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Abstract

Many theories of conceptual organization assume the
existence of some form of mental similarity metric
(Medin and Schaffer, 1978; Hintzman and Ludlum,
1980; Nosofsky, 1988; Shepard, 1987; Kruschke, 1992,
among others.) In the domain of categorization, such
theories have been called “similarity-based” (Murphy
and Medin, 1985). Criticism of similarity-based the-
ories has led to a call for “theory-based” models of
categorization (Murphy and Medin, 1985; Rips, 1989;
Barsalou, 1991; Medin, 1989). Theory-based views
remain somewhat vague, however. In this paper I
outline a schema-based theory of conceptual organi-
zation. The model depends on the notion of a men-
tal similarity metric but makes use of connectionist
learning principles to develop a conceptual organiza-
tion that solves a problem faced by purely similarity-
based models of categorization. I discuss the rela-
tionship of this theory to similarity-based and theory-
based accounts.

Conceptual organization and

categories

Psychologists study categorization to understand
more than just which objects or events share a com-
mon name, or even how people decide whether per-
ceptibly different objects are of the same type. The
aim of studying categorization is to understand the
nature of concepts. Behind this approach to study-
ing concepts lies the intuition that concepts are the
atoms of conceptual organization, categories are the
atoms of categorization, and conceptual organization
depends upon representing the relations among per-
ceived or conceived objects in just the way that cat-
egorization depends upon representing the relations
among classified entities. In short, when psycholo-
gists speak about categorization they aim to eluci-

date conceptual organization. For this reason, the-
ories of categorization often underlie explanations of
a range of behaviors far broader than mere classifi-
cation. Behaviors such as generalization, prediction,
communication, learning, and inference.

In adopting this broad notion of categorization as a
ubiquitous but singular mental faculty underlying a
great range of behaviors, many theories of concep-
tual organization make a tacit assumption that cat-
egorization has a unitary character. In other words,
whether concepts are said to depend upon proto-
types or exemplars, independent features, or relations
among properties, theories, or regions in similarity
space, they are thought to depend on them always
and everywhere in more or less the same way.

While maintaining a belief in the unitary character of
categorization, psychologists have sought to include
an ever widening range of data in the explanatory
scope of theories about categorization. At first theo-
ries such as that of Katz and Fodor (Katz and Fodor,
1963; Katz, 1972) were proposed to describe the rela-
tionship of words to concepts. There was a distinctly
philosophical character to these views which Smith
and Medin (1981) have called “the classical view”.
Later, largely as a result of the work of Rosch and
her collaborators (e.g. Rosch and Mervis, 1975), the-
ories of categorization gua conceptual organization
were called upon to explain the graded structure of
subjects’ decisions about class membership. These
and other data led to a class of models that Murphy
and Medin (1985) have termed “similarity-based”. In
addition to analyzing similarity-based theories, Mur-
phy and Medin asked whether existing theories of cat-
egorization could account for other important prop-
erties of conceptual organization. They reasoned that
such theories would have trouble accounting for data
concerning prediction, inference, and generalization
when those behaviors depend upon high-level knowl-
edge. They have called for a new view of concep-
tual organization based upon knowledge about the
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relationships among the features of objects and the
causal and functional properties relating members of
a class.

In this paper I will outline a model of conceptual or-
ganization. This model depends upon many of the
same theoretical constructs as traditional similarity-
based models. I will argue that it can account never-
theless for data that have been difficult to explain on
a purely similarity-based view.

Similarity-based categorization

Broadly speaking, similarity-based theories of con-
cept formation assume that mental categories are
formed through experience with the world, and reflect
its structure. When we encounter an object or event,
we register some information about it in terms of fea-
tures. This information is then used to construct a
stable representation of a concept, or to modify some
existing concept. In either case, assimilation provides
later access to information about an object’s prop-
erties (seen and unseen), and it’s relation to other
objects we have encountered. The way in which we
assimilate each new object or event depends upon its
similarity to concepts we already possess. One way to
imagine this process is to view similarity as a kind of
internally represented space, Euclidean or otherwise.
The features of objects are dimensions in this space
and the closer two objects are in similarity-space,
the more similar they are. In a similarity-based the-
ory, this featural distance determines the likelihood
of membership in a common class. Because features
constitute the dimensions of similarity-space, proba-
bility of common class-membership is a function of
common and distinctive features.

It is clear that such a general representation of the in-
formation that can be derived from an encounter with
an object would be extremely useful for classifying or
learning about objects, for generalizing from experi-
ence to predict class membership or unseen proper-
ties of new objects, or simply for remembering and
organizing perceived objects.

A number of influential theories make use of these
central assumptions (Rosch and Mervis, 1975; Posner
and Keele, 1968; Medin and Schaffer, 1978; Hintzman
and Ludlum, 1980; Sattath and Tversky, 1987; Nosof-
sky, 1988; Shepard, 1987; Anderson, 1991; Kruschke,
1992) and much of the work on these theories has
involved the attempt to test their competing predic-
tions. Unfortunately, even if the debate between pro-

totype and exemplar-based theories is nothing more
than an argument over certain possible restrictions
on a similarity-based theory of categorization, there
are problems that these similarity-based models all
share.

A Problem with
based categorization

similarity-

Why is featural similarity a problematic basis for con-
ceptual organization? Because knowledge about the
detailed character, causes, and consequences of fea-
tures as well relations among features give people
a rich variety of explanatory and predictive knowl-
edge on which to base their categorization judg-
ments. Similarity based views of categorization sim-
ply leave out this knowledge, Therefore such theories
cannot be adequate accounts of conceptual organiza-
tion (Rips, 1989; Medin and Murphy, 1985; Barsalou,
1991; Medin, 1989). These considerations have led
to theory-based models of categorization. According
to such views, our mental categories (in other words
our concepts) are formed in accordance with a large
amount of prior knowledge about the regularities in
the world and the plausible structure of experience.
The behaviors that such theories take as central in
a theory of categorization are quite broad, includ-
ing not only prediction and generalization, but also
inductive reasoning, and various judgments such as
typicality and likelihood of membership in a class.
The major criticism that emerges from such a view
is that similarity is an insufficient basis for concep-
tual organization because it is too flexible to account
for the highly constrained way that world knowl-
edge can suggest structure in our experience and be-
cause 1t fails to predict some facts about the relation-
ships among our subjective judgments about typical-
ity, perceived similarity, and likelihood of member-
ship in a category.

Schema-based categorization

The challenge from proponents of theory-based views
is to account for judgments about category member-
ship, typicality, generalization, inference, and predic-
tion when those behaviors depend on knowledge that
goes beyond mere similarity. If it is true that a singu-
lar system of conceptual organization underlies these
diverse behaviors, what are its operative principles?
While I do not hope to provide a complete answer,
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I will to outline a model that tries to incorporate
some additional knowledge about features and their
functional and causal relations into conceptual orga-
nization.

Categories in the service of likelihood
estimation

Several theorists have argued that categories exist in
order organize knowledge so as to allow the best pos-
sible inference or prediction of unobserved features
from those observed (Rosch and Mervis, 1975; Medin
and Murphy, 1985; Bobick, 1987; Anderson, 1991;
among others.) Taking this idea at face value, we
might suppose that the job of categorization is to use
experience with a set of objects or events, each repre-
sented by a vector of features (x), to find an optimal
model (with parameters w) for constructing the in-
ternal representation (a vector t) of the important
features of the object or event, x.

What are the important features of x? I believe that
the answer lies in the domain of evolutionary psy-
chology. It is through adaptation that some features
come to be important and others negligible. Since an
account of the adaptive significance of objects and
events is outside the scope of this project, I will sim-
ply assume that all the experienced features in the
vector x are important. As a result, the goal of the
model] will be veridical representation. This is a sim-
plification but a useful one. Nevertheless, imposing
relative importance on features may be one of the pri-
mary ways of representing high-level knowledge and
it will be discussed further in section 5.

What is the optimal model for constructing the in-
ternal representation, t7 It is the one that maximizes
P(t | z&w), while at the same time finding a set of
conceptual categories (C;...Cpr) such that:

M
V[ P(Ci|z) = 1]

=1

(1)

In other words, we want to find categories that in-
clude all experienced objects or events and at the
same time allow the best possible prediction of the
features of those objects or events. Using (1) we can
write:

M
P(t | z&w) = Y P(t| Cikez&w)P(C; | o&w) (2)

i=1

On the left side of (2) is the quantity we wish to
maximize. We have rewritten it using our exhaustive

category scheme, thus combining the two constraints
we hope to satisfy. The game now is to express the
two probabilities on the right side of (2) in such a way
that we can compute them from information available
through experience.

Taking P(t | Ci&z&w) first, we must consider the
nature of the features of x. For the sake of simplic-
ity, let us consider them conditionally independent
binary features denoting the presence or absence of a
possible attribute of x.! In that case, we expect the
features of t to be distributed binomially so we can
write:

N
P(t| Cuteatow) = [] g™ (1= fi)' ™ (3)
i=1

Where the N is the number of features in the input
(or the output or target; all are the same), and f;;
is the estimated probability of seeing attribute z; in
category Cj, prior to encountering the current object
or event. The fi;’s depend on the model w. How the
model estimates these quantities will be described in
the next section.

It remains to calculate the other part of (2), i.e.
P(C; | z&w). Using Bayes’ rule, we can write:

P(z | Ci)P(C)

P(Ci | z&w) =
(Ci | 2&w) >N P(z| C;)P(C))

(4)

To compute this probability, we must find an ex-
pression for P(C; | z&w). Now, as before we must
make an assumption about the nature of objects and
events. In this case we must decide how they are
distributed within categories. Again for simplicity,
let us imagine that categories form convex regions in
similarity space.? In that case we may consider each
category to be described by a multivariate gaussian
distribution:

N (25— .)2
Zj:l . 1“5.

P(2 | Ci) = Ke 75 (5)

The priors P(C;), like the f;;’s must be found by
estimating the parameters of the model through an
iterative learning procedure.

1Strictly speaking, this is unlikely to be true of conceptual
organization. In my thesis (Martin, 1993) I discuss ways of
relaxing this assumption.

2This issue, like the binomial assumption, is discussed in
Martin (1993)
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P(t | x&w)

| hidden units |

Input Vector X (features of object or event)

Figure 1: The architecture of the model. Rect-
angles containing circles indicate vectors of
units, thin arrows indicate links with a fixed
weight of 1, and thick arrows indicate a pat-
tern of adjustably weighted links in which the
two connected structures are fully connected.
The squares in figure 1 denote a structure that
is shown in full in figure 2. The unit labeled
Y computes a sum, those labeled II compute
a product. The relevance layer actually con-
tains two layers of units with fixed weights

that compute P(C; | z&w) = Zi(zllf;;gff;zcj)
=1

A connectionist approach to learning
categories

Rumelhart, Durbin, Chauvin, and Golden have dis-
cussed an interpretation of connectionist networks as
maximum likelihood estimators. In order to develop
a model that learns iteratively from experience with
a series of objects and events, I have used an archi-
tecture that incorporates several types of units and
a learning rule that embody Bayesian principles. A
more extensive analysis of these types of units can be
found in Rumelhart et al. (In Preparation).

The model assumes that objects and events can be
represented by vectors of binary, conditionally inde-
pendent features. These features serve -as the input
to a group of auto-associators (AA’s), denoted by
squares in figures 1 and 2. the output of these AA’s
is a single activation value computed from the out-
put vector by the unit to which they lead (see fig. 2.)
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Figure 2: An exploded view of a square from
the previous figure. Each square acts as an
auto-associator of the input, connected to a
single “binomial” unit, b, whose activation is
given by [[;L, fi; /(1 - fi)' ™™

That unit (there is one for each AA) computes the
multivariate binomial likelihood of the feature vec-
tor (f) of a particular AA using the rule described
in equation (3). Accordingly I call it a binomial
unit. The activation of a binomial unit is nothing
but P(t | Ci&z&w).

The input also feeds into a hidden layer and thence to
a layer of units whose activation is computed accord-
ing to equations (4) and (5), with the P(C;)’s initially
equal and iteratively adjusted. These units compute
P(C; | z&w). I call them relevance units (a name
suggested by David Rumelhart) because they com-
pute the relevance of a given category to the internal
representation of an input vector.® The next layer of
units takes a product of the relevance units and the
binomial units. That product is just the product in
equation (2). Finally, the ultimate output unit of the
network takes a sum of those products and computes

P(t| z&w).

Simply put, this network exactly instantiates the
Bayesian analysis described in the previous section.
In order to iteratively train the model it is necessary
only to maximize the probability of the internal rep-
resentation, given the input and the parameters of
the model. As a result, the error signal for training is
simply the log of the output value of the final unit in
the network. As the output approaches 1, the error
approaches zero. The error signal is backpropagated
just as in any backpropagation model, as described
in Rumelhart et al. (1986).

31 believe these units are similar to the “gating units” de-
scribed in Jacobs, Jordan, Nowlan, and Hinton (1991). Their
role in the network is certainly the same.



Formalizing the notion of a schema

I have called this model “schema-based” because it
provides a formal account of a number of charac-
teristics of schemata.* Elsewhere (Martin, 1993), I
have discussed the historical development of the term
“schema” and identified eight critical properties of
schemata. I have argued that each of these proper-
ties can be described in terms of the connectionist
model I have outlined.

In the model, each conceptual category may be
thought of as a schema. This means that each auto-
associator in the network is a schema. Each schema
assimilates the input vector through an informational
bottleneck (created by its particular hidden layer.)
Each schema does this differently because the pro-
cess of learning causes a kind of specialization in the
network. Every schema adapts to account for a par-
ticular conceptual category more effectively by dis-
counting other inputs. The relevance units provide
the mechanism for this discounting and the limited
size of the hidden layers provides the impetus.

Incorporating knowledge

How does this model incorporate knowledge about
the world that goes beyond featural similarity? Con-
sider an example devised by Lance Rips (Rips, 1989).
Subjects filling out a questionnaire report that a cir-
cular object with a diameter of 3 inches is more likely
to be a pizza than a quarter, but subjects rated the
circle more “similar” to a quarter. The reason for
this is intuitively clear; we know that quarters show
almost no variation in size, even when run over by
a train. A model of categorization that depends on
featural similarity thus encounters the difficulty that
the overall similarity of a 3-inch circle to a quar-
ter is higher than to a pizza while the object is ex-
tremely unlikely to be a quarter. This apparent dis-
sociation between likelihood of category membership
and judged similarity poses a difficulty for similarity-
based theories.

The solution that the schema-based model offers de-
pends on its ability to represent concepts separately
from a decision about their relevance to a class-
membership decision. What are subjects reporting

%The idea of formalizing schemata in terms of Neural net-
works was first proposed by Rumelhart, Hinton, McClelland,
and Smolensky (1986). While my formalization bears little
resemblance to their proposal, they first proposed describing
schemata in terms of the dynamics of a network.

when they judge the similarity of a 3-inch circle to
a pizza or a quarter? They are reporting the likeli-
hood of seeing those features as attributes of a pizza,
based on their schema for pizza and their background
knowledge. In other words, P(t | pizza&kz&w).
When asked about class-membership, however, they
are trying to find the larger of P(quarter | z&w)
and P(pizza | z&w). In the schema-based model,
it would be a simple consequence of having encoun-
tered only one size for quarters that P(quarter |
r&w) < P(pizza | &w), when x includes the fea-
ture “3-inches around”. Nevertheless, since 3-inches
is more like the circumference of a quarter than a
pizza, P(t | quarter&z&w) > P(t | pizza&z&w).

In short, the schema-based model can account for
cases in which there is a discrepancy between featu-
ral similarity and probability of co-clasification. This
is because the space in which classes are bounded
regions is not featural similarity space, but a trans-
formation of the input-featural space that is devel-
oped over experience and reflects the distributional
properties of all past experience, not simply the cen-
tral tendency of a single category. Nevertheless, the
binomial units in the model compute a measure of
category-specific featural similarity. In this sense the
model is very much similarity-based.

Because the schema based model transforms the in-
put features through a connectionist hidden layer, it
is possible to represent information about the rela-
tionships among features as well as representing com-
plex information about the distribution of featural
values. These higher order units are sensitive to in-
tercorrelational properties of the input features. As
I have discussed elsewhere (Martin, 1993), this al-
lows for conceptual organization that depends upon
correlational properties of features. Murphy and
Medin (1985) have stressed that such correlations are
a prime motivation for theory-based models.

Another way in which the model might represent
knowledge about the relationships among features
would be through the use of information about the
importance of features both within and between cat-
egories. Such information might be incorporated into
the model by changing the mapping computed by the
schemata from an auto-associative mapping to some
adaptively developed mapping. This would have the
consequence of changing the space in which featural
similarity is computed. If one could find the right ex-
pression to replace the multvariate binomial rule that
enforces veridical representation, almost any form of
featural contingency could be represented. In this
way it might be possible to formalize very compli-
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cated notions of theory-based conceptual organiza-
tion.
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