that the measure derived here could aid in the quantification of

interactions among large numbers of species, but careful reasoning needs to be applied to

interpret the results for macro-organism studies on predator-prey interactions that contain

a larger variety of behaviors and responses.

Although applying this framework across other systems will require further work, we
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can already identify intriguing connections between the E3 measure developed here and

formulas from other fields. It is analogous to theoretical physics concepts such as the 3-

point connected correlation or Ursell function in quantum field theory, and the third joint

cumulant in statistical physics and statistics [149, 150]. However, our measure differs from

these because it is not defined with respect to expectation values, and the combination of

two variables is through addition and not multiplication. In the previously mentioned work

by Wood et al. [13], they insightfully noticed that their maximum entropy calculations for

determining interaction type were well described by a simple algebraic formula that they

identified as the Isserlis theorem. In the case of three-way interactions, this formula can be

re-expressed to show its equivalence to our emergent interaction measure E3. However, these

two approaches yield substantially different interaction metrics for characterizing four-way

(or higher) interactions since our method naturally includes all possible lower-order effects in

the metric, whereas Wood and colleagues considered only pairwise and single drug effects (see

Supplementary Text 1). Importantly, Wood et al. found this formula phenomenologically

by using a computational Maximum Entropy method [13] but did not provide a general

derivation as above. Lastly, based on our starting definition of no interaction (i.e., Bliss

independence), standard three-way ANOVA (even when log transformed) is not equivalent to

our correct measure of emergent interactions (see Supplementary Text 2 and Supplementary

Table 3).

In summary, we provide a tool for defining emergent interactions of multiple stressors. In

the past, statistical methods, such as ANOVA and Maximum Entropy [13,30,144,151], have

been used to search for interactions. The advantage of our approach to understand higher-

order emergent interactions by deriving a simple algebraic formula is that it: i) explicitly

distinguishes between net and emergent interactions, ii) decomposes the interaction into its

natural component pieces with exactly specified and empirically measurable coefficients (e.g.,

single drug fitnesses) instead of an increasing number of free parameters that require fitting,

iii) greatly simplifies calculations, helping to avoid technical mistakes and rounding errors

while also taking less time computationally, iv) leads to re-scaling that allows consistency

with previous pairwise analyses [16] and clearer identification of interactions, and v) naturally
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generalizes to higher-order interactions in a way that unambiguously incorporates the effects

of all combinations of subsets of components. In conclusion, using our framework to analyze

higher-order interactions may be important for revealing emergent properties in medical,

environmental, and ecological systems.
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CHAPTER 3

Enhanced Identification of Synergistic and

Antagonistic Emergent Interactions Among Three or

More Drugs

3.1 Introduction

Multi-drug treatments are an important tool [68,112,152–154], in particular for combatting

bacteria that are highly resistant to the individual use of traditional antibiotics [3, 28, 108,

155–157]. The efficacy and efficiency of these combination therapies is substantially affected

by how the specific drugs interact. Thus, a useful categorization scheme for interactions is

needed that uses the additive case [28, 29, 110]—drugs do not interact at all—as a baseline.

Along with this is the concept of emergence—effects of drug combinations that cannot be

predicted from lower-order interactions among subsets of the drugs [26]. Relative to these

baselines, interactions are generally categorized as a type of synergy if the combination kills

more efficiently than is expected from the additive case or from lower-order interactions (Fig.

3.1). Conversely, when the drug interaction reduces the effect of each drug, the interaction

is called antagonistic (Fig. 3.1), which itself contains special cases: i) buffering, in which

one drug completely masks the effect of the other drug, and ii) suppression, in which the

effectiveness of the drugs in combination is weaker than at least one drug by itself [3,37,158]
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Figure 3.1: Schematic illustration of triple-drug interactions. Interactions are deter-
mined based on measurements of bacterial growth and interactions of all components: single
drugs of X, Y , Z, pairwise combinations of XY , Y Z, and XZ, and triple-drug combination
of XY Z. Pairwise interactions of synergistic (XY ), additive (Y Z), and antagonistic (XZ)
are marked with red, black, and green respectively, while the triple interaction is colored as
dashed gray to depict the uncertainty of the interaction.

Multi-drug treatments are an important tool [68,112,152–154], in particular for combatting

bacteria that are highly resistant to the individual use of traditional antibiotics [3, 28, 108,

155–157]. The efficacy and efficiency of these combination therapies is substantially affected

by how the specific drugs interact. Thus, a useful categorization scheme for interactions is

needed that uses the additive case [28, 29, 110]—drugs do not interact at all—as a baseline.

Along with this is the concept of emergence—effects of drug combinations that cannot be

predicted from lower-order interactions among subsets of the drugs [26]. Relative to these

baselines, interactions are generally categorized as a type of synergy if the combination kills

more efficiently than is expected from the additive case or from lower-order interactions

(Fig. 3.1). Conversely, when the drug interaction reduces the effect of each drug, the

interaction is called antagonistic (Fig. 3.1), which itself contains special cases: i) buffering,
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in which one drug completely masks the effect of the other drug, and ii) suppression, in

which the effectiveness of the drugs in combination is weaker than at least one drug by

itself [3, 36,37,158].

It is a challenge to quantify interactions with a metric that has clear boundaries between

these cases and effectively identifies and distinguishes between interaction types. Overcoming

this challenge often requires a rescaling or normalization of basic metrics, and for pairwise

interactions, some effective methods have been discovered [3,16,65,159]. Rescaling for com-

binations of more than two drugs has previously been done using the most straightforward

generalization of the pairwise method [26, 62], but unlike the pairwise case, there are sev-

eral possibilities for rescaling metrics for higher-order interactions, even among three drugs.

Here, we explore these possible rescalings and identify the one that is best at categorizing

and thus distinguishing among three-drug interactions. Importantly, this particular rescal-

ing method is different than the rescaling previously used in the literature by ourselves and

others. Consequently, this could reveal new insights for interactions among three or more

drugs, as well as other objects such as proteins [31] and predators [30, 144–146, 160], and

some existing results may need to be revisited and revised [13,26].

For the case of two drugs, there are two common methods to analyze and categorize

interactions. First, Loewe Additivity categorizes the interaction based on the strength of in-

hibition on bacterial growth when drug concentrations are varied simultaneously [29]. When

the same effective concentration (relative to each drug’s Minimum Inhibitory Concentra-

tion) of the two drugs kill bacteria at a rate that is independent of the relative fractions

of each drug, the interaction is regarded as additive. This Loewe measure is motivated by

the simplest case in which a drug does not interact with itself. Depending on the direction

of the divergence from this additive case, the relationship is considered as either synergy or

antagonism.

Second, Bliss Independence (BI) defines additivity to be the case when the presence of

one drug does not affect another drug’s percent reduction of bacterial growth rate [28]. This

definition breaks down if one of the drugs and the pairwise combination are both lethal such

that bacteria cannot grow. Interactions are antagonistic according to BI when the deviation
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from this additive (DA) case is positive and are synergistic when DA is negative [3,16]. Bliss

Independence offers a simple measurement of the epistatic interactions because it relies on

less data and its results are more easily calculable and interpretable [37].

DA measures yield a unimodal distribution around the additive case for drug interactions.

Because of the unimodal shape, it is challenging to delineate boundaries and tease apart

synergistic, additive, and antagonistic cases. To overcome this hurdle, a rescaling method

of the DA measure was proposed in Segre et al. [16] for pairwise interactions. The rescaling

normalizes DA with respect to the pairwise drug fitness for two reference cases: lethal synergy

and complete buffering (i.e., the combined two drugs have the same effect as the strongest

single drug alone). This rescaled form of DA leads to an interaction distribution that exhibits

three dominant peaks, with clear spacing between them, hereafter referred to as a trimodal

distribution. For both simulated and empirical results, these peaks enable a straightforward

separation among synergistic, antagonistic, and additive interactions [3, 16, 65, 159]. These

peaks are observed at the exact location expected theoretically.

Given that higher-order (> 2) drug combinations are increasingly being used to combat

drug-resistant pathogens, it is important to have similarly effective, though not necessarily

similar in form, rescaled measures for higher-order interactions within a complex environ-

ment. This is a complicated task, because effects at all levels—single drug, pairwise combi-

nation, triple combination, etc.—may need to be taken into account (Fig. 3.1). For example,

a three-drug combination could have interactions arising from the three different pairwise

combinations as well as an interaction that only emerges when all three drugs are present.

Recently, a novel method to characterize and quantify emergent interactions in three-drug

combinations has been introduced. Beppler et al. [26] present a framework that compares the

higher-order interaction with expectations based on its lower-order component interactions.

First, the direct extension of the DA metric allows identification of three-drug interaction

compared solely to the single-drug effects [26,62,69]. Next, the new emergent three-way in-

teraction (E3) incorporates the pairwise interactions in the model and determines the effect

of three-drug interaction that is beyond the effects from all two-drug combinations. The

generalization of the interaction formulas for combinations of more than three drugs are
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followed by the conceptual derivation of each metric, and the special case with four drugs is

provided in Beppler et al. [26]. Moreover, a recent numerical model by Wood et al. [13] used

maximum entropy estimation to predict the higher-order effects relative to single and pair-

wise drug effects for any number of drug combinations. They showed that their numerical

estimation is consistent with an algebraic expression that is equivalent to E3 for three-drug

combinations. However, our emergent N -way interaction metric differs from Wood et al.’s

model in the sense that it quantifies the deviations from the expectations from all lower-order

effects, not just pairwise effects, so for more than four drugs, our model and Wood et al.’s

model will differ.

In this paper, we show that there are several choices for rescaling emergent interactions

and that the specific choice of rescaling plays a crucial role in identifying interactions among

drugs. We analyze the previously defined rescaling method—direct extension of the two-

drug rescaling—of the emergent three-way measure and establish new rescaling methods that

greatly improve the characterization of emergent properties. These methods are defined by

exploring possible reference cases of synergy and antagonism that arise with higher-order

drug combinations. Lethality always serves the reference case for synergies since it offers the

most extreme case of synergism regardless of number of drugs in the environment. Therefore,

there is only one simple extension of the rescaling method for two-drug combinations for

synergies. However, for antagonistically interacting drugs, the definition for the reference

case of complete buffering could vary based on the drug system and also the interaction metric

(DA versus E3). Because DA quantifies the overall interaction with respect to individual

drug effects, the strongest single-drug effect defines the complete buffering case as in the

two-drug system. However, for the emergent interaction, it matters whether the buffering is

defined relative to some subset or to all of the lower-order drug combinations (single drug,

two drug, or some combination). Our new rescaling methods cover the possibilities for the

definition of the antagonistic buffering, and our evaluation of these possibilities eventually

leads to enhanced classification of the emergent interaction.

To empirically study whether these different scaling methods effectively separate the his-

togram for the metric into a trimodal distribution, making it straightforward to separate
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synergy, additivity, and antagonism, we selected 14 antibiotics and systematically investi-

gated the effects of three-drug combinations on the growth rate of a bacteria, wild-type

Escherichia coli. These data allow us to apply several rescaling methods and hence to iden-

tify which method is best at distinguishing among interactions for three-drug combinations

and emergent interactions. We further apply our rescaling analysis to the three-antibiotic

combination data presented in Wood et al. [13]. We compare the original analysis in the

Wood et al. paper [13] with the new analysis from our rescaling method. Finally, we present

a straightforward generalization of our new rescaling methods to emergent interactions that

involve more than three drugs.

3.2 Materials and Methods

3.2.1 Experimental details

Bacteria. The bacteria used in these experiments was the E. coli strain BW25113, the wild-

type strain (lacI q rrnBT14 ∆lacZWJ16 hsdR514 ∆araBADAH33 ∆rhaBADLD78) [134] derived

from the strain W1485 background [135]. A single colony was used to inoculate cultures

for glycerol stocks stored at -80◦C. A single colony from this glycerol culture was used to

inoculate cultures in LB media (10 g/l tryptone, 5 g/l yeast extract, and 10 g/l NaCl). These

cultures were resuspended in MC buffer and stored at 4◦C. Bacteria for experiments were

grown by inoculating 20 µl of the MC stock into 2 ml LB daily and growing for 5 hours at

37◦C. 25 µl of a 10−4 dilution of this culture in LB was used to inoculate into 975 µl cultures

for experiments.

Antibiotics. Antibiotics used include clindamycin hydrochloride (Sigma C-5269), chloram-

phenicol succinate sodium salt (Sigma C3787), fusidic acid sodium salt (Sigma F0881), ery-

thromycin (Sigma Aldrich E-6376), ciprofloxacin hydrochloride (MP Biomedicals 199020), ce-

foxitin sodium salt (Fluka C4786), ampicillin (Sigma A9518), nitrofurantoin (Sigma N7878),

trimethoprim (Sigma T7883), tobramycin sulfate (Sigma T-1783), streptomycin sulfate (Sigma

Aldrich S-6501), gentamicin sulfate salt (Sigma G1264), vancomycin hydrochloride (Sigma
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Drug Abbreviation Dose Range
(µ g ml−1)

Main Mechanism(s) of Action

Clindamycin CLI 17.5-31.5 Protein synthesis, 50S
Chloramphenicol CHL 38-70 Protein synthesis, 50S
Fusidic Acid FUS 75-110 Protein synthesis, 50S
Erythromycin ERY 12-30 Protein synthesis, 50S
Ciprofloxacin CPR 0.009-0.013 DNA gyrase
Cefoxitin FOX 0.90-1.16 Cell wall
Ampicillin AMP 0.9-1.3 Cell wall
Nitrofurantoin NTR 1-3 Multiple Mechanisms
Trimethoprim TMP 0.06-0.08 Folic acid biosynthesis
Tobramycin TOB 0.5-1.3 Aminoglycoside, protein synthesis, 30S
Streptomycin STR 1.0-5.0 Aminoglycoside, protein synthesis, 30S
Gentamicin GEN 0.04-0.40 Protein synthesis, 30S
Vancomycin VAN 35-75 Protein synthesis, 30S
Doxycycline DOX 0.40-0.65 Protein synthesis, 30S

Table 3.1: List of all antibiotics used in the study, abbreviation, dose range, and mechanism
of action.

V2002), and doxycycline hyclate (Sigma D9891). The dosage, mechanism of action, and

abbreviations of these antibiotics are given in Table 3.1.

Growth experiments. Antibiotic concentrations were chosen to reduce growth by 15-35%

as compared to the no-drug control (LB). These sub-lethal dosages were first determined by

testing a range of concentrations for each antibiotic and were then used in all single-drug, two-

drug, and three-drug conditions. Each triple-drug experiment included a no-drug control,

three single-drug conditions, three two-drug conditions, and the three-drug combination.

In all cases, antibiotics were added to the previously determined sub-lethal concentrations

in 1 ml LB and inoculated as described above. 100 µl was aliquoted into 4-6 wells for

each condition in a 96-well plate. These cultures were grown overnight for 18 hours at 215

rpm and 37◦C. Optical density readings at 600 nm (OD600) at 18 hr were used to calculate

growth rates as compared to the no-drug control at 18 hr by taking their ratios at this time

point. This procedure has been previously used by us [161] and others [162, 163]. Each

three-drug experiment was repeated at least three times. Data are represented as median ±

maximum/minimum.
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Growth experiment data were also obtained from Wood et al. [13], and methods for

those empirical measurements are detailed in that paper. Here, the Wood et al. triple-

drug combination data (with non-zero concentration for each drug in the combination) are

analyzed using the exact same analytical DA and E3 measures, calculations, and cutoffs for

significance (all these methods are explained in the subsequent sections) as for our empirical

data.

Definition of lethal. Lethal antibiotic concentrations are all concentrations above which no

bacterial growth can be measured. Experiments were performed to determine the maximum

OD600 measurements with error that represent the lethal case. Bacteria for these experiments

were grown and inoculated in 96-well plates in the same manner as described above. Three

conditions were tested: LB only (no cells), LB + cells, and LB + streptomycin (STR)

9.2 g/ml + cells. STR 9.2 g/ml was chosen as an extremely high antibiotic concentration

that would ensure no bacterial growth, even when the populations were re-inoculated in

no-drug environments. Thus, the LB only (no cells) and the LB + STR 9.2 g/ml + cells

conditions could be used to determine the error in OD600 measurements that represent no

bacterial growth. The LB + cells condition was used as the positive control and 100%

growth reference point. The LB only and LB + cells conditions were each replicated in 16

wells. The LB + STR 9.2 g/ml + cells condition was replicated in 64 wells. After 18 hours of

growth at 37◦C and 215 rpm, the OD600 measurements were gathered. From these extremely

high drug concentrations as well as populations with no bacterial at all, we obtained mean

OD600 measurements of 0.044 with an error of 0.003. In addition, we further tested bacteria

populations at low OD, but above 0.047, to confirm that those populations continued to

grow (Supplementary Fig. 1). Thus, all growth measurements below 0.047 represent lethal

cases.

Based on the analysis of the emergent three-way measure (E3), we find that when the

three-drug combination and one of the pairwise combinations are both lethal, the rescaled

E3 measure identifies the emergent interaction as either antagonistic buffering or lethal

synergy. This situation is consistent with both definitions. However, unless the three-

drug combination is chosen to be non-lethal, the effect of the third drug on the outcome
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is not obvious as the pairwise combination already represents lethality. For this reason, we

identified all such cases as inconclusive, which is consistent with previous work on large drug

interaction networks (e.g. Yeh et al. [3]).

Cutoff values for the rescaled emergent interaction measure. Based on previous

work [3, 26] and the analysis of the resulting distributions of [E3]R2 over all the drug triples

(see Model Framework and Results), the interaction is identified as synergistic when rescaled

E3 is less than −0.5, antagonistic if it is greater than 0.5, and additive otherwise. For

antagonistically identified triples, we further choose 1.3 as the cut-off between the special

cases of buffering and suppression.

3.2.2 Model framework

Three-way interaction measures. In general, a measure of the efficacy of a treatment is

how much it inhibits bacterial growth rate relative to growth in the absence of drugs. This

measure is equivalent to a relative fitness for the bacteria that is typically denoted by wD,

where D stands for a single drug or a mixture of several drugs. Here, the fitness measures are

symmetric in the ordering of drug indices, for example wXY = wY X for drugs X and Y. As

discussed in the Introduction, Bliss Independence is when the percent reduction in growth

rate by a single drug is independent of the presence of other drugs and is expressed in an

equation as wXY = wXwY [28]. Accordingly, the deviation from additivity (DA) is defined

by DAX,Y ≡ wXY − wXwY , with the general interpretation that a large enough negative

value of DAX,Y implies synergy between drugs, such that the combined effect is greater than

would be predicted based on the single effects. Conversely, a large enough positive DAX,Y

means that the drugs are acting antagonistically.

Identifying the existence of some type of interaction among more than two drugs can

be defined analogously (i.e., via generalization of DA). For three drugs, the DA measure

becomes: DAX,Y,Z ≡ wXY Z −wXwYwZ , quantifying interactions at any level that contribute

to the overall interaction [13, 26, 62, 69]. With more sophisticated modeling and measures,

it is also possible to identify true emergence—the overall interaction is not just a result of
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interactions among subsets of the drugs. That is, it is important to distinguish between

effects that arise from lower-order interactions (such as pairwise interactions that yield an

apparent three-way effect) and those that arise from emergent interactions that require all of

the drugs to be present to manifest their unified effect in killing bacteria. A recent model that

is capable of making this distinction was introduced [26] and was termed the E3 measure.

The logic of the E3 measure is that all possible pairwise contributions are correctly

weighted and subtracted from the overall interaction; hence it quantifies any triple-drug in-

teraction that does not originate from the pairwise interactions. The weighting is determined

based on the expected three-way effect when only two drugs (pairwise interaction X and Y )

interact and the third drug (Z) is additive with them. Based on the three-way DA measure,

this would give an effect of wZDAX,Y because wZ would factor from all terms and the re-

maining terms are just the definition of the pairwise DA measure. For three drugs, there are

three pairwise combinations, so subtracting all possible pairwise combinations yields:

E3 = DAX,Y,Z − wXDAY,Z − wY DAX,Z − wZDAX,Y (3.2.1)

Rewriting this equation solely in terms of the relative fitness gives

E3 = wXY Z − wXwY Z − wYwXZ − wZwXY + 2wXwYwZ (3.2.2)

Notably, this E3 measure includes every possible relative fitness in the three-drug system.

Both the E3 and DA measures are symmetric in drugs X, Y , and Z and can be easily adapted

to higher-order interactions that involve more than three drugs. More detailed discussion of

the derivation of higher-order interaction metrics can be found in Beppler et al. [26].

Rescaling three-way interaction measures.

To easily quantify the interaction strength and the separation of interaction classes, the

interaction measure must be rescaled. For pairwise interactions, Segre et al. [16] established

a rescaling method that greatly enhances the discovery of antagonism. Their normalization is

based on two limiting reference cases for the synergistically and antagonistically interacting
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drug pairs. The normalization factor for synergy is defined by substituting the lethal case into

the DA measure (i.e., DA = |0− wXwY | = wXwY ), whereas the antagonistic interaction is

rescaled by the complete buffering case in which the two-drug effect is the same as the fitness

of the single drug with the stronger effect (i.e., DA = |min (wX , wY )− wXwY |). With this

rescaling the pairwise interactions yield a trimodal distribution centered on these reference

cases (modes at −1, 0, and 1 as expected theoretically) and provides a clear cutoff between

synergistic, additive, and antagonistic interactions [3, 16,65,164].

To classify interactions among three-drug combinations, we also need to establish an

appropriate rescaling or normalization. In particular, the reference cases for negative and

positive measures must be properly defined for each triple-drug interaction measure. It is

expected that there is a biologically- and empirically-grounded choice of rescaling that will

provide a clear distinction between the interaction classes, as in the case with two drugs.

Moreover, as our rescaling measures are based on special cases of the DA or E3 measures,

they are symmetric by construction.

The case of lethality is uniquely defined for each three-way interaction measure. On the

other hand, buffering can be defined in several different ways, and the choice of definition

may depend on the type of interaction measure (emergent versus overall) being considered.

Because DA quantifies the deviations from the case that all single-drug effects are combined

additively, it is practical to define buffering with respect to the effect of the strongest individ-

ual drug. However, the definition of buffering for the emergent three-way interaction (E3) is

not unique because E3 captures the effect of the three-drug combination relative to all lower-

order effects. Hence, buffering could be defined relative to the strongest individual drug, the

strongest pairwise effect, or the strongest of all of these. As a result of this ambiguity, the

choice of rescaling might cause misidentification of antagonism. In the subsequent sections,

we first present the extension of the two-drug rescaling method to three-way interaction

measures, and then construct new rescaling factors that will help to more comprehensively

evaluate and characterize the emergent properties of drug combinations.

Extension of two-drug rescaling method (termed “Rescale 0”) .
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Beppler et al. [26] and Sanjuan et al. [62] introduced a rescaling that directly extends the

method of Segre et al. [16]. Negative measures are scaled relative to extreme lethal synergy

such that the triple-drug combination kills off the bacteria, i.e. wXY Z = 0. When the

interaction measure is positive, it is scaled with respect to the buffering case defined to be

when the fitness of bacteria exposed to the triple-drug combination is the same as when

exposed to just the single drug with the strongest efficacy, i.e. wXY Z = min (wX , wY , wZ) .

Hence, the normalization factor (Scale 0, denoted by S0) for the positive E3 measure is

defined by

S0 = |min (wX , wY , wZ)− wXwY Z − wYwXZ − wZwXY + 2wXwYwZ |

Then, the rescaled E3 measure with S0 (Rescale 0) takes the form

[E3]R0 =
wXY Z − wXwY Z − wYwXZ − wZwXY + 2wXwYwZ

|min (wX , wY , wZ)− wXwY Z − wYwXZ − wZwXY + 2wXwYwZ |

Based on the discussion above, the current published rescaling method [16, 26, 62] is the

most appropriate way of characterizing interaction type based on the DA measure and the

synergistic emergent interactions.

New rescaling methods for emergent three-way interaction (E3).

To explore alternative rescaling methods that may lead to a clearer identification of antag-

onistic interactions, we revisit the possible definitions of buffering. Based on the buffering

definition, the antagonistic buffering cases would be mapped to 1 via the corresponding

rescaled metric. Note that the synergistic interactions are characterized by the previously

defined rescaling method; hence rescaling methods presented here map the lethal synergies

to −1. All of the different rescaling methods are summarized in Table 2.

Rescale 1—Buffering relative to pairwise drug effects.

Higher-order combination therapies of N drugs are analyzed relative to the lower-order

combinations (i.e., N − 1, N − 2, etc.) of subsets of the drugs. Therefore, another type

of buffering is when the effect of all three drugs combined is exactly the same as that of
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the most powerful pairwise combination (i.e., the lowest relative fitness in the presence of

any pairwise combination of drugs). Consequently, for antagonistically interacting drugs

(i.e., E3> 0), we introduce the normalization factor S1 by substituting the minimum of all

pairwise drug fitnesses for the triple-drug fitness in E3 (Table 2).

S1 = |min (wXY , wXZ , wY Z)− wXwY Z − wYwXZ − wZwXY + 2wXwYwZ |

Hence, the rescaled E3 measure (Rescale 1) is

[E3]R1 =
wXY Z − wXwY Z − wYwXZ − wZwXY + 2wXwYwZ

|min (wXY , wXZ , wY Z)− wXwY Z − wYwXZ − wZwXY + 2wXwYwZ |

In this way, we can assess if any of the pairwise drug combinations disguise the effect of the

cooperation and antagonism of the remaining drug in the triple-drug combination.

Rescale 2—Buffering relative to single and pairwise drug effects.

In this section, we propose a generalization of the above S1-rescaling scheme that accounts

for all lower-order drug components. This generalization allows for the possibility that a

single-drug therapy might be more powerful and offer more effective treatment than any

pairwise combination (i.e., the lowest relative fitness in the presence of a single drug is lower

than the relative fitness in the presence of any pairwise combination). This extension defines

the E3 measure relative to the minimum of the fitness values attained by any single or

pairwise components as

S2 = |min (wXY , wXZ , wY Z , wXY , wXZ , wY Z)− wXwY Z − wYwXZ − wZwXY + 2wXwYwZ |

(Table 2). Thus, the new rescaled E3 measure (Rescale 2) takes the form

[E3]R2 =
wXY Z − wXwY Z − wYwXZ − wZwXY + 2wXwYwZ

|min (wXY , wXZ , wY Z , wXY , wXZ , wY Z)− wXwY Z − wYwXZ − wZwXY + 2wXwYwZ |

Rescale 1 and 2 yield the same results if the minimum of the pairwise drug fitnesses is

less than the minimum of the single-drug fitnesses, which is frequently the case. Notably,
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Unscaled metric
Text colored with
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Text colored with
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the lethality
[E3]Ri ∼ −1
Text colored with

Text colored with
E3> 0
rescale with respect to
the antagonistic buffering
[E3]Ri ∼ 1
Text colored with

Rescale 0 w̃XY Z = 0 w̃XY Z = min (wX , wY , wZ)
Rescale 1 w̃XY Z = 0 w̃XY Z = min (wXY , wXZ , wY Z)
Rescale 2 w̃XY Z = 0 w̃XY Z = min (wX , wY , wZ , wXY , wXZ , wY Z)
Rescale 3 w̃XY Z = 0 w̃XY Z = min (wXwY Z , wYwXZ , wZwXY )

Table 3.2: Unscaled and rescaled definitions of emergent three-way interaction (E3)

Rescale 2 spans a broader set of circumstances than Rescale 1.

We further note that it is straightforward to generalize Rescale 2 when emergent proper-

ties with more than three drugs are analyzed. For the case of N drugs, the scaling factor S2 is

given by calculating the emergent measure by replacing the N-drug fitness by the minimum

of the bacterial fitness among all possible subsets of the drugs. For instance, 4-drug combina-

tions are rescaled relative to the case when wXY ZT = min(wX , wY , wZ , wT , wXY , wXZ , wXT ,

wY Z , wY T , wZT , wXY Z , wXY T , wXZT , wY ZT ).

Rescale 3—Buffering relative to effects from pairwise interactions.

Because the E3 measure captures the emergent triple-drug interaction that cannot be ex-

plained by the pairwise effects, we consider another definition of buffering to be relative

to the expected pairwise contribution to the overall three-way interaction (DA). Note that

based on the DA and E3 measures, this is not the same as the relative fitness in the pres-

ence of a pairwise drug combination because each of those relative fitness is multiplied by
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the proper weighting (i.e., the relative fitness in the presence of the remaining single drug).

Replacing the DA term (DAX,Y,Z) in the E3 expression (3.2.1) by the minimum of pairwise

interaction contributions defines our last scaling method, S3, via

S3 = |min (wXDAY,Z , wY DAX,Z , wZDAX,Y )− wXDAY,Z − wY DAX,Z − wZDAX,Y |

Substituting the pairwise fitness measures into the minimized quantity in S3, we obtain

min (wXDAY,Z , wY DAX,Z , wZDAX,Y ) = min (wXwY Z , wYwXZ , wZwXY )− wXwYwZ

which is a symmetric expression in terms of the pairwise contributions. S3 can be expressed

purely in terms of the fitness parameters as

S3 = |min (wXwY Z , wYwXZ , wZwXY )− wXwY Z − wYwXZ − wZwXY + 2wXwYwZ |

so when the unscaled E3 measure is positive, we rescale the E3 measure (Rescale 3) as

[E3]R3 =
wXY Z − wXwY Z − wYwXZ − wZwXY + 2wXwYwZ

|min (wXwY Z , wYwXZ , wZwXY )− wXwY Z − wYwXZ − wZwXY + 2wXwYwZ |

(Table 2). Because experimental concentrations of individual drugs are chosen such that

each reduces the growth about 15-35%, we expect somewhat similar results as in the Rescale

1 because we are simply multiplying wXY Z = min (wXY , wXZ , wY Z) by a number between

0.6 and 0.9 (relative fitness of a single drug).

3.3 Results

To distinguish different types of interactions manifested in triple-drug combination therapies,

we utilize a newly proposed emergent three-way measure [26]. To include as much informa-

tion as possible, we show all data in the histogram results (Fig. 3.2). We observe that the

unscaled version of the emergent measure yields a unimodal distribution around the additive

case (Fig. 3.2a). We find that Rescale 0 which defines buffering based on the comparison
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of triple drug combination with the single drug effects (previously used method in [26, 62])

results in a distribution with modes at −1 and 0, hence identifying emergent synergies. Yet,

Rescale 0 does not result in a clear distinction for the antagonistic triples (Fig. 3.2c).

Figure 3.2: The histogram of the unscaled emergent three-way measure (E3) over
all triple-drug combinations. The stacked bars with different colors on the histogram
represent synergistic (red), additive (black), antagonistic buffering (green), and antagonistic
suppression (blue) triples identified via Rescale 2. (b) The histogram of the scaled emergent
three-way measure via Rescale 2, i.e. [E3]R2. The plot shows a multi-modal distribution with
modes at synergistic, additive, and antagonistic buffering. Cutoffs can be placed between
these modes to categorize interactions. (c-d-e) The histogram of the scaled emergent three-
way measure via Rescale 0, 1 and 3, i.e. [E3]R0, [E3]R1 and [E3]R3.

Importantly, using the new rescaling methods we propose here, we see that Rescale 2,
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which defines antagonistic buffering relative to the single or pairwise drug effects, success-

fully maps (Fig. 3.2b) lethal synergies to −1, additive interactions to 0, and the antagonistic

buffering interactions to 1. Consequently, the resulting distribution from Rescale 2 leads to

a multimodal distribution with three dominant peaks (see Silverman test results for multi-

modality in Supplementary Table 1, Supplementary Fig. 2). The distribution of Rescale 2

without the inconclusive cases—when one of the pairwise combinations and triple combina-

tion are lethal—is given in Supplementary Fig. 3. Although the peak at 1 is diminished

when the inconclusive cases are excluded, our main result still holds as the identification of

synergistic and antagonistic interactions is enhanced. Note that the same result is obtained

by Rescale 1 where the triple combination is only compared to the most effective pairwise

combination (Fig. 3.2d). This is because the pairwise components in the analyzed data are

always stronger than individual drugs. Moreover, in agreement with theoretical predictions,

Rescale 3, which defines antagonistic buffering relative to the most powerful pairwise inter-

action, yields similar results as in both Rescale 1 and Rescale 2. Notably, Rescale 3 leads

to cleaner separation between the different modes than the other choices of rescaling (Fig.

3.2e).

Via Rescale 2, we find 38 synergistic, 78 antagonistic buffering, and 47 antagonistic sup-

pressive emergent interactions from 364 different triple-drug combination experiments. Of

the remaining combinations, 165 are additive and 36 are inconclusive due to lethality to the

pairwise and triple combination. Interaction classifications found via each of the rescaling

methods is summarized in the Supplementary Table 2. In Fig. 3.3, we provide a comparison

between the existing rescaling method (Rescale 0) and the newly proposed method Rescale

2 in terms of the identification by each of the synergistic or antagonistic triples. We find

that the majority of emergent antagonisms (90%) are either classified as additive or under-

estimated (buffering versus suppression) according to Rescale 0. A comparison of emergent

interaction types obtained via the other rescaling methods is given in Supplementary Table

3.
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Figure 3.3: Comparison of Rescale 0 and Rescale 2. Emergent three-way interactions
identified by the old rescaling method ([E3]R0) are contrasted with the new rescaling method
([E3]R2) for the synergistic, antagonistic buffering, and antagonistic suppression triples. For
each interaction type identified by Rescale 2, the frequency of each interaction type resulting
from Rescale 0 is represented in separate charts.

We additionally give two examples of highly synergistic and highly suppressive emergent

interactions. First, a triple-drug combination of ciprofloxacin + clindamycin + streptomycin

yields emergent lethal synergy (Fig. 3.4a) according to all rescale methods studied here,

whereas such an interaction is not apparent with the unscaled version of E3. Next, the drug

combination with erythromycin + cefoxitin + tobramycin shows highly suppressive emergent

interaction (Fig. 3.4b) according to rescaling methods 1-3, while it is barely identified as

antagonistic according to Rescale 0 (previously used method) and is not even identified as

antagonistic with the unscaled version.

To see if we obtain similar results (e.g. unimodal distribution from unscaled data, mul-

timodal distribution using scaled methods) with other datasets, we also analyzed the data

from Wood et al. [13]. We find that the unscaled measure for this dataset also yields a uni-

modal distribution (Fig. 3.5 inset), seeming to imply that almost no emergent interactions

exist. However, when we apply rescaling methods to this dataset, we observe multi-modal

distributions (Fig. 3.5, Supplementary Fig. 4) that are similar to the results from the anal-

ysis of our own data. The peak at −1 (corresponding to lethal synergies by definition) is

not visible for this data. This is due to the fact that the vast majority of the data (93%) are
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Figure 3.4: Examples of highly synergistic and antagonistic emergent interac-
tions among antibiotics. The bars represent measured growth rates (fitness) under certain
drug combinations: no drug (WT), single drugs, pairwise combinations, and triple combi-
nation. (a) The combination of ciprofloxacin (CPR), clindamycin (CLI), and streptomycin
(STR) shows emergent lethal synergy. (b) The combination of tobramycin (TOB), cefoxitin
(FOX), and erythromycin (ERY) shows a highly suppressive emergent interaction.

coming from just 6 combinations of three drugs that are varied in their concentrations to

create a larger set of data. These particular combinations and the range of concentrations

used result in either emergent antagonism or emergent additivity for almost all experiments.

These results are consistent with previous reports that different drug concentrations do not

change a drug interaction from antagonistic to synergistic [3]. Therefore, the data in this

study mainly represent the effect of varying drug dosages for a small set of drug combina-

tions, whereas our study measures a much larger set of drug combinations and thus analyzes

a much larger set of potential interactions and classifications. Even for the limited set of

drug combinations studied in Wood et al. [13], we find our rescaling methods greatly en-

hance the identification of interactions. Specifically, we find only 53% of the measurements

are additive with the remaining measurements being synergistic (3%) or antagonistic (44%)

emergent interactions, as opposed to > 97% additivity reported by Wood et al. [13]. That

is, the choice of rescaling leads to dramatically different conclusions about the presence and

overall prevalence of emergent interactions. Moreover, our new analysis reveals that the
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Wood et al. [13] data also frequently exhibit emergent interactions and that these inter-

actions tend to be much more antagonistic, but using our new rescale, different datasets

yield the same conclusions. Consequently, applying our new rescaling methods to different

datasets (ours and Wood et al.’s [13]) yields similar conclusions about an increase in antag-

onism for higher-order emergent interactions, suggesting the generality of our findings and

the need for rescaling.

Figure 3.5: Analysis of the data from Wood et al. [13]. The histogram of the unscaled
emergent three-way measure via Rescale 2 ([E3]R2) applied to Wood et al. data. The inset
figure shows the histogram of unscaled E3.

3.4 Discussion

Through a systematic analysis of relative growth rates of bacteria exposed to single, pairwise,

and triple-drug combinations, we introduced rescaling methods for clearly delineating and

categorizing types of interactions among multiple drugs. Due to its unimodal shape, we

concluded that the unscaled emergent measure is not useful for identifying and distinguishing

among drug interactions. We overcame this problem by constructing new rescaling methods

relative to natural reference frames of synergistic and antagonistic cases. As a result, our
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rescaling methods of the emergent measure allow us to clearly distinguish interaction types

via multi-modal characteristics of the E3 distribution.

We have shown that defining antagonistic buffering as the masking effect by the pair-

wise combinations (Rescale 1) or by all possible lower-order combinations (Rescale 2) lead to

nearly identical results. Intriguingly, Rescale 3, where buffering occurs when the overall inter-

action effect is masked by the strongest pairwise interaction, is somewhat similar to Rescale

1 and 2 but yields important differences for categorizing interactions. The consistency of all

three new Rescaling results gives confidence that the identification of the emergent properties

is well established. Among these methods, we identify Rescale 2 and Rescale 3 as the best at

categorizing emergent interactions based on the distributions they produce. Rescale 2 may

be more widely adopted because of ease of interpreting from the fitness measurements, hence

comparing through standard bar graphs. On the other hand, Rescale 3 may be desirable

because it is more naturally connected to the underlying formulation of E3 itself.

There are three baselines for rescaling: −1 (lethal synergy), 0 (additivity), and 1 (antag-

onistic buffering). Performing a test of multimodality for the distribution of E3 with Rescale

2, we find at least four modes, with three dominant ones occurring at −1, 0, 1 (Supple-

mentary Table 1). These modes suggest that our empirical data do segregate into the three

extreme cases upon which our rescaling metrics are designed. Intriguingly, there may be a

fourth peak that could be a weaker form of antagonism (see multimodal Silverman test in

Supplementary Fig. 2). This mode is consistent with features of the pairwise distribution of

interactions although that limited dataset makes it difficult to see the peak [3]. As we obtain

more empirical data, this fourth peak and other characteristic features of this distribution

will be explored in more detail.

Applying the rescaling methods we proposed here substantially changes the existing re-

sults for the multidrug interactions from Wood et al. [13]. They suggest that most of the

interactions in the multidrug environment can be explained by pairwise and single-drug ef-

fects. However, via the use of our rescaling methods, we identify substantial numbers of non-

additive interactions from the same dataset. Hence, we conclude that for many combinations

the higher-order effects are not simply the result of lower-order effects. These conclusions
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further strengthen the importance of the choice of an appropriate rescaling method when

identifying higher-order emergent interactions.

Our rescaling method enhances the mode for emergent synergy (at −1) even more than

the Segre et al. [16] rescaling method enhances the mode for synergy for pairwise interactions

in a yeast epistasis study. This can be explained by considering the differences of the fitness

ranges for yeast knockouts and drug combinations. The fitness of the single knockout is

typically very close to the wild type fitness (= 1) [16]. Since interaction type is determined

based on the comparison between single and double mutants, lethal synergies (when fitness

of double knockout is close to 0) are obvious even with the unscaled measure. However, drugs

at most useful concentrations lead to lower fitnesses than those that result from single-gene

knockouts. Because of this reduced difference between lethality and the single effects, lethal

drug synergies are not as obvious with the unscaled measure as they were in the gene epistasis

studies. Intriguingly, the rescaling of the emergent interaction measure helps uncover the

strength of the synergistic interaction. Moreover, in addition to the modes expected for

synergistic, additive, and antagonistic buffering interactions, the rescaling for emergent drug

measures yields a substantial number of suppressive triples, thus yielding even more useful

information for classifying drug interactions. Taken together, our new rescaling method offers

a strong and robust identification and categorization scheme for three-drug interactions and

very possibly higher-order interactions in general.

The identification of highly synergistic and suppressive emergent interactions that we

established in this study could be especially important for antibiotic research. This im-

portance and clinical relevance is because highly synergistic triple-drug combinations are of

utmost importance due to the high efficacy of the treatment compared with pairwise inter-

actions [67, 112, 165–168]. On the other hand, identifying suppressive interactions may be

especially valuable because it has been shown that, counterintuitively, these interactions may

slow and thus suppress the evolution of antibiotic resistance [3,8,36–38,113]. That is, there

may be a trade-off between killing efficiency and the evolution of resistance. Synergistic

combinations may be especially good at killing bacteria but may also increase the likelihood

and rate of evolution of resistance [37, 38, 113, 169]. Thus, this trade-off can also be seen as
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balancing the good of an individual with the good of the public.

We note that it can be very important clinically whether three-drug interactions are dif-

ferent from the expectations based on all two-drug interactions. This is because an emergent

synergistic interaction would be a potentially novel therapeutic option, whereas a three-way

synergy that just resulted from a pairwise synergy would not gain much benefit by adding

the third drug. Indeed, in such a case, the third drug could be irrelevant in terms of killing

bacteria, and thus likely should not be used in order to decrease the toxic side effects to the

patient. This rescaling method will allow us to determine if an additional third drug gives

a real benefit. Second, as mentioned above, drug interactions can change the topography of

fitness landscapes, and this is important because ultimately, it would be very useful to design

landscapes such that the bacteria would have a difficult time reaching maximal fitness peaks

with multi-drug resistance. Emergent interactions, as opposed to DA interactions, could

change the shape of the fitness landscape more dramatically.

One caveat is that the empirical data are for fixed drug concentrations, so that Bliss

Independence is used to determine interaction type. Bliss Independence is a much simpler

and straightforward way of measuring interactions than Loewe Additivity, which requires

examination of interactions across a gradient of concentrations for each of the drugs. Al-

though Loewe integrates more information about interactions, the ease of measurement and

calculation of Bliss Independence has led to its use in a huge number of studies [3,26,39,42,

49,51,56,62,69], including our present one.

Methods developed here for capturing the higher-order interactions are applicable to

other complex systems. These systems include, for example, protein and gene interaction

networks (e.g. [31]), food webs (e.g. [30,144,146]), and transportation networks (e.g. [170]).

Hence, our rescaled emergent measure offers a systematic and straightforward method for

uncovering the complex interactions that occur in a wide range of systems.

In summary, we have shown that our new rescaling methods lead to a clear distinction

between different categories—synergistic, additive, antagonistic buffering, and antagonistic

suppressive—of interactions, and that these distinctions do not exist when looking at results
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for the unscaled measure or the previously used rescaling method (i.e. Rescale 0). Therefore,

our new rescaling methods are required to accurately characterize cases of emergent interac-

tions among multiple drugs. In particular, Rescale 2 and Rescale 3—synergy defined relative

to lethality for both cases and antagonistic buffering relative to the strongest lower-order ef-

fect (Rescale 2) or interaction (Rescale 3)—offer a direct and more distinct measurement

of epistasis that is straightforward to generalize to higher-order interactions. Therefore, we

propose that Rescale 2 and 3 could be a useful tool in future studies that examine complex

drug interactions or other complex systems with interacting components.
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CHAPTER 4

Do Vascular Networks Branch Optimally or Randomly

across Spatial Scales?

4.1 Introduction

The cardiovascular system is responsible for the vital processes of delivering oxygen and

nutrients to cells, as well as clearing waste products, via blood flow from heart to capillaries.

Accomplishing these processes requires highly complex structures because nearly all the cells

throughout the body are fed by capillaries—the terminal tips of the cardiovascular system.

These linkages explain why the cardiovascular system plays a critical role in most mod-

ern allometric scaling theories that relate metabolic rate and body mass via a power law

with the scaling exponent 3/4 [9, 11, 77–79, 171, 172]. Recent analyses of allometric scaling

relationships using extensive data (more than 600 mammalian species and 64 plant species)

yield second-order curvature in log-log space that represent deviations from this pure power

law [10,91–94]. Attempts to account for this observed curvature, via including higher-order

approximations and more accurate fluid dynamic relations, lead to curvature in the oppo-

site direction (convex versus concave) of the empirical data [11]. This and other recent

results [173] suggest the need to revisit the assumptions behind the existing models. In

this paper, we show the ways in which current assumptions are insufficient to capture the

patterns in empirical vascular data, and we propose new assumptions for vascular branching

that could help eventually provide the foundation for a revised allometric scaling theory.

Current theories for allometric scaling, such as those proposed by West, Brown, and

Enquist (WBE) [79], Banavar et al. [80, 81] , Dodds [82], and Huo and Kassab [83] rely on
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mathematical models that encompass the architectural design of the cardiovascular system

to different degrees of detail and accuracy. Within these models, the cardiovascular system

is typically idealized as a hierarchical branching network that is constrained by a few core

physical and biological principles. These principles lead to derivations for fractal-like, self-

similar properties—having a pattern that repeats itself across large and small scales—for

the overall structure of the network [86, 99, 174]. Previous models also often assume that

branching is symmetric such that sibling vessels—daughter vessels branching from the same

parent—are identical in terms of their radius, length, flow rate, and pressure.

Although many models presume perfect symmetry between siblings [10, 79, 83, 175], in-

spections of vessel casts and images reveal that some regions have highly asymmetric branch-

ing [176–179]. Such asymmetric branching patterns were empirically quantified by Zamir who

showed there are differing degrees of asymmetry across levels of the coronary arteries [87].

Moreover, a recent paper by Hunt et al. [98] shows that there is a high degree of asymme-

try in vessel lengths within the mouse lung (micro-CT images) and human head and torso

(MRI), demonstrating that symmetric branching is not an accurate representation of the car-

diovascular system. Nevertheless, if the degree of asymmetry is repeated across branching

junctions, this would still represent a modified version of self-similarity.

Given the evidence for asymmetric branching, we propose to investigate patterns of asym-

metry in vascular branching. Because vessel radii exhibit relatively little asymmetry and are

consistent with existing models [5], we focus on asymmetries in vessel lengths and branching

angles. Through the identification and investigation of these new, systematic patterns, an

explanation might eventually be obtained for the mismatch between theoretical predictions

from scaling theory and empirical data [10]. Conversely, the consistency of the empiri-

cal scaling relationships across different species and taxa [9–11, 92, 93] suggests that shared

developmental processes and evolutionary pressures powerfully constrain the degree of asym-

metric branching within the vascular system, possibly corresponding to core, yet unidentified,

biological and physical principles.

Developmental processes are known to play a key role in vascular branching, and these

processes likely introduce stochasticity and randomness into patterns of asymmetry in lengths
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of sibling vessels. For example, at local to intermediate spatial scales, vessel branching is

often initiated by the metabolic demands of growing tissue as signaled by expression and

concentration levels of Vascular Endothelial Growth Factor (VEGF) [104]. In addition, at

even more local scales, branching location is primarily affected by the shear-stress gradient

between the fluid and vessel wall, related to the curvature of the branching vessel [180,181].

In terms of evolutionary pressures, it has been proposed that the architecture of the car-

diovascular system is governed by optimization principles such as minimization of the con-

struction materials (i.e., material cost (MC)) or of power loss (i.e., power cost (PC)) across

the network to provide efficient flow [89,105,106,176]. These principles lead to largely deter-

ministic outcomes that could constrain the branching structure locally (individual branching

junction), globally (whole network), or through some intermediate spatial scale. Indeed, at

the global scale, vascular branching likely requires more deterministic or programmed pro-

cesses due to the necessity of distributing blood to the extremities such as hands, feet, and

the brain.

The local optimization of MC and PC at each branching junction—where a parent vessel

branches into daughter vessels—has been studied by Murray and Zamir for the case that the

radii of vessels are fixed [105,106,182,183]. These optimization problems were used to derive

predictions for branching angles of sibling vessels relative to the parent vessel (Fig. 4.1c, d).

Although not explicitly considered in previous studies, length asymmetry is directly tied to

branching angles because both are completely determined by the position of the branching

junction relative to the other endpoints of the vessels. Furthermore, these previous studies

used a fluid-dynamically incorrect linear summation of each vessel’s individual power loss

to calculate total power loss for the branching junction [106]. This approach works for

construction material but does not for power loss because it ignores different rules for how

to combine resistances (impedances) of vessels in parallel versus in series. Moreover, even for

minimization of material cost, these studies [105,106] did not examine the full solution space

for the optimal position of the branching junction, resulting in misleading solutions for some

cases. In this paper, we address these problems and clarify the confusion in the literature

on optimal branching geometries. In so doing, we provide a connection between optimal
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branching angles, optimal ratios and asymmetries for sibling vessel lengths, and observed

asymmetry in branching patterns.

Figure 4.1: Cardiovascular data and schematic illustration of vascular branching
(a) Mouse lung micro-CT images processed by Angicart. (b) Human head and torso MRI
images processed by Angicart.(c) Schematic illustration of the asymmetric branching ge-
ometry and labeling. Parent vessel with radius r0 and length l0 branches into two daughter
vessels with radius ri and length li with subscript i = 1 or 2. Branching angles, θi, are defined
by the angle between the sides defined by the endpoints of the vessel pairs. Here, subscripts
are determined by the non-adjacent vessel. (see 4.5 Materials and Methods) (d) Optimiza-
tion of local branching on a plane finds the optimal location of the branching junction j
when the unshared endpoints (Vi) and the radii (ri) are fixed (see 4.2.1 General framework
for branching angle optimization and asymmetry).

Although there are substantial theoretical predictions for the vascular system, those

predictions have rarely been tested on an extensive set of data. Most vascular data have

been collected via casting or dyeing methods [95, 95–97] that do not produce sufficiently

detailed data or large enough amounts of data due to the challenges of manually measuring
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branching angles. Recently, a novel software package, Angicart, was developed to extract

three-dimensional vascular networks from the aligned stacks of high quality angiographic

images [5]. In this paper, we employ Angicart to analyze characteristics of the cardiovascular

structure from micro-CT images of healthy mouse lung (Fig. 4.1a) (micro-CT imaging is

described in [184]) as well as the MRI of human head and torso in 18 different subjects

(Fig. 4.1b) [5, 98]. Consequently, we have collected detailed data for vascular networks

that include asymmetry ratios at each junction (see 4.3.1 Analysis of asymmetry patterns in

vascular data) and measures of vessel radii, lengths, and branching angles (see 4.5 Materials

and Methods).

Here, we present patterns that hold across the entire network for the degree of asymmetry

in vessel radius, length, and branching angle between sibling vessels. Then, we investigate

the validity of the previously proposed branching angle optimizations at the local level.

As part of this, we propose an alternate method for solving these minimization problems,

including the full solution of the MC optimization that considers both total surface area and

total volume. Next, we introduce an optimization scheme for minimizing power loss (i.e., PC

optimization) that correctly implements the flow dynamics for a bifurcating structure and

can also incorporate downstream impedances and power loss. We note that several of these

optimization schemes result in network-level patterns of asymmetry similar to those observed

in the real data. Next, as a stronger test of which optimization principles, if any, lead to the

asymmetric branching patterns in real systems, we compute theoretical predictions for each

branching junction in a comprehensive set of vascular data from mouse and human subjects

and compare whether our predictions match the real data at the junction-level. Finally,

we explore how random branching is constrained at different spatial scales, ranging from

local to intermediate to global, affects the network-level characteristics of the empirical data

via simulations of the branching structure. Overall, we compare our carefully constructed

mathematical frameworks for optimal and random processes of vascular branching to new

analyses of recent empirical data that enables us to improve our understanding of how

structural properties of the vascular system are constrained by core biological and physical

principles.
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4.2 Optimal models and random simulations for vascular branch-

ing

4.2.1 General framework for branching angle optimization and asymmetry

Systematic patterns in branching angles or asymmetric ratios [98, 100–102] (see 4.3 Re-

sults, 4.3.1 Analysis of asymmetry patterns in vascular data) suggest that a constraint that

likely arises through natural selection, the nature of the growth process, or both. Most

hypotheses about the force of natural selection on vasculature have focused on principles

that reduce the cost of materials and growth while also providing efficient flow mecha-

nisms [87,89,105,106,176]. These biological principles could apply at each branching junction

(locally) during growth or across the whole network (globally) through some larger bauplan.

In this study, we initially focus on the local optimization aspects of these principles. Then,

we consider applying different spatial (regional) constraints on the branching structure, in-

cluding simulating networks that have random branching within constraints that range from

intermediate to global spatial levels of the network.

For the local optimization of bifurcating branching geometry, following a similar approach

as in the previous studies by Zamir and Murray [105,106], we assume that the radius (ri) and

the unshared endpoints of the vessels, i.e., the vertices (Vi), are fixed, whereas the branching

junction at the shared endpoint (j) varies (Fig. 4.1c, d). In this framework, we derive

the optimal placement of the branching junction (j) by constructing and minimizing a cost

function based on each biological principle that is hypothesized to increase the fitness. In

all our derivations, we follow Krogh’s model that regards blood vessels as cylinders [90]. In

addition, both human and mouse data provide evidence that all of the vessels involved in a

branching junction lie within a single plane (S1 Fig.). Thus, for our derivations of optimal

branching geometry, we assume that the branching junction lies in the plane determined by

the unshared endpoints of all vessels.

To try to elucidate the cause of the high degree of length asymmetry observed in data (see

4.3 Results), we also take a new approach and derive the length asymmetry from the solutions
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of these optimization principles. That is, by finding optimal branching angle solutions, we

determine the location of the branching junction that in turn uniquely determines vessel

lengths and leads to predictions for optimal length asymmetry. The formula that associates

the length asymmetry with the optimal branching angles is introduced in the Appendix B.

As mentioned above, we consider two general principles. First, because construction

and maintenance can be expensive to the body, minimizing total material is a potential

driving factor for the structure of the vascular system. Such a principle will be referred to as

material-cost optimization (MC optimization). The total material cost across the bifurcation

is the linear sum of the material cost for each vessel because material cost is an additive

quantity over different vessels.

Next, a viable design for the vascular system requires efficient flow mechanisms—such

as minimal power loss—to transport nutrients and oxygen to cells. This scheme will be

called power-cost optimization (PC optimization). In order to establish a cost function

that represents the total power loss across a bifurcation, we need to use appropriate fluid-

dynamical concepts. Because the effective impedance is not a linearly additive quantity for

combining vessels at a branching junction, PC optimization requires a more complicated

cost function than MC optimization. In this respect, our derivation differs from and corrects

previous branching angle optimizations by Zamir [106]. As another new element to our

approach, we further propose an optimization scheme that can incorporate the power cost

due to the downstream impedances beyond just a single branching junction.

In the following sections, we first introduce the branching angle optimization solutions

for the MC and PC optimizations for a local branching junction. Next, we explain a new

scheme for the PC optimization that incorporates information about the flow properties of

the downstream vessels. Lastly, we relax the optimization principles and present simulations

of random branching to explore how constraints—local to intermediate to global—can alone

affect the characteristics of the vascular network.
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4.2.2 Material-cost (MC) optimizations

There are two types of material that are needed for the vascular system, blood vessels

(endothelial cells) and blood (plasma and white and red blood cells). The amount of material

necessary for vessel construction primarily depends on the surface-area of the vessel 2πrl. In

contrast, the material devoted to the blood is proportional to the blood volume (πr2l). MC

optimizations can be built upon these two different characteristics (surface-area (MC-SA) or

volume (MC-V)). We consider both cases here.

To consider total surface-area and volume as distinct structural constraints that need

to be minimized to conserve construction material, as in Murray and Zamir [105, 106], we

form a generic cost function H in which lengths are weighted according to the corresponding

optimization. Explicitly, H =
∑

i hili where hi = 2πri for surface-area and hi = πri
2

for volume. In general, the constant geometric factors like 2π can be ignored because they

cancel from every term when the derivative of H is set equal to zero. As introduced above, we

assume that the radius and the unshared endpoints for each vessel are fixed when performing

the optimization calculation. For fixed radii (or equivalently for fixed cost terms hi) and

the vertices, the MC optimization problem is equivalent to the weighted Fermat Problem

introduced by Greenberg and Robertello [185–187].

To solve these minimization problems, we present a different method than that used

to obtain Zamir and Murray’s solutions. Our method relies on distance metrics without

invoking a coordinate system (Appendix C) and is therefore simpler and more general. The

method is straightforward when one realizes that the location of the branching junction is

uniquely defined by the parent vessel length (l0) and the angle (ϕ1) between the parent vessel

and the edge determined by the unshared endpoints of itself (V0) and one of its daughter

vessels (V1) (see Fig. 4.1d). Based on this, we obtain the full solution of optimal branching

angles by finding the stationary and singular points ofH with respect to l0 and ϕ1 throughout

the entire space.

In this framework, we recognize that the first order derivatives of H are discontinuous

and thus undefined at the unshared endpoints (V0, V1, V2). Hence, singularities (values of
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infinity) are attained at these endpoints. Moreover, we find that the stationary solution for

minimizing H exists only in the interior of the triangle defined by the unshared endpoints.

In the latter case, the optimal branching angle solution is

cos θ0 =
h0

2 − h12 − h22

2h1h2
, cos θ1 =

h1
2 − h02 − h22

2h0h2
, cos θ2 =

h2
2 − h02 − h12

2h0h1
(4.2.1)

Note that our branching angles are defined differently than in Zamir [106], so these equa-

tions are equivalent but not identical. Recognizing our definitions are relative to the parent

rather than centerline extended from the parent, these expressions can be translated into

Zamir’s solutions by subtracting our angles θ1 and θ2 from π. Moreover, in our 2D (planar)

optimization scheme, we use the conventional counter-clockwise direction to define the angles

so that the trigonometric functions have consistent signs (Fig. 4.1d). Correctly defining the

directionality of the angles is needed for our mathematical derivation, but for comparing to

empirical data, we compute only the magnitude of the branching angles. Although it is more

challenging to define directionality of angles for the real, empirical data in three dimensions,

it is still straightforward to measure the magnitude of the angle between the straight lines

defined by the endpoints of vessels (see 4.5 Materials and Methods), allowing us to directly

compare with the solutions from the 2D optimization.

Notice that the branching angle solution for the stationary case does not exist when

the right side of the above expressions are not in the interval [−1, 1]. For instance, when

h0 = 2.1 and h1 = h2 = 1, then cos θ0 =1.21 and θ0 is not defined. Values outside of the

allowed interval occur frequently when substituting values from real vasculature, so these

equations should not be blindly applied without considering the allowed regions and intervals.

Moreover, there are cases for which an optimal branching solution can be computed from the

above equations, but the resulting branching junction does not lie inside the triangle defined

by the fixed vessel endpoints. In this case, the computed optimum does not correspond to the

true optimum, which actually occurs at one of the fixed vessel endpoints (i.e., the vertices of

the triangle). Indeed, for both of these cases where the stationary solution either cannot be

computed or the computed answer lies outside the pre-defined triangle, the optimal solution
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is actually attained at one of the singularity points, i.e., the vertices Vi.

Based on these observations, we find the conditions on the cost parameters and the

geometry of the fixed endpoints that correspond to degenerate branching solutions. For

example, when the cost of one vessel exceeds the total cost by the other vessels (hi ≥ hj+hk),

then the optimal branching occurs at the unshared endpoint of the vessel i (Vi) to eradicate

this particularly costly vessel. On the other hand, when the solution θi defined by (4.2.1)

is less than the angle VjViVk (i.e., cos θi > cosVjViVk), which we refer to as the triangle

condition, then the branching junction collapses onto the vertex Vi. The details of the proof

are given in the Appendix D.

These degeneracies are not specified in previous work [105, 106] because vessels are as-

sumed to have volume flow rates that are proportional to r3. With this presumption and by

the conservation of volume flow rate across each branching junction, those studies assume

a strict relationship between radii of the parent and daughter vessels (Generalized Murray’s

law: r0
d = r1

d + r2
d , where d ∈ [2, 3] [89]) that avoids the degeneracy (S2 Text). Moreover,

previous work does not explicitly consider cases in which the branching angle solution cannot

satisfy the triangle conditions defined above. Importantly, we find that these ignored cases

and conditions correspond to the vast majority of values calculated from empirical branching

vessels (S2 Fig).

4.2.3 Power-cost (PC) optimization for a single branching junction (PC-0)

Another biological principle and property to optimize is the power loss for pumping blood

from the heart to the capillaries. This principle is tantamount to minimizing the total power

for circulating blood or the total power lost that represents additional power beyond what

is used to move the blood. In this way, as much of the additional power as possible is

then redistributed and devoted to other needs such as foraging and reproduction [78, 79].

Much of the power that is required to push blood through the parent and daughter vessels

is lost due to dissipation, especially in the smaller vessels that dominate the numbers and

energetics of the whole vascular network. We calculate the power dissipated by a single
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vessel in terms of the volume flow rate of the blood (Q̇) and the impedance (Z) via the

formula Ploss = Q̇2Z [87, 176, 188]. To correctly compute the total power loss of all vessels

connected by a single branching junction—a parent and daughter vessels, we must employ

rules of fluid dynamics to combine impedances into an equivalent impedance. This equivalent

impedance must in turn be used in the cost function for the power minimization (see below),

and as we show, the correct version is different than the simple linear addition rule used by

Zamir for both structural (correctly) and flow (incorrectly) constraints [106].

For any collection of vessels, total volume flow rate Q̇TOT is defined by flow through

a single cross section that cuts through all vessels at the same branching level. Equivalent

impedance Zeq for the collection of vessels is defined by Z = ∆p/ Q̇, based on fluid dynamics

(analogue to Ohm’s Law), where ∆p is the pressure difference across the extreme endpoints

through which blood flows in and out of the entire collections of vessels. The total power

loss for the collected vessels is then calculated from P loss = Q̇2
TOTZeq, where all of this is

based on standard rules of fluid dynamics.

For a single branching junction, the optimization of power loss is derived for the case

that there is a source with a constant rate of flow, Q̇, entering the parent vessel. Based

on our power loss equation ( P loss = Q̇2
TOTZeq ∝ Zeq), the PC optimization is then equiva-

lent to minimizing the equivalent impedance Zeq of the branching junction. By following

the direction of the flow, we calculate the equivalent impedance by noting that vessels

at the same level (i.e., sibling vessels) are in a parallel configuration, whereas the vessels

across levels (i.e., parent and daughter vessels) are in a series configuration. Pressure drop

across sibling vessels may be asymmetric but to simplify the calculation of an equivalent

impedance, we further posit that the pressure drop across each daughter vessel is approx-

imately the same, i.e., ∆p1 = ∆p2 := ∆pd. Representing total volume flow rate of the

daughter vessels by Q̇d, TOT := Q̇1 + Q̇2 and equivalent impedance of the daughter vessels

by Zd, eq, we have ∆pd/Zd, eq = ∆p1/Z1 + ∆p2/Z2. Canceling the pressure terms gives Zd, eq

=
(

1
Z1

+ 1
Z2

)−1
. By invoking conservation of fluid, we can combine this expression with the

parent vessel in series to obtain Zeq = Z0 +
(

1
Z1

+ 1
Z2

)−1
for the equivalent impedance of all

the vessels that connect at a single branching junction.
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Assuming smooth, Poiseuille flow, the impedance of a single vessel is given by Z = 8µl
πr4

,

where µ is the viscosity of the blood [87,177,189]. Thus, for each vessel we implement a cost

function of the form hl, where h is the cost per length, i.e., h ≡ 8µ
πr4
∝ 1

r4
. Putting all of

this together to find a solution for the PC-0 optimization (power loss at a single branching

junction), our goal is to find the position of the branching junction that minimizes

Zeq = h0l0 +

(
1

h1l1
+

1

h2l2

)−1
By numerically calculating Zeq as a function of the junction point and by using high resolution

in space, we generate heat maps that illustrate the behavior of Zeq. These heat maps

reveal that the branching junction always collapses onto one of the vertices—unshared vessel

endpoints—for any values of vessel radii (S3 Fig). Based on our numerical evidence, we show

analytically that power loss and equivalent impedance, Zeq, attain minima only at a vertex

of our original triangle that is defined by the unshared endpoints of the vessel. The specific

vertex at which the junction collapses is determined both by the vessel radii and the relative

locations of the unshared endpoints of the vessels. The proof follows from two steps. First, we

calculate the equivalent impedance at each vertex to see how specific cases of cost parameters

(h0, h1, h2) determine which vertex is the best location for the branching junction j. Second,

we show that when the junction is located within the triangle, Zeq is always greater than the

minimum value of the impedances when the junction is at a specific vertex. Together, this

proves that the minimum of Zeq is attained at one of the vertices (Appendix E). Therefore,

the PC-0 optimization leads to a degenerate branching geometry by completely eliminating

the vessel that is most costly.

Thus, minimizing power loss at a single branching junction leads to either no branching

at all throughout the entire cardiovascular network or to a single hub at the heart with

a long, individual vessel to each terminal tip—the most downstream vessel of the network.

This architecture would result in extremely large numbers of vessels directly connected to the

heart because terminal tips correspond to capillaries (numbering in the millions or billions)

for complete networks. This is unrealistic as sequential branching is the most noticeable
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and perhaps most important feature of the vascular system or any resource-distribution

network. Therefore, we consider how to modify the PC minimization to attain more bi-

ologically realistic results that include vascular branching and thus lead to predictions for

the branching angles and vessel lengths. In the next section, we describe how to adapt the

power-minimization calculation to include larger sections of the network that expand beyond

a single branching junction to encompass downstream vessels and branching junctions.

4.2.4 Power-cost (PC) optimization beyond a single branching junction (PC-1)

The solutions above thus lead to either a single path or to the heart being a single hub

that separately connects to each capillary through a direct and independent vessel. Either

configuration for vascular architecture would prevent the vascular system from efficiently

distributing blood to all the downstream vessels, capillaries, and cells. To overcome these

problems, we include larger sections of the vascular network by incorporating impedances

of downstream vessels. To do this generically, we recognize that downstream vessels are in

series with each of the daughter vessels, so we can represent the downstream impedance

by adding constant terms c1 and c2 to the impedance of the daughter vessels. Thus, the

equivalent impedance of the bifurcation becomes

Z̃eq = Z0 +

(
1

Z1 + c1
+

1

Z2 + c2

)−1
For the case of vessels above the capillaries, these constant terms represent the impedance

from all of the downstream vessels. For the capillary case, these constant terms are still not

zero, however, because they represent the minimum impedance of a capillary, which is not

allowed to be zero. We now investigate different geometries for a single branching junction

for which the downstream impedances c1 and c2 are constant.

We simplify this problem using two general principles. First, when the impedance of

the parent vessel and the branching daughter vessels are matched, no pulsatile reflections

occur and the power loss at the bifurcation is minimized [87, 188]. Second, we assume

the simple case that the siblings have identical impedances and each sibling has the same
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number of downstream vessels. From these two assumptions, we find that the equivalent

downstream impedance is much larger than single vessel impedances except for vessels close

to the capillaries (Appendix F).

Because the number and small surface-areas of capillaries will again likely dominate

the power loss for the network, we solve the optimization problem when the downstream

impedances are large, i.e., ci � Zi. Consequently, we expand Z̃eq as a series to first order

and obtain the following approximation:

Z̃eq ∼ Z0 +
c2

2

(c1 + c2)
2Z1 +

c1
2

(c1 + c2)
2Z2 +

c1c2
c1+c2

We note that the constant term c1c2
c1+c2

can be ignored because its derivative is zero and hence

does not influence the optimization. As a result, we want to find the location of the branching

junction that minimizes

h0l0 +
c2

2

(c1 + c2)
2h1l1 +

c1
2

(c1 + c2)
2h2l2

The coefficients c22

(c1+c2)
2 and c12

(c1+c2)
2 are always less than 1, so the cost per length for the

daughter vessels are diminished by these rescaling constants, thus reducing the likelihood

the solution will collapse onto a daughter vessel endpoint. Defining the non-dimensionalized

ratio k := c1/c2, the optimization function becomes

H := h0l0 +
1

(k + 1)2
h1l1 +

k2

(k + 1)2
h2l2

This further implies that the cost of the daughter vessel with the larger downstream impedance

is diminished less than the cost of the other daughter vessel. This pushes the optimal branch-

ing junction towards the daughter vessel with smaller downstream impedance.

The new optimization function for power loss above (i.e., PC-1) has the same form as the

cost function for the material-cost (MC) optimizations, except that the costs per length for

daughter vessels are rescaled by terms that depend on k. We therefore simplify the notation

and define h̃0 = h0, h̃1 = 1
(k+1)2

h1, h̃2 = k2

(k+1)2
h2. With these definitions for h̃i, we can
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immediately use our results for Eq. (4.2.1) to obtain the stationary solution for which the

branching junction occurs inside the triangle of the unshared endpoints.

As for Eq. (4.2.1) and the MC optimizations, the stationary solution does not exist

or does not provide the minimum and the degenerate solution occurs at vertex Vi for the

following cases: 1) h̃i ≥ h̃j + h̃k or 2) cos θi =
h̃2i−h̃2j−h̃2k

2h̃j h̃k
> cosVjViVk. These two conditions

correspond to six inequalities in terms of k (= c1/c2) if we take all combination of i, j,

and k. Solving these, we obtain the values of k that result in solutions within the triangle

versus those that collapse on a vertex. Mapping these values into the c1c2-plane yields

predictable lines that separate the plane into regions classified as non-degenerate (collapse

onto a vertex) or degenerate (junction within the triangle) solutions. Indeed, by using

approximations to solve the above limiting case (Zi
ci
� 1), we predict the full solution space.

The validity of our approximate solutions for this PC-1 optimization problem is further

explored in Results (Analytical solutions for power-cost optimization beyond single branching

(PC-1)) by comparing them with numerical solutions.

4.2.5 Expanding from local to global constraints for the random placement of

branching junctions

The above optimization schemes are based on the local consideration of branching junctions:

at each branching the unshared endpoints (Vi) are fixed and the branching junction (j) is

attained within the triangle of these endpoints (Fig. 4.1d). To explore the effects of the

size of the constraint region and also to observe the effects of random branching, possibly

resulting from developmental processes, at different spatial (regional) constraints, we now

consider relaxing the locality assumption to various degrees from fully local to fully global.

We simulate the branching network by randomly placing branching junctions within

spatial regions that range from local boundaries (i.e., the positions of adjacent branching

junctions) to global boundaries (i.e., within some maximum distance of the center of the

network but otherwise unrestricted). For all the simulations, the hierarchical ordering of

vessels, the location of the terminal tips, and most upstream branching nodes (i.e., the
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source) are the same as in the empirical data. We created 100 realizations for each simulation

type to get the average behavior of network characteristics. All these different simulation

types are illustrated with a simplified example network that has 3 branching levels (Fig.

4.2).
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Figure 4.2: Comparison of real data for vascular networks versus random sim-
ulations of branching junctions. The real and simulated networks (via local to global
spatial constraints) are separated by different rows. A schematic small network is given to
describe how different simulations are performed. The vessels and the fixed endpoints of the
real branching network are represented in red. Vessels that result from random branching
simulations are in black. The healthy mouse lung network and the simulated mouse lung
networks are shown within a minimum spherical boundary that contains all branching data
from the real network. Here, the red nodes for each figure correspond to the real data,
whereas the black nodes correspond to the simulated data. Note that the terminal tips and
the most upstream node (i.e., the source) are determined from real data and fixed through-
out all simulations. The resulting asymmetry ratio distributions for length and branching
angles are provided for the real network and for each of the simulations. The statistical
comparisons of random branching simulations with empirical data are given in Table 4.1.
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For the fully local case, we randomly place a branching junction inside each triangle of

unshared endpoints of three connected vessels, corresponding to the same spatial restriction

as in our optimizations above (Fig. 4.2). This random branching model would likely corre-

spond to branchings determined by locations of highest shear stress [181] or local maxima

in gradients of vascular endothelial growth factor (VEGF) [104] that signal branching at

local and intermediate scales. For the fully global case, we only require that the branching

junctions are randomly positioned within a minimum sphere that contains all nodes from the

real data [190] (Fig. 4.2) and that the network terminates at the appropriate (most extreme

upstream and downstream) endpoints in the network.

For intermediate degrees of spatial constraint between the fully local and fully global

cases, we consider two possibilities. These intermediate states are constructed such that

they involve sequential updates of the branching junction. The first intermediate randomly

branching network simulation (intermediate 1) starts by randomly positioning a branching

junction within the local triangle corresponding to the most upstream vessel (i.e., source)

of the network and the endpoints of its two daughter vessels. Based on the new location of

this branching junction, the endpoints of the daughter vessels are then updated and used

to define new triangles in the next step in which the daughters become the parents. The

simulation continues this updating process by working down through the network until it

reaches the terminal tips (Fig. 4.2, S4 Fig). Notably, this simulation leads to branching

junctions that are approximately confined to the plane. The other intermediate randomly

branching network (intermediate 2) starts with the terminal tips (most downstream vessels

of the network) and builds backwards to the first branching node (i.e., the source). We

assign the position of each branching junction by creating a spherical boundary around the

two fixed downstream endpoints (i.e., V1, V2, Fig. 4.1d) such that the center of the sphere is

at the midpoint of V1V2 and the sphere has a radius of the length |V1V2|. We then randomly

position the branching junction at a point that can occur anywhere within the volume of this

three-dimensional sphere. Thus, for this simulation a branching junction may not always

fall within the plane defined by the vessel endpoints, as it does for the first simulation for

intermediately-constrained random branching. For this case, the upstream endpoint (i.e.,
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V0) does not affect the location of the branching junction, reducing the degree of locality

compared with the constraint for the simulation for intermediate 1.

4.3 Results

We begin this section with empirical data for asymmetry in the vascular branching of mouse

lung and human head and torso. Following this, we present the results of our local optimiza-

tion schemes. Next, we present results for our exploration of different spatial constraints

for randomly placed branching junctions and compare these results with empirical data. Fi-

nally, we provide statistical analysis of different optimization schemes and random-branching

results as compared with the empirical data. This comparison enables us to quantitatively

investigate how well our predictions match the empirical measurements of asymmetry in

vasculature, and thus to characterize whether different optimizations or random processes

might underlie the systematic patterns we observe.

4.3.1 Analysis of asymmetry patterns in vascular data

To characterize the branching asymmetry of the vascular structure, we calculate asymmetry

ratios between siblings. In particular, the asymmetry ratios for radius and length are λr =

r1/r2 and λl = l1/l2, respectively, where the value of the sibling with the larger radius or

length is always chosen to be in the denominator (r1 ≤ r2, l1 ≤ l2) [87,191]. Thus, a ratio of

1 indicates perfect symmetry, whereas smaller values indicate more asymmetrical branching.

We further provide a similar measure to quantify local asymmetry in sibling branching angles

as λθ = θ1/θ2 again with θ1 ≤ θ2 (Fig. 4.1c).

It is easy to see that asymmetry in vessel lengths is related to asymmetry in branch-

ing angles. When the downstream ends of the daughter vessels are equidistant from both

the upstream and downstream ends of the parent vessel, siblings have identical length and

branching angles, resulting in symmetry λl = λθ = 1. However, if daughter vessels are not

equidistant from the upstream end, even symmetric sibling lengths can result in asymmetric

branching angles or vice versa. Therefore, the value of λθ represents a combination of the
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asymmetry in lengths and the asymmetry of the alignment of daughter vessel endpoints.

After executing Angicart on high-quality tomographic images, we quantified the extent

to which the analyzed networks are asymmetric by plotting the frequency distributions of λr,

λl, and λθ (Fig. 4.3a, b). Even though asymmetric radius branching exists, data for both

mouse and human show distributions of λr that are skewed towards 1, meaning that the

radius ratio is skewed towards perfect symmetry. In contrast, the length asymmetry ratio

(λl) is distributed almost uniformly, suggesting a high degree of asymmetry in sibling lengths.

The frequency distribution of branching angle asymmetry (λθ) is biased towards the right,

corresponding to perfect symmetry in both networks and similar to results for asymmetry in

radii (statistical calculations are given in Table 4.1). That is, a parent vessel tends to branch

into sibling vessels that are separated by equal branching angles. Intriguingly, the similarity

of the pattern observed in radius asymmetry might suggest a correlation between the radius

and the branching angle, providing motivation to investigate how branching angle depends

on radius.

Figure 4.3: Histograms or frequency distributions of the asymmetry ratios for
radius ( λr), length ( λl), and branching angles ( λθ) of vascular networks. (a)
mouse lung (1 individual) and (b) human head and torso (18 individuals). Note that radius
and branching angle asymmetry ratios are both skewed towards perfect symmetry, whereas
the length asymmetry ratio shows no skew and reveals much more asymmetry. (c) His-
tograms of branching angles for combined data of human and mouse networks appear to be
unimodal both for θ0 and for θ1 & θ2 with peaks at 1.51 and 2.21 radians, respectively.

In addition to the asymmetry ratios explored above, we plot the histogram for the raw

data on branching angles. Human and mouse networks show similar patterns, so we combine
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data for these two networks in our histogram plot (Fig. 4.3c). Analyzing the branching angle

between the sibling vessels (θ0) and the branching angle between the parent and daughter

vessels (θ1 and θ2) separately, we find unimodal distributions that peak at 1.51 and 2.21

radians, respectively. This shows that planar branching [192,193] with orthogonal daughter

vessels is frequent across the networks. Individual branching angle plots for mouse and

human networks are given in S5a, b Fig.

Altogether, these network-level patterns for vessel radius, length, and branching angles

hold across 18 different human subjects, different species (human and mouse), and different

tissues (head and torso versus lung). Moreover, the radius and length asymmetries are

consistent with findings in plants [100–102]. These results suggest that very general and

ubiquitous selection pressures and developmental processes may shape the architecture of

the vascular system across taxa, from humans to mice to plants, as well as across tissues,

from lungs to head and torso.

4.3.2 Optimal branching patterns for material-cost (MC) optimization

In this section, we introduce the MC optimization results that include surface-area (MC-

SA) and volume (MC-V) constraints. Here, we only focus on non-degenerate branching

solutions—solutions that do not collapse to a vertex—and compare those with real data.

The fraction of the non-degenerate and degenerate cases is provided in the S6 Fig.

Network-level comparison

Taking the radii and vessel endpoints from our real human and mouse vascular networks, we

use the material-cost (MC) optimization solution provided above (Eq. (4.2.1)) to compute

the optimal branching angle and length asymmetry at each branching junction. To compare

predicted values to the real network structures presented in the previous section, we plot the

distributions of λl and λθ as well as the raw branching angle distributions for θ0 and θ1 & θ2.

We find that all these properties are visually consistent across both networks and for both

volume and surface-area constraints.

In particular, distributions of optimal λl are close to uniform, whereas optimal λθ dis-
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tributions are skewed towards perfect symmetry (Fig. 4.4a, b). Both of these match the

general patterns of asymmetry in branching observed in Fig. 4.3. However, the degree of

skewness in optimal λθ is sharper than the real λθ distributions, especially for the MC-SA.

The statistical analysis of all these plots (including mean, median, skewness) are presented

in Table 4.1.

Figure 4.4: Histograms or frequency distributions of optimal asymmetry ratios
for length ( λl) and branching angle ( λθ) derived from material-cost (MC) op-
timizations. Surface-area (MC-SA) results are shown as solid lines and volume (MC-V)
results are shown as dashed lines for (a) mouse lung and (b) human head and torso.

Next, we plot optimal θ0 and θ1 & θ2 histograms for the combined datasets (Fig. 4.5).

We observe that optimal calculations yield unimodal distributions as in histograms of the

real data. Optimal θ0 shows a mode around 1.79 radians, hence the optimal calculations

are shifted towards larger values compared to the actual θ0 distribution that have a mode

at 1.51 radians. In contrast, the peak for the uniform distribution θ1&θ2 at 2.24 radians

almost matches the actual peak at 2.21 radians. The separate figures for human and mouse

networks for each constraint are given in the S5 Fig. The full statistical analysis of branching

angle histograms for the individual networks and the combined datasets are provided in the

S3 Table.
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Figure 4.5: Histogram of optimal branching angles for combined data of human
and mouse networks for material-cost (MC) optimizations. All histograms appear
to have unimodal characteristics both for θ0 and for θ1 & θ2 with respective peaks at (a) 1.79
and 2.25 for the surface-area constraint and (b) 1.79 and 2.24 for the volume constraint.

Junction-level comparison

The previous section compares the network-level patterns of the optimal calculations and

the empirical data. Here, we provide comparisons at local branching junctions for the MC

optimizations. We plot actual versus optimal branching angles and calculate the Pearson

correlation coefficient, which would be 1 if our predictions were always perfect. From the

plots of branching angle for MC-V (Fig. 4.6) and MC-SA (S7 Fig) optimizations, we find that

the predictions and the empirical data are weakly correlated (p-values <0.01). Moreover,

we see that the volume constraint yields better agreement with data than the surface-area

constraint at the junction-level. However, the correlation coefficients for both constraints

indicate that the predicted optimal branching angles are a weak predictor of the actual

branching angles at the local junction level. Consequently, it seems our theory needs further

refinement or replacement.

97



Figure 4.6: Junction-level comparison of optimal versus actual branching an-
gles for the volume constraint of material-cost optimizations (MC-V). (a) mouse
lung and (b) human head and torso. The Pearson correlation coefficients and p-values are
calculated for each plot.

4.3.3 Analytical solutions for power-cost optimization beyond single branching

(PC-1)

Now, we introduce the results for the solution of the PC-1 optimization. As described in

the section presenting the PC-1 optimization scheme, we derive the approximate solution by

considering a limiting case of the downstream impedances c1 and c2. With this method our

solution predicts regions in the c1c2-plane separated by lines over most of the range of values.

The regions in the c1c2-plane correspond to combinations of values that lead to branching

geometries that are categorized as follows: collapse to daughter endpoint, collapse to parent

endpoint, or no-collapse (i.e., a non-degenerate branching point).
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Using the vessel endpoint and radius information from the real data, we predict the linear

equations that form the boundaries between these regions, and we label them according to

the categories of solution described above (Fig. 4.7). As a further check, we compute

numerical solutions at each discretized point in the c1c2-plane and mark different categories

of solution by different colors. We examine two examples, corresponding to symmetric (Fig.

4.7a, b) and asymmetric (Fig. 4.7c, d) parameter values. Both show that our approximate

analytical solution matches the numerical solution extremely well. On closer inspection, it

is clear that the different regions and categories are not separated via purely linear functions

across the entire plane, but instead the boundaries are curved for small values of c1 and c2

(Fig. 4.7b, d). This result reveals a mismatch between the analytical and numerical solution

at the smallest scales, i.e., vessels close to the capillaries, which is exactly where our solutions

should fail based on the limits of our approximation scheme.
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Figure 4.7: Comparison of approximate solutions with numerical solutions for
the PC-1 (power-cost (PC) optimization beyond single branching). Approximate
solutions define linear boundaries on the c1c2-plane between different categories of the so-
lution space: collapse to daughter endpoint, collapse to parent endpoint, and no-collapse.
The different categories calculated from numerical simulation are marked by different colors
as indicated in the figure. (a) An example of symmetric branching in vessel radius with
parameter values: |V0V1| = |V0V2| = |V1V2| = 1, r0 = 1.20, r1 = 1 and r2 = 1, where c1 and
c2 take values in the range [0, 20]. (b) Zoomed version of (a) into the plane [0, 2] × [0, 2]
with the same resolution as in (a). (c) An example of asymmetric branching in vessel radius
with parameter values: |V0V1| = 0.8, |V0V2| = |V1V2| = 1, r0 = 1.1, r1 = 0.85, and r2 = 1,
where c1 and c2 take values in the range [0, 20]. (d) Zoomed version of (c) into the plane
[0, 2]× [0, 2] with the same resolution as in (c).

4.3.4 Network-level results of randomly branching networks with local to global

constraints

Lastly, we compare our empirical results for network-level characteristics of branching angles

and length asymmetries to results from simulated randomly branching networks with local
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to global constraints. Because mouse and human networks yield similar results, we only

present results for the mouse in the main text. Random simulation results for the human

subjects are given in S8 Fig.

As in the empirical data, random simulations with local to intermediate constraints

yield uniform distributions for asymmetric length ratio (λl), whereas the branching-angle

asymmetry ratio (λθ) is skewed towards symmetry (Fig. 4.2). In contrast, the fully global

constraint generates branching networks with distributions skewed towards symmetry for

both λl and λθ, inconsistent with empirical data (Fig. 4.2). Further statistical comparisons

with empirical data and optimal branching results are presented in the next section.

4.3.5 Comparison of optimal branching, random branching, and empirical data

To provide a rigorous comparison across different MC optimizations (surface-area and vol-

ume) and spatial constraints (local to global) with the empirical data, we compute the statis-

tical properties— mean, standard deviation (SD), skewness and standard error for each—of

the resulting asymmetry distributions in Table 4.1. Additionally, we use the Kullback-Leibler

divergence measure (KL) to quantify the distance between the empirical asymmetry distri-

butions and the optimization or random-simulation asymmetry distributions. We determine

p-values by performing bootstrap samples up to half the size of the real data [194]. By

definition, a p-value is equal to 1.00 for a comparison of the real data with itself because

that implies an exact match in the distributions.

There are several conclusions based on these results. First, the random branching sim-

ulations that are globally constrained do not produce results that are statistically similar

with mouse lung or human head and torso in terms of length asymmetry. In addition, the

intermediate 2 constraint on random branching—where spheres are used to determine the

branching locations, Fig. 4.2—poorly matches with real data in terms of both length and

branching angle asymmetries for the human head and torso network.

Except for the global constraint, results for the mouse lung network reveal that the ran-

dom branching simulations perform as well as the MC optimizations in terms of the general
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Table 4.1: Statistical comparison of material-cost (MC) optimizations and random spatial
constraints with empirical data.

length asymmetry (λl) branching angle asymmetry (λθ)

Mean
± SE

SD
± SE

Skewness
± SE

KL
p-val

Mean
± SE

SD
± SE

Skewness
± SE

KL
p-val

real network mouse lung 0.53
± 0.00

0.25
± 0.00

0.13
± 0.00

1.00 0.76
± 0.00

0.16
± 0.00

-0.43
± 0.00

1.00

Material-cost
optimizations

surface-area 0.54
± 0.00

0.27
± 0.00

-0.07
± 0.00

0.01 0.82
± 0.00

0.16
± 0.00

-1.28
± 0.00

0.00

volume 0.54
± 0.00

0.27
± 0.00

-0.09
± 0.00

0.00 0.74
± 0.0

0.20
± 0.00

-0.79
± 0.00

0.01

randomly
simulated
networks

local 0.56
± 0.01

0.25
± 0.00

-0.10
± 0.04

0.61 0.65
± 0.01

0.24
± 0.00

-0.43
± 0.04

0.26

intermediate 1 0.56
± 0.01

0.25
± 0.00

-0.09
± 0.05

0.59 0.68
± 0.01

0.22
± 0.00

-0.54
± 0.07

0.64

intermediate 2 0.57
± 0.01

0.24
± 0.00

-0.12
± 0.05

0.11 0.63
± 0.01

0.23
± 0.00

-0.38
± 0.06

0.00

global 0.76
± 0.01

0.22
± 0.01

-0.85
± 0.07

0.00 0.71
± 0.01

0.26
± 0.01

-0.65
± 0.06

0.00

real network human head
and torso

0.46
± 0.00

0.28
± 0.00

0.24
± 0.00

1.00 0.75
± 0.00

0.19
± 0.00

-1.05
± 0.00

1.00

Material-cost
optimizations

surface-area 0.46
± 0.00

0.29
± 0.00

0.16
± 0.00

0.76 0.85
± 0.00

0.14
± 0.00

-1.68
± 0.00

0.00

volume 0.48
± 0.00

0.28
± 0.00

0.11
± 0.00

0.00 0.78
± 0.00

0.19
± 0.00

-0.97
± 0.00

0.00

randomly
simulated
networks

local 0.54
± 0.01

0.27
± 0.00

-0.07
± 0.03

0.00 0.63
± 0.01

0.28
± 0.00

-0.48
± 0.03

0.00

intermediate 1 0.53
± 0.01

0.26
± 0.00

0.00
± 0.05

0.00 0.66
± 0.01

0.26
± 0.00

-0.64
± 0.05

0.00

intermediate 2 0.59
± 0.01

0.24
± 0.00

-0.24
± 0.05

0.00 0.62
± 0.01

0.23
± 0.00

-0.34
± 0.04

0.00

global 0.75
± 0.01

0.22
± 0.01

-0.80
± 0.05

0.00 0.70
± 0.01

0.26
± 0.01

-0.59
± 0.05

0.00
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characteristics (i.e., the first few moments—mean, SD, skewness) of the distributions. In

contrast, for the human head and torso, the MC optimizations yield overall better agree-

ment with the real data than the random simulations, especially for length asymmetry. This

finding is consistent with the KL significance test. Based on the KL p-values, we observe

that all of the random branching simulations do not do a good job of matching the real data

for human networks. However, it suggests that vascular branching derived from MC-SA does

reasonably well at recreating length asymmetry patterns that are similar to real human data.

In contrast, the mouse lung compares more favorably with the random-branching simulations

at local and intermediate scales than it does with the MC optimizations (Table 4.1).

4.4 Discussion

By performing a high-quality analysis of angiographic images from mouse lung and human

head and torso via the new software Angicart [5], we identified systematic patterns in the

branching asymmetry of the vascular system. Specifically, the radii and branching angles of

sibling vessels tend to be symmetric, while the lengths of sibling vessels tend to be asym-

metric. These results show that modern allometric theories make core assumptions about

symmetric branching—sibling vessels at a single branching junction have identical properties

such as radius, length, and flow rate— in the vascular system that do not match empirical

data, especially in terms of the asymmetry in vessel lengths. Thus, future work should be

done to incorporate levels of asymmetry into theory that are similar to those observed in real

data or to determine the best procedure for finding an effective, symmetrically branching

network that has the same allometric properties as the asymmetric networks in real systems.

Accomplishing this theoretical advance should also prove helpful in resolving the current

mismatches between theoretical predictions and empirical measurements of metabolic scal-

ing exponents. Indeed, we are involved in future work to map and compare the space of

possible allometric scaling exponents both theoretically and empirically for these asymmet-

rically branching networks.

Importantly, the observed, systematic patterns in asymmetric vascular branching suggest
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there may exist underlying biological principles that vary in selection strength and across

spatial scales yet effectively constrain the structure of the vascular system. In this study,

we focus on MC (material-cost) and PC (power-cost) optimizations that have long been

postulated as evolutionary principles that play a critical role in the formation of the vascular

system [89, 105, 106]. We provide a consistent and robust framework for studying these

optimization principles and for discovering possible associations with the asymmetry patterns

observed in the real data.

In this research, we examined local optimization and for the first time presented solutions

for the MC optimization that are more complete than formulae from previous studies that are

not optimal in every case or can be easily misidentified or misinterpreted. We have further

shown that solutions predicted from MC optimizations match the network-level asymmetry

patterns for lengths and branching angles observed in the real data but are a weak predic-

tor of vascular branching at the junction-level. Following this, we built a PC optimization

scheme that is consistent with the basic rules of fluid dynamics and corrects inconsistencies

about fluid mechanics—incorrectly summing impedances in series and parallel—from previ-

ous work. Based on the correct fluid mechanics relationship, we find for single branching

junctions that one vessel is always sufficiently costly to be completely eliminated and have no

branching at all. Of course, repeating this solution at each junction throughout the network

will result in a single vessel or a single hub at the heart for the entire cardiovascular network,

which is unrealistic because it violates the need to efficiently distribute blood throughout

the body [80, 81, 87, 89, 176]. Consequently, based on our new analysis, we conclude that

optimization of flow and power loss at a single branching junction (i.e., PC-0 optimization)

will always lead to the elimination of branching and thus lead to meaningless predictions of

angles and lengths of vessels in branching networks.

We also note that another problem with local optimization is that it is not robust for

these more complicated branching architectures. That is, the optimization of the power cost

through a whole network (global) would be affected by changes in the flow dynamics at even

a single local branching [13]. Hence, obtaining an efficient distribution of flow to optimize

energy cost across a whole network would necessitate global changes in network structure
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if there is even a single change at the local level of a branching junction. This effect is

considered by Katifori et al. [25] when deriving optimal leaf venation networks that provide

robustness to damage as an evolutionary advantage for leaf survival.

In an attempt to connect vascular branching asymmetry with the efficient flow mecha-

nisms, we included multiple downstream vessels and branching junctions as part of the PC

optimization (i.e., PC-1 optimization) to determine the optimal placement of each individual

branching junction. This in turn indicates the need to consider constraints beyond just the

local spatial and branching junction scale. Although this is additional work, it has the ad-

vantage that capillaries are at a uniform pressure so that the full downstream vascular tree

below each daughter vessel has a symmetric pressure drop, thus simplifying the optimization

problem. Alternatively, the model could be improved by allowing asymmetric pressure drops

across sibling vessels that could lead to plausible (i.e., non-degenerate) solutions even when

locally optimizing the flow. However, determining these pressure drops would also require

considering effects from multiple branching junctions when calculating the placement of a

single branching junction. Furthermore, our results from these more intermediate-scale cal-

culations reveal that plausible explanations and predictions for branching angles and length

asymmetry can be obtained by incorporating vessels beyond a single branching junction.

Thus, from any perspective, we argue that local-scale optimization principles and constraints

are insufficient to understand and predict asymmetric branching patterns, which is in strong

contrast to many previous results for symmetric branching that can be fully treated at the

local scale or at a single branching junction.

Although the MC optimization results match empirical data at the network-level, the

junction-level comparisons show that a strictly local constraint is unlikely to be the major

driving determinant of the vascular structure. Further evidence for the possible inadequacy

of local constraints is the fact that the PC optimization scheme does not lead to any realistic

branching at all. Therefore, we enlarged the scale of spatial constraint and the number of

branching junctions involved in the optimization in order to incorporate more information.

There is no a priori reason that evolutionary constraints should only apply at local spatial

scales, and as just explained, our optimization results suggest that local spatial constraints
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do not fully explain the existence of the observed asymmetric branching patterns. Moreover,

developmental processes likely occur at local to intermediate scales but in a more random

manner than evolutionarily programmed branching in response to optimality constraints.

Thus, to investigate the role of randomness and of spatial constraints on vascular structure,

we considered random simulations of the branching network with spatial constraints that

varied from local to global, including two types of constraints at intermediate scales. We

found that the global constraint performs poorly, whereas the intermediate or local con-

straints provided reasonable matches to the network-level observations from real data. Here,

the intermediate constraints are especially important to consider because they incorporate

the downstream impedance as in our improved PC optimization scheme.

Our statistical analysis compares network-level asymmetry from empirical data to optimal

predictions and randomized results. We show that random simulations and MC optimiza-

tions capture important features of the vascular branching for the mouse lung network. For

the human head and torso, we find that only MC optimizations succeed at capturing the

dominant features of asymmetry in vascular branching. This difference as in result from the

mouse lung vasculature may arise because the human head and torso data were obtained

using MRI and correspond to vessels of larger sizes that must deliver blood from the heart

to the rest of the body and thus may be more programmed to follow a defined branching

pattern. In contrast, the smaller-sized vessels imaged by micro-CT in the mouse lung may be

filling space but with a structure that requires weaker constraints on the patterns of asymme-

try in vascular branching. These smaller vessels are also likely formed due to developmental

processes with more random spatial constraints such as branching triggered by VEGF sig-

naling or locations determined by the point of the highest gradient in shear stress. Lastly,

our results are intriguing because an intermediate spatial scale has been found to be the

correct spatial scale for recreating pervasive patterns founds in urban studies on cities [195].

Finally, we note other attempts for understanding the architecture of the vascular systems

or other types of transportation networks. In modern allometric theories with symmetric

vascular branching, space-filling principles [11,79]—a simple encapsulation of the need of the

vascular system to span the entire body and have capillaries close to all cells—is the core as-
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sumption that determines the distribution and scaling of vessel lengths. Algorithms [98] have

been proposed that are space filling and reproduce some of the asymmetric patterns described

here. These algorithms optimize at both local and global scales within non-spherical spaces.

That research does not explicitly include radius information so joining these approaches into

a single framework may be a fruitful future direction. Another study by Durand et al. [196]

is also noteworthy for its analysis of optimal transport networks that minimize the resistance

to flow in a special case of a constant total volume and surface area across the network.

Taken together, our findings suggest that combinations of biological principles that are

applied at the intermediate and local level could eventually lead to the systematic patterns

for branching angles and length asymmetry observed in real data. We infer that physical

constraints, developmental processes, evolution and optimization principles play a role in

determining vascular structure, but in contrast to previous work [79–81,83,105,106], we find

that the strength and relative importance of these roles likely also depends on the spatial

scale, number of branching junctions, vessel sizes, and possibly tissue type. As a result,

our work suggests further exploration of optimal branching at local and intermediate spatial

scales in a way that combines and integrates multiple optimization principles.

4.5 Materials and Methods

4.5.1 Processing of angiographic images, vessel extraction with Angicart soft-

ware, and resolution of data

In our study we analyze the cardiovascular structure of mouse lung and human head and

torso by processing the three-dimensional stacks of images via the software Angicart [29].

Mouse lung images are collected through the microtomography (micro-CT) [44], whereas

human head and torso images from 18 different subjects are obtained through MRI [29, 43].

The detailed image acquisition for each dataset are given in [44] and [29].

In our study we analyze the cardiovascular structure of mouse lung and human head and

torso by processing the three-dimensional stacks of images via the software Angicart [5].
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Mouse lung images are collected through the microtomography (micro-CT) [184], whereas

human head and torso images from 18 different subjects are obtained through MRI [5]. The

detailed image acquisition for each dataset are given in [184] and [5]. Here, we present

how these images are processed to extract the vascular geometry. Before processing the

tomographic images in Angicart, the images are first downsampled to reduce the noise and

decrease the processing time. Angicart relies on the manual input of the intensity threshold

parameter between 0 and 1 to identify the set of voxels belonging to the vascular network.

For each set of data, the intensity threshold has been chosen by the visual inspection of

blood vessels, conducting the sensitivity analysis as well as identifying the percentage of the

possibly misclassified vessels as presented in Newberry et al. [5]. All these steps are done

to smooth or reduce the noise in the data. The details on the preprocessing steps, set of

thresholds, as well as the version of the software in regards to these criterions are given in

the Supplementary Material. Performing Angicart on the angiographic images extracts the

branching network topology with the vessel characteristics such as positional coordinates,

radius, length, number of children. The output of the Angicart for each dataset is available

in S1 Dataset.

We also note that different imaging modalities can lead to different imaging qualities

and that the level of spatial scales that they can identify varies. Because micro-CT pro-

vides higher resolution images than MRI, the vessel sizes identified in the mouse lung are

substantially smaller than the vessel sizes identified in the human head and torso data (>10

microns versus >1mm). These differences have the advantage of allowing us to investigate

the branching geometries for large versus small vessels as well as pulsatile versus viscous dis-

sipation flow regimes [11,87,176]. Moreover, the difference in the quality of different medical

imaging techniques inevitably affects the amount of noise in the data. Possibly misidentified

vessels from the Angicart output are characterized by defining non-deformed vessels—more

than 10% of the volume of voxels of the vessel lies inside a distance of radius+1 voxel from

the centerline of the corresponding vessel. We find that the fraction of carefully classified,

non-deformed vessels is greater in the mouse lung data compared to the human head and

torso data (S2 Table), meaning it is of higher quality on average, as expected from the image
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resolution properties of micro-CT and MRI. This realization makes it especially noteworthy

that the mouse lung data exhibits the strongest signal of random branching, which we can

confidently say is not due to effects of noise but to actual branching patterns (see 4.3 Results,

4.3.5 Comparison of optimal branching, random branching, and empirical data).

4.5.2 Computing branching angles from extracted vessel skeleton

To calculate our three branching angles (Fig. 4.1c) using our empirical vessel measurements,

we first must specify the three intersecting lines that define the angles. One endpoint is

common to all three lines, representing the branching junction (j) that connects the parent

to the two daughter vessels. Therefore, the remaining choice is in how to define the other

endpoint of all three vessels. In principle, this could be done using points along the vessel that

are very close to the branching junction (j), the midpoint between the branching junction

and the other vessel endpoint, or the exact endpoint of the other vessel. For a perfectly

straight vessel, this choice will have no effect on the computed branching angle, but for

curved or tortuous vessels, which are common in real vascular systems, these choices will

lead to different values for the branching angles. For this study, we choose the exact endpoints

of the vessels to define the straight lines that define the angles (S9 Fig). We do this for three

reasons. First, we relate branching angles to vessel lengths, which are defined relative to the

endpoints, so these relations will be most faithful if we use lines corresponding to the full

length of the vessel. Second, we argue there is more of a constraint on the endpoints of vessels

than the exact path they take to reach those points, which may include more developmental

stochasticity. Third, there is no arbitrariness to the choice of vessel endpoints, whereas

choosing 1 pixel versus 5 pixels away from the branching junction is more subjective. Using

our choice of lines and endpoints, we calculate the magnitude of the angles between the

straight lines defined by the positional coordinates—the endpoint coordinates of the vessels

V0, V1, V2, and j—at the bifurcation as shown in Fig. 4.1c, d.
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CHAPTER 5

Discussion and Conclusions

In the above chapters, we study emergent patterns in drug interactions and cardiovascular

system by recognizing them as networks that possess different features. Here, drug interac-

tions provide a subtle framework for the exploration of interaction-based networks—where

the whole-system behavior emerges as a consequence of the interaction among its compo-

nents. On the other hand, the vascular system offers a fine setup for examining the struc-

tural properties of the flow-transmitting networks as well as investigating whether certain

structural properties of branching structures are driven deterministically or stochastically

across different spatial constraints. Below, we provide a concise summary of our findings

and present plentiful future directions to proceed in exploring more of the current network

categorizations as well as adapting them to broader contexts.

5.0.1 Higher-order and Emergent Drug Interactions

Previous considerations of multi-component systems have often disregarded the significance

of higher-order (more than two component) interactions, and mainly focused on the pairwise

associations as a way to capture the dynamical outcomes of the complex systems. Thus,

extensive studies of higher-order interactions, and a decent understanding of higher-order

affects have been lacking. In this study, Chapter 2 and 3 are devoted to introducing a con-

ceptual and theoretical framework for the classification of higher-order interactions. In doing

so, we primarily present an explicit distinction between the net interaction—combined effect

relative to independent single component effects—and any emergent interaction—combined

effect that cannot be predicted from lower-order effects (Fig. 1.4). To uncover emergent in-

teractions, we derive a framework to calculate expectations for three-way interactions based
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on the measured impact of each individual component and of each pairwise interaction. In

Chapter 2, using our framework and the experimental system of drug interactions—where

the data consists of Escherichia coli treatments with all possible triple combinations of 6

antibiotics—we find that i) emergent antagonisms are more common than emergent syner-

gies, and ii) emergent antagonisms are more common and emergent synergies are more rare

than would be inferred from measures of net effects that do not disentangle pairwise inter-

actions from three-way interactions. Moreover, we show that standard statistical methods

such as three-way ANOVA are not equivalent to the emergent interaction metric derived in

our study, and results obtained by ANOVA on the log-transformed data are consistent with

identifying emergent antagonism, but not for emergent synergism (Appendix A, Chapter 2).

With the recent advances in theory and experiment for higher-order drug interactions

presented in Chapter 2, we are now able to search for emergent interactions. In regards

to detecting synergies and antagonisms—enhanced and diminished effects compared with

no-interaction (i.e., additive) effects, respectively—previous work has shown that this clas-

sification is easier when a rescaling method is applied to the interaction metric (see Chapter

1). However, no study has carefully examined whether new types of normalization might be

needed for emergence. In Chapter 3, we propose several rescaling methods for enhancing the

classification of the higher-order drug interactions based on our conceptual framework. To

choose the rescaling that best separates synergism, antagonism, and additivity, we conduct

bacterial growth experiments in the presence of single, pairwise, and triple-drug combina-

tions among a broader set of antibiotics (14 drugs in total) than Chapter 2. We find one of

our rescaling methods is far better at distinguishing synergistic and antagonistic emergent

interactions than any of the other methods. Using our new method, we find around 50%

of emergent interactions are additive, much less than previous reports of greater than 90%

additivity. We conclude that higher-order emergent interactions are much more common

than previously believed, and we argue these findings for drugs suggest that appropriate

rescaling is crucial to infer higher-order interactions.

Our study covers interactions among higher-order drug combinations that are fixed in

their concentrations. Alternatively, one can also define drug interactions based on the
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pathogen response profile when drug concentrations are varied simultaneously. Interactions

over a full concentration gradient can offer more comprehensive assessment of the effect from

combination therapies, however it requires a substantial effort in collecting extensive amount

of detailed data. Moreover, several studies have considered extending Loewe Additivity by

simply adding an effective concentration for the third drug or to all higher-order combina-

tions [70]. For three drugs, this natural extension corresponds to mapping additivity (i.e.,

no interaction) strictly to a plane defined by CX
CX,MIC

+ CY
CY,MIC

+ CZ
CZ,MIC

= 1. This methodology

suggests antagonism when the sum of the effective concentration terms across all drugs ex-

ceed 1, and synergy when it is the opposite case. However, this approach does not provide

information about the emergent behavior as it simply assesses the comparison of the N -drug

combined effect with respect to the single-drug effects, and hence lacks comparison to pair-

wise and other levels of effects that are needed for the evaluation for the emergent interaction.

Consequently, establishing a measure to quantify concentration dependent emergent interac-

tions offers natural future direction to our emergent interaction framework. Accomplishing

this would be highly valuable in deciding useful treatment strategies.

Moreover, the framework developed in this study for the drug interaction networks offers

potential application to other biological networks to uncover higher-order, emergent inter-

actions in multi-way component systems. Further applications include protein and gene

interaction networks, multiple predator effects, food webs, and social networks. Despite the

fact that some similarities exist across different systems, each system has its own charac-

teristics, and the functional forms of the response phenotypes will vary accordingly. Hence,

further study is required for developing and revising models so that we can examine higher-

order interactions properly in a wide range of systems. Indeed, we are involved in a future

work to systematically compile and analyze datasets from different interaction-based network

settings. This involves compiling a huge database from stressor interactions and contrast-

ing our findings with the previous reports of interactions. Extending our framework to

other complex systems could conceivably make an important contribution towards acquiring

comprehensive insights and developing models that realistically represent the dynamics of

systems consisting of many different and connected parts.
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5.0.2 Emergent Properties in Cardiovascular Networks

Modern models that derive allometric relationships between metabolic rate and body mass

are based on the architectural design of the cardiovascular system and presume sibling vessels

are symmetric in terms of radius, length, flow rate, and pressure. However, these studies have

been limited by the lack of extensive, detailed data to test these assumptions. Moreover,

predictions from those models infer power-law or second-order concave curvature relationship

in log-log space, whereas recent allometric scaling studies with a large set of data yield convex

curvature. This suggests the need to test the validity of the model assumptions. In this

respect, in Chapter 4, we study the cardiovascular structure of the human head and torso

and of a mouse lung based on three-dimensional images processed via our software Angicart.

In doing so, we also provide a brief background on ways to collect vascular network data via

different imaging data types that vary in their resolution and techniques of extracting the

data.

In contrast to modern allometric theories, we find pervasive patterns of asymmetry in

vascular branching. In particular, we observe that the level of asymmetry varies across

different features, such as vessel lengths that exhibit high levels of asymmetry, whereas

radius and branching angles tend towards symmetry. Subsequently, we explore whether these

pervasive patterns result due to an optimization of certain properties that are constrained

by natural selection or due to successive random branching processes. Consideration of

these hypotheses also brings about a question about which spatial or network-level scales

are optimized or random. For the optimized network hypothesis, we build a framework

to derive predictions based on local, junction-level optimality principles: 1. material-cost

optimizations (construction materials or blood volume) and 2. optimization of efficient flow

via minimization of power loss. We show that material-cost optimization solutions match

with distributions for asymmetric branching across the whole network but do not match

well for individual junctions. Moreover, we find that correctly implementing the power-cost

optimization at the local spatial scale eliminate one of the branching vessels, leading to

a degenerate branching. Thus, we further construct power-cost optimization scheme at the
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intermediate spatial scale and see that incorporating information beyond the local branching

can lead to plausible conclusions. Consequently, we also explore random branching that

is constrained at scales that range from local (junction-level) to global (whole network).

This allow us to investigate the role of randomness for vascular branching as well as the

degree at the spatial scales are important. We find that material-cost optimizations are the

strongest predictor of vascular branching in the human head and torso, whereas locally or

intermediately constrained random branching is comparable to material-cost optimizations

for the mouse lung. These differences could be attributable to developmentally-programmed

local branching for larger vessels and constrained random branching for smaller vessels.

In summary, we provide an exploration of spatial scales and constraints that could yield

the empirical data patterns we observe in real data, and we find that whether the branching

is more stochastically or optimally determined depends on the number of branching junc-

tions involved, vessel sizes, and possibly tissue type. Therefore, we further plan to explore

the optimal branching at local and intermediate spatial scales in a way that combines and

integrates multiple optimization principles. Moreover, our findings suggest that randomness

plays a key role at the local spatial scale, implying that delivering blood flow is mainly ful-

filled by filling out the space through random branching. This brings about an interesting

question on whether the degree to which optimization or randomness determines vascular

branching may differ in genetically identical species, such as clones or monozygotic siblings.

In this sense, randomness would be expected to differ more, whereas the optimal constraints

would be expected to differ very little. In this sense, a remarkable study of armadillos, which

naturally produce four to six monozygotic offspring as littermates in each birth, by Glenny

et al. [197] have investigated how much of the variation in the vascular branching is due to

non-genetic or environmental factors. By contrasting the spatial distribution of blood flow

in the pulmonary vascular system across offspring within the same litter and across different

litters, they find that around 67% of the variation is due to genetics. Future work of exam-

ining the role of natural selection and randomness across different spatial scales with this

experimental setup and our mathematical framework could offer a more rigorous explanation

for the structural differences in vascularity between genetically identical species.
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Next, going back to the origins of allometric scaling theories, a recent paper [103] has

shown that deviation from the perfect symmetry assumption can result in a wide range of

metabolic scaling exponents. Moreover, it demonstrates that certain degrees of asymmetry

can lead to the 3/4 exponent as in the original WBE allometric scaling theory. These

model simulations offer promising research directions to account for the deviations from

power-laws by incorporating levels of asymmetry measured from empirical data analysis and

computed from theory. Thus, accomplishing this theoretical advance would be helpful in

resolving current mismatches between theoretical predictions and empirical measurements

of metabolic scaling exponents.

5.1 Overall Summary

All in all, this thesis studied systems with different network types, mainly within the con-

text of interaction-based networks and vascular networks. In doing so, we have provided a

succinct yet powerful framework to elucidate our rich set of questions and approaches for

resolving the emergent patterns in complex systems. In particular, the first part of this work

offers a conceptual and theoretical foundation to distinguish net interactions from emergent

ones at all levels based on a model system of drugs combined at fixed concentrations. We

conclude that emergent interactions are common in three-drug combinations, and that there

are abundant antagonistic emergent interactions as compared to emergent synergies. More-

over, we anticipate that the agenda presented here on the higher-order drug interactions

will provide a set of abstract mechanisms to explore various systems governed by similar

complex dynamics. In the second part, we have characterized pervasive patterns in the

structural properties of vascular networks and worked on modelling these patterns based on

biological and physical principles, and investigated the randomness of these properties across

distinct spatial scales. Our study provides promising advancements as it provides a useful

contribution to the field that will guide how to analyze large datasets for vascular branching,

to derive predictions for vascular branching by developing mathematical frameworks, to per-

form simulations to test experiments on random vascular branching, as well as to compare
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results from different models. All these methods combined, we expect to greatly expand our

knowledge about vascular systems and create new insights about vascular branching and

allometric scaling.
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APPENDIX A

Analysis of variance (ANOVA) method for testing

interactions

In studies of multi-way interactions among other stressor systems ANOVA has been a promi-

nent method used to analyze and obtain results from empirical datasets [198]. Here, we

provide a review of two-way and three-way ANOVA and how they translate into a metric

for the prediction of interactions. In doing so, we also present a comparison of ANOVA with

the drug interaction metrics that are defined for two- or higher-order drug interactions—

deviation from additivity (DA) and emergent three-way interaction (E3) measures (see de-

tails in Chapter 1.1, 2, and 3).

Two-way ANOVA

The simplest form of interactions that involve only two stressors (denoted by X and Y

as in our notation in the above chapters (Chapter 2 and 3, where drugs are stressors for the

bacterial growth) is quantified by 2x2 factorial design with four different observations. That

is, the observations include no stressors, stressor X alone, stressor Y alone, and stressors

X and Y together, with corresponding response variable measurements MO, MX , MY , and

MXY . In this case, factorial ANOVA (or equivalently two-way ANOVA) tests for an inter-

action between XY by quantifying the significance of deviation from the additive effects of

2 stressors (or factors). Typically, in factorial ANOVA, a factor X is said to have no inter-

action with the other factor Y , if the linear effect achieved by X as compared to the control

(no factors present) on the dependent variable (M) is the same as the linear effect when the

factor Y is present [14]. This notion is well represented by assigning one factor (say X) to

the horizontal axis (x-axis), and varying the level of the other factor (Y ) by different lines
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on the response plot (Fig A1). As the change in x-axis or the denominator of linear slope

are always assumed to be the same, ANOVA reduces to the assumption that the change in

y-axis (dependent variable m) is the same between the observations of O to X and Y to

XY , meaning that

MO −MX = MY −MXY (A.0.1)

Consequently, the no-interaction case corresponds to the expectation that the combined

stressors yield a response measurement of MXY = MX + MY −MO. By subtracting the

response variable for the no stressor case (MO) from both sides of the equation, one can

write this as

(MXY −MO) = (MX −MO) + (MY −MO) (A.0.2)

Defining the response variables relative to the response of the control scenario, ANOVA

tests for the additive effects of two stressors relative to the no-stressor case (Eq. (A.0.2)).

Thus, statistically significant deviation from the null model of additivity suggests interaction

between stressors.

Figure A.1: (a) Two-way ANOVA design. When the linear curves are parallel (Eqs (A.0.1)
and (A.0.2) hold), or equivalently when the change in the response variable is independent of
the presence or absence of the second factor Y , then ANOVA identifies that Y has an additive
effect, meaning that X and Y are not interacting. (b) Three-way ANOVA design. The graph
in the panel (a) is now reproduced with the third factor (Z), where it illustrates the two-way
interaction between X and Y when the third factor is present. Three-way ANOVA quantifies
the statistical significance of change in the amount of two-way interaction across Z’s absence
(panel (a)) and Z’s presence (panel (b)) [14].
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This underlying additive model of ANOVA, however, is not informative when the stressors

alone have large impacts on the response variable, hence resulting in an additive expectation

that can never be achieved. This argument is nicely outlined in Sih et al. [30] that stud-

ied multiple predator systems—where the survival rates of prey species in the presence of

multiple predators determines the interactions between predators. When predator X alone,

and Y alone kills 60%, and 70% of the prey, respectively, then ANOVA tests for an addi-

tive effect corresponding to an expectation that predators X, Y together kill 130% of the

prey, which can never be true. To overcome this hurdle arising due to the additive model, a

multiplicative model is introduced by Soluk and Collins [151] that defines the null model of

no-interaction based on the product of prey survival rates. In other words, when predators

X, Y are independent of each other, then it is expected that the survival rate of prey in

the presence of X, Y together is simply equal to MXY = MXMY . For the above exam-

ple, where MX = 0.40, and MY = 0.30, then the surviving proportion of prey population

is simply equal to MXY = 0.40 ∗ 0.30 = 0.12, hence the expected proportion killed with

multiple predator presence is 88%, yielding a plausible expectation value that can be tested.

This always holds true because the survival rates take values between 0 and 1. Note that

MPE studies assume that there is no mortality when predators are absent meaning that the

response for no-predators (MO) is simply equal to 1, hence the parameter MO is implicitly

included in the model. The general multiplicative model used for determining interactions

between stressors, in which the measurement of the control (none of the factors are present,

i.e. MO) can take any value is defined as

MOMXY = MXMY (A.0.3)

Once more, this can be written in terms of relative measurements (denoting with the lower-

case m) with respect to the control by simply dividing both sides by M2
O. Hence, Eq. (A.0.3)

becomes
MXY

MO

=
MX

MO

MY

MO

(A.0.4)

or simply mXY = mXmY with the relative response measurements—defined as absolute
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measurement divided by the control measurement. Indeed, the multiplicative expectation

of no-interaction defined by Eq. (A.0.4) is analogous to Bliss Independence (Eq. (1.1.1))

introduced for drug interactions, where the response variable is fitness measurements defined

relative to the no-drug case. Note also that a straightforward extension of this multiplicative

model to quantify higher-order interactions has been employed in multiple predator studies

(that is also analogous to DA metric (Eq. (2.2.2))) and are based on the comparison of ex-

perimental value and the predicted value using a 1-way ANOVA [146]. Taking the logarithm

of both sides of the preceding relation, Eq. (A.0.4) is equivalent to

(logMXY − logMO) = (logMX − logMO) + (logMY − logMO) (A.0.5)

suggesting that the multiplicative model for two-way interactions can be tested by merely ap-

plying factorial ANOVA on the log-transformed data (see Eq. (A.0.1)). Using the properties

of logarithms, we can write the last equation in a more suggestive form as

logmXY = logmXmY

Hence, if the relative measurement of XY combination is equal to the product of the relative

measurements when single stressors alone, then we have no interaction. On the contrary, if

mXY is significantly different then the expectation from the null model or equivalently, when

the deviation from the multiplicative model is significantly non-zero, then ANOVA suggests

an interaction between X and Y .

Note that following the same logic of additive and multiplicative models, alternative mea-

sures to two-way ANOVA (namely Hedge’s d and log response ratio (LnRR), respectively)

have been proposed to determine interactions based on the deviation from the corresponding

model expectation standardized to the effect size [72, 199].

Three-way ANOVA

In this section, we introduce a translation of three-way ANOVA into a measure within the

same framework as above. This way, we also provide a rigorous comparison to our higher-

121



order interaction metrics—DA and E3 that are defined for the characterization of net and

emergent interactions(see Chapter 2 and Chapter 3). In the ANOVA framework, three-way

interaction is quantified by 2x2x2 factorial design with eight different observations based

on the presence and absence of each factor (Fig. A1). Therefore, the observations include

no stressors, three stressors alone by themselves (X, Y, Z ), all two-way combinations of

stressors (XY, XZ, YZ ), and all stressors together (XY Z). This corresponds to response

measurements of MO, MX , MY , MZ , MXY , MXZ , MY Z , MXY Z . In this case, ANOVA

determines how two-way interaction between the components X and Y is affected by the

addition of a third factor Z [14]. In this case, the third factor (Z) is represented by different

graphs, and a comparison of the change in the linear effects across these two instances (one

with the absence of Z, and the other with the presence of Z) defines underlying model of

three-way ANOVA (Fig. A.1).

From the above discussion and Eq. (A.0.1), the deviation from the no-interaction when

Z is not present (denoted by DEVXY, no Z) is simply given by

DEVXY, no Z = (MXY −MO)− (MX −MO)− (MY −MO) (A.0.6)

Likewise, the following expression measures the deviation from the no-interaction case when

Z is present

DEVXY, with Z = (MXY Z −MO)− (MXZ −MO)− (MY Z −MO) + (MZ −MO) (A.0.7)

Now, subtracting these two quantities, the difference between these two-way interaction

effects becomes

DEVXY, no Z−DEVXY, with Z = (MXY Z−MO)−(MXY −MO)−(MXZ−MO)−(MY Z−MO)

+ (MX −MO) + (MY −MO) + (MZ −MO) (A.0.8)

This last relation implies that when DEVXY, no Z −DEVXY, with Z is zero, or equivalently the

changes in the slopes across these two graphs are equal, there is no three-way interaction.
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On the other hand, if this difference is significantly away from zero, three-way interaction is

present. Here, all the derivations are done with respect to the factor Z, but one could repeat

the same logic with respect to the other factors, and conclude that the same measure as the

above expression is symmetric in each factor.

Recalling that the multiplicative model is evaluated by two-way ANOVA on the log-

transformed data [151], we now consider applying three-way ANOVA on the log-transformed

response measurements. Using properties of logarithm and setting the above equation (Eq.

(A.0.8)) to zero—corresponding to the no-interaction case—Eq. (A.0.8) becomes

0 = logmXY Z − logmXY − logmXZ − logmY Z + logmX + logmY + logmZ

Reorganizing this equation by combining each single term with the remaining pairwise com-

bination term (such as mX with mY Z) we get

0 = logmXY Z − logmXYmZ − logmXZmY − logmY ZmX + 2 logmxmYmZ

We can draw several conclusions based on the above functional form of three-way ANOVA.

First, it is clear that log-transforming the response variable does not help evaluating for the

multiplicative model of MPE studies (Eq. (A.0.4)) or equivalently DA measure from the

drug interaction studies (Eq. (2.2.2)) for three- or higher-order combinations. Next, three-

way ANOVA differs from our emergent three-way measure (Eq. (2.2.4)), but functional form

is similar as all the terms in E3 are simply log-transformed. More discussion on three-way

ANOVA together with the three-way ANOVA analysis of our bacterial growth data is given

in the corresponding online Supplementary Material of Chapter 2.
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APPENDIX B

Derivation of length asymmetry ratio given branching

angles

Here, we relate the length asymmetry ratio (λl) to the optimal branching solutions (θi) and

the geometry of the unshared endpoints (i.e., the vertices Vi). We denote the lengths of the

sides of the triangle that correspond to V1V2, V0V2, and V0V1 as v0, v1, and v2, respectively

(Fig. B.1). We first prove two Lemmas that lead to the derivation of the asymmetric length

ratio.

Figure B.1: (a) Schematic of the branching geometry (b) Illustration of degenerate cases
where the branching junction coincides with one of the vertices.

Lemma B.0.1. Let the intersection of the line between the points V0 and J with the line

V1V2 be called K and the angle defined by the three points V̂0KV1 be called ψ (Fig. B.1).

Using these definitions and the other labeling in Fig. B.1, the following relationships holds

|V 1K|
|V 2K|

=
l1sinθ2
l2sin θ1

=
v2sinϕ1

v1sinϕ2

Proof. By the law of sines applied to the triangles V0V 1K and V0V 2K, we have:

sinψ

v2
=

sinϕ1

|V 1K|
,

sin (π − ψ)

v1

=
sinϕ2

|V2K|
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Since sin (π − ψ) = sinψ , dividing these equations yields
|V 1K|
|V 2K|

= v2sinϕ1

v1sinϕ2
. Applying a

similar approach to triangles JV1K and JV2K, we have
|V 1K|
|V 2K|

= l1sin θ2
l2sin θ1

, as desired.

Lemma B.0.2. The length asymmetry ratio (λl = l1
l2

) can be calculated purely in terms

of the lengths of the sides of v1 and v2 along with the angle V̂1V0V2 and the branching

angles θ1 and θ2 as

λl =
v2
v1

sin θ1
sin θ2

(
−cos V̂1V0V2 + sin V̂1V0V2 cot

(
V̂1V0V2 + γ − θ2

) )

where γ = cot−1
[
v2
v1

sin θ1
sin θ2

+cos(θ1+θ2− ̂V1V0V2)
sin(θ1+θ2− ̂V1V0V2)

]
Proof. By Lemma B.0.1, we have

λl =
l1
l2

=
v2
v1

sin θ1
sin θ2

sinϕ1

sinϕ2

Then, by applying law of sines in a specific, successive order and also using sine addition

formulas, we express sinϕ1

sinϕ2
in terms of known quantities and branching angles:

sinϕ1

sinϕ2

=
(
−cos V̂1V0V2 + sin V̂1V0V2 cot

(
V̂1V0V2 + γ − θ2

) )
proving the lemma.

With Lemma B.0.2, we show that the branching angle solution—obtained by optimizing

certain structural principles—also predicts the optimal value for the asymmetric length ratio.
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APPENDIX C

Coordinate-free framework for material-cost (MC)

optimization solutions

In this section, we introduce a coordinate-free framework for the minimization of the objective

function, defined as H =
∑

i hili. We have not seen this approach in the literature, and

other references have used methods that rely on specific choices of coordinate systems and

complicated algebra [105, 106, 182]. The solution is obtained via finding the stationary and

singular points of the cost function H with respect to l0 (the parent vessel length) and ϕ1

(the angle of the parent vessel relative to its unshared endpoint V 0) (Fig. B.1). Below, we

provide two lemmas that will be used to determine ∂H
∂l0

and ∂H
∂ϕ1

.

Lemma C.0.1. Given fixed endpoints V0, V1, and V2, the length |V0V1| and the angle ϕ1

are fixed in the triangle V0JV 1, (Fig. C.1), the derivative of a daughter vessel length with

respect to the parent vessel length is

∂l1
∂l0

= cos θ2

Proof. Draw a perpendicular line passing through V1 and intersecting with the extension of

V0J at O. Denote |V0V1| = v2, |V1O| = y, and |JO| = x. When J is on the right side of V0,

we have v2cosϕ = x+ l0. Since v2cosϕ1 is fixed because v2 and ϕ1 are fixed, it follows that

∂ (v2cosϕ ) = ∂(x+ l0) = 0, or equivalently

∂x

∂l0
= −1 (C.0.1)

Notice however that the derivative ∂x
∂l0

is discontinuous when the branching junction
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collapses on the parent endpoint (i.e., l0 = 0) as the right and left derivatives of x with respect

to l0 are opposite in sign: ∂+x (0) = ∂(v2cosϕ1 −l0 )
∂l0

= −1, ∂−x (0) = ∂(v2cosϕ1 +l0)
∂l0

= 1 (Fig.

C.1).

Applying the Pythagorean Theorem to the triangle V1JO, we have l1 =
√
x2 + y2, hence

∂l1
∂x

=
x√

x2 + y2
=
x

l1
(C.0.2)

Using the chain rule along with equations (C.0.1) and (C.0.2) gives

∂l1
∂l0

=
∂l1
∂x

∂x

∂l0
= −∂l1

∂x
= −x

l1
= −cos (π − θ2) = cos θ2

as desired.

Figure C.1: (a) The branching geometry of a parent and one of the daughter vessels. (b)
When the vertex J approaches the vertex V0 from the right, x = v2cosϕ1 − l0. (c) When
the vertex J approaches the vertex V0 from the right, x = v2cosϕ1 + l0.

Lemma C.0.2. Given fixed lengths |V0V1| = v2 and l0 in the triangle V0JV 1, then

∂l1
∂ϕ1

= −l0sin θ2

Proof. As in Lemma B.0.1, we have cosθ2 = − cos (π − θ2) = − x
l1

and l1 =
√

x2 + y2.

From the triangle V0V1O, we further have y = v2sinϕ1 and x = v2cosϕ1 − l0. Substituting

these into the expression for l1 yields l1 =
√

(v2cosϕ1 − l0)2 + (v2sinϕ1 )2. As v2 and l0 are

fixed, differentiating l1 with respect to ϕ1 gives:

∂l1
∂ϕ1

=
1

2

2 (v2cosϕ1 − l0) (−v2sinϕ1 ) + 2v22sinϕ1cosϕ1√
(v2cosϕ1 − l0)2 + (v2sinϕ1 )2
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This expression simplifies by cancelling the 2v22sinϕ1cosϕ1 terms in the numerator and by

recognizing the denominator is equal to l1. Therefore, we obtain ∂l1
∂ϕ1

= l0v2
l1

sinϕ1 . Since

sinϕ1 = y
v2

and sin (π − θ2) = y
l1

, this equation becomes

∂l1
∂ϕ1

=
l0v2
l1

sinϕ = l0
y

l1
= −l0sin θ2

With these two lemmas proven, we now return to the original optimization problem.

Unless J coincides with the unshared endpoints V 0, V1 or V2, substituting Lemma 1 and

Lemma 2 into the equality, we have

∇H =

(
∂H

∂l0
,
∂H

∂ϕ1

)
=
−→
0,

leads to two equations

h0 = −h1cos θ2− h2cos θ1 (C.0.3)

h1sinθ2 = h2sinθ1 (C.0.4)

Solving these equations yields the previously reported branching angle solutions (Eq. (1)

in our paper and from Zamir et. al. (1, 2)).

Dividing both sides of the equations (C.0.3) and (C.0.4) by h2 and combining them, we

have
h0
h2

= −sin θ1cosθ2 + sin θ2cosθ1
sin θ2

=
−sin (θ1 + θ2)

sin θ2

Realizing that θ1 + θ2 = 2π − θ0, or equivalently −sin (θ1 + θ2) = sin θ0 , and combining

the above equations (C.0.3) and (C.0.4) yields h0sinθ2 = h2sinθ 0. Thus, in order for the

equations that follow from ∇H =
−→
0 to be soluble, the expressions sin θ0 , sin θ1, and sin θ2

must all have the same sign because the length scales hi are all positive. This sign criterion

can only be satisfied when the branching junction is inside of the triangle defined by V0,

V1 and V2. Consequently, this implies ∇H =
−→
0 cannot be satisfied when the branching

junction is outside of the triangle or on the boundary of the triangle. Therefore, in order
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for the previously reported formula for the branching-angle solutions to be valid, we need

to check first if −1 ≤ cos θi ≤ 1, and if it does not, we must conclude that ∇H =
−→
0 does

not have a solution. Previous studies were not explicit about this criterion or distinction in

finding solutions. Solving the inequalities −1 ≤ cos θi ≤ 1 for each branching angle yields

necessary conditions for the existence of solutions of ∇H =
−→
0 . These conditions reduce to

the simple statement, hi < hj + hk, about the weightings of the terms in the cost function

for any combination of (i, j, k). If any of these three conditions fail, then the branching

junction will be degenerate, meaning that the optimal branching junction, J , will collapse

to one of the vertices.

Moreover, the angles of the triangle V0V1V2 further confine the range of branching angles

that can be realized within the triangle, i.e. V̂jViVk < θi. Hence, if branching angle solutions

defined by Eq. (4.2.1) violate any of these conditions, the optimization solution will be a

collapse of the branching junction onto one of the unshared endpoints.
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APPENDIX D

Degeneracy solutions of material-cost (MC)

optimization

We now derive which particular vertex the branching junction will collapse onto for the

degeneracy cases.

Lemma D.0.1. When the triangle conditions and inequalities do not hold (i.e., hi ≥ hj +

hk), the vertex Vi associated with the largest cost parameter (i.e., hi) is the solution for the

material cost optimization.

Proof. By symmetry and without loss of generality, we assume that the cost per parent

length is greater than the sum of the costs per length for the daughter vessels, i.e. h0 ≥

h1 + h2. To identify the vertex that yields the minimum cost, we will calculate the total

cost corresponding to all three degenerate cases (Fig. B.1). Total costs at the corresponding

vertices are given by HV0 = h1v2 + h2v1, HV1 = h0v2 + h2v0, and HV2 = h0v1 + h1v0, where

v0, v1, and v2 are lengths of sides V1V2, V0V2, V0V1 respectively. From our assumption and

triangle inequality applied to the sides of the triangle V0V1V2, we have HV1 = h0v2 + h2v0 ≥

(h1 + h2) v2 + h2v0 = h2 (v0 + v2) + h1v2 > h2v1 + h1v2 = HV0 . In a symmetric way, one can

also prove that HV2 > HV1 , implying that J collapses on V0.

Lemma D.0.2. For any triangle with vertices X, Y, Z, and a point P inside this triangle

we have the following inequality

|XY |+ |Y Z| > |XP |+ |PZ|
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Proof. The set of points Y’ on the plane for which

|XY ′|+ |Y ′Z| = |XY |+ |Y Z|

forms an ellipse as illustrated in Fig. D.1. Therefore, for any point P ′ in the interior of the

ellipse

|XP ′|+ |P ′Z| < |XY |+ |Y Z|

proving the claim.

Figure D.1: Ellipse formed by the points X, Y , and Z. By definition, the sum of the
distances from any point on the ellipse to X and Z is fixed.

Lemma D.0.3. When optimal branching angle solutions (Eq. 4.2.1) result in a case where

the triangle condition (V̂jViVk ≥ θi) fails, then the vertex associated with θi for which the

inequality fails also provides the minimum of H.

Proof. Without loss of generality, let us assume that the optimal solution of θ0 is less than the

angle V̂1V0V2. As h0
2 = h1

2+h2
2−2h1h2cos (π − θ0) , we can form a triangle OAB with side-

lengths h0, h1, h2 that has the angle π− θ0 at the vertex A (Fig. D.2). Now, let us construct

a triangle ABC similar to the triangle V 0V1V2. Drawing a line segment AC of length h2
v1
v2

,

so that the angle ĈAB equals V̂0 := ̂V2V 0V1, yields such a triangle with similarity ratio h2
v2

.

Hence, the side BC has length h2
v0
v2

(Fig. D.2). Then, the side inequality applied to the

concave quadrilateral OBCA (Lemma 6) leads to h0+h2
v0
v2
> h1+h2

v1
v2

. Multiplying both

sides by v2 provides HV1 = h0v2 + h2v0 > h2v1 + h1v2 = HV0 . In a similar manner, we
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can show that HV2 > HV0 , demonstrating that V0 gives the optimal position for J . By

symmetry, when θ1 < V̂0V1V2 this implies the branching junction J collapses to V1, and

when θ2 < V̂1V2V0, this implies that J collapses to V2.

Figure D.2: The diagram of the proof to show showing that when θ < V̂0, the branching
junction J will collapse on V 0
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APPENDIX E

Power-cost optimization for a single branching

junction (PC-0) solutions

Here, we show that power cost optimization always leads to degenerate branching geometry.

To do this, we first calculate the equivalent impedances when the branching junction J

occurs at the vertex Vi (Fig. B.1)—denoted by ZVi—for each i .

ZV0 =

(
1

h1v2
+

1

h2v1

)−1
, ZV1 = h0v2 , ZV2 = h0v1

Now, if we show that Zeq ≥ min (ZV0 , ZV1 , ZV2) , it follows that Zeq attains its minimum

at one of the vertices. Without loss of generality, we assume that v1 ≤ v2, so ZV2 ≤ ZV1

and min (ZV0 , ZV1 , ZV2) = min (ZV0 , ZV2) . The following lemmas verify our claim that one

of the vertices is always optimal for the branching junction.

Lemma E.0.1. Let ZV0 < ZV2. Then, min (Zeq) = ZV0

Proof. To prove the lemma, we need to show that Zeq ≥ ZV0 for all possible locations of the

branching junction, J. Because ZV0 < ZV2 , we have h0 >
1
v1

(
1

h1v2
+ 1

h2v1

)−1
, so we can form

the following inequality by replacing h0 by
(

1
h1v2

+ 1
h2v1

)−1
1
v1
Zeq = h0l0 +

(
1

h1l1
+ 1

h2l2

)−1
>(

1
h1v2

+ 1
h2v1

)−1
l0
v1

+
(

1
h1l1

+ 1
h2l2

)−1
To prove Zeq ≥ ZV0 =

(
1

h1v2
+ 1

h2v1

)−1
, it suffices to prove

(
1

h1v2
+

1

h2v1

)−1
l0
v1

+

(
1

h1l1
+

1

h2l2

)−1
≥
(

1

h1v2
+

1

h2v1

)−1
Rearranging terms, the proof of the Lemma boils down to proving the inequality
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(
1

h1l1
+

1

h2l2

)−1
>

(
1− l0

v1

)(
1

h1v2
+

1

h2v1

)−1
(E.0.1)

Taking the reciprocal of both sides of (E.0.1) and factoring out the terms with 1
h1

and

1
h2

, this inequality is equivalent to

1

h1

(
1

l1
− 1

v2

(
1− l0

v1

)−1)
+

1

h2

(
1

l2
− 1

v1

(
1− l0

v1

)−1)
< 0

Hence, if we show that both of the terms in the above expression are negative, then their

sum would also be negative, and the proof will be complete. In other words, it suffices to

show two inequalities

1

l1
− 1

v2

(
1− l0

v1

)−1
< 0 (E.0.2)

1

l2
− 1

v1

(
1− l0

v1

)−1
< 0 (E.0.3)

Observe that the triangle inequality applied to the triangle V0JV1 gives l0 + l1 > v2,

hence l1
v2
> 1− l0

v2
> 1− l0

v1
, proving (E.0.2). Moreover, the triangle inequality applied to the

triangle V0JV2 yields l0 + l2 > v1, implying that l2
v1
> 1− l0

v1
, which proves (E.0.3).

The next lemma takes care of the complementary case.

Lemma E.0.2. Let ZV0 > ZV2, then minZeq = ZV2

Proof. Following the same idea as in the proof of Lemma E.0.1, we want to show that Zeq ≥

ZV2 , or equivalently (
1

h1l1
+

1

h2l2

)−1
> h0(v1 − l0)

By the inequality (E.0.1), we proved in Lemma E.0.1, we have

(
1

h1l1
+

1

h2l2

)−1
>

(
1− l0

v1

)(
1

h1c
+

1

h2v1

)−1
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The assumption
(

1
h1v2

+ 1
h2v1

)−1
> h0v1 further yields that

(
1

h1l1
+

1

h2l2

)−1
>

(
1− l0

v1

)
h0v1 = h0(v1 − l0)

as desired.

With Lemmas E.0.1 and E.0.2, we proved that the branching junction collapses onto one of

the vertices for any choice of cost parameters h0, h1, and h2.
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APPENDIX F

Enlarged consideration of the power-cost optimization

to go beyond a single branching (PC-1)

In this section, we add terms c1 and c2 to the calculation of Z̃eq to respectively represent the

impedance of all of the vessels are downstream from each daughter vessel at that branch-

ing junction. Furthermore, we consider the special case that impedance matching—the

impedance of the parent vessel is matched by the equivalent impedances of the daughter

vessels—is satisfied throughout the whole network. By requiring that siblings have identical

impedances and that each sibling has the same number of downstream vessels, we show that

the ratio ci
Zi

is larger for vessels that are near to the first branching level (i.e., the heart). To

simplify the calculations, we enumerate the levels such that the level number increases from

capillary (level 0) to the heart (level N). This is the reverse of the labeling used in most

models.

By applying impedance matching successively from level 0 to level k, we first recognize

that the impedance of the vessel at the kth level is given by Z0/2
k, where Z0 denotes the

impedance of the capillary. Moreover, for the first few levels above the capillary level (when

k = 0, 1, 2), we find that the downstream impedance at level k follows the form kZ
2k

(Fig.

F.1). The next Lemma generalizes this formula for all levels k.
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Figure F.1: (a) Perfectly-balanced branching network with identical daughter impedances
and (b) inclusion of impedances for downstream vessels in entire branching network and
thus beyond just the branching level k.

Lemma F.0.1. The downstream impedance from a daughter vessel at level k is given by

ck =
kZ0

2k

Proof. We prove this claim by induction. Note that a vessel at level k − 1 is in series with

the downstream vessels as illustrated in the Fig. F.1. If the downstream impedance at

level (k − 1) is equal to (k−1)Z
2k−1 , then by rules of fluid mechanics, the downstream impedance

at level k is given by

ck =
1

1
Z0

2k−1+
(k−1)Z0
2k−1

+ 1
Z0

2k−1+
(k−1)Z0
2k−1

=
kZ0

2k
.

Hence, by Lemma F.0.1, we have that the value of ck/Zk at level k is equal to

kZ0

2k

Z0

2k

= k

so that the value of this ratio increases with the level (i.e., increase from the capillaries

to the heart). Therefore, near the heart, the constants (ci) representing the downstream

impedances in the optimization scheme are relatively large compared to the impedances (Zi)
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of the daughter vessels at that branching junction.
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