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ABSTRACT OF THE DISSERTATION 

 

Molecular Determinants of Stimulus-Specificity in Macrophage Reprogramming 

 

by 

 

Quen Joshua Cheng 

 

Doctor of Philosophy in Molecular Biology 

University of California, Los Angeles, 2020 

Professor Alexander Hoffmann, Chair 

 

The clinical outcome of infectious diseases is largely dictated by the response of the 

immune system to the pathogen. Immune responses are context-specific and significantly 

affected by factors such as tissue microenvironment, age, chronic diseases, cytokines, or 

previous infections. Contextual variables alter immune function by reprogramming cells of the 

innate immune system such as macrophages, altering their signaling networks and epigenetic 

states. Importantly, this reprogramming is stimulus-specific, and both the scope and underlying 

mechanisms of this specificity are areas of great interest.  

In Chapter Two, we investigate the differential effects of Type I and II interferon (IFN) 

cytokines on human macrophage reprogramming by employing a sequential conditioning-

stimulation approach. Whereas prior studies have examined direct effects of IFNs, we found that 

IFNs produced indirect effects that could only be appreciated upon subsequent stimulation with a 

pathogen-associated molecule and transcriptomic analysis across multiple time points. We 
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identified 713 genes that were unaffected by IFN alone, yet after IFN conditioning had an altered 

gene expression response to a subsequent stimulus. Surprisingly, we also found that the IFNs 

were not uniformly pro- or anti-inflammatory as previously described. Instead, the effects of 

Type I and II IFN were gene-specific and stimulus-specific. IFN conditioning affected both 

signaling networks and the epigenetic state, providing mechanistic explanations for our findings. 

In Chapter Three we further explore the ability of stimuli to alter the epigenome of 

macrophages. We found that although many stimuli activate the transcription factor (TF) NFκB, 

only some were capable of altering the enhancer landscape through the formation of de novo 

enhancers. We showed that the capacity of NFκB to produce de novo enhancers was correlated 

with the temporal dynamics of NFκB activity, which are stimulus-specific. In particular, we 

found that whether NFκB is oscillatory or non-oscillatory was the primary determinant of its 

capacity to reprogram the epigenome. Thus, we propose a novel mechanism based on temporal 

dynamics to explain why TFs like NFκB reprogram macrophage epigenomes in a stimulus-

specific manner. Future work will investigate the functional and disease consequences of the de 

novo enhancers that arise specifically from non-oscillatory NFκB-inducing stimuli. 
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Preface 

As an internal medicine and infectious diseases physician, I am repeatedly challenged by 

the question, “What determines the outcome of an infection?” In many instances, with many of 

my patients’ illnesses, biomedical science has been unable to provide a satisfactory answer. I 

have been especially perplexed and intrigued by cases where the immune response actually 

causes subsequent disease. Our lack of mechanistic understanding was evident during residency 

as I took care of patients who became paraplegic due to transverse myelitis after a viral 

syndrome, suffered debilitating stroke after a shingles episode, or died of necrotizing MRSA 

pneumonia after influenza infection. My desire to understand these rare but devastating post-

infectious complications, with the hopes of developing prognostic and therapeutic tools to 

identify patients at risk and prevent these complications, has been the underlying motivation for 

my research career and the reason I pursued a Ph.D. in molecular biology.  

Thus, this dissertation is written from the perspective of a physician-scientist exploring 

the complex molecular interplay between host immune system and pathogen. Chapter One starts 

from a high-level clinical perspective, broadly reviewing the factors that may contribute to the 

outcomes of human infectious diseases. I then narrow the focus to the reprogramming of innate 

immune cells, which is the focus of my dissertation work in Chapters Two and Three. Chapter 

Four re-expands the scope as I discuss the clinically-motivated questions I hope to pursue in the 

years to come.  
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CHAPTER ONE: 

 

Introduction  



 

  2 

The Clinical Perspective 

 It is abundantly clear from medical literature and clinical experience that the same 

infection in different patients can produce different outcomes. For example, in a typical influenza 

season in the United States, an estimated 8.3% of the population are symptomatically infected, 

corresponding to approximately 27 million cases per year1,2. Most recover without complication, 

but 1-2% become sick enough to require hospitalization, with the most severe cases resulting in 

respiratory failure and death3. Additionally, influenza inflicts a large proportion of its damage by 

predisposing the host to a secondary bacterial infection. Bacterial pneumonia accounts for the 

majority of fatal influenza cases, ranging from 12,000-61,000 deaths annually since 20103. What 

determines the outcome of infection – who recovers without complication, who gets secondary 

pneumonia, and who dies of respiratory failure (Fig. 1.1A) – is highly complex. 

 From a microbiology perspective, one explanation for the heterogeneity of outcomes is 

that different strains of a pathogen may be variably virulent. This is true, for instance, of certain 

Klebsiella pneumoniae strains carrying Rmp genes that confer a hyperviscous, mucoid phenotype 

that is associated with invasive infections4. Additionally, the size of the initial inoculum of 

pathogen into host also plays a role in disease severity5. Inoculum effects are well-characterized 

in animal models of infection6 and very likely applicable to human disease.  

Host genetic factors are also an important variable. For example, mutations in IFN-𝛾 

receptor results in increased susceptibility to mycobacterial infections7, while patients lacking 

functional TLR3 or IRF7 proteins are highly susceptible to influenza8,9. These single-gene 

immunodeficiencies represent only a small fraction of genetic predispositions to infection. 

Multigenic traits, as well as polymorphisms in non-coding regions of the genome10, likely 
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determine the course of disease in many cases. Thus, both host and pathogen genetics are 

important factors.  

However, genetics alone are insufficient to explain the diversity of outcomes of 

infectious diseases. When in-bred, genetically identical mice are infected with a controlled 

inoculum of a pathogen, variable results are still observed in individual animals within an 

experiment. Clinical data indicates that non-genetic factors such as age11, nutritional status12, 

diabetes13, and chronic liver14 and kidney15 disease are all associated with worse outcomes in 

human infectious diseases. Toxins and drugs, including therapies that intentionally inhibit 

immune function, also have an effect. Broadly speaking, environmental factors or “context” 

affect the outcome of infection by modulating the immune system (Fig. 1.1B). How contextual 

variables reprogram immune function is the subject of this dissertation.  

Importantly, infections themselves represent another type of “context” that reprograms 

the immune system, altering subsequent immune function. In particular, infections reprogram 

cells of the innate immune system such as macrophages, dendritic cells, and monocytes. This has 

been variably referred to as “innate immune memory,”16 “trained immunity,”17 or “innate 

immune adaptation.”18 This reprogramming can be driven by pathogen-associated molecular 

patterns (PAMPs) directly, or cytokines produced by the immune system in response to an 

infection. Innate immune memory is distinct from the memory that is formed by T- and B-cells 

of the adaptive immune system. Adaptive memory is highly specific for a single antigen and 

protects the host from future infections with the same pathogen. In contrast, innate immune 

memory is characterized by a broad shift in the state of an immune cell, which is not antigen-

specific but alters the response to diverse heterologous stimuli.  
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Innate immune memory was initially described in plants that lack adaptive immunity19, 

and it occurs in all vertebrate animals16. One can speculate, therefore, that the ability of innate 

immune cells to be reprogrammed by infection has been conserved as a protective mechanism 

for the host. Indeed, observational data from Malawi indicates that the anti-tuberculosis BCG 

vaccine, which has been a model stimulus used to induce innate immune memory 

experimentally20,21, confers a prolonged, non-specific protection against neonatal sepsis due to 

salmonella22. In this example, exposure to BCG enhances innate immune responses against 

bacterial infections in a protective manner. A second example of an evolutionarily protective 

mechanism proposes the converse: prolonged exposure to lipopolysaccharide (LPS), a 

component of gram-negative bacterial cell walls, induces a state of immune “tolerance,” 

potentially mitigating the damage caused by excessive inflammation23. Intuitively, it seems 

likely that innate immune memory exists in plants and humans alike for the benefit of the host. 

Thus, there has been substantial interest in leveraging innate immune memory for therapeutic 

purposes. Enhancing the host’s natural tendencies toward immune innate immune memory is a 

strategy that is being considered to treat excessive inflammation in sepsis24, as an 

immunomodulatory strategy to treat cancer25, or as an adjuvant for vaccines26.  

However, in some instances, innate immune memory may have detrimental effects. It is 

increasingly evident that even mild infections increase the risk for myocardial infarction27, 

stroke28, solid organ transplant rejection29, and autoimmune diseases30. The mechanisms of these 

post-infectious complications are multi-factorial, but dysregulated function of innate immune 

cells plays a central role by driving excessive inflammation. Indeed, lung transplant patients that 

develop allograft rejection after a respiratory viral infection display increased levels of the 

monocyte-recruiting chemokines CXCL9 and CXCL1031,32. And adoptive transfer of 
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macrophages treated with low dose LPS in vitro promotes greater aortic plaque formation in a 

mouse model of atherosclerosis33. These post-infectious complications involving dysregulated 

inflammation indicate that the effects of innate immune memory can be either protective or 

detrimental.  

Given the variable effects of innate immune memory – which can either heighten or 

diminish inflammation and carries potential to either prevent or cause disease – a deeper 

understanding of the underlying mechanisms will be essential for harnessing its therapeutic 

potential. A critical knowledge gap is our understanding of the mechanisms underlying stimulus-

specificity of innate immune memory. For instance, mice previously exposed to influenza are 

more susceptible to secondary pneumococcal infection34, while mice previously exposed to 

adenovirus are protected from secondary pneumococcal infection35. Exposure to different 

pathogens – in these examples two viruses that cause similar respiratory diseases – can produce 

divergent memory effects. Whether a given stimulus will promote inflammation as in the 

adenovirus example or dampen inflammation as in the influenza example is unclear. 

Additionally, broadly categorizing phenotypes as “pro-inflammatory” or “anti-inflammatory” is 

also insufficiently descriptive, as innate immunity is more than just a simple on/off inflammation 

switch. Thus, a more detailed understanding of the molecular mechanisms of innate immune 

memory, i.e. macrophage reprogramming, is needed. Particular attention should be drawn to the 

determinants of stimulus-specificity and a characterization of the downstream effects beyond 

simply “pro-” or “anti-inflammatory.” 
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The Molecular Perspective 

 Innate immune memory arises from the reprogramming of sentinel cells of the immune 

system: monocytes, macrophages, and dendritic cells. A critical function of these immune 

sentinel cells is to survey the environment and coordinate downstream immune responses. They 

are equipped with a diverse set of receptors, both cell membrane-associated and intra-cellular, 

that recognize a broad range of ligands including PAMPs, cytokines, and tissue damage-

associated molecular patterns (DAMPs) such as oxidized LDL or soluble histones36. In response 

to a given stimulus, immune sentinel cells can activate a wide variety of downstream immune 

responses that must be appropriate to the stimulus (Fig. 1.2A). For instance, in response to a 

bacterial infection, neutrophils are recruited to phagocytose and kill the invading bacteria37. In 

response to an intracellular viral infection, cytotoxic T-cells are activated to eradicate infected 

cells and prevent spread of disease38. In response to tissue damage, fibroblasts are recruited to 

participate in wound healing39. These discrete effector functions are tied to specific gene 

expression programs (Fig. 1.2B). For example, the expression of chemokines such as CXCL1, 

CXCL2, and CXCL3 recruit neutrophils40. The expression of MHC class II and 

immunoproteasome genes promotes activation of cytotoxic T-cells41,42. The expression of matrix 

metalloproteinases such as MMP10 are critical for wound healing and tissue regeneration43,44. 

These effector functions are all coordinated by immune sentinel cells, and the choice of effector 

function depends not only on stimulus identity but also the context in which the immune sentinel 

cell is seeing the stimulus. That is, immune sentinel cells can be reprogrammed by their context – 

whether that be disease states, drugs, cytokines, or prior infections – and this context together 

with stimulus identity determines the response to a given stimulus.  
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Figure 1.2: Immune sentinel cells produce stimulus-appropriate responses. A) Immune sentinel cells detect a 
diverse array of signals and activate stimulus-appropriate responses. Each of these downstream responses requires the 
induction of a distinct set of genes. B) Schematic of stimulus-responsive gene expression profile of an immune 
sentinel cell in response to five stimuli (columns), with clusters of genes (rows) corresponding to the downstream 
immune responses in Panel A.
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macrophages, respectively (Fig. 1.3A). This experimental system of IFN-𝛾- or IL-4-mediated 

macrophage “polarization” has provided substantial insight into the mechanisms of macrophage 

reprogramming. 

When a macrophage receptor binds its cognate ligand, a signal transduction cascade 

involving a network of proteins – scaffolding adapters, ubiquitin ligases, kinases, and 

phosphatases – is activated47. These signaling networks activate stimulus-dependent transcription 

factors (SDTFs) such as NFκB, STATs, IRFs, and AP1, which bind to enhancer and promoter 

elements in the genome. This results in the transcription of genes that are required for 

macrophage effector functions. The molecular interactions that convert a ligand-receptor 

interaction to stimulus-stimulus gene expression are highly tunable and provide the framework 

for context-dependent macrophage reprogramming. 

 Reprogramming occurs primarily at two levels within this framework (Fig. 1.3B). The 

first is through an alteration of the signaling network. When treated with IFN-𝛾, macrophages 

upregulate receptors such as TLR2 and TLR448, transcription factors such as IRF-149, and 

negative regulators such as SOCS350. The net result of these signaling network changes is that 

IFN-𝛾-primed cells are poised to respond with greater inflammatory gene expression when 

encountering a PAMP such as LPS; that is, the macrophage is now a pro-inflammatory “M1”-

polarized macrophage. Conversely, when treated with IL-4, macrophages upregulate mannose-

binding receptor51, enhancing its ability to phagocytose fungi and mannosylated cell debris and 

repair injured tissue. Thus, the IL-4-driven changes in receptor abundance promote an “M2”-

polarized phenotype. 
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The second molecular mechanism that underlies macrophage reprogramming is 

epigenetic. The epigenome of a cell is composed of chromatin structure, patterns of histone 

modification, chemical DNA modifications like methylation, and the stable presence of lineage-

determining transcription factors (LDTFs) that bind specific sequences of DNA52. These factors 

work together to define the enhancer repertoire of a cell, which is specific to a given lineage or 

type of cell. Macrophage enhancers, for instance, are defined by the LDTFs PU.1, IRF8, and 

C/EBP53. A subset of LDTF-bound enhancers drive constitutive expression of cell type-specific 

genes. At other LDTF-bound sites, enhancers are poised to respond to environmental cues that 

activate SDTFs, which bind cognate DNA sequences that are typically colocalized with LDTF 

binding sites54. Thus, the enhancer repertoire dictates not only the genes that are constitutively 

expressed but also the set of genes that respond to a given stimulus in a given cell type. 

Until recently, it was thought that the enhancer repertoire of a differentiated cell is fixed 

by the presence of these LDTFs. In recent years, however, it has become evident that in response 

to acute stimuli such as LPS, de novo enhancers can be formed54–56. These de novo enhancers 

correspond to the activity of SDTFs such as NFκB, which are surprisingly capable of interacting 

with densely compacted regions of the genome not bound by LDTFs. Binding of SDTFs at these 

latent enhancers is associated with nucleosome repositioning and the deposition of positive-

acting histone marks such as H3K27-acetylation and H3K4-methylation55,56 (Fig. 1.3C). 

Polarization of macrophages with IFN-𝛾 or IL-4 results in substantial changes in the enhancer 

landscape, with gains and losses of enhancer sites due to the activity of SDTFs STAT1 or IRF6, 

respectively55. Histone modifying enzymes such as the JMJD3 demethylase contribute by 

rewriting the adjacent histone code57. Intriguingly, these epigenetic changes are durable, as 

macrophages reprogrammed by IFN-𝛾 are unable to adopt an M2 phenotype when subsequently 
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treated with IL-458. This suggests that the potential for context-dependent reprogramming is 

limited and that macrophages reprogrammed by a given context-defining stimulus will continue 

to function in that reprogrammed state even in the presence of other stimuli. 

The reprogramming of signaling networks and enhancer repertoire results in a change in 

macrophage phenotype. M1 and M2 macrophages differ significantly in their metabolic profile, 

with classically-activated macrophages utilizing a higher rate of anaerobic glycolysis, while 

alternatively-activated macrophages favor oxidative phosphorylation59. The transcriptome of M1 

and M2 macrophages also differs significantly60, as do patterns of chemokine and chemokine 

receptor expression61. Importantly, although M1 and M2 polarization states have been a useful 

paradigm to study the mechanisms and consequences of macrophage reprogramming, in reality 

macrophage phenotypes are far more diverse. M1 and M2 states only represent two discrete 

possibilities in a spectrum of macrophage phenotypes, and tremendous stimulus-specificity exists 

in the way different ligands reprogram macrophages62.  

Given the importance of their function as sentinel cells, it is not surprising that 

macrophage responses are stimulus-specific. Yet relatively few studies have investigated the 

mechanisms of specificity. One explanation for the paucity of data may be the assumption that 

specificity is inherently explained by the wide array of macrophage receptors that distinguish 

specific cytokines and PAMPs. While this notion seems intuitive, a close examination of the 

signaling networks downstream of these receptors reveals that they converge on only a few 

kinases and transcription factors (TFs)63. NFκB, for instance, is activated by a vast array of 

PAMPs and cytokines including all toll-like receptors, cytosolic nucleic acid sensors, and the 

cytokine receptors IL1R, TNFR, just to name a few. Indeed, the diversity of PAMP or cytokine 

receptors far outnumbers the set of TFs that operate at the terminal end of innate immune 
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signaling cascades. Thus, the diversity of macrophage receptors would not be predicted to 

generate the observed degree of specificity in stimulus-responsive gene expression64. 

One mechanism that increases the degree of stimulus-specificity is the combinatorial 

regulation of genes by different TFs. For example, Gene X may require TF-A and TF-B together, 

while Gene Y is activated by TF-A or TF-B, and Gene Z is activated by TF-A but not TF-B. 

Different stimuli acting through their cognate receptors may activate different combinations of 

TFs, with varying degrees of activation strength. This combinatorial mechanism of gene 

regulation has been demonstrated experimentally at key immune response genes such as Ccl565 

and Ifnb66. However, a systems-level analysis of combinatorial strategies reveals that this 

mechanism alone does not explain all of the stimulus-specificity observed in macrophage gene 

expression responses67.  

An additional mechanism may be the stimulus-specific dynamics of TF activity. In 

response to different stimuli, TFs such as NFκB may enter the nucleus with distinct speeds, 

amplitudes, and durations, and may oscillate between the nucleus and cytoplasm68. Under this 

model, the temporal activation profile of a TF may determine how a given gene is expressed. For 

instance, longer durations of NFκB activity allow for maximal accumulation of mRNAs with 

long half-lives such as Ccl269. Thus, TF dynamics, which are stimulus-specific, may account for 

additional stimulus-specificity of macrophage gene expression, and temporal dynamics may 

work together with combinations of different TFs to produce stimulus-specific responses. 

One limitation thus far is that the work on stimulus-specific macrophage responses has 

largely focused on the regulation of immediate-response genes. Less attention has been paid to 

the long-term effects of different stimuli on macrophage reprogramming. Yet, as discussed 

above, reprogrammed macrophages give rise to innate immune memory and are drivers of both 
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appropriate and aberrant immune responses that result in health or disease. Thus, developing a 

molecular understanding of the stimulus-specificity of macrophage reprogramming will be 

critical for our ability to leverage innate immune memory to improve human health. 

 

Summary 

 Context-dependent function of the innate immune system, termed “innate immune 

memory,” arises from the reprogramming of immune sentinel cells like macrophages at the 

signaling network and epigenomic levels. Both the molecular and physiologic phenotypes are 

diverse and stimulus-specific, and although mechanisms have been proposed to explain the 

diversity of phenotypes, more work is needed to address the molecular determinants of stimulus-

specificity. This dissertation aims to further our understanding of these molecular determinants. 

 Chapter Two is a thorough comparative analysis of the effects of reprogramming human 

macrophages with two types of interferon (IFN) cytokines. We compare not only the direct 

effects of Type I vs Type II IFN on macrophages, but also explore their genome-wide effects on 

subsequent response to a panel of secondary stimuli. We find, contrary to a widely accepted 

model, that Type I and Type II IFNs are not broadly anti- or pro-inflammatory, but that their 

effects are gene-specific and stimulus-specific. This nuanced specificity arises from alterations to 

innate immune signaling networks and reprogramming of the epigenome.   

 Chapter Three asks a fundamental mechanistic question: “What determines the capacity 

of a given stimulus to form de novo enhancers and reprogram the epigenome of a macrophage?” 

We find that temporal dynamics of NFκB activity, particularly whether it is oscillatory or non-

oscillatory, determine its capacity to produce de novo enhancers in response to some stimuli but 



 

  15 

not others. We propose a novel mechanism based on temporal dynamics to explain why SDTFs 

like NFκB reprogram macrophage epigenomes in a stimulus-specific manner. 

 Chapter Four expands upon these results to explore their implications for human health 

and disease. We discuss key unanswered questions and propose directions for further research. 
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CHAPTER TWO: 

 

Sequential conditioning-stimulation reveals distinct gene- 

and stimulus-specific effects of Type I and II IFN on 

human macrophage functions 
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Summary 

Macrophages orchestrate immune responses by sensing and responding to pathogen-associated 

molecules. These responses are modulated by prior conditioning with cytokines such as 

interferons (IFNs). Type I and II IFN have opposing functions in many biological scenarios, yet 

macrophages directly stimulated with Type I or II IFN activate highly overlapping gene 

expression programs. We hypothesized that a sequential conditioning-stimulation approach 

would reveal with greater specificity the differential effects of Type I and II IFN on human 

macrophages. By first conditioning with IFN then stimulating with toll-like receptor ligands and 

cytokines, followed by genome-wide RNA-seq analysis, we identified 713 genes whose 

expression was unaffected by IFN alone but showed potentiated or diminished responses to a 

stimulus after conditioning. For example, responses to the cytokine TNF were restricted by Type 

II IFN conditioning but potentiated by Type I IFN conditioning. We observed that the effects of 

IFN were not uniformly pro- or anti-inflammatory, but highly gene-specific and stimulus-

specific. By assessing expression levels of key signal transducers and characterizing chromatin 

accessibility by ATAC-seq, we identify the likely molecular mechanisms underlying Type I and 

Type II-specific effects, distinguishing between modulation of cytoplasmic signaling networks 

and the nuclear epigenome that synergistically regulate macrophage immune responses.   
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Introduction 

Macrophages play multiple crucial roles in initiating and coordinating healthy immune 

responses, and their dysregulation is associated with pathologic processes ranging from 

atherosclerosis to the cytokine storm seen in sepsis. One of the key functions of macrophages is 

to sense signals from the environment, such as pathogen associated molecular patterns (PAMPs) 

and cytokines, and translate these environmental inputs into a coordinated response involving the 

expression of hundreds of genes1,2. The specific nature of this response depends not only on the 

type of signal but also on the tissue microenvironment and prior cytokine exposures. Stimulus-

responsive gene expression programs in macrophages are thus context-dependent. The same 

environmental signal that elicits an inflammatory response in one context might be 

immunologically silent in another.  

One of the best-defined examples of this context-dependence is the “M1/M2” paradigm 

of macrophage polarization1,2. Macrophages conditioned with interferon (IFN)-𝛾 and 

lipopolysaccharide (LPS) have been termed “classically activated” M1 macrophages and are 

skewed towards a pro-inflammatory phenotype that favors killing of intracellular pathogens. In 

contrast, macrophages conditioned with cytokines such as interleukin (IL)-4 have been termed 

“alternative” M2 macrophages whose functions are predominantly immunomodulatory and are 

important for tissue repair. First described in the late 1990s, these M1/M2 polarization states are 

now viewed as extremes of a wide spectrum of macrophage phenotypes that are defined by their 

exposure to diverse cytokine microenvironments3,4. In this model, cytokines “condition” 

macrophages, and the conditioning regimen can either “prime” or “tolerize” cells, respectively 

potentiating or diminishing their response to a subsequent stimulus.  
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Alterations in the epigenome are the primary mechanism of this phenomenon5. For 

instance, exposure to either IFN𝛾 or IL-4 leads to a gain of enhancers and increases in chromatin 

accessibility as measured by ChIP- and FAIRE-seq6,7. Furthermore, prior IL-4 exposure inhibits 

the gain of IFN𝛾-mediated enhancers, illustrating that cross-repressive mechanisms exist 

amongst the various cytokines to which macrophages are exposed8. In addition to epigenetic 

changes, cytokine conditioning can affect signaling and transcription factor activity as an 

additional mechanism of priming or tolerance8-10. Altogether, there has been a paradigm shift 

towards understanding macrophage biology within this framework of conditioning and 

subsequent response to stimulation. 

The IFNs have long been appreciated as fundamentally important cytokines in the 

mammalian immune system whose functions go beyond antiviral host defense11. IFN𝛾, as 

described above, has a well-appreciated role for activating macrophages and is required for 

immunity to intracellular pathogens such as tuberculosis and listeria12,13. Similarly, the Type I 

IFNs also play a substantial role in regulating myeloid cell function14,15. One of their roles in 

macrophages is thought to be the induction of an anti-inflammatory state that is in contrast to the 

pro-inflammatory role of Type II IFN16,17. However, others have also shown that Type I IFNs 

can promote inflammation, induce apoptosis, enhance antigen-presentation, and participate in 

signaling cross-talk with other cytokines like tumor necrosis factor (TNF)18-21.  

In some human disease states, Type I and II IFNs do indeed have contrasting effects. In 

Mycobacterium leprae infection, patients with lepromatous type, a progressive form of leprosy, 

possess an IFN𝛽 signature in their skin lesions, while patients with the self-limiting tuberculoid 

form of leprosy have an IFN𝛾 signature at the site of infection22. Similarly, IFN𝛽 inhibits while 

IFN𝛾 enhances the control of M. tuberculosis infection23. A variety of mechanisms have been 
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proposed for the opposing roles of Type I and II IFN, such as IFN𝛽 leading to down-regulation 

of IL-12 and antimicrobial peptides through IL-10, or IFN𝛽 suppression of IFN𝛾 receptor 

expression22,24,25. 

Despite these contrasting physiological effects of Type I and II IFN in vivo, gene 

expression studies have found that Type I and Type II IFN have highly overlapping effects on 

the macrophage transcriptome26,27. These results appear insufficient to explain the biological 

differences, and they challenge the dichotomy that IFN𝛾 is pro-inflammatory while IFN𝛽 is anti-

inflammatory. Notably, however, these studies have assessed only the direct gene-expression 

consequences of IFN and have not addressed the physiologically relevant paradigm of 

macrophage conditioning followed by stimulation. Additionally, the majority of studies on 

macrophage conditioning have been done using murine macrophages, and data are lacking from 

human cells which are likely to be different28,29.  

We therefore sought to define with high resolution the effects of Type I and II IFN on 

human macrophages using sequential conditioning and stimulation. We hypothesized that 

additional differences would be revealed by unbiased, genome-wide transcriptomic analyses of 

macrophages conditioned with IFN𝛽 or IFN𝛾 and subsequently stimulated with various PAMPs 

and cytokines. Our findings reveal complex and nuanced differences between Type I and II IFNs 

that are gene-specific and stimulus-specific.  

 

Results 

Gene expression programs in human macrophages are stimulus-specific 

To characterize the gene expression response of primary human macrophages we isolated 

CD14+ monocytes from the peripheral blood of three healthy adult donors. These were then 
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cultured in media containing M-CSF for seven days to differentiate the monocytes to 

macrophages (Fig 2.1a). On day 7, we stimulated the macrophages with the Toll-like receptor 

(TLR) ligands Pam3CSK (which activates TLR2), Lipid A (TLR4), and poly(I:C) (TLR3), and 

the cytokines TNF𝛼 and IFN𝛽 in a time course over ten hours, and performed RNA-seq. There 

was a high degree of reproducibility between the one female (Donor 2) and two male donors, 

with correlation coefficients between replicates ranging from 0.940 to 0.984. 

We observed that the gene expression programs were highly stimulus-specific. Principal 

component analysis (PCA) revealed divergent gene expression patterns for the five stimuli (Fig 

2.1b), and using K-means clustering we identified nine distinct gene expression clusters based on 

stimulus-specificity (Fig 2.1c). As one would predict from the established models of innate 

immune signaling networks, TNF𝛼 and Pam3CSK displayed similar patterns in the PCA and 

heatmap with only subtle differences, for instance in Clusters 5 and 6 where Pam3CSK induced 

more robust gene expression than TNF𝛼. Consistent with the known induction of Type I IFNs by 

TLR3 signaling, poly(I:C) and IFN𝛽 also induced similar responses, with the exception of a few 

genes in Clusters 1 and 3, presumably due to poly(I:C)’s activation of NFκB through TRIF. 

Lipid A was at the center of the PCA plot and induced virtually all the genes in the heatmap as 

one would predict, given that TLR4 signaling is known to activate multiple transcription factors 

through MyD88-dependent and independent pathways.  

To further our understanding of the regulatory control of stimulus-specific gene 

expression programs, we performed an analysis of transcription factor binding motifs in 

promoters of induced genes (Fig 2.1d). Confirming our prior understanding of the signaling 

networks downstream of PAMPs and cytokines, NFκB motifs were enriched in Clusters 1, 2, 4, 

5, and 8, and ISRE motifs were enriched in Clusters 7, 8, and 9. Having validated the stimulus-
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specificity of gene expression programs in our macrophage system, we next used these 

transcriptomic phenotypes to understand the effects of Type I vs Type II IFN conditioning on the 

stimulus-responsiveness of human macrophages. 
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Figure 2.1: Stimulus-responsive gene expression in human macrophages. (a) Experimental 
design. (b) Principal component analysis of expressed genes in naïve macrophages under with 
five stimulation conditions. (c) Heat map of 1421 genes induced at least four-fold by any 
stimulus (FDR<0.05). (d) Transcription factor motif analysis for enrichment of NFκB and 
ISRE sequences within promoters of clustered genes. 
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Conditioning with Type I or II IFN differentially alters macrophage gene expression responses 

to stimuli 

On day 4 of the M-CSF differentiation process, IFN𝛽 or IFN𝛾 was added and left in the 

medium through day 7 to condition the macrophages (Fig 2.2a). IFN-treated and untreated 

(“naïve”) macrophages were then stimulated with the same five stimuli on day 7 in a 10-hour 

time course, and RNA-seq was performed on all samples. Altogether, RNA-seq libraries from 

152 samples encompassing three biological replicates, three conditioning regimens, five stimuli, 

and five time points were analyzed. 

Our first observation was that IFN𝛽 and IFN𝛾 had substantial and distinct effects on the 

basal transcriptomic state of macrophages, with a correlation coefficient of only 0.110 (Fig 

2.S1a) at the zero-hour time point prior to the second stimulation. We found that IFN𝛾 had a 

larger effect on basal gene expression than IFN𝛽, in agreement with the fact that our widely 

accepted protocol of using M-CSF for monocyte-to-macrophage differentiation produces 

macrophages whose basal transcriptome is dependent on tonic Type I IFN signaling30. These 

effects could be visualized by the distance between unstimulated samples in PCA plots of naïve, 

IFN𝛽-, and IFN𝛾-conditioned macrophages (Fig 2.2b, Fig 2.S2). Despite the overall discordance, 

we identified a subset of genes that were concordantly down-regulated. Ontology analysis (Fig 

2.S1b) of these genes revealed roles in cell cycle, mitosis, and chromosome organization, 

suggesting that both IFNs inhibit macrophages from proliferating.  

Although there were gene expression differences between Type I and II IFN at the basal 

state, we hypothesized that many effects of IFN conditioning would only be observed upon 

second simulation. To address this hypothesis, we developed an analytical workflow to address 

the complexity of the datasets. We first averaged counts across replicates, collapsed the four time 



 

  30 

points into a maximum fold-induction for each stimulation condition, and then classified gene 

expression responses into three categories based on a gene’s expression in the IFN-conditioned 

stimulation relative to the naïve stimulation using a four-fold threshold to define increase, 

decrease, or unchanged. We then performed K-means clustering based on this discrete 
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Figure 2.2: Type I and II IFN have gene-specific and stimulus-specific effects on gene expression. (a) 
Experimental design. IFN! (200 U/ml) or IFN" (10 ng/ml) were added on Day 4 of macrophage differentiation, 

64 hours prior to stimulation. (b) Representative PCA plots for two of the five stimuli illustrating the differential 
effect of IFN! vs IFN" on stimulus-responsive gene expression. (c) Master heat map of all conditions. On the 

right, biological replicates are averaged, and z-scores for 1754 genes are represented. “⌀” denotes unstimulated 

sample, and each stimulus contains four time points: 1.5, 3, 5.5, and 10 hours. On the left, the same data are 

represented as fold-change of IFN-conditioned relative to naïve. Red denotes genes where IFN conditioning 

results in a maximum induction that is 4-fold greater than naïve, blue denotes genes where IFN conditioning 

results in 4-fold decrease, and white denotes genes where IFN conditioning does not affect expression. Genes are 

grouped into 18 clusters by the effect of conditioning on stimulus-responsive gene expression.  
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classification system and identified 18 clusters that demonstrated the distinct effects of IFN 

conditioning on gene expression responses to each stimulus (Fig 2.2c, left). 1754 genes were 

included in the analysis: the 1421 genes that were inducible in naïve macrophages plus an 

additional 333 genes that met criteria for induction only when conditioned with an IFN.  

We found that many genes fit our hypothesis of differential IFN effects that were 

observable only upon second stimulation. For instance, IFN𝛾 and IFN𝛽 had similar effects on the 

genes in Cluster 6 at the basal state (“⌀” column), yet IFN𝛾 conditioning potentiated these genes’ 

response to Pam3CSK and Lipid A whereas IFN𝛽 conditioning had no effect. In another 

example, IFN𝛽 conditioning of the genes in Cluster 10 had no effect on the basal expression but 

diminished their response to poly(I:C), whereas IFN𝛾 conditioning increased both basal 

expression responses to poly(I:C). 

To visualize these data without imposed thresholds, we plotted z-scores in a heatmap 

with the same clusters, also including individual time point information (Fig 2.2c, right). We 

found that the relationships we observed in the thresholded analysis on the left were preserved 

when visualized as z-scores on the right, though in some instances the thresholded analysis 

exaggerated the true quantitative effect. Overall, this analysis demonstrated that the differential 

effects of Type I and II IFN are both gene-specific and stimulus-specific. That is, for a given 

gene, IFN𝛽 and IFN𝛾 could have opposing effects on its response to one PAMP, but similar 

effects on its response to another PAMP. 

 

IFN conditioning potentiates or diminishes the stimulus-responsiveness of genes not induced by 

IFN alone 
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We next focused on the genes whose expression was unchanged by IFN alone yet 

exhibited a potentiated or diminished response to second stimulation when conditioned with IFN. 

To further explore this group of genes we categorized all treatment conditions into nine 

categories: first by the effect of IFN treatment alone, i.e. “basal” gene expression, then by their 

conditioned response to stimulation compared to naïve (Fig 2.S3a, S3b). For this analysis, we 

used a two-fold threshold to more stringently identify genes that had “no change” in the basal 

state. We then used a four-fold threshold to categorize the stimulus-responsiveness of the 

conditioned macrophages as “unaffected,” “potentiated,” or “diminished” compared to naïve. 

For each of the 1,754 inducible genes, ten cases were analyzed: two conditioning 

regimens and five stimulation conditions. At the basal state, we found that 65.4% of cases fell 

within a range of two-fold change and were considered “no change” by IFN treatment alone (Fig 

2.3a). Of these cases that were unchanged, we found that 12.4% were nonetheless potentiated or 

diminished in their response to a second stimulation, with 8.9% of cases showing a diminished 

response, and 3.5% showing a potentiated response. Altogether 713 genes had responses to one 

or more stimuli that were potentiated or diminished by IFN conditioning. 

We performed Ingenuity pathway analysis on these genes and found that canonical 

pathways related to immune functions were significantly overrepresented (Fig 2.S3c). For many 

of these pathways, IFN𝛽 and IFN𝛾 conditioning had a similar effect, frequently diminishing gene 

expression responses. For instance, IL-10 signaling and granulocyte adhesion and diapedesis 

were overrepresented in the genes diminished by conditioning with either IFN. On the other 

hand, some pathways were potentiated by IFN𝛾 but diminished by IFN𝛽 conditioning, such as 

dendritic cell maturation. This pathway analysis provided a general sense that many relevant 
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immunological pathways were affected by IFN conditioning, but did not identify any unifying 

functional themes.   
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Figure 2.3: IFN conditioning potentiates or diminishes the stimulus-responsiveness of genes not induced 
by IFN alone. (a) Left: effect of either IFN prior to second stimulation (two-fold threshold). Right: of the genes 
not changed by IFN alone, the distribution of genes with potentiated or diminished response to a stimulus. (b) 
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Number of genes in each category, separated by stimulus. (d) TNF!-inducible genes that are unaffected by IFN 
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have a diminished response to poly(I:C).  
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To obtain a more detailed understanding of the “no change / potentiated” and “no change 

/ diminished” gene responses, we organized our analysis in a stimulus-centric manner (Fig 2.3c, 

S4). We found that macrophage responses to TNF were dramatically different in Type I vs Type 

II IFN conditioning. IFN𝛾 potentiated only 10 genes but diminished 120 genes, while IFN𝛽 

potentiated 63 genes and diminished only 8 genes. This included many genes with well-defined 

roles in immune responses. For instance, IFN𝛽 potentiated IL1A, IL6, and CCR7, while IFN𝛾 

diminished the TNF response of IL1A, IL6, IL18, and CXCL1 (Fig 2.3d, full gene list in 

Supplemental Table 2). There were also very few genes that were potentiated or diminished by 

both IFNs. These results suggest that, for genes not directly induced by IFN, Type I and II IFNs 

have opposing and non-overlapping effects on macrophage responses to TNF. 

Pam3CSK and Lipid A responses were also significantly affected by IFN conditioning 

(Fig 2.3c). In contrast to the TNF responses, one could not make a generalized statement about 

the direction of the effects of IFN𝛽 or IFN𝛾 on Pam3CSK and Lipid A responses. Instead, both 

IFNs are able to potentiate and diminish gene expression responses. A key observation, 

therefore, is that the effects of IFN conditioning on TLR2 and TLR4 responses are gene-specific. 

For instance, IFN𝛾 had opposing effects on two chemokines that are reported to both recruit 

neutrophils 31: in response to Pam3CSK, CXCL3 was potentiated and CXCL6 was diminished by 

IFN𝛾 conditioning (Supplemental Table 2).  

IFN conditioning had a striking effect on poly(I:C) and IFN𝛽 responses (Fig 2.3c, 3e). 

Here, the vast majority of effects were of diminished gene expression response, demonstrating 

that both IFNs, classically produced in the context of viral infection, can tolerize macrophages 

and diminish their subsequent response to the viral dsRNA-mimetic poly(I:C) and additional 

antiviral cytokines. Importantly, however, only a minority of these genes were affected by both 
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IFN𝛽 and IFN𝛾. In fact, many genes whose poly(I:C)-responsiveness was diminished by IFN𝛽 

were directly upregulated by IFN𝛾 treatment (Fig 2.3e), suggesting that IFN𝛾 directly induces a 

subset of the poly(I:C) gene expression program that is inhibited by IFN𝛽 conditioning. The 

reverse is also true – many poly(I:C)-responsive genes that are also induced by IFN𝛽 are 

inhibited by IFN𝛾 conditioning.  

 

IFN conditioning differentially alters cytokine and chemokine expression in a stimulus-specific 

manner 

Many of the genes we identified in the analysis of “no change / potentiated” and “no 

change / diminished” groups were cytokines and chemokines. One widely accepted model of 

Type I and II IFN contends that IFN𝛾 is pro-inflammatory while IFN𝛽 is anti-inflammatory16,17. 

We therefore assessed the effect of IFN conditioning on transcript levels of the well-established 

inflammatory cytokines IL1𝛽, IL6, and TNF and the anti-inflammatory cytokine IL10 in 

response to TLR stimulation (Fig 2.4). We found that some conditions were consistent with the 

proposed model, such as IL6 and TNF in responses to Pam3CSK, where IFN𝛾 primed 

macrophages for potentiated gene expression. We also saw that IFN𝛾 conditioning dramatically 

suppressed IL10 induction, while IFN𝛽 preserved the expression of this anti-inflammatory 

cytokine. However, there were also conditions where the gene expression pattern did not 

conform to the proposed model. For instance, conditioning with either IFN completely abrogated 

the expression of IL1B and IL6 in response to poly(I:C). Both IFNs also had parallel effects on 

potentiating IL6 responses to Lipid A. These stimulus-specific effects of IFN𝛽 and IFN𝛾 

challenge the idea that IFN𝛾 is strictly pro-inflammatory and IFN𝛽 anti-inflammatory.  
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Our genome-wide analysis also suggested that exposure to Type I or II IFN modulated 

subsequent chemokine production. We grouped chemokines by the primary cell type recruited31 

and assessed the effect of IFN conditioning on gene expression after TLR stimulation (Fig 2.S5). 

Even in naïve macrophages, without IFN conditioning, we observed stimulus-specific patterns of 

chemokine expression. TLR3 stimulation, for instance, induced more expression of lymphocyte 

and monocyte-recruiting chemokines than neutrophil-recruiting chemokines. Exposure to either 

IFN had relatively little effect on the basal expression of chemokines prior to second stimulus. 

However, in response to TLR2 or TLR4 stimulation, conditioning with IFN𝛾 tended to enhance 

lymphocyte-recruiting chemokines and diminish chemokines involved in recruitment of 

monocytes and neutrophils. The majority of chemokines, however, had specific effects 

depending on the type of IFN and the type of PAMP. For instance, expression of CXCL8 was 

potentiated by IFN𝛾 but slightly diminished by IFN𝛽 for TLR2 and TLR3 stimulation and 

unaffected by either IFN for TLR4 stimulation, again illustrating that the effects of IFN 

conditioning are gene-specific and stimulus-specific. 
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IFN conditioning differentially affects signaling networks 

Having established that IFN conditioning has stimulus-specific effects on a genome-wide 

level as well as on relevant single genes, we next explored potential mechanisms for these 

phenomena. We considered that IFN conditioning may affect the strength of stimulus-responsive 

signaling networks and the chromatin environment of target genes, which together may result in 

stimulus- and gene-specific potentiation or reduction in gene activation.  

To examine whether conditioning with IFN might affect PAMP and cytokine-responsive 

signaling networks, we assessed the impact of IFN𝛽 and IFN𝛾 conditioning on the basal 

expression of genes that encode the transcriptional networks downstream of TNFR, TLR2, 

TLR4, TLR3, and IFNAR (Fig 2.5a). We found a number of substantial changes in expression of 

both positive and negative regulators. For instance, TLR3 expression was increased 5.1-fold and 

IRF7 was increased 11.9-fold by IFN𝛽 conditioning. The changes in TLR3 and IRF7 would 

predict increased responses to poly(I:C) when conditioned with IFN𝛽, but expression of USP18, 

a key negative regulator of IFNAR32 was also dramatically increased, perhaps mitigating the 

poly(I:C) response. 

The effect of IFN𝛾 conditioning on IRF and ISGF3 signaling was particularly striking. 

IFN𝛾 conditioning resulted in an 18.7-fold increase in STAT1, a 3.4-fold increase in STAT2, and 

a 1.4-fold increase in IRF9. These three proteins form the ISGF3 transcription factor downstream 

of IFNAR signaling, so one might anticipate that IFN𝛾 potentiates IFN𝛽 signaling. However, we 

also observed a 28.6-fold increase of SOCS1 and a 7.8-fold increase of SOCS3. These 

suppressors of cytokine signaling inhibit IFNAR signaling by blocking and dephosphorylating 

JAKs33. 
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Figure 2.5: IFN conditioning alters innate immune signaling networks. (a) The effects of IFN conditioning 
on genes that participate in innate immune signaling are shown as fold-change over naïve expression. Genes are 
arranged in their known signaling networks, and negative regulators appear in dashed boxes. Asterisks (*) 
denotes genes with zero counts in all samples. (b) Conditioning with IFN" diminishes responsiveness to IFN!
stimulation for four well-established IFN! inducible genes, consistent with IFN" upregulation of SOCS1 and 
SOCS3. (c) 205 IFN!-inducible genes (>10-fold induction in naïve macrophages) are plotted in a heatmap and 
clustered by effect of IFN" conditioning. Top results of transcription factor motif and gene ontology analyses are 
shown for the clusters affected by IFN" conditioning. (d) Conditioning with IFN" potentiates induction of IFN%
genes in response to Lipid A, consistent with IFN" upregulation of IRF1.
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Given the potentially conflicting activities of STAT and SOCS upregulation as well as 

the findings in Fig 2.3e, we explored at a more granular level whether IFN𝛾 diminishes or 

potentiates IFN𝛽-responsive genes. We found that expression of the well-established IFN𝛽 

stimulated genes ISG15, IFIT1, MX1, and OAS1 were potently diminished by IFN𝛾 conditioning 

(Fig 2.5b). To address this question in an unbiased manner, we defined IFN𝛽 responsive genes as 

any gene that was induced 10-fold or higher by IFN𝛽 in naïve macrophages. We then performed 

K-means clustering of these 205 genes (Fig 2.5c) and found that 113 of them behaved similarly, 

with relatively unchanged basal expression but diminished responsiveness to IFN𝛽 when 

conditioned with IFN𝛾 (Cluster 1). However, we also identified a second cluster of genes in 

which IFN𝛾 conditioning had the opposite effect of increasing expression both at basal and in 

response to IFN𝛽 and a third cluster in which IFN𝛾 had no effect. 

To further understand the differences between the genes in these three clusters, we 

performed transcription factor motif and gene ontology (GO) analysis. The top GO term for the 

genes in Cluster 1 was “Defense response to virus,” and the top transcription factor binding motif 

was for ISRE, the canonical binding motif for ISGF3. This suggested that the genes diminished 

by IFN𝛾 conditioning were classical, antiviral IFN𝛽 stimulated genes under the control of 

ISGF3, including ISG15, IFIT1, MX1, and OAS1, whose activity may be diminished by the 

induction of SOCS proteins. In contrast, the top GO term for Cluster 2 was a generic “response 

to stimulus,” and the top transcription factor motif was for IRF1. These results suggested that the 

genes potentiated or unchanged by IFN𝛾 conditioning are functionally different from those in 

Cluster 1 and that they are co-regulated by different transcription factors. The presence of IRF1 

binding motifs in the promoters of Cluster 2 is particularly interesting given that IRF1 expression 
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was upregulated 33-fold by IFN𝛾 conditioning. This supports the possibility of crosstalk between 

IFNAR signaling and IRF1 that synergistically activates a subset of IFN𝛽 stimulated genes. 

IRF1 is also known to play a key role in the regulation of Type III IFN (IFN𝜆) 

expression34,35. Indeed, we observed that IFN𝛾 conditioning dramatically up-regulated the IFN𝜆 

genes IFNL1, IFNL2, and IFNL3 in response to Lipid A (Fig 2.5d). In the naïve condition these 

Type III IFN genes are not induced at all by any stimulus. Interestingly, IFN𝛾’s ability to 

potentiate IFN𝜆 expression, which was reproducible between biological replicates, was specific 

only to Lipid A. Pam3CSK, poly(I:C), TNF, and IFN𝛽 stimulation did not induce IFN𝜆 

expression in any condition. This suggests a complex regulation of IFN𝜆 expression involving 

IRF1 but possibly also requiring other factors that are only activated upon TLR4 stimulation. 

 

IFN conditioning differentially affects chromatin landscape 

Whereas changes in signaling networks are likely to result in stimulus-specificity, 

changes in the epigenome, with gains and losses of accessible enhancers, may be a mechanism 

for the gene-specific effects of cytokine conditioning. We therefore sought to define the effects 

of IFN𝛽 and IFN𝛾 on the chromatin landscape by measuring DNA accessibility. On Day 7, prior 

to secondary stimulation, we performed ATAC-seq on naïve, IFN𝛽-conditioned, and IFN𝛾-

conditioned macrophages in biological replicate. We found that conditioning with either IFN 

resulted in differential ATAC-seq signals corresponding to gains and losses of transposase-

accessible sites. IFN𝛾 conditioning resulted in 4.5-times more differential peaks than IFN𝛽 

(9562 versus 2085), and 705 of these peaks were overlapping. 

To assess the biological relevance of these ATAC-seq peaks, we surveyed their genomic 

distribution relative to transcription start sites (TSSs). We found that both IFN𝛽 and IFN𝛾 peaks 
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were distributed near TSSs for annotated genes (Fig 2.6a), with 95% of both IFN𝛽 and IFN𝛾 

peaks falling within 100 kilobases (kb) of a TSS. Additionally, 19% of IFN𝛽 peaks and 12% of 

IFN𝛾 peaks were found in potential promoter regions, within 1 kb of a TSS. The proximity of 

ATAC-seq peaks to gene TSSs suggested that these gains and losses in chromatin accessibility
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were not randomly distributed in the genome but may correspond to cis-acting gene regulatory 

elements. 

Next, we investigated whether there was a correlation between these ATAC-seq peaks 

and our gene expression data. We utilized the previously described nine categories of gene 

expression responses (Fig 2.S3a) and focused on four conditions relevant to the ATAC-seq 

analysis. We inferred that if an enhancer was gained or lost by IFN conditioning, the resultant 

gene expression response to stimulus would fall into one of four categories: “no change / 

potentiated,” “no change / diminished,” “up / potentiated,” or “down / diminished.” 419 and 493 

genes fell into these categories for one or more stimuli for IFN𝛽 and IFN𝛾, respectively. 

We then asked whether the regions around ATAC-seq peaks were enriched for these 

potentiated or diminished genes. We found that, compared to the whole genome, the regions 

around ATAC-seq differential peaks were significantly enriched, with a trend towards greater 

enrichment at the most proximal genes (Fig 2.6b, 6c). Genomic regions within 10kb of a 

differential ATAC-seq peak were enriched 5.1-fold in IFN𝛽 conditioning and 3.1-fold in IFN𝛾 

conditioning. Interestingly, despite the enrichment near ATAC-seq peaks, the majority of 

potentiated or diminished genes still fell in regions of the genome that are not near an ATAC-seq 

peak. This may reflect the difficulty in relating enhancer function to a particular gene, or may 

suggest that other mechanisms not assayable by ATAC-seq are responsible for their gene 

expression. 

To corroborate our genome-wide analyses, we investigated single gene examples where 

differential ATAC-seq peaks were correlated with gene expression changes. CXCL10 is an 

NFκB target gene and is induced by TNF and Pam3CSK in naïve macrophages at late time 

points (Fig 2.6d). When conditioned with IFN𝛾, CXCL10 was more highly expressed at basal 
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steady-state, and its response to TNF and Pam3CSK was much more rapid, peaking at (or 

before) 1.5 hours. ATAC-seq analysis revealed three peaks near CXCL10 that were gained in 

IFN𝛾 conditions, one at the promoter, one 5.1 kb upstream, and one 11.4 kb downstream of the 

TSS (Fig 2.6e). Each of these peaks contained at least one NFκB binding motif, strongly 

suggesting a mechanism where IFN𝛾 renders these latent enhancers more accessible and 

CXCL10 primed to respond more rapidly to NFκB-activating stimuli. 

Similarly, the expression of GEM in response to TNF and Pam3CSK is diminished by 

conditioning with IFN𝛽 (Fig 2.6f). GEM is also an NFκB target gene, and IFN𝛽 conditioning 

results in the loss of three ATAC-seq peaks, one in the promoter, and two downstream (Fig 

2.6g). The ATAC-seq peaks at the promoter and 17.8 kb downstream of the TSS contain NFκB 

binding motifs, suggesting a mechanism where IFN𝛽 conditioning results in silencing of 

previously active NFκB enhancers. These examples and our genome-wide analysis both imply 

that the differential peaks identified by ATAC-seq were biologically relevant and co-localized 

with genes whose expression is potentiated or diminished by IFN conditioning. 

 

Discussion 

Here we have reported the results of an unbiased, genome-wide analysis of the effects of 

Type I vs Type II IFN conditioning on the stimulus-responsive gene expression patterns of 

primary human macrophages. An essential feature of this study was the use of a sequential 

conditioning and stimulation approach. By examining not only the direct consequences of IFN 

treatment but focusing on subsequent responses to pathogen-associated stimuli, we gained novel 

insight into the gene-specific and stimulus-specific effects of Type I and II IFN. Our approach 

enabled us to identify subtle but important differences between Type I and II IFN, including their 
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opposing effects on TNF-inducible genes, the negative regulation of antiviral Type I IFN-

stimulated genes by IFN𝛾 conditioning, and the potentiation of Type III IFN genes by IFN𝛾. We 

found that the IFNs modulate macrophage function in a highly nuanced manner that is not 

uniformly pro- or anti-inflammatory. These immune regulatory functions of IFN could not be 

gleaned by examining only direct IFN-induced gene expression programs, thus highlighting the 

importance of the sequential conditioning-stimulation approach.   

One of our most notable findings was that IFN𝛾 and IFN𝛽 have opposing effects on 

macrophage responses to TNF. IFN𝛾 substantially diminished TNF responses, with 120 genes 

falling into our “no-change / diminished” category. This was a surprising finding given that 

IFN𝛾-conditioned macrophages are thought to be more pro-inflammatory, and TNF is a 

prototypical inflammatory cytokine. The mechanism of this phenomenon is uncertain; our 

analysis of signaling networks was unrevealing in this respect as a number of factors in the TNF 

signaling pathway such as TRAF1, TRAF2, CIAP2, and MADD were actually increased by IFN𝛾 

(Fig 2.4a). One possibility, since TNF is an IFN𝛾 target gene 36 and is upregulated three-fold by 

IFN𝛾 in our dataset, is that IFN𝛾 conditioning leads to an increase in tonic TNF which tolerizes 

macrophages to additional TNF37. Together with a recent study showing that IFN𝛾 restricts the 

induction of some inflammatory cytokines in response to TLR4 stimulation38, our data 

challenges the generalization that IFN𝛾 makes macrophages more inflammatory. 

In contrast to IFN𝛾, IFN𝛽 conditioning generally potentiated macrophage responses to 

TNF. This is in agreement with previous observations that TNF and IFN𝛽 synergistically induce 

gene expression, possibly through a STAT1-independent ISGF3 complex18,39. Additionally, a 

recent study showed that conditioning with both IFN𝛽 and TNF potentiates responses to LPS 

compared to TNF conditioning alone40. Our data thus provides additional support for the model 
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where TNF and IFN𝛽 can cooperatively regulate macrophage gene expression and extends this 

notion to describe that prior IFNb exposure enables TNF to potently activate a new set of target 

genes. The contrasting effects of Type I and II IFN on TNF gene expression responses are highly 

relevant for our understanding of immune responses in vivo, where all three cytokines could be 

present simultaneously, and cautions against the simple characterization of Type I IFN as being 

anti-inflammatory. The regulatory logic controlling the interplay of these key cytokines deserves 

further attention. 

While IFN𝛽 and IFN𝛾 had opposing effects on TNF responses, conversely, we found that 

they had similar effects on poly(I:C) and IFN𝛽 responses (Figs 3f, 3g, 4b, 4c).  Both IFNs 

diminished these gene expression programs, demonstrating the importance of negative feedback 

loops in the IFN regulatory system. Indeed, a number of negative regulators, including SOCS1, 

SOCS3, and USP1832,33,41, are upregulated by IFN conditioning. Physiologically, it makes sense 

that prolonged Type I IFN stimulation tolerizes cells to subsequent Type I IFN stimulation. 

However, the repressive effect of IFN𝛾 conditioning on subsequent response to Type I IFN 

stimulation is noteworthy. It suggests that when IFN𝛾 is dominant or pre-existent, as in an 

intracellular bacterial infection, there is a functional advantage to silencing the antiviral portion 

of the IFN𝛽 transcriptome, which may be superfluous in this context. Together with prior work 

showing a similar inhibition in the reverse direction where IFN𝛽 inhibits IFN𝛾 gene 

expression24, one can begin to conclude that Type I and II IFN gene expression programs are 

cross-repressive when macrophages are conditioned in one and then exposed to the other. 

Another intriguing and novel finding was that IFN𝛾 conditioning dramatically potentiated 

induction of Type III IFN genes in response to Lipid A. This result was particularly noteworthy 

for its specificity for TLR4 and not TLR2 or TLR3 stimulation. That TLR4, typically a receptor 
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for bacterial PAMPs and host-derived DAMPs, results in IFN𝜆 expression under IFN𝛾 

conditions suggests that IFN𝜆 might play additional roles beyond its described antiviral function 

at epithelial barriers42. The specificity for TLR4 stimulation also raises questions about the 

mechanisms controlling IFN𝜆 expression. The IFNL1 promoter shares many features with IFNB, 

and it is thought that NFκB and IRFs, particularly IRF1, cooperatively induce gene expression of 

IFN𝜆 genes34,35,42. IRF1 is highly upregulated by IFN𝛾 conditioning, suggesting a potential 

mechanism for IFN𝛾’s potentiation of IFN𝜆 induction. Additionally, a recent study found that in 

human monocyte-derived dendritic cells, IFNL1 expression was p38 MAPK-dependent43. This 

may provide an explanation for TLR4-specificity, but further studies into the mechanisms of 

IFN𝜆 regulation are clearly warranted. 

Many prior studies have implicated Type I and II IFNs in regulating expression of 

cytokines and chemokines, with wide-ranging clinical implications such as viral-bacterial co-

infections, host response to leprosy, response to DAMPs, and connections to autoimmunity. The 

contribution of our study to this field is to show that chemokines and cytokine production is 

modulated by IFN conditioning in a stimulus-specific manner. It is overly simplistic, for 

instance, to say IFN𝛾 potentiates inflammatory cytokines when poly(I:C) stimulation actually 

induces much less IL1B and IL6 when conditioned with IFN𝛾. Here we have addressed 

specificity for synthetic TLR stimuli. By extension, our findings imply that in vivo there will also 

be specificity for different pathogens. For example, although IFN𝛽 increases susceptibility to 

streptococcus following influenza infection due to an impairment of neutrophil recruitment44, 

this mechanism may not hold true for gram negative bacteria or fungi, which activate the 

immune system through different receptors. 
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In this study, we also explored potential mechanisms of context-specific responses. We 

found that Type I and II IFNs altered both the basal signaling network and the chromatin 

accessibility of cells and described examples of potentiated and diminished gene expression that 

may be a consequence of these perturbations. These findings support prior models that posit that 

signaling networks encode stimulus information into the activity of transcriptional effectors, and 

epigenetic states decode that information into a context-dependent, stimulus-specific gene-

expression program and biological response45. We show here that both the encoding and 

decoding steps are affected by cytokine context. It is likely that stimulus-specificity is driven by 

alterations in signaling networks while gene-specific differences are a result of epigenetic 

transcriptional control, and the interdependent relationship between the two is what gives rise to 

highly tunable, context-specific immune responses.  

Indeed, in vivo, macrophages are simultaneously exposed to multiple cytokines that may 

also vary in dose and duration of exposure. The space of possible conditions is in fact too large 

to systematically probe experimentally, and therefore one goal of studies such as the present, that 

characterize well-defined points within this space, is to catalyze the development of data-driven 

and mechanistic computational models (e.g. Cheng et al 2017)46 to fill in the regulatory 

landscape. Such models may then also provide analytical frameworks without the use of intuitive 

thresholds we have employed here to analyze high-complexity data and define categories such as 

expressed, inducible, potentiated, or diminished genes. However, what constitutes a feasible 

strategy for developing such models that account for condition- or context-dependent states of 

signaling systems and epigenomic responsiveness requires further theoretical work before they 

can be deployed. The present dataset and the scope, range, and granularity of the observations 

should prove useful in guiding such computational modeling investigations.   
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Supplemental Figures

GO term p-value

Cell cycle 6.86 x 10-54

Mitotic cell cycle 4.34 x 10-42

Chromosome segregation 1.25 x 10-32

Cell division 3.77 x 10-32

Chromosome organization 1.67 x 10-25

IFN#

IFN$

R2 = 0.110

ba

Figure 2.S1: IFN effects on basal gene expression (a) Scatter plot of IFN! vs IFN-" conditioning 
effect on basal (pre-stimulation) expression, each point representing one gene. Axes are log(2) 
fold-change of IFN-conditioned gene expression over naïve gene expression. Concordantly down-
regulated genes are highlighted. (b) Gene ontology analysis of concordantly down-regulated genes, 
top five non-redundant results. 
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Figure 2.S2: PCA plots for Pam3CSK, poly(I:C), and IFN-! stimulation conditions illustrate the 
differential effect of IFN! vs IFN" conditioning on stimulus-responsive gene expression. Biological 
replicates are denoted by shape, and time points are denoted by size with the smallest markers 
showing the effect of IFN conditioning without second stimulation.
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Figure 2.S3: Nine category analysis (a) Gene expression thresholds used to categorize every combination of 
conditioning regimen, stimulus, and gene into nine categories. (b) Distribution of the 17,540 cases across the 
nine categories. Highlighted categories were further analyzed in Fig.3. (c) Ingenuity Pathway Analysis of the 
genes falling into “no change / diminished” and “down / diminished” or “no change / potentiated” and “up / 
potentiated” categories, separated by IFN conditioning. The canonical pathways with log(p-value) < -5 in at 
least one category are ordered by hierarchical clustering.
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NC−UP Genes by TNF in one or more Polarization
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Figure 2.S4: Heatmaps of all genes that are unaffected by IFN alone but have a potentiated (top) or 
diminished (bottom) response to second stimulation, clustered by whether the criteria are met in IFN!
conditioning, IFN" conditioning, or both. 
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Figure 2.S5: Heat map of stimulus-responsive chemokines, grouped by primary cell type 
recruited (Mantovani et al., Nat Rev Immunology 2006), and the effect of IFN conditioning 
on their response to TLR ligands Pam3CSK, Lipid A, and poly(I:C). 
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Materials and Methods 

Macrophage cell culture 

Whole blood was obtained from healthy donors with written informed consent prior to 

inclusion in the study according to protocol #11-001274 approved by the UCLA Institutional 

Review Board. Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll (GE 

Healthcare, Piscataway, NJ) gradient centrifugation. Monocytes were purified by positive 

selection of CD14+ cells using MACS CD14 microbeads (Miltenyi Biotec, Cologne, Germany) 

from PBMCs according to manufacturer’s instructions. Macrophages were derived from CD14+ 

positively-selected monocytes by differentiation for seven days in RPMI (Thermo Fisher 

Scientific, Waltham, MA) with 10% fetal bovine serum (Omega Scientific, Tarzana, CA), 

glutamine, and penicillin-streptomycin supplemented with 50 ng/ml recombinant human M-CSF 

(CHO-derived, R&D Systems, Minneapolis, MN) at a concentration of 0.5 x 106 monocytes/ml 

in 24-well plates (Corning Inc., Corning, NY). On day four, 64 hours prior to stimulation, a 1/5th 

volume of fresh medium was added containing conditioning cytokines 10 ng/ml IFN𝛾 (BD 

Biosciences, La Jolla, CA) or 200 U/ml IFN𝛽 (PBL Assay Science, Piscataway, NJ). On Day 4 

M-CSF was also refreshed by adding an extra 25 ng/ml (final concentration) on top of any 

exhausted M-CSF. 

 

Stimulation and RNA preparation 

On day 7, a 1/6th volume of fresh medium with stimuli were added to the following final 

concentrations: 100 ng/ml Lipid A (InvivoGen), 5 ng/ml TNF𝛼 (BD Biosciences), 100 ng/ml 

Pam3CSK (InvivoGen, San Diego, CA), 20 μg/ml poly(I:C) (InvivoGen), 200 U/ml IFN𝛽 (PBL 

Assay Science). Cells were collected at 1.5, 3, 5.5, and 10 hours post stimulation by lysis with 
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TRIzol reagent (Life Technologies, Carlsbad, CA). Total RNA was purified with DIRECTzol kit 

(Zymo Research, Irvine, CA) according to manufacturer’s instructions. 

 

Next generation sequencing 

For RNA-seq, strand-specific libraries were generated from 500 ng total RNA using 

KAPA Stranded mRNA-seq Library Preparation kit (KAPA Biosystems, Wilmington, MA) 

according to the manufacturer’s instructions. Resulting cDNA libraries were single-end 

sequenced with a length of 50bp on an Illumina HiSeq 2000 (Illumina, San Diego, CA). 

ATAC-seq libraries were prepared as previously described47. Briefly, cells were 

dissociated with Accutase (Thermo Fisher Scientific), and 50,000 cells were used to prepare 

nuclei. Cell membrane was lysed using cold lysis buffer (10mM Tris-HCl pH7.5, 3mM MgCl2, 

10mM NaCl and 0.1% IGEPAL CA-630). Nuclei were pelleted by centrifugation for 10 minutes 

at 500 x g, and suspended in the transposase reaction mixture (25 µl of 2X TD Buffer (Illumina), 

2.5 µl of TD Enzyme 1 (Illumina), and 22.5 µl of nuclease-free water). The transposase reaction 

was performed for 30 minutes at 37 ℃ in a thermomixer shaker. Then, fragmented DNA in the 

reaction was purified using MinElute PCR purification kit (QIAGEN, Hilden, Germany). The 

purified DNA fragments were amplified by PCR to obtain ATAC-seq libraries with Illumina 

Nextera sequencing primers. The libraries were purified using MinElute PCR purification kit 

(QIAGEN) and quantified using KAPA Library Quantification Kit (KAPA Biosystems). The 

libraries were single-end sequenced with a length of 50bp on an Illumina HiSeq 2500. 

 

Global RNA-seq analysis 

The low quality 3’ends of reads were trimmed (cutoff q=30), and remaining adapters 
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sequences were removed using cutadapt48. Reads were aligned to the hg19 genome build with 

STAR49 with the following options: --outFilterMultimapNmax 20, --alignSJoverhangMin 8, --

alignSJDBoverhangMin 1, --outFilterMismatchNmax 999, --outFilterMismatchNoverLmax 0.04, 

--alignIntronMin 20, and --alignIntronMax 1000000 --seedSearchStartLmax 30. Only uniquely 

mapped reads with a mapping quality ≥ 30 were kept for further analysis, using samtools. Read 

counts were normalized for library size and transcript length by conversion to CPM and RPKM. 

Genes below an expression threshold of 4 RPKM in all samples were excluded from downstream 

analysis. Biological replicates of “unstimulated” samples were averaged and considered to be the 

zero-hour time point or basal expression. The zero-hour data were then placed in a log2-

transformed bimodal distribution using the Mix-Tools Package50. The first equivalent overlap of 

the two distributions was 2.2 CPMs, and this pseudo-count was added to all expressed genes. 

Induced genes were defined as those with a 4-fold increase over basal by any stimulation with 

FDR threshold of 0.01 calculated with edgeR51.  Principle components were calculated with the 

prcomp package52 and plotted with ggplots53. K-means clustering was performed with the mclust 

package54 with spherical clustering and constant shape and orientation, and the choice of number 

of clusters was based on the plateau of logliklihood scores. The linear z-score transformation of 

the CPM values across all samples were plotted as heatmaps using heatmap2 and pheatmap 

packages55. 

 

Thresholds for Nine-Category analysis 

The effect of conditioning on basal gene expression (“up,” “down,” or “no-change”) was 

determined by calculating fold change of the IFN-conditioned basal over naïve basal, with a 

threshold of two-fold and FDR of 0.01. Next, the effect of conditioning on inducible gene 
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expression was determined. For cases of “no-change” at basal the direct fold-change was 

calculated at each time point as the change of conditioned-stimulated over naïve-stimulated gene 

expression. For each case, the greatest absolute change across time-points was used to categorize 

the effect of conditioning on inducible gene expression, using a threshold of four-fold and FDR 

of 0.01, as “potentiated,” “diminished,” or “unaffected.” For cases of “up” or “down” at basal the 

change in fold change was calculated at each time point to increase the stringency of the analysis 

for genes already differentially expressed at the basal state. For each case, the greatest change in 

fold-change across time-points was then used to categorize the effect of conditioning on 

inducible gene expression, using a threshold of four-fold and FDR of 0.01, as “potentiated,” 

“diminished,” or “unaffected.” Altogether this yielded nine categories: three basal categories, 

each with three inducibility subcategories (Fig 2.S3). 

 

Ingenuity Pathway Analysis 

 Gene lists falling into “no change / diminished” and “down / diminished” or “no change / 

potentiated” and “up / potentiated” categories from the Nine Category analysis (above) were 

uploaded to the Ingenuity Pathway Analysis (IPA) tool (QIAGEN). Default settings were used to 

obtain enrichment scores for canonical pathways, and p-values were calculated by Fisher’s exact 

test. Hierarchical clustering was performed using default IPA settings. 

 

Transcription factor motif and Gene Ontology analysis 

Transcription factor motif analysis was performed using HOMER56 with JASPAR 

matrices for known NFκB and ISRE motifs to derive p-values for overrepresentation of these 

motifs within a defined promoter region of -600bp to +50bp. Search options included absolute 
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match length of 8, 10, 12, 14, or 16bp; allowed mismatch of 4bp; and all expressed genes as the 

background for control. Gene ontology (GO) analysis was performed using the PANTHER 

database with entire human genome as background57.  

 

ATAC-seq analysis 

ATAC-seq reads were aligned to the hg38 genome build using bowtie2 with default parameters 

except --very-sensitive and --non-deterministic options and filtered based on mapping score 

(MAPQ ≥ 30) by Samtools version 1.3.158. Duplicated reads were removed using Picard 

MarkDuplicates (version picard-tools-2.1.0). MACS2 version 2.1.0 was used to identify peaks 

for each sample individually with default settings except FDR of 0.0159. These peaks were 

merged to generate a single reference peak file, and the number of reads that fell into each peak 

was counted using bedtools multicov60. DESeq2 was used to normalize and identify differential 

peaks across treatment conditions with p-value <0.0561. ChipPeakAnno62 was used to assess 

overlap of differential peaks and relate peaks to annotated transcription start sites using default 

options except --PeakLocForDistance = “middle”. NFκB motifs within ATAC-seq peaks were 

defined by the consensus sequence GGRNNN(N)YCC.  
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CHAPTER THREE 

 

NFκB dynamics determine the stimulus-specificity of 

epigenomic reprogramming in macrophages 
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Summary 

The epigenome defines the cell type, but also possesses plasticity to tune gene expression in the 

context of extracellular cues. This tuning is evident in immune sentinel cells such as 

macrophages, which respond to pathogens and cytokines with phenotypic shifts driven by 

epigenomic reprogramming1. Recent studies2–4 indicate that this reprogramming may be 

triggered by signal-dependent transcription factors, including nuclear factor kappa-light-chain-

enhancer of activated B cells (NFκB). NFκB binds not only to available enhancers5, but may also 

produce de novo enhancers in previously silent areas of the genome3. Here, we show that NFκB 

reprograms the macrophage epigenome in a stimulus-specific manner, in response only to a 

subset of pathogen-derived stimuli. The basis for these surprising differences lies in the stimulus-

specific temporal dynamics of NFκB activity. In response to different stimuli, NFκB enters the 

nucleus with distinct speeds, amplitudes, and durations, and may oscillate between the nucleus 

and cytoplasm. These dynamical features encode information about the identity and dose of a 

given stimulus6. We demonstrate through live cell imaging, mathematical modeling, and genetic 

perturbations that NFκB promotes open chromatin and formation of de novo enhancers most 

strongly when its dynamics are non-oscillatory. These de novo enhancers result in the activation 

of additional response genes. We propose a mechanistic paradigm in which the temporal 

dynamics of transcription factors are a key determinant of their capacity to elicit epigenomic 

reprogramming, thus enabling the formation of stimulus-specific memory in innate immune 

sentinel cells.  
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Body Text 

The cellular epigenome, a regulatory network involving transcription factors, chromatin 

architecture and histone modifications, contains stable, heritable information that determines cell 

type-specific programs of gene expression7. Nevertheless, the epigenome of differentiated cells 

remains highly plastic, particularly in immune cells like macrophages8,9. These immune sentinel 

cells detect and “remember” environmental signals through epigenomic reprogramming to 

coordinate immune responses that are both context- and stimulus-appropriate1. At a molecular 

level, this reprogramming is initiated by the activity of signal-dependent transcription factors 

(TFs) such as NFκB10. In cooperation with pioneer factors such as Pu.1, signal-dependent TFs 

increase chromatin accessibility and positive-acting histone marks at previously silent regions of 

the genome, thus forming de novo enhancers2,3. NFκB activated by LPS has been a model TF in 

the study of “poised” vs. “latent” or de novo enhancers. However, the degree to which NFκB or 

other TFs can alter the epigenome in response to different stimuli is unknown.  

To investigate the stimulus-specificity of de novo enhancer formation, we stimulated 

bone marrow-derived macrophages (BMDMs) with five well-characterized ligands: TNF 

(signaling through TNFR), Pam3CSK (TLR1/2), CpG (TLR9), LPS (TLR4), and Poly(I:C) 

(TLR3). We performed H3K4me1 ChIP-seq to identify stimulus-dependent de novo enhancers as 

previously-defined3,4 and identified 3978 regions of the genome that segregated into two clusters. 

(Fig. 3.1a). The enhancers in Cluster 1 were most strongly induced by LPS and Poly(I:C) and 

were enriched for IRF and ISRE motifs (Fig. 3.1a), consistent with the fact that these stimuli 

activate IRF3 and type I interferon via the signaling adaptor TRIF11. In Irf3-/-Ifnar-/- BMDMs 

these regions no longer acquired H3K4 methylation in response to LPS and Poly(I:C) (Fig. 3.1c). 
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Weak induction in response to TNF was consistent with the observation that TNF does not 

induce IRF3 but IRF112.  

In contrast, the enhancers in Cluster 2 were highly enriched for NFκB motifs. 

Surprisingly, although all five stimuli activate NFκB13, these regions acquired H3K4me1 in a 

stimulus-specific manner. TNF and Poly(I:C) had little effect on these regions, while Pam3CSK, 

CpG, and LPS produced prominent gains in H3K4me1. These differences were consistent across 

replicates (Extended Data Fig. 3.1) and were preserved in Irf3-/-Ifnar-/- BMDMs (Fig. 3.1c). 

Furthermore, 1071 of these regions contained an NFκB-RelA ChIP-seq peak14 (Fig. 3.1d). We 

concluded that these 1071 de novo enhancers were highly likely to be NFκB-driven. A pairwise 

comparison between samples quantitatively confirmed the stimulus-specificity of these 
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enhancers (Fig. 3.1e), as the H3K4me1 ChIP-seq signals of Pam3CSK, CpG, and LPS were 

significantly different from TNF or Poly(I:C) (p < 10-5) in these regions. 

Such differences would be difficult to explain if NFκB were a binary on-off switch, but 

NFκB is in fact activated with complex, stimulus-specific temporal dynamics13,15,16. Using live-

cell microscopy of macrophages from mVenus-RelA mice6, we characterized the single-cell 

dynamics of NFκB p65 in response to all five ligands (Fig. 3.1f). We have previously identified 

six essential features of NFκB dynamics that function as “codewords” to encode ligand identity 

and dose6. We correlated mean H3K4me1 counts in the NFκB-driven enhancers with these six 

features: duration, early vs late activity, oscillatory power, peak amplitude, activation speed, and 

total activity (Extended Data Fig. 3.2). We found that oscillatory power (r = -0.95), total activity 

(r = 0.77), and peak amplitude (r = 0.78) were correlated with the capacity of a given stimulus to 

form de novo enhancers (Fig. 3.1g).  

We hypothesized that temporal dynamics of NFκB activity might affect its interaction 

with chromatin. Crystallographic studies imply that stable NFκB-DNA binding requires the 

DNA to be nucleosome-free because NFκB dimers embrace the DNA double helix 

circumferentially17,18 (Fig. 3.2a). However, NFκB is capable of interacting with nucleosomal 

DNA19, and can displace nucleosomes in cooperation with pioneer factor Pu.13 or remodeling 

machinery such as SWI/SNF20. Furthermore, the DNA-histone interface is composed of low-

affinity interactions that promote spontaneous disassociation or “breathing”21. Thus, successive 

disruptions of DNA-histone contacts by NFκB may displace the nucleosome (Fig. 3.2b), and be 

followed by binding of lineage-determining TFs such as Pu.1 and the deposition of histone 

modifications on neighboring nucleosomes marking the region as a de novo enhancer3. 
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This data provided the mechanistic basis for a multi-step model describing how 

dynamical NFκB activity might affect chromatin. We constructed a series of 14 Hill equations 

describing the competition between NFκB and histone for interacting with DNA (Fig. 3.2c) 

based on the number of contact points in the histone-DNA crystal structure22. Relative rates of 

nucleosome wrapping and unwrapping were based on available biophysical data23. Using 

measured single-cell NFκB activities (Fig. 3.1e) as inputs, the model simulations reproduced the 

differences in experimental ChIP-seq data (Fig. 3.2d-2e and Extended Data Fig. 3.3a) across a 

range of parameter values (Extended Data Fig. 3.4). 
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We used the model to investigate which features of NFκB dynamical activity had the 

greatest impact on chromatin accessibility. We examined the contribution of the three features 

most highly correlated with the H3K4me1 ChIP-seq data (Fig. 3.1g): oscillations, amplitude, and 

total activity. When we compared oscillatory vs. non-oscillatory activity while holding amplitude 

and total activity constant, the model predicted that a non-oscillatory dynamic produces a two-

fold greater chromatin accessibility than an oscillatory dynamic (Fig. 3.2f) due to the rapid 

closing of chromatin when oscillatory NFκB leaves the nucleus. The model also indicated that 

NFκB activity must have a minimal amplitude (Fig. 3.2g) and extend for a minimal duration 

(Fig. 3.2h) to open chromatin, but above these thresholds non-oscillatory NFκB has greater 

capacity to open chromatin than oscillatory NFκB for any given amplitude or duration. The 

striking conclusion from these simulations was that the presence or absence of oscillations, not 

the maximum amplitude or duration of activity, are the key determinant of whether NFκB 

preserves or alters the chromatin state.  

To test this prediction, we generated a knockout mouse in which NFκB dynamics are 

perturbed. In response to TNF, NFκB rapidly induces expression of Nfkbia, whose gene product 

is the negative regulator IκB𝛼24 (Fig. 3.3a) and mediates oscillatory behavior of NFκB. As IκB𝛼 

knockout mice are embryonic lethal due to chronic hyperinflammation25, we bred the Nfkbia-/- 

allele into a Rel-/-Tnf-/-Nfkbie-/- background, enabling the isolation of BMDMs from adult IκB𝛼-/- 

mice.  

We examined the dynamics of NFκB in IκB𝛼-/- BMDMs by crossing these mice with 

mVenus-RelA knock-in mice and performing live cell imaging of BMDMs stimulated with TNF. 

We observed that knockout of IκB𝛼 significantly disrupted NFκB dynamics (Fig. 3.3b). We 

quantified the differences in the distribution of single cell dynamic features by Kolmogorov–
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Smirnov (K-S) test (Fig. 3.3c, Extended Data Fig. 3.5a) and found that the greatest dynamic 

difference between IκB𝛼-/- and WT was a loss of oscillatory activity, with a K-S test statistic (D) 

of 0.85, corresponding to a p-value < 10-16. The other key dynamic features were either 

unaffected, or in the case of activation speed (D = 0.66) and early-vs-late activity (D = 0.52) 

would intuitively favor NFκB activity in WT cells. In addition, we calculated the area under the 

NFκB activity curve at the time points used in subsequent experiments and found no difference 

(Extended Data Fig. 3.5b). Based on single-cell microscopy measurements, we concluded that 

the primary impact of IκB𝛼 knockout was loss of oscillations.  

To profile the chromatin state, we stimulated BMDMs from IκB𝛼-/- and littermate 

controls with TNF and performed ATAC-seq at two, four, and eight hours. This was followed by
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compared with relative percentage of cells with accessible chromatin at Chr15 intergenic peak by ATAC-seq. h) Heat map of H3K4me1 ChIP-seq signal over the 322
regions defined as differentially inducible by ATAC-seq. Average of two replicates. “wash” = 16h washout.
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a 16-hour washout period, and a final time point was collected after washout (Extended Data Fig. 

3.6a). We identified 1443 genomic regions that demonstrated TNF-inducible chromatin 

accessibility in either genotype. Of these, 332 were differentially inducible between control and 

IκB𝛼-/-. Strikingly, 97% of these regions (n=322) had greater chromatin accessibility in the 

knockout than control (Fig. 3.3d). These differentially inducible regions were strongly enriched 

for NFκB motifs (Fig. 3.3e), and 311 of 322 overlapped with a RelA ChIP-seq peak (Extended 

Data Fig. 3.6c). Differentially inducible regions were more likely than constitutively accessible 

regions to fall in intergenic portions of the genome (Extended Data Fig. 3.6b), suggesting that 

they tend to function as cis-acting enhancer elements near key innate immune genes such as Ccl5 

(Fig. 3.3f), which has previously been shown to require chromatin remodeling for full 

induction14. 

Our model predicted that chromatin accessibility is primarily determined by whether 

NFκB is oscillatory or non-oscillatory within a single cell. We therefore considered that the 

magnitude of ATAC-seq signal can be interpreted as the proportion of cells in a sample in which 

a particular region of DNA is accessible. By microscopy, 87% of IκB𝛼-/- cells have non-

oscillatory NFκB, compared to 25% in WT cells. This was similar to the magnitude of ATAC-

seq differences between IκB𝛼-/- and control. For example, at an intergenic peak on chromosome 

15, 67% of IκB𝛼-/- cells showed accessible chromatin, compared to 22% of control cells (Fig. 

3.3g).  

To investigate more definitively that the negative feedback function of IκB𝛼 rather than 

its basal activity is critical for the observed effects, we utilized a recently described IκB𝛼κB/κB 

mutant in which NFκB-binding sites in the promoter of the Nfkbia gene are disrupted26 

(Extended Data Fig. 3.7a). In this model, basal IκB𝛼 expression is preserved, and the mice live 
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into adulthood without requiring compound suppressor mutations. We confirmed that upon TNF 

stimulation IκB𝛼κB/κB BMDMs activate NFκB in a non-oscillatory manner (Extended Data Fig. 

3.7b). ATAC-seq analysis of TNF-stimulated WT vs IκB𝛼κB/κB BMDMs recapitulated our 

findings in the IκB𝛼-/- system, with 131 genomic regions demonstrating greater gain of 

chromatin accessibility in the mutant compared to WT (Extended Data Fig. 3.7c). These regions 

were enriched for NFκB motifs, and 90% overlapped with a RelA ChIP-seq peak (Extended Data 

Fig. 3.7d-7e). Taken together, the ATAC-seq data from both IκB𝛼-/- and IκB𝛼κB/κB experimental 

models indicated that loss of inducible negative feedback in the NFκB signaling system, which 

results in a loss of oscillations, results in greater chromatin accessibility. 

Next, we examined whether regions with differentially inducible chromatin accessibility 

acquire the corresponding histone mark of enhancers. We performed H3K4me1 ChIP-seq in 

TNF-stimulated control and IκB𝛼-/- BMDMs and found that in the 322 differentially inducible 

ATAC-seq regions there was also a greater gain of H3K4me1 signal in IκB𝛼-/- than control (Fig. 

3.3h). Notably, these histone marks persisted even after a 16-hour washout. This suggests that 

chromatin opening facilitated by NFκB may be transient but leads to durable H3K4 methylation 

even after the stimulus is removed, marking the region as a de novo enhancer and 

reprogramming the epigenome.  

Because histone methylation is more durable and indicative of enhancer function, we 

analyzed the H3K4me1 ChIP-seq data independently and identified 2081 regions that acquired 

more H3K4 methylation in IκB𝛼-/- than control (Fig. 3.4a). These differentially induced, 

dynamics-dependent de novo enhancers persisted after the TNF stimulus was washed out, and 

they were strongly enriched for NFκB motifs (Fig. 3.4b). We then asked whether these regions, 

which are dependent on non-oscillatory NFκB in the IκB𝛼-/- system, corresponded to the 
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stimulus-specific NFκB-driven de novo enhancers in WT BMDMs (Fig. 3.1d). We found that 

there was a highly significant overlap (p = 10 e-45), and the inducible ChIP-seq signal was 

consistently greater when NFκB dynamics were non-oscillatory rather than oscillatory, whether 

by genetic perturbation or by stimulus-specific signaling mechanisms (Fig. 3.4c).  

Next, we asked whether these NFκB dynamics-dependent enhancers had a functional role 

in macrophage gene expression. We hypothesized that de novo enhancers would alter 

transcriptional responses to subsequent stimulation. We primed control and IκB𝛼-/- BMDMs with 

TNF for eight hours followed by 16-hour washout as before, then re-stimulated with secondary
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TNF over eight hours (Fig. 3.4d). We performed mRNA-seq in the basal (untreated) condition 

and at zero, one, three, and eight hours of secondary TNF stimulation. We explored the 

relationship between differentially inducible enhancers and gene expression using two 

approaches. First, using a peak-centric approach, we linked the 2081 enhancers to their nearest 

expressed genes, removed duplicates, and identified three distinct patterns of expression for the 

remaining 1511 genes. Cluster 1 and 2 genes were not TNF-responsive in either condition, 

reflecting an intrinsic limitation of this approach when enhancers often do not regulate their 

nearest genes27. Despite this limitation, 58% of nearest genes were both TNF-responsive and 

more strongly induced in IκB𝛼-/- BMDMs (Fig. 3.4e Cluster 3). Many of these genes were not 

induced in controls at all. The differentially induced genes were enriched for ontology terms 

“Immune system process” and “Inflammatory process” (Fig. 3.4f).  

To corroborate the results from the peak-centric analysis, we also examined our data 

using a gene-centric approach. From the RNA-seq dataset we identified 1958 TNF-inducible 

genes, 482 of which were differentially regulated in IκB𝛼-/- versus control (Extended Data Fig. 

3.8a-8b). For each gene, we measured the genomic distance to the nearest differentially inducible 

H3K4me1 ChIP-seq region. We found that differentially inducible genes were significantly 

closer to differentially inducible enhancers (p = 1.13 e-9) than genes that were not differentially 

inducible (Extended Data Fig. 3.8c-8d). Thus, both analytical approaches indicated that NFκB 

dynamics-dependent de novo enhancers play a functional role in differentially regulating gene 

expression response to secondary TNF.  

The dynamics-dependent gene expression program included Nos2, Mmp2, and Mmp9, 

which are well-defined markers of classical macrophage activation28, as well as Acsl1, which 

plays a role in the pathogenesis of atherosclerosis29 (Fig. 3.4g). Each of these genes had a nearby 
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enhancer that gained more H3K4me1 signal in the presence of non-oscillatory NFκB, whether in 

the IκB𝛼-/- system or in WT BMDMs stimulated with different ligands (Fig. 3.4h). These specific 

examples further suggested that de novo enhancers formed by non-oscillatory NFκB regulate 

genes involved in macrophage activation.  

In summary, our results indicate that the dynamics of NFκB activity, particularly whether 

they are oscillatory or non-oscillatory, determine NFκB’s capacity to reprogram the macrophage 

epigenome. We show with a mathematical model how biophysical principles governing 

nucleosome dynamics might decode stimulus-specific NFkB dynamical features. The role of 

temporal dynamics may thus complement the structure-function model in which pioneering TFs 

access nucleosomal DNA based on their recognition of partially exposed DNA motifs30. Notably, 

to date the function of NFκB oscillations has been unclear, given that there is little difference in 

the expression of poised inflammatory-response genes induced by oscillatory vs. non-oscillatory 

NFκB31,32. We propose that in response to some ligands, the role of oscillations is to maintain the 

epigenomic state while exploiting existing poised enhancers for inflammatory gene activation. 

However, in response to other ligands, non-oscillatory NFκB induces a comparable gene 

expression program while also forming de novo enhancers, thus changing the epigenomic state of 

the cell and its capacity to respond to subsequent stimuli. While further work will be needed to 

determine the physiological functions of NFκB dynamics-dependent de novo enhancers, our 

study establishes a mechanistic paradigm of TF temporal dynamics being a key determinant of 

epigenomic reprogramming.   
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Extended Data Figures 
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Extended data, Figure 3.3: Supplemental model simulations. a) Violin plots of maximum chromatin opening over eight hours per single-cell
stimulation, using NFκB trajectories as input to the model. Black line = mean, Red line = median. b) Simulated mean chromatin opening over time
across all single cells. c) Model simulations across a range of NFκB amplitudes, comparing oscillatory and non-oscillatory trajectories. d) Model
simulations across a range of NFκB durations, comparing a range of NFκB amplitudes marked by dotted lines in (c).
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Extended data, Figure 3.4: Parameter sensitivity analysis. (a) Chromatin opening behavior when the model is tested across a range of KDs, (b) across a range
of Hill coefficients, or (c) across a range of forward rates for the first unwrapping step, k-14. For model simulations (Fig. 3.2d), KD = 0.025, Hill = 3, and k-14= 10
were used, marked by the dotted black line. (d-e) Heat map of chromatin opening across a range of unwrapping and rewrapping cooperativity factors, showing
maximum E0 fraction in non-oscillatory and oscillatory conditions (d) and fold change difference between maximum non-oscillatory and oscillatory conditions
(e). Red box indicates the parameter values used for model simulations.
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Extended data, Figure 3.5: NFκB dynamics in TNF-stimulated IκB!-/- vs WT BMDMs. (a) Violin plots of single-cell distributions for the six key NFκB
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Extended data, Figure 3.6: Supplemental ATAC-seq data. a) Schematic of ATAC and ChIP-seq experiments in IκB!-/- and control BMDMs.
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Extended data, Figure 3.7: NfkbiaκB/κB mutant as a complementary model of non-oscillatory NFκB. a) Schematic of NfkbiaκB/κB mutation,
abolishing inducible IκB! by disrupting NFκB binding sites in promoter26. b) Heat map of single cell NFκB trajectories by microscopy, comparing TNF
response in WT vs. IκB!κB/κB BMDMs. c) Heat map of ATAC-seq signal at 131 genomic regions that are TNF-inducible and differential between
IκB!κB/κB and WT. Average of two replicates. d) Heat map of Lipid-A stimulated NFκB RelA ChIP-seq signal25 at 131 inducible-differential ATAC-seq
regions, 118 of which overlap with a RelA ChIP-seq peak. e) Known transcription factor motifs with greatest enrichment in differentially inducible
ATAC-seq regions.
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Extended data, Figure 3.8: Gene-centric approach to investigate the function of dynamics-dependent enhancers. a) Heat map of
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Methods 

Mice 

All mouse experiments were performed in a C57Bl/6 background. The mVenus-RelA 

reporter mouse (RelaV/V), in which an mVenus-RelA fusion is knocked in to the endogenous Rela 

locus, has been previously described6. As Nfkbia-/- mice are perinatal lethal due to chronic 

inflammation they were crossed with Rel-/-Tnf-/- alleles to achieve rescue and enable BMDM 

isolation33; they were also crossed with Nfkbie-/- alleles to avoid compensation by IκBe34. For 

ATAC, ChIP, and RNA-seq experiments Rel-/-Tnf-/-Nfkbie-/-Nfkbia+/- heterozygotes were mated, 

and Nfkbia+/+ and Nfkbia-/- littermates were used for control and knockout, respectively. The 

NfkbiaκB/κB mice have been previously described26 and were a gift from Dr. Paul Chiao. For live 

cell microscopy, Rel+/-Tnf+/-Nfkbie+/-Nfkbia-/-RelaV/V  and NfkbiaκB/κBRelaV/V mice were compared 

to RelaV/V controls. Animal work was approved by the UCLA IRB under protocol B-14-110. 

Tissue culture 

BMDMs were generated by isolating bone marrow from the femurs and tibias of sex-

matched mice between the ages of six and 12 weeks. Bone marrow cells were incubated in L929-

conditioned media (RPMI + 30% L929 media, 10% FBS, 100 IU/ml penicillin, 100 𝜇g/ml 

streptomycin, 2 mM L-glutamine) at 370C for seven days. Cells were stimulated with TNF-𝛼 (10 

ng/ml, R&D Systems 410-MT), Pam3CSK4 (100 ng/ml, Invivogen tlrl-pms), CpG (1 𝜇M, 

Invivogen tlrl-1668), LPS (100 ng/ml, Sigma-Aldrich L2880), or Poly(I:C) (50 𝜇g/ml, Invivogen 

tlrl-picw). Ligand doses were chosen to maximize differences in NFκB signaling dynamics6. 

Live cell microscopy and analysis 

Microscopy and analysis have been described in detail previously6,35. Briefly, BMDMs 

derived from mVenus-RelA reporter mice were plated in an 8-well ibidi SlideTek chamber, 
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stained with 2.5 ng/mL Hoechst 33342 in PBS, then stimulated with the ligands listed. Cells 

were imaged at 5-minute intervals on a Zeiss Axio Observer platform with live-cell incubation, 

using epifluorescent excitation from a Sutter Lambda XL light source. Images were recorded on 

a Hamamatsu Orca Flash 2.0 CCD camera. Time-lapse images were exported for single-cell 

tracking and measurement in MATLAB R2016a. Cells were identified using DIC images, and 

nuclear/cytoplasmic compartments were defined by the Hoechst image. Nuclear NFκB levels in 

the mVenus channel were quantified on a per-cell basis, and normalized to image background 

levels. Mitotic cells, dead cells, and cells that drifted out of the field of view, were excluded from 

analysis. Dynamic features of NFκB activity were measured for each single cell trajectory. The 

complete library of features and identification of six signaling “code words” was described 

previously6.  

H3K4me1 ChIP-seq libraries 

BMDMs were cross-linked with 1% formaldehyde, quenched with 125 mM glycine, 

frozen and stored at -800C. Cell pellets were lysed in 50 mM HEPES-KOH pH 7.6, 140 mM 

NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100, and 1x protease inhibitor 

cocktail (Thermo Scientific 78439) with one 15-second cycle of sonication in a Bioruptor 

(Diagenode). Nuclei were washed in 10 mM Tris-HCl pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 

mM EGTA, and 1x protease inhibitor cocktail. Nuclei were then resuspended in 10 mM Tris-

HCl pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% Na Deoxycholate, 0.5% N-

lauroylsarcosine, 0.2% SDS, and 1x protease inhibitor cocktail, and subjected to twelve 30-

second cycles of sonication in a Bioruptor. The resulting chromatin fragments were diluted with 

5.2 volumes of 10 mM Tris-HCl pH 8.0, 160 mM NaCl, 1 mM EDTA, 0.01% SDS, 1.2% Triton 

X-100, 1x protease inhibitor cocktail, and incubated for 1.5 hours with Protein-G DynaBeads 
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(Thermo Fisher 10004D) for pre-clearing. Protein G beads were removed, a 1% aliquot of DNA 

was taken as input, and remaining chromatin was incubated with rabbit anti-H3K4me1 antibody 

(Abcam ab8895) overnight at 40C at a ratio of 2 𝜇g antibody per 6 million cells of starting 

material.   

 For immunoprecipitation, 30 𝜇L of Protein G beads were added to antibody-chromatin 

complexes and incubated at 40C for three hours. Supernatant was removed, and beads were 

serially washed with Low Salt buffer (50 mM HEPES-KOH pH 7.6, 140 mM NaCl, 1 mM 

EDTA, 1% Triton X-100, 0.1% Na Deoxycholate, 0.1% SDS), High Salt buffer (50 mM HEPES-

KOH pH 7.6, 500 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% Na Deoxycholate, 0.1% 

SDS), LiCl buffer (20 mM Tris-HCl pH 8.0, 250 mM LiCl, 1 mM EDTA, 0.5% Na 

Deoxycholate, 0.5% NP-40), and TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA). 

Immunoprecipitated chromatin complexes were treated with RNAse A (Thermo Fisher 

12091021) at 370C for one hour, and crosslinks were reversed with 10% SDS and 0.6 mg/ml 

Proteinase K (New England Biolabs P81075) overnight with shaking at 650C. 

Immunoprecipitated DNA fragments were purified with AMPure XP SPRI beads (Beckman 

Coulter A63881) at a 0.95 volume ratio according to manufacturer’s instructions.  

Libraries were prepared for sequencing using NEBNext Ultra II DNA Library Prep Kit 

(New England Biolabs E7645) with NEBNext Multiplex Oligos (New England Biolabs E7335 

and E7500). Each library was prepared from 100 ng of starting DNA. Input samples were pooled 

from input DNA of the same genotype. Final libraries were checked for quality by agarose gel, 

quantified with Qubit (Life Technologies Q32851), and multiplexed with a maximum of 24 

samples per sequencing reaction.  
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ATAC-seq libraries 

BMDMs were dissociated with Accutase (Thermo Fisher Scientific), and 50,000 cells 

were used to prepare nuclei. Cell membranes were lysed using cold lysis buffer (10mM Tris-HCl 

pH7.5, 3mM MgCl2, 10mM NaCl and 0.1% IGEPAL CA-630). Nuclei were pelleted by 

centrifugation for 10 minutes at 500 x g and suspended in transposase reaction mixture (25 µl of 

2X TD Buffer (Illumina), 2.5 µl of TD Enzyme 1 (Illumina), and 22.5 µl of nuclease-free water). 

The transposase reaction was performed for 30 minutes at 370C in a thermomixer shaker. 

Fragmented DNA in the reaction was purified using MinElute PCR purification kit (QIAGEN, 

Hilden, Germany). Libraries were prepared for sequencing using Nextera DNA Library 

Preparation Kit (Illumina, FC-121). The libraries were purified using MinElute PCR purification 

kit (QIAGEN) and quantified using KAPA Library Quantification Kit (KAPA Biosystems). The 

libraries were multiplexed with a maximum of 24 samples per sequencing reaction.  

RNA-seq libraries 

BMDMs were lysed with TRIzol reagent (Life Technologies), and total RNA was 

purified using DIRECTzol RNA miniprep kit (Zymo Research). Strand-specific libraries were 

generated from 500 ng total RNA using KAPA Stranded mRNA-seq Library Preparation kit 

(KAPA Biosystems). Final libraries were checked for quality by agarose gel, quantified with 

Qubit, and multiplexed with a maximum of 24 samples per sequencing reaction.  

Sequencing and processing 

ChIP, ATAC, and RNA-seq libraries were single-end sequenced with a length of 50bp on 

an Illumina HiSeq 2500 at the UCLA Broad Stem Cell Research Center. The low quality 3’ends 

of reads were trimmed (cutoff q=30), and remaining adapter sequences were removed using 

cutadapt36. For ChIP and ATAC-seq, reads were aligned to the mm10 genome build using 
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bowtie237 with default parameters except --very-sensitive and --non-deterministic options. For 

RNA-seq, reads were aligned to the mm10 genome using STAR38 with the following options: --

outFilterMultimapNmax 20, --alignSJoverhangMin 8, --alignSJDBoverhangMin 1, --

outFilterMismatchNmax 999, --outFilterMismatchNoverLmax 0.04, --alignIntronMin 20, and --

alignIntronMax 1000000 --seedSearchStartLmax 30. Aligned reads were filtered based on 

mapping score (MAPQ ≥ 30) by Samtools. For ChIP and ATAC-seq, duplicated reads were 

removed using Picard MarkDuplicates. Genome browser tracks for ChIP and ATAC-seq were 

generated using the bamCoverage function in deepTools39 with the following options: --binSize 

10, --smoothLength 30, --normalizeUsing RPGC, and for ChIP-seq only, --extendReads to 

average fragment length. 

ChIP-seq analysis 

MACS2 version 2.1.040 was used in broad mode to identify peaks for each sample using 

pooled input samples as control, FDR < 0.01, and extension size of average fragment length. 

These peaks were merged to generate a single reference peak file, and the number of reads that 

fell into each peak was counted using deeptools multiBamSummary41 with extension size of 

average fragment length. edgeR42 was used to perform normalization using the trimmed mean of 

M values (TMM) method and to construct a negative binomial model. For stimulus-specific 

dataset (Fig. 1), inducible peaks were identified in any stimulation condition compared to 

unstimulated by FDR < 0.05 and log2FC > 1. For IκB𝛼 KO vs control dataset (Fig. 4), inducible 

peaks were identified in TNF-treated samples compared to unstimulated by FDR < 0.05. 

Differentially inducible peaks between IκB𝛼 and KO were identified by FDR < 0.05 after re-

constructing the negative binomial model to include only inducible peaks. Heat maps were 

generated with the pheatmap R package. 
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Analysis of transcription factor motif enrichment was performed using 

findMotifsGenome function in the HOMER suite5, using the entire width of differential peaks as 

foreground and all detected peaks as background.  Peaks of interest were annotated using 

HOMER annotatePeaks function with default parameters. ChipPeakAnno43 was used to assess 

statistical significance of the overlap of differential peaks in the IκB𝛼 KO dataset and the 

stimulus-specific WT dataset. 

RelA ChIP-seq data in Lipid A-stimulated BMDMs was previously published14. BAM 

files were obtained from Gene Expression Omnibus (accession number GSE67343). Peaks were 

called on each sample against input with FDR threshold < 0.01. A merged peak file was 

obtained, and overlaps between RelA ChIP-seq peaks and H3K4me1 ChIP-seq or ATAC-seq 

regions of interest were determined using the intersect function in the Bedtools suite44. 

ATAC-seq analysis 

BAM files were analyzed with the R package csaw45, using windows 200-nt wide, with 

100-nt spacing. Windows with zero or background signal were removed. Sex-associated regions 

on chromosome X were also discarded46. Juxtaposed windows were merged in a single peak call 

up to a maximal chaining distance of 1,200 bp. Libraries were normalized using the TMM 

method. Batch effects were removed from the normalized count matrix with the 

RemoveBatchEffect function from the limma R package. Differential peaks were required to 

pass log2FC and FDR thresholds using csaw’s Genewise negative binomial generalized linear 

models with quasi-likelihood tests, with batch effects controlled by modeling as blocking factors. 

Thresholds were 1 log2FC and 0.05 FDR for TNF-inducible peaks; and 0.5 log2FC and 0.1 FDR 

for IκB𝛼 KO vs control. For each peak call, the single 200-nt window with the highest 

abundance was retained as representative of that peak. Clustering was performed using the 
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partitioning around medoids (PAM) algorithm on peak counts per million z-scaled across 

samples. Heat maps of peak signals were generated using the pheatmap R package. H3K4me1 

signal from windows matching those selected from ATAC-seq analysis was extracted using csaw 

by extending each 200-nt ATAC-seq window by additional 200 nt from 5' end and 200 nt from 

3'end, normalized using TMM offsets computed genome-wide. 

To obtain a normalized percentage of cells with open chromatin (Fig. 3g), ATAC counts 

were normalized as follows: over the 322 regions of interest, the 0.1 percentile of ATAC-seq 

signal was assigned a value of “0% of cells accessible.” The 99.9 percentile of ATAC-seq signal 

was assigned a value of “100% of cells accessible,” and all data points were scaled to these 

values. 

RNA-seq analysis 

Transcript read counts were computed by the featureCounts function in the Subread 

package47. TMM normalization was performed using the edgeR package. Genes below an 

expression threshold of 4.6 CPM in all samples were excluded from downstream analysis. 

Inducible genes were identified in TNF-treated samples compared to unstimulated by FDR < 

0.05. Differentially inducible genes between IκB𝛼 and KO were identified by FDR < 0.05 after 

re-constructing the negative binomial model to include only inducible genes. Heat maps were 

generated with the pheatmap R package. Gene ontology analysis was performed using the 

PANTHER database48 with all expressed genes as background 

Model of nucleosome opening 

Model formulation: A multistep model of DNA unwrapping from the histone octamer 

was formulated based on structural studies that identified 14 contacts between the histone 

octamer and double helical DNA and biophysical studies of single nucleosomes in vitro that 
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revealed multiple, step-wise transitions in DNA unwrapping23,49,50. The model describes the 

population average or probability of many stochastic events, with each species representing 

the fraction of NFκB-responsive latent enhancers in a cell (E) at a given state of accessibility. 

E-14 describes the most closed state in which all 14 contact points are engaged, and E0 the 

most open state in which the histone octamer is entirely evicted.  

 

A system of ordinary differential equations was formulated to describe this model: 

                                                   (1) 

                           (2) 

... 

                                           (3) 

... 

                                                           (4) 

The rate constant αi describes the closing transition. The term 𝛽i(t) represents an NFkB-

dependent opening transition that varies with time as nuclear NFκB concentration varies with 

time. Experimental studies have demonstrated that NFkB can interact with nucleosomal DNA19 

while the lowest energy structure of the NFκB-DNA complex is sterically incompatible with 

DNA-histone octamer interactions17,18, suggesting that NFκB can promote nucleosome 

unwrapping. The opening transition is thus formulated as: 
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where KD is the dissociation constant of the NFκB -DNA interaction, n is the Hill coefficient, 

ki  is the transition rate constant, and [NFκB(t)] represents the time-dependent nuclear NFkB 

concentration. 

Model parameters: KD  and n were surveyed across reasonable ranges, producing 

qualitatively similar results (Extended Data Fig. 4a,b). For the shown simulations KD was set 

to 0.025 µM and the Hill coefficient was set to three. The rate of nucleosome unwrapping was 

also surveyed across a wide range (Extended Data Fig. 4c), and the ratio of unwrapping to 

rewrapping rates was selected based on biophysical measurements23. Based on this literature, 

the initial rewrapping rate is approximately 5-10 times faster than the unwrapping rate, so we 

set the ratio of rewrapping to unwrapping to 7.5 at the first step. As in vivo nucleosomes are 

stabilized by linker histones and cooperative binding within the nucleosome array, we scaled 

transition rates to be 50-fold slower than in vitro measurements, with the unwrapping rate 

constant of the first opening step k-14 set to 10 µM−1min−1, and the rewrapping rate constant �-

14 to 75 min−1. To account for the inherent cooperativity of contact points within a 

nucleosome51, stepwise increases in unwrapping rates and decreases in rewrapping rates were 

included. These cooperativity factors were examined through a parameter sweep (Extended 

Data Fig. 4d,e), and cooperativity factors of 1.2 for unwrapping and 0.8 for rewrapping were 

selected.   

Model simulations: Simulations were performed in MATLAB R2014b. Experimental 

and theoretical single cell traces (Supplemental Table 1) were used as input to the ODE 

system described above. Experimental values of mVenus-RelA fluorescent intensities were 



 

  91 

converted to µM concentrations of NFκB based on previously published NFκB models, with 

the maximum fluorescence of the first peak for the single cell trajectories approximating the 

maximal nuclear NFkB concentration of 0.25 µM reported in previous studies52. For 

simulations, the initial value of the E-14 state was set to 1, and all other states set to 0. The 

MATLAB function ode15s was used to solve the ODE system, and the concentration of the 

most open chromatin state E0 was plotted.  
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The studies presented in this dissertation contribute to a growing literature on 

macrophages reprogramming. The results in Chapter Two demonstrated the specificity with 

which cytokines reprogram macrophages, revealing that differences between Type I and II IFNs 

are more nuanced than previously thought. These insights were enabled by the sequential 

conditioning-stimulation experimental strategy and systems-level analytical approach. Our study 

therefore not only advanced the biological understanding of IFNs but also highlighted the value 

of measuring not just direct gene expression effects of cytokines but also their effects on 

response to secondary stimulation. Indeed, the field of macrophage activation is shifting towards 

a paradigm of thinking in terms of conditioning and secondary response, as similar experimental 

approaches have provided insight into other cytokines. For instance, IL-4 treated “M2” 

macrophages, which have frequently been considered an “anti-inflammatory” phenotype due to 

the fact that they produce less TNF and IL6 than “M0” macrophages1, are in fact very much 

capable of producing inflammation when secondarily stimulated with LPS2. Our study further 

validates the utility of this approach, demonstrating that Type I and II IFNs have differential 

gene- and stimulus-specific effects when probed with secondary stimuli. 

 The results in Chapter Three provide a novel paradigm for stimulus-specificity in the 

molecular reprogramming of macrophages. While the notion that SDTFs can trigger formation of 

de novo enhancers is gaining acceptance, precisely how SDTF activity results in de novo 

enhancer formation and what features of SDTFs confer this ability have not been clearly shown. 

One hypothesis has extrapolated from studies of LDTFs3 that some SDTFs may contain 

structural motifs that confer the functional ability to interact with nucleosome-bound DNA. Our 

study provides an alternative mechanistic framework: that temporal dynamics of SDTFs 

determine their ability to interact with nucleosome-bound DNA and produce de novo enhancers. 



 

  99 

This hypothesis is a better explanation for the observation that de novo enhancer formation is 

stimulus-specific. If structural features of NFκB are solely responsible for its capacity to alter the 

epigenome, then the same enhancers should be formed whenever NFκB is activated. But in the 

temporal dynamics framework, NFκB dynamics are stimulus-specific, and thus whether they are 

oscillatory or non-oscillatory determines the ability of a given stimulus to produce de novo 

enhancers. 

 The results presented in this dissertation provide motivation for further investigation in at 

least two important lines of inquiry. The conclusions from Chapter Three, which have broad 

implications for stimulus-specificity in macrophage biology, need to be assessed functionally in 

vivo. Do the mechanisms that result in stimulus-specific, NFκB dynamics-dependent epigenomic 

changes have an effect on innate immune memory? Innate immune memory, which has 

substantial implications on human health and disease4, is thought to arise from epigenomic 

reprogramming of myeloid cells5. However, thus far, the relationship between the molecular and 

physiologic phenotypes has been largely correlative, and it is assumed that epigenomic 

differences seen in vitro are responsible for the physiologic responses seen in vivo. This 

knowledge gap can be addressed by studying the role of NFκB dynamics-dependent enhancers in 

host defense using a mouse model of infection. One limitation is that in vivo models of innate 

immune memory, such as infections in mice, do not lend themselves well to mechanistic studies. 

Genetic perturbations in mice affect not only memory formation but also the host response to 

secondary infection, making results difficult to interpret. To overcome this challenge, it will be 

necessary to de-couple the memory formation and secondary infection steps. For instance, one 

could condition monocytes in vitro with stimuli that induce oscillatory vs. non-oscillatory NFκB, 
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adoptively transfer these cells into mice depleted of their native monocytes, and subsequently 

infect the mice to assess the effects of the transferred, reprogrammed monocytes. 

 A second direction for further investigation is to translate results from murine 

experiments to human clinical scenarios. Epigenomic studies of human monocytes and 

macrophages stimulated with a spectrum of ligands has not been reported, and the extent of 

stimulus-specificity in human macrophage reprogramming is not known. These types of in vitro 

experiments are simple to perform and could then be extended to study the effect of other types 

of disease-relevant context on human myeloid cells. For instance, how do high glucose levels 

alter myeloid cell epigenomes and subsequent response to PAMPs? How do common 

immunomodulatory drugs like corticosteroids alter innate immune epigenomes and function? 

These questions could be addressed by isolating monocytes or tissue-resident macrophages from 

humans with diseases like diabetes and performing epigenomic and transcriptional-response 

assays. These studies would provide tremendous insight into the way disease contexts shape 

immune sentinel cells and alter gene expression responses in infectious diseases. Additionally, 

one could explore the impact of recent infection on human myeloid cell epigenome and function. 

This could be done by infecting human volunteers in a controlled setting6, or by prospectively 

following patients with infection into the resolution phase of disease. These experiments could 

identify the enhancers and genes that alter subsequent immune function and contribute to the 

pathogenesis of post-infectious complications. 

 Ultimately, the goal of these lines of inquiry would be to translate the mechanistic insight 

gained from the studies in this dissertation into tangible and clinically useful tools. The long-

term application of these studies could include the identification of epigenetic and gene 

expression markers of disease risk. One can imagine, for instance, being able to measure the 
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epigenetic and gene expression response patterns of a patient recovering from influenza and 

predict their risk for a secondary bacterial pneumonia, heart attack, or stroke. If they are high 

risk, simple interventions such as prophylactic antibiotics or anti-platelet therapy could be 

employed during the risk period. More targeted therapy could also be prescribed, where drivers 

of detrimental epigenetic reprogramming could be inhibited by epigenome-modifying drugs such 

as bromodomain inhibitors of BET enzymes7. With the rapid advance of CRISPR-based 

technologies, one could even imagine someday bringing targeted epigenetic modifying therapies 

to specific sites in the genome, modifying the state of a single enhancer that confers risk for 

disease in reprogrammed macrophages. While these diagnostic and therapeutic tools may be 

many years away, this dissertation contributes to the fundamental understanding of how 

macrophages are reprogrammed. 
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