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Abstract

Introduction: MicroRNAs (miRNAs) are small noncoding RNA molecules that exert post-

transcriptional effects on gene expression by binding with cis-regulatory regions in target 

messenger RNA (mRNA). Polymorphisms in genes encoding miRNAs or in miRNA–mRNA 

binding sites confer deleterious epigenetic effects on cancer risk. miR-146a has a role in 

inflammation and may have a role as a tumour suppressor. The polymorphism rs2910164 

in the MIR146A gene encoding pre-miR-146a has been implicated in several inflammatory 

pathologies, including cancers of the breast and thyroid, although evidence for the 

associations has been conflicting in different populations. We aimed to further investigate 

the association of this variant with these two cancers in an Irish cohort.

Methods: The study group comprised patients with breast cancer (BC), patients with 

differentiated thyroid cancer (DTC) and unaffected controls. Germline DNA was extracted 

from blood or from saliva collected using the DNA Genotek Oragene 575 collection kit, 

using crystallisation precipitation, and genotyped using TaqMan-based PCR. Data were 

analysed using SPSS, v22.

Results: The total study group included 1516 participants. This comprised 1386 Irish 

participants; 724 unaffected individuals (controls), 523 patients with breast cancer (BC), 

136 patients with differentiated thyroid cancer (DTC) and three patients with dual 

primary breast and thyroid cancer. An additional cohort of 130 patients with DTC from 

the South of France was also genotyped for the variant. The variant was detected with 

a minor allele frequency (MAF) of 0.19 in controls, 0.22 in BC and 0.27 and 0.26 in DTC 

cases from Ireland and France, respectively. The variant was not significantly associated 

with BC (per allele odds ratio = 1.20 (0.98–1.46), P = 0.07), but was associated with DTC in 

Irish patients (per allele OR = 1.59 (1.18–2.14), P = 0.002).

Conclusion: The rs2910164 variant in MIR146A is significantly associated with DTC, but is 

not significantly associated with BC in this cohort.
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Background

The association between breast and thyroid disorders 
has been widely explored with a large amount of 
epidemiological evidence linking breast and thyroid 
malignancies. However, the extent and explanation 
for this association have remained ill-defined. A recent 
meta-analysis has revisited the possibility of such 
an association and has confirmed the existence of, 
and quantified the increased co-occurrence of breast 
and differentiated thyroid cancer (DTC) (1). Both 
cancers occur predominantly in females, and there is a 
significantly increased risk of developing thyroid cancer 
as a second primary malignancy following a diagnosis of 
breast cancer (BC) and vice versa (2, 3, 4, 5). Mutations in 
PTEN have long been known to predispose to both types 
of malignancy as part of the PTEN hamartoma tumour 
syndrome (6). A relationship between BC and benign 
thyroid disease has also been hypothesised (7), given the 
common iodine transport mechanism (8, 9), prevalence 
of anti-thyroid peroxidase (TPO) autoantibodies in BC 
patients (10, 11, 12) and the role of thyroid hormone 
receptor B in BC (13). A non-syndromic monogenic 
disorder predisposing to breast and thyroid cancers 
has been postulated but has not, as yet, been identified 
(14). However, it is possible that this association may be 
explained by overlapping moderate- or low-penetrance 
breast-thyroid cancer genetic susceptibility loci (15).

MicroRNAs (miRNAs) are crucial elements in the 
regulation of gene expression and are involved in a 
host of physiological and pathological processes. A 
substantial proportion of the human transcriptome is 
subject to regulation by miRNAs (16). MicroRNA genes are 
transcribed from endogenous DNA into primary miRNA 
transcripts (pri-miRNA), which are then processed by 
Drosha-containing complexes to form hairpin structures 
called pre-miRNAs. Pre-miRNAs are then transported 
into the cytoplasm and processed further by a Dicer-
containing complex, which acts to excise the hairpin 
loop. Binding of miRNA to target messenger RNA (mRNA) 
leads to translational suppression or mRNA degradation 
(17). Partial complementarity is often sufficient for 
binding (16), meaning that individual miRNAs may have 
hundreds of different mRNA targets, and the individual 
mRNA target can be regulated by many different miRNAs 
leading to a rich and complex miRNA–mRNA network. 
The potential complexity of the miRNA–mRNA network 
can be exemplified by the miR-146 family of microRNAs. 
This family includes two closely related but genetically 
distinct microRNAs, miR-146a and miR-146b, differing 

only at two nucleotides in the 3′ region of the mature 
sequences (17).

These miRNAs are critical in a number of immune 
and inflammatory response pathways and are activated 
differentially by NF-KB and in response to pro-
inflammatory cytokines (17). miR-146a has a number 
of molecular targets involved in innate and adaptive 
immune responses; cell proliferation, invasion and 
metastasis; including, among others, TRAF6 (17), IRAK1 
(17), IRAK2 (18), EGF-R (19), NOTCH1 (20) and ROCK1 
(21). miR-146a upregulation is mediated by BRAF and 
NRAS oncoproteins (20).

The typical human genome varies from the reference 
sequence at 4.1–8 million sites (22), and the majority of 
this variation is attributable to small indels and single 
nucleotide polymorphisms (SNPs). The vast majority of 
these SNPs are benign, but they may become relevant 
functionally and clinically if they occur in a critical 
binding site or regulatory region (23). A single nucleotide 
variant (rs2910164: G>C) in the precursor stem region 
of pre-miR-146a is thought to reduce the stability of 
the pri-miR and affect processing of pri- to pre-miRNA, 
thus impacting expression of mature miR-146a (24). 
This variant has been implicated in a host of malignant 
and non-malignant inflammatory conditions such as 
hepatocellular (25) and gastric cancers (26), coronary 
artery disease (27), inflammatory bowel disease (28) 
and multiple sclerosis (29, 30). Some authors report an 
association between the variant in heterozygous (GC), 
but not homozygous (CC) states and an increased risk of 
papillary thyroid cancer compared to wild-type genotype 
(GG) (24), while others report an association with both 
heterozygous and homozygous states (31). Data with 
respect to this association are conflicting, with other 
groups failing to show an association with hetero- or 
homozygous genotypes (32, 33). Similarly, there are 
conflicting reports of the impact of the variant allele on 
mature miR-146a expression, with some authors reporting 
reduced expression (24), and others overexpression (34).

A possible association between the rs2910164 variant 
and BC was suggested after a report by Shen and coworkers 
suggested an impact of age of onset of familial BC on 
Chinese patients (34). An Italian study of a small cohort of 
carriers with BRCA1/BRCA2 mutations also suggested an 
influence of age of onset of disease, but not on risk overall 
(35). However, no association between age at diagnosis or 
disease risk and genotype was identified in a larger study 
of BRCA1/BRCA2 mutation carriers from Europe and USA 
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(36) or in a different Chinese cohort of sporadic cases (37). 
It has been postulated that ethnicity may significantly 
modify the association between miRNA polymorphisms 
and cancer risk (38). An association between genotype and 
sporadic BC risk and phenotype has been investigated in 
variably powered studies from China (37), Italy (35, 39), 
Germany (39), Spain (40), Australia (41), Saudi Arabia (42), 
India (43) and Iran (44, 45, 46); and in numerous meta-
analyses with conflicting results (26, 47, 48, 49). To date, 
no Irish samples have been included in such analyses.

The aims of this study were to investigate the 
association between the variant allele of rs2910164 in 
MIR146A and predisposition to breast and differentiated 
thyroid cancers in an Irish patient sample and to 
investigate the frequency of the variant in a distinct 
patient population from the South of France.

Methods

Study samples

Case–control analyses were undertaken, comparing 
genotypic and allelic frequencies of the variant in 
patients with BC and in those with DTC, to frequencies in 
unaffected controls.

Unselected patients with confirmed in situ or invasive 
BC (n = 534) were recruited via a symptomatic and 
screening BC tertiary referral centre (Galway University 
Hospital). Of these, 7 were found to carry a pathogenic 
mutation in BRCA1 or BRCA2 and were excluded from 
analysis. Two other individuals were found to carry 
pathogenic mutations in another BC susceptibility gene 
(CHEK2, CDH1) and were also excluded.

Patients were recruited from thyroid cancer treatment 
clinics at tertiary centres in the West of Ireland and South 
of France as part of a collaborative multicentre study to 
establish a thyroid cancer biobank at the Discipline of 
Surgery in the Lambe Institute for Translational Research, 
based in Galway University Hospital. Patients with a 
histological confirmation of DTC were included (n = 269). 
Exclusion criteria included benign thyroid disease, 
medullary thyroid cancer, or known pathogenic germline 
mutations in cancer predisposition genes.

Individuals were included as controls if they did 
not have a current or previous diagnosis of cancer (not 
including non-melanomatous skin cancer), if they did 
not have a first-degree familial history of breast, ovarian 
or thyroid cancers and if they were aged over sixty years. 
Controls were recruited from non-oncological outpatient 
clinics, and from volunteers in the community.

Written and informed consent was obtained from each 
patient, and the study was approved by the Institutional 
Ethics Review Board at Galway University Hospital.

Data pertaining to tumour clinico-pathological 
characteristics and previous germline genetic testing were 
recorded from hospital histopathology and genetic testing 
reports. Information regarding personal and familial 
medical history was self-reported by patients.

DNA extraction

Participants recruited in hospital were asked to provide 
a 10 mL whole blood sample, and those recruited 
from the community were asked to provide a salivary 
sample collected using the DNA Genotek Oragene 575 
collection kit. DNA was extracted manually by ethanol 
precipitation from whole blood or saliva, and qualified 
and quantified using nanodrop spectrophotometry. 
DNA was deemed to be of suitable purity if the ratio 
of the absorbance at 260 and 280 nm measured 
approximately 1.8 (50).

Genotyping

Genotyping was performed by PCR using a TaqMan assay 
(Applied Biosystems) containing allele-specific probes 
and a PCR primer pair to detect the specific variant under 
investigation. Each allelic discrimination reaction mix 
contained 1 µL TaqMan SNP genotyping assay, 10 µL 
TaqMan SNP genotyping Master Mix and 40 ng/9 µL 
genomic DNA. RT-PCR was performed using ABI 7900 
HT Fast Real-Time PCR System (Applied Biosystems) 
under the following conditions: 95°C for 10  min to 
facilitate activation of DNA polymerase, and 40 cycles of 
amplification, with denaturation at 95°C for 15 s followed 
thereafter by annealing and extension at 60°C for one 
minute. The assay for rs2910164 SNP was manufactured 
such that reporter dyes were tagged to the 5′ end of 
alternative allele probes (VIC to the variant C allele probe, 
FAM to the G allele probe (Thermo Fisher Scientific; 
www.thermofisher.com/order/genome-database/browse/
genotyping/keyword/rs2910164)) and a non-fluorescent 
quencher at the 3′ end of the respective probes). VIC dye 
fluorescence only was interpreted as homozygosity for 
the C allele, FAM dye fluorescence only as homozygosity 
for the G allele and fluorescence signals from both dyes 
as heterozygosity. Allelic discrimination plots were 
generated, with automatically interpreted FAM and VIC 
fluorescent signals plotted on X and Y axes. Automated 
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genotype calling was confirmed manually by interrogation 
of multicomponent plots.

Statistical analysis

Data were analysed using SPSS, version 24. Continuous 
data were assessed for normality using the Kolmogorov–
Smirnov tests and analysed using parametric or non-
parametric tests as appropriate. Normal data were 
expressed as mean ± standard deviation, and non-normally 
distributed data as median (range). Categorical data were 
assessed using chi-squared tests. The frequency of the 
variant was assessed for Hardy–Weinberg equilibrium 
using chi-squared test. Case–control analyses were 
performed between patients of matched ethnicity.

Results

Considering the Irish cohort primarily, samples from 724 
controls, 523 patients with BC, 136 patients with DTC and 
3 patients with dual-primary breast and thyroid cancer 
were successfully genotyped for rs2910164. The clinical 
and pathological characteristics of the patient cohort are 
outlined in Tables 1 and 2. The variant was proven to be 
in Hardy–Weinberg equilibrium in both case cohorts and 
in controls.

The frequency of the minor allele was higher in 
BC cases (0.22) than controls (0.19), but the per allele 
odds ratio for the C allele did not achieve statistical 
significance (OR 1.20 (0.98–1.46), P = 0.07). Neither 
hetero- nor homozygous genotypes were associated 
with BC in this patient population (Tables 3 and 4). No 
significant association was detected between genotype 

and age at diagnosis of BC (P = 0.197, Kruskal–Wallis test) 
or molecular subtype of BC (P = 0.715, X2) (Table 5). No 
association was evident between genotype and T-stage 
(P = 0.689, X2), absolute tumour size (P = 0.327, Kruskal–
Wallis test) or nodal status (P = 0.861, X2).

The frequency of the minor allele was significantly 
higher in DTC cases (0.27) than controls (0.19). The C 
allele variant was significantly associated with DTC in 
both heterozygous (OR 1.66 (1.13–2.44), P = 0.009) and 
homozygous genotypes (OR 2.24 (1.05–4.78), P = 0.03) 
(Tables 3 and 4). When association was analysed by gender, 
the association remained significant for females. The 
association also retained significance when histological 
subtype was considered. When papillary subtypes of 
thyroid cancer only (n = 110) were considered, the risk 
conferred by the CG genotype was 1.55 (1.01–2.38),  
P = 0.04; and by the CC genotype, 2.81 (1.3–6.05), P = 0.006 
(Table 5).

We did not identify an association between genotype 
and age at diagnosis of DTC (P = 0.47, ANOVA) (Fig.  1). 
There was no appreciable association between genotype 
and nodal status (P = 0.728, X2) or T-stage (P = 0.079, X2).

All three female patients diagnosed with both breast 
and thyroid primary malignancies were found to be of CG 
genotype.

One hundred and thirty patients with DTC were 
recruited from a tertiary centre in the South of France 
and genotyped successfully for this variant (Tables  6  
and 7). This sample demonstrated much greater diversity 
in terms of ethnic origin – with the majority identifying as 
‘French Caucasian’ (n = 90, 69%), but significant patients 
reporting other European (n = 20, 15%), Asian (n = 7, 5%) 
or North African origin (n = 10, 8%). The frequency of 
the variant allele in this population was 0.26. There was 

Table 1  Irish patient characteristics.

 Breast cancer (N (%)) Thyroid cancer (N (%)) Controls (N (%))

Total 526* 139* (100) 724 (100)
Gender    
  Male 3 (1) 27 (19) 53 (7)
  Female 523* (99) 112* (81) 671 (93)
Age at diagnosis (cases) or sampling (controls)    
  Median (range) 53 (30–88) 42 (16–84) 70 (60–93)
  Mean ± s.d. 55.14 ± 11.11 45.33 ± 15.01 70.72 ± 6.71
Age groups    
  15–39 28 (5) 48 (35) 0
  40–49 149 (28) 29 (21) 0
  50–64 229 (44) 32 (23) 124 (17)
  ≥65 104 (20) 13 (9) 600 (83)
  Unknown 16 (3) 17 (12) 0 (0)

*Including three female patients with breast and thyroid cancer.
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no significant difference in age at diagnosis (P = 0.984), 
T-stage (0.066) or nodal involvement (P = 0.945) between 
genotypes (Table 8).

Discussion

The role of miRNA-146a and miRNA-146b in inflammation, 
immune function and epithelial cell homeostasis and their 
reported roles in inhibition of invasion and metastasis, 
make them seductive candidates as cancer susceptibility 
genes. The function of miR-146a, as is true for other 
microRNAs, appears to be tissue, as well as context specific 
(51). Different studies have variably categorised miR-146a 
as tumour suppressor or oncogenic microRNA depending 
on the tissue of interest (52, 53).

The expression of these miRNAs has been shown 
to be upregulated in basal-like BC cell lines, a subtype 
commonly associated with BRCA1 deficiency, compared 
to luminal subtypes. Binding of these miRNAs to target 
sites in the 3′UTR of BRCA1 can also downregulate its 
expression, leading to increased cellular proliferation 
(54). However, miRNA-146b has also been shown to 
be upregulated in healthy basal mammary epithelial 
cells (55). It has also been reported that upregulation of  
miR-146a/b by BRMS1 leads to inhibition of invasion 
and metastasis of MDA-MB-231 human breast carcinoma 
cells  (56), by subsequent downregulation of NF-kB 
through the targets IRAK1 and TRAF6 (57). In other 
studies, such upregulation was associated with an anti-
apoptotic effect in p53-deficient breast tumours (52). The 
expression of genes involved in the NF-KB pathway and 

Table 2  Tumour clinico-pathological features.

Breast cancer (N = 526) Thyroid cancer (N = 139)

Histology    
  Ductal 397 (75) Papillary 112 (81)
  Lobular 78 (15) Follicular 27 (19)
  Colloid 12 (2)   
  Other 19 (4)   
  Missing 20 (4)   
Molecular subtype   
  Luminal A 344 (65)  
  Luminal B 61 (12)  
  Her2-overexpressing 28 (5)  
  Triple negative 53 (10)  
  Unknown 40 (8)  
T-stage    
  Is 33 (6)   
  1 182 (35) 1 57 (41)
  2 216 (41) 2 45 (32)
  3 39 (7) 3 25 (18)
  4 16 (3) Unknown 12 (9)
  Unknown 37 (7)   
N-stage    
  0 250 (48) 0 38
  1 130 (25) 1 21
  2 62 (12)   
  3 27 (5)   
  Missing 57 (11) Not assessed 80

Table 3  Genotypic and allelic frequencies in Irish patients.

Genotype Control (N = 724) DTC (N = 139) Breast (N = 526)

GG 480 74 326
CG 215 55 171
CC 29 10 29
C allele 273 75 229
G allele 1175 203 823
Minor allele 

frequency
0.19 0.27 0.22

Male individuals only

Male Control (n = 53) DTC (n = 27) Breast (n = 3)

GG 35 (66) 13 (48) 2 (67)
CG 16 (30) 12 (44) 0
CC 2 (4) 2 (7) 1 (33)
C allele 20 16 2
G allele 86 38 4
Minor allele 

frequency
0.19 0.30 0.33

Female individuals only

Female Control (n = 671) DTC (n = 112) Breast (n = 523)

GG 445 61 324
CG 199 43 171
CC 27 8 28
C allele 253 59 227
G allele 1089 165 819
Minor allele 

frequency
0.19 0.26 0.22 

Table 4  Genotypic and allelic odds ratio (Irish patients).

Odds ratio (95% CI)

Thyroid cancer

 Per C allele CG vs GG CC vs GG

Overall 1.59 (1.18–2.14) 1.66 (1.13–2.44) 2.24 (1.05–4.78)
 P = 0.002 P = 0.009 P = 0.03
Male 1.81 (0.85–3.87) 2.02 (0.76–5.39) 2.69 (0.34–21.14)
 P = 0.13 P = 0.16 P = 0.33
Female 1.54 (1.11–2.14) 1.58 (1.03–2.41) 2.16 (0.94–4.97)
 P = 0.01 P = 0.03 0.06

Breast cancer

 Per C allele CG vs GG CC vs GG

Overall 1.20 (0.98–1.46) 1.17 (0.92–1.5), 1.47 (0.86–2.51)
 P = 0.07 P = 0.21 P = 0.15
Male 2.15 (0.37–12.57) 0 (n/a) 8.75 (0.54–142.69)
 P = 0.40  P = 0.77
Female 1.19 (0.98–1.46) 1.18 (0.92–1.51) 1.42 (0.82–2.46)
 P = 0.09 P = 1.19 P = 0.20
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regulation of apoptosis may also be dependent on pre-
miR-146a genotype (53).

Considering rs2910164 in particular, in vitro studies 
have suggested that mature miRNA-146a levels are 
increased in MCF7 cell lines transfected with pcDNA3.3-
miR-146C vs pcDNA3.3-miR-146G, which the authors 
postulate to be related to increased binding capacity 
of miR-146a to BRCA1 in the presence of the C-variant 
(33). However, we, and other authors, have previously 
shown that circulating miR-146a levels are reduced in the 
presence of the C allele in patients with BC (58, 59). 

miR-146a and miR-146b have been shown to be 
upregulated and associated with adverse prognostic 
features, progression and invasion in papillary (60), 
follicular (61) and anaplastic (62) thyroid cancers. 
This  effect may be mediated through associations with 
NF-KB (62), ST8SIA4 (61) or RARB (63, 64). A previous 
study by Jazdzewski and coworkers postulated that 
different genotypes did not show an association between 

the homozygous rs2910164 genotype and disease, which 
they attribute to differential production of mature miRNA 
in tumours, with heterozygotes producing three alternate 
isoforms of the miRNA (miR-146a from leading strand, 
and miR-146a*G and miR-146a*C from passenger strand), 
with different sets of target genes (24, 65).

Our data support a possible association between 
the variant allele of rs2910164 and DTC in this patient 
population. Furthermore, an allele dosage effect was 
observed, with homozygous genotypes associated with 
increased odds of disease compared to heterozygotes. 
In our study, 7% of patients were homozygous for the 
variant compared to 4% of controls, while in the cohort 
of the study by Jazdzewski and coworkers the homozygote 
genotypic frequency was 2.9% in cases compared to 6.6% 
in controls (24). This study included samples from three 
ethnically distinct populations (Finland, Poland and 
USA); with approximately equal representation of cases 
from each cohort, but over half of the controls were 
Polish. We have demonstrated that the frequency of the 
variant allele in French cases is 0.26, which is comparable 
to that reported in our Irish cases (0.27), and to the MAF 
in Finnish cases (0.27) (24) and comparatively higher than 

Table 5  Genotypic odds ratios depending on molecular subtype of breast cancer or histological subtype of thyroid cancer. 

    Genotypic odds ratio (95% CI)

 GG GC CC GC vs CC GG vs CC

Molecular subtypes of breast cancer
Luminal A (n = 342) 219 106 17 2.02 (1.76–5.39) P = 0.16 2.69 (0.34–21.14) P = 0.33
Luminal B (n = 61) 35 22 4 1.4 (0.8–2.45) P = 0.23 1.89 (0.63–5.68) P = 0.25
Her2-overexpressing (n = 28) 18 7 3 0.87 (0.36–2.11) P = 0.75 1.07 (0.24–2.68) P = 0.92
Triple negative (n = 52) 31 20 2 1.44 (0.8–2.58) P = 0.22 2.76 (0.77–9.91) P = 0.11

Histological subtypes of thyroid cancer
Papillary (n = 110) 59 41 10 1.55 (1.01–2.38) P = 0.04 2.81 (1.3–6.05) P = 0.006
Follicular (n = 26) 15 11 0 1.64 (0.74–3.62) P = 0.2 n/a  

Figure 1
Lack of association between genotype and age at diagnosis.

Table 6  Characteristics of French patients.

Patient characteristic  N (%)

Ethnicity
  French Caucasian 90 (69)
  Other European Caucasian 20 (15)
  Asian 7 (5)
  African 10 (8)
  Other 3 (2)
Minor allele frequency 0.26
Mean age at diagnosis ± s.d. (years) 47.71 ± 15.28
Gender
  Male 37 (29)
  Female 93 (72)
Histopathological subtype
  Papillary 119 (92)
  Follicular 11 (9)
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the MAF reported in the Polish (0.22) (24) or UK (0.24) 
(32) cohorts, but lower than that reported in American 
cases (0.30) (24) and considerably lower than that reported 
in Chinese patients (0.57). A cohort of French controls is 
required for comparative analyses before any conclusion 
can be made regarding the significance of this variant in 
the French population, as there is obvious variability in 
frequency of the variant that can be demonstrated across 

different populations. This high MAF in DTC cases merits 
further investigation in a larger study with controls of 
matched ethnicity. Variability in frequency of the variant 
across different populations is exemplified by the different 
MAF demonstrated in our cohort compared to our nearest 
geographical neighbours in the United Kingdom, where 
the MAF in both control and case cohorts was 0.24. 
The UK study therefore did not support an association 

Table 7  Genotypic frequency in French cohort.

 Patient genotype  

 GG GC CC Significance

N (%) 72 (55) 49 (38) 9 (7)  
Minor allele frequency 0.26  
Mean age at diagnosis ± s.d. (years) 47.85 ± 14.56 47.65 ± 16.27 46.89 ± 17.14 P = 0.984, ANOVA
T-stage     
  1 40 21 3 0.066, X2

  2 13 12 6  
  3 17 12 0  
  4 1 0 0  
  Unknown 1 4 0  
Nodal status     
  0 17 9 2 0.945, X2

  1 22 10 2  
  Not assessed 32 27 5  
  Unknown 1 3 0  

Table 8  Lack of association of genotype with age, T-stage, nodal status.

 Genotype

 GG GC CC Significance

Breast cancer     
Age 55 (33–88) 52 (32–84) 52 (30–84) 0.197 (Kruskall–Wallis)
T-stage     
  Is 24 8 1 0.689, X2

  1 105 65 12  
  2 133 72 11  
  3 26 10 3  
  4 12 3 1  
  Unknown 26 10 1  
Tumour size 25 (2–100) 23 (2–116) 25 (2–110) 0.327 (Kruskall–Wallis)
Nodal status     
  0 158 77 15 0.861, X2

  1 80 42 8  
  2 36 22 4  
  3 19 8 0  
Thyroid cancer
Age 43.89 ± 14.69 47.45 ± 16 46 ± 12.44 0.470 (ANOVA)
T-stage     
  1 38 15 4 0.079, X2

  2 21 22 2  
  3 10 12 3  
  Unknown 5 3 1  
Nodal status     
  0 24 12 2 0.728, X2

  1 11 7 2  
Not assessed 39 33 6  
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of the variant with disease. Our criteria for inclusion of 
participants as controls was much more stringent than in 
this study, where controls were recruited from the national 
blood donor service, the 1958 Birth cohort, and from a 
separate colorectal cancer susceptibility gene discovery 
project (COloRectal Gene Identification study (CORGI)). 
Furthermore, although the number of cases included in 
this study was greater (cases: 748 vs 139; controls: 2857 
vs 724); the population in the United Kingdom is 65.6 
million (66), almost 14 times greater than that in the 
Republic of Ireland (approximately 4.7 million (67)). Our 
sample therefore represents a greater proportion of the 
national population.

We applied rigorous selection criteria to controls, 
specifying that they must be aged at least 60 years; the 
rationale being that patients with a genetic predisposition 
to cancer are more likely to be affected at younger ages, 
and older individuals have the lowest residual lifetime 
possibility of developing cancer. Indeed, the median age 
at diagnosis of thyroid cancer in our cohort was 45 years 
(range 16–84). The controls in other studies were young 
or age-matched unaffected individuals recruited from 
outpatient clinics or as part of another study (24, 68,  
69). In an Italian study, no association between the 
variant and thyroid cancer was described, but the authors 
do not describe the ages of the control individuals (43). 
Young  patients have a higher lifetime probability of 
developing a cancer that may be related to an underlying 
predisposition.

Previous studies have suggested that gender may 
influence the strength of the association of rs2910164 
with disease (70); potentially because of the regulation 
of miRNA-146a expression by oestrogen in immune cells 
(71). In this study, the strength of the association between 
the variant and thyroid cancer retained significance in 
female patients, but did not in male patients. A limitation 
of this study however is the small number of male 
controls, and this subgroup is underpowered to draw any 
formal conclusion from the analysis.

As the variant in question is a transversion 
involving two nucleotides of a Watson–Crick pair; it is 
important that the orientation of the DNA strand on 
which the variant is called and the method by which 
genotyping is performed are considered. Previous 
meta-analyses have described the multitude of 
methods by which genotyping of this variant has been 
performed in different cohorts (72). It is important not 
just to consider the method, but also the orientation 
of the primers in the assays utilised and indeed the 
assembly build on which their design is based. A lack 

of clarity about this point may have contributed to 
the apparently discordant results in the literature to 
date; a confounding factor that has been reported in 
the investigation of other SNPs (73). The situation in 
this context is further complicated by the differing 
frequencies and indeed impact of the variant allele on 
different populations, especially between East Asian 
and European Caucasian populations (69, 72; http://
exac.broadinstitute.org/variant/5-159912418-C-G).

The technology at our disposal to investigate and 
identify genetic variation has improved dramatically 
in recent years. It is therefore likely that the ‘low-
hanging fruit’  – the highly penetrant monogenic cancer 
predisposition syndromes – have already been identified. 
The missing heritability of cancer is likely to be attributable 
to low-penetrance alleles in multiple genes. While 
individually these polymorphisms may confer small effect 
sizes, the cumulative risk conferred by inheritance of 
multiple low-penetrance alleles may possibly approach that 
of the high-risk monogenic disorders. As we start to develop 
algorithms to include data from low-penetrance alleles into 
BC risk estimation (74), we must endeavour to do the same 
for less common malignancies – particularly those of which 
the genetic architecture is, as yet, poorly defined.

This study highlights a number of key points. In this 
cohort, the variant rs2910164 appears to be associated 
with DTC, but does not have a clear association with BC 
risk, nor age of disease onset or molecular subtype of BC. 
The clinical utility of the identification of this variant 
in a patient sample is, as yet, undetermined, given the 
numerous potential inflammatory benign and malignant 
disease processes in which miR-146a has a role; and 
the differential frequency and influence of this variant 
across populations. This study is limited by a relatively 
small number of samples from patients with DTC. 
However, we believe this sample to be representative of 
Irish patients with the disease, considering that we have 
strongly matched for ethnicity in a population of only 
4,757,976 (67, 75) with a thyroid cancer incidence of 
3.61/100,000 (75).

The possibility of variant allele misalignment 
between different studies does exist, and a robust meta-
analysis, accounting for this, may further elucidate the 
association between the variant allele at this locus and 
cancer predisposition.
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